Music Information Retrieval Technology

A thesis submitted for the degree of
Doctor of Philosophy

Alexandra L. Uitdenbogerd B.Sc.(UWA), Grad. Dip. Ed. (Melb), Grad Cert IT (RMIT),
Department of Computer Science,

RMIT University,

Melbourne, Victoria, Australia.

Supervisors: Justin Zobel, Hugh Williams

May 18, 2002

ii

Declaration

This thesis contains work that has not been submitted previously, in whole or in part, for any
other academic award and is solely my original research, except where acknowledged. The work

has been carried out since the beginning of my candidature on 30 January 1997.

Alexandra L. Uitdenbogerd

School of Computer Science and Information Technology
Royal Melbourne Institute of Technology

May 18, 2002

iii
Acknowledgements

A Ph.D thesis is a major undertaking that is not done in isolation. I am greatly indebted to
my supervisors Associate Professor Justin Zobel, and Dr Hugh Williams, who have helped me
to achieve a high quality of work.

I have been greatly encouraged by the people who have shown a strong interest in my work.
I would like to thank Philippe Aigrain in particular for his encouragement.

I have received support from other academics who have been there at times of need. I'd
especially like to thank Associate Professors Zahir Tari and Lin Padgham, and Dr M. V. Ra-
makrishna for their moral support and encouragement. I thank Sheila Howell for her kind
consideration in the final stages of my work. I'd also like to thank Corinna Ng, who advised me
in the early stages of my work, and Dr Gerald Harnett for his ongoing interest in my progress.

I don’t know if I would have attempted this degree if it weren’t for my wonderful family who
raised me to believe I could achieve whatever I set my mind to, and the inspirational aunties
and cousins who led the way in striving further in their careers.

This journey has not been travelled alone. I’ve been grateful for the companionship of other
research students in the department during my studies. In particular I'd like to thank Greg
Craske, and all the research students at MDS.

Some people contributed directly to the work of this thesis. I'd like to thank Abhijit Chat-
taraj for his excellent work developing the JAM system, and all the volunteers that spent time
taking part in my experiments.

Besides my senior supervisor there is one person who has been crucial to my success in
this endeavour. John Harnett has provided ongoing system administration support, occasional
proof-reading, and has helped keep the household together when necessary. I remain eternally
grateful for your patience and assistance.

Early versions of some of the work in this thesis were published as papers co-authored with

my supervisor [132, 133]. This work was partly supported by an Australian Postgraduate Award.

Contents

Summary

1 Introduction

2 Background

2.1

2.2

2.3

24

2.5
2.6

Music Terminology« .« e e
2.1.1 Notesand Pitch
2.1.2 Intervals and Octaves e
213 Scalesand Key L e
2.1.4 Chords and Harmony Lo
2.1.5 Common Music Notation
Music Perception oL
2.2.1 Music Memory e
2.2.2 Figureand Ground e
2.2.3 Melody Similarity Perception,
2.2.4 Implications for MIR Systems
Computer Representation of Music
2.3.1 MIDI e e e e
Computer Musicology L e
2.4.1 Musical Style and Similarity of Music L.
2.4.2 Part Splitting and Melody Extraction
Computer Musicology versus Music Perception
Information Retrieval L
2.6.1 Relevance L e e

v

2.6.2 Experimental Methodology in Information Retrieval
2.6.3 IR Models o . e
2.7 Music Databases
2.7.1 Existing Music Databases and Retrieval Systems
2.7.2 Music Database User Issues
2.7.3 Query ACCUracy o v i it e e e e e e e e e
2.7.4 Music Databases in the Future
2.8 Survey of Music Information Retrieval Research
2.9 SUMINATY o o e e e e e e e e e e e e e e e e e e

Matching Techniques

3.1 Terminology« o oL e e e
3.2 Exact Matching L e
3.3 Inexact Matching with k Errors,
3.4 Dynamic Programming Lo o
3.4.1 Example Using Longest Common Subsequence
3.4.2 Dynamic Programming Variations
343 OtherIssues. e
3.5 Indexing L L
3.5.1 Index Terms 0 L it e e
3.5.2 Index Structures L e
3.5.3 Index Heuristics e
3.6 SUumMmary oL e e e e e e e

Methodology for Music Retrieval Research

4.1 Evaluating Information Retrieval Systems
4.2 Evaluation of MIR systems
4.3 Our MIR Methodology« . . o o e
4.3.1 Testing Melody Extraction0,
4.3.2 The Music Collection oL
4.3.3 First-Stage Queries and Relevance
4.3.4 Obtaining Manual Queries L 0oL

27
28
28
28
30
33
33
34
40

41
42
42
45
45
46
47
50
50
51
52
53
54

vi

4.3.5 Manual Relevance Judgements 63
4.3.6 Second-Stage Melodic Similarity Experiments 67
4.4 SUMMATY o vt e e e e e e e e e e e e e e 67
Melody Extraction 68
5.1 Melody Extraction Issues o oL 68
5.2 Our Techniques« . o o e 71
521 All-Mono e e e e 71
5.2.2 Top-Channel e 72
5.2.3 Entropy-Channel L L 72
5.2.4 Entropy-Part e 73
5.2.5 DISCuSsiono Lo e e e e e e 73
5.3 Experiment L 74
53.1 Results e 74
5.4 SUmMmMary . . . oo oL L i e e e e e e e 76
Melody Standardisation 7T
6.1 Representing Pitch 78
6.1.1 Contour o e e e e 78
6.1.2 Extended Contour e 80
6.1.3 Cn Classifications e e 81
6.1.4 Absolute Pitch oL 81
6.1.5 Exact Imterval 81
6.1.6 Modulo Interval L 82
6.1.7 Directed Modulo L e 82
6.1.8 Key-Relative o 83
6.1.9 Directed Key-Relative Lo 83
6.1.10 Base-Tone-Relative 84
6.1.11 Scale Independent 84
6.1.12 Directed Scale Independent 85
6.1.13 Fuzzy Extended Contour 85

6.1.14 Multiple Contours L Lo e e 85

6.1.15 Other Pitch-based Methods
6.2 Other Features L e
6.3 Combining Features L o
6.4 SUummaryo i e e e e e e

Musical Data

7.1 Informetrics L e e e e
7.1.1 Textual Data e
7.1.2 Genomic Data
7.1.3 Musical Data L o e

7.2 The Music Collection e

7.3 A Survey of Musical Data Analyses

7.4 An Analysis of Melodies Extracted from MIDI Files
7.4.1 Results e
7.4.2 DISCUSSION« . v v vt e e e e e e e e e e e e

7.5 SUMMATY « -« v v v v et e e e e e e e e e e e e e e e e e

Similarity Measurement

8.1 Adapting Dynamic Programming to Music Matching
8.1.1 Longest Common Subsequence
8.1.2 Local Alignment
8.1.3 Longest Common Substring oL,
8.1.4 Thresholded Alignment,
8.1.5 Cumulative Weight Matching
8.1.6 Other Dynamic Programming Approaches

8.2 N-grams and Music Retrieval o0
8.2.1 The Sum Common Measure
8.2.2 The Ukkonen Measureo i e
8.2.3 The Count Distinct Measure
8.2.4 The TF-IDF Measure

8.3 Efficiency Considerations

83.1 MusicIndex Terms o e e

vil

86
86
87
88

90
90
91
92
92
93
94
94
96
98
100

viii

10

11

8.3.2 Building an N-Gram Index oL
8.3.3 The Size of Music Representations
8.4 Other Music Matching Techniques
8.5 Summary Lo e e
Melody Matching Experiments
9.1 The Query Set L e
9.2 Dynamic Programming Experiments
9.2.1 Method e
9.2.2 Results e e
9.2.3 Discussion L e
9.3 N-Gram Experiments. e e
9.3.1 Method e
9.3.2 Results e
9.3.3 Discussiono e e e e e e e e
9.4 SUmMmMAaryo e e e e e e e e e e

Experiments with Manual Queries and Judgements

10.1 Manual Query Experimento o o0
10.1.1 Results e e
10.1.2 Analysis o e e e e e e e e e e e

10.2 Manual Relevance Experiment o o000 oL
10.2.1 Results o L e e
10.2.2 DisCussion oLt e e e e e e e e e e e e

10.3 Summary oL e e e e e e

Future Work and Conclusions
11.1 Future Work e e e

11.2 Summary and Conclusions Lo

118
118
119
122
125
127
127
129
132
134
135

139
139
141
142
144
145
146
146

List of Figures

2.1
2.2
2.3
24

2.5

2.6
2.7

3.1

4.1

5.1

6.1

7.1

7.2

7.3

The C major scale and chord shown in common music notation. 13
The first phrase of Mary Had a Little Lamb shown in CMN in the key of C major 13
The scale illusion L e 16

Rapid sequences of notes in more than one frequency range are perceived as

separate parts L L L e e e e e e e e e e 16
Hierarchy of similarity for exact and modified known melodies 19
Hierarchy of melodic similarity for unfamiliar melodies 20
The structure of a standard MIDI file 22
LCS array created when matching the strings “the fact that” and “the fat cat”. . 48

Components of our Judgement Acquisition and Management JAM system for

collection of music relevance judgements. oL L. 64
Melody extraction techniques L o Lo 70

Example melody fragment that contains a leap of more than an octave (from

Domine Deus by Mozart, K427). L. 78

Graph of the n-gram frequency distribution of melody contour strings extracted
from 209 single-track single-channel MIDI files. 95
Graph of the n-gram frequency distribution of melody contour strings extracted
from 11270 MIDI file tracks. L L o 96
Graph showing the number of tracks (out of a total of 2 697 tracks) containing

each contour n-gram for the collection of about 500 files. 97

ix

7.4

7.5

8.1
8.2
8.3

Graph showing the number of tracks expected to be retrieved given the contour
n-gram size for the database containing 2 697 tracks. 98

Graph showing the number of pieces containing each directed modulo n-gram for

the all-mono database. L Lo 99
Melody extracts of the songs “Année Passée” and “Rum and Coca Cola”. 103
“Année Passée” and “Rum and Coca-Cola” matched using LCS. 116

Local alignment of melody fragments of the songs “Année Passée” and “Rum and

Coca-0ola”. e e s 117

List of Tables

3.1
3.2

4.1

5.1

6.1
6.2

8.1
8.2

9.1

9.2

9.3

9.4

9.5

Preprocessing for the Baeza-Yates and Gonnet algorithm. 44
Matching process for the Baeza-Yates and Gonnet algorithm. 44
Statistics about automatic and manual relevance judgements. 66
Results of ranking melody extraction algorithms. 75
Different methods of melody standardisation. 79
Downie’s C7 and C15 melody classifications 80
The 3-grams of two similar contour strings and the resulting similarity scores. . . 108

The relative sizes of extraction and standardisation methods for the collection of

10,466 MIDI files (and 69,032 channels). 112

Eleven-point recall-precision averages (as percentages) for dynamic programming-
based matching without rests. The same melody extraction methods were used
for both the query and the database. 120
Precision at 10 values (as percentages) for dynamic programming-based matching
without rests. The same melody extraction methods were used for both the query
and the database. L 121
Eleven-point recall-precision averages (as percentages) for local alignment match-
ingwithrests. L L 122
Eleven-point recall-precision averages (as percentages) for dynamic programming-
based matching against all channels without rests. 123
Precision at 10 (as percentages) for dynamic programming matching against all

channels without rests. e 124

xi

xii

9.6

9.7
9.8

9.9
9.10

9.11

9.12

9.13

9.14

10.1

10.2

10.3

10.4

Eleven-point precision averages for n-grams. The same melody extraction meth-
ods were used for both the query and the database. 128
Eleven-point precision averages for n-grams using the all-channels database. . . 130
Eleven-point precision averages for coordinate matching of contour n-grams of
automatically generated queries that were processed with the same extraction
technique as the melody database., 131
Eleven-point precision averages for contour n-grams using the all-channels database.132
Eleven-point precision averages for exact interval n-grams of automatically gen-
erated queries that were processed with the same extraction technique as the
melody database.o oL 134
Eleven-point precision averages for exact interval n-grams using the all-channels
database. e 135
Eleven point precision averages for two variants (i and L) of TF-IDF for n-gram
melody matching with n = 5, using the set of 28 automatically extracted melody
QUETIES. & v v o v e 136
Eleven point precision averages for two variants of TF-IDF for n-gram melody
matching with n=5 against the all-channels database. 137
Eleven-point precision averages for n-grams using the all-channels database and

the set of 51 queries. 138

Eleven-point precision averages for different n-gram lengths using a set of 30
manually-produced melody queries and the “count distinct” measure. Local align-
ment is also shown.o 140
Eleven-point precision averages for longest common substring and thresholded
substring measurements using a set of 30 manually-produced melody queries trun-
cated to lengths 10, 20 and 30, and standardised using directed modulo 12 stan-
dardisation. e e 143
Eleven-point precision averages for local alignment and coordinate matching using
a set of 30 complete manually-produced melody queries. 144
Eleven-point precision averages for queries of lengths 10 to 30, comparing auto-

matic and manual relevance judgements and queries. 147

xiii

10.5 Eleven-point precision averages for automatic and manual queries of matched

lengths, comparing automatic and manual relevance judgements and queries. . . 148

Summary

The field of Music Information Retrieval research is concerned with the problem of locating
pieces of music by content, for example, finding the best matches in a collection of music to a
particular melody fragment. This is useful for applications such as copyright-related searches.

In this work we investigate methods for the retrieval of polyphonic music stored as musical
performance data using the MIDI standard file format. We devised a three-stage approach to
melody matching consisting of melody extraction, melody standardisation, and similarity mea-
surement. We analyse the nature of musical data, compare several novel melody extraction
techniques, describe many melody standardisation techniques, develop, and compare various
melody similarity measurement techniques, and also develop a method for evaluating the tech-
niques in terms of the quality of answers retrieved, based on approaches developed within the
Information Retrieval community.

We have found that a technique that was judged to work well for extracting melodies consists
of selecting the highest pitch note that starts at each instant.

We have tested a variety of methods for locating similar pieces of music. The best techniques
found thus far are local alignment of intervals and coordinate matching based on n-grams, with
n from 5 to 7.

In addition, we have compiled a collection of MIDI files, the representations of automatically
extracted melodies of these files, a query set based on the extracted melodies, a collection of
manual queries, and inferred and human relevance judgements. Experiments using these sets
show that the type of query used in testing a system makes a significant difference in the outcome
of an evaluation. Specifically, we found that manual queries performed best with a representation
of the music collection that keeps a “melody” extracted from each instrumental part, and short
automatically generated queries performed better when matched against a representation of the

collection that, for each piece, uses the melody extraction approach described above.

Chapter 1

Introduction

Many people find that they cannot identify a piece of music of which they can only remember a
fragment. A solution is to visit a music shop and ask the person behind the counter. Alterna-
tively, a music library allows the use of a directory of musical themes to solve the problem —
provided the music was written before 1975 [100]. An approach that is becoming more common
is to pose the question in a newsgroup on the internet, including any contextual information
such as lyrics and where the piece of music was heard, and may even include an audio file con-
taining a recorded or sung portion of the piece. These people are engaging in content-based
music information retrieval (MIR).

People trying to find the name of a piece of music are not the only potential users of MIR
technology. For example, composers and songwriters often question where their inspiration
has come from, forensic musicologists analyse songs for copyright infringement lawsuits, and
musicians are often interested in finding alternative arrangements or performances of a particular
piece.

Simple MIR technology is in use in practice. Some prototype MIR systems allow melody
queries to be posed and present a collection of likely pieces as answers. Most of these search a
monophonic database, that is, music in which only one note is sounded at a time. It is not clear
how effective these systems are at finding suitable answers, or whether it is possible to achieve
good answers to queries presented to a polyphonic database containing a wide variety of musical

styles. Therefore it would be useful to study the effectiveness of MIR techniques.

Issues

Content-based MIR has distinct differences to other information retrieval tasks, leading to the
need for a different approach to processing music queries. There are several factors that make

the task non-trivial:

e Music is polyphonic, that is, more than one note may be sounded simultaneously.

e A query may be presented in a different key to the stored version, that is, it may start on

a different note.

e There are likely to be variations between the query and answers such as repeated notes,
ornamentation, and unstressed notes with different pitch. (There are similar variations
between different performances and arrangements of the same piece.) Pieces of music are

usually perceived as highly similar despite such differences in the notes.

o If the query is presented by singing, there are likely to be errors due to limitations in

singing accuracy.

e While a query is likely to be based on the melody of a piece of music, it is not clear what

the melody of a piece is: it is as obscure a concept as the “meaning” of a piece of text.

e Exhaustive matching techniques lead to combinatorial explosion.

The choices when developing a prototype MIR system are many. The types of data to work
with include audio, polyphonic note data, and monophonic note data. To develop a MIR system
that successfully matches a query melody to a polyphonic database of music, several problems
must be solved. First, it is necessary to decide what the query should be matched against.
Second, an appropriate matching method needs to be developed. Third, it is important to
choose an appropriate method of evaluating the effectiveness of techniques developed.

Matching a query melody against polyphonic music is difficult with most sources of poly-
phonic music data, as the melody component of the music is not defined. This leaves two main
approaches: match the query against any possible sequence of notes through each piece of mu-
sic, or decide which portion of the music the query should be matched against and only match
against that. The first approach leads to combinatorial explosion, and is likely to produce many

false matches. The second approach involves a “melody extraction” phase, in which the notes

that belong to the melody or theme are selected for matching. For some queries, it may be more
appropriate to select other portions of the music, such as chordal information. If audio data is
used instead of note data, then the problem becomes even more difficult, as it is necessary to
extract features from wave-forms. Extracting melody from audio in a way that allows it to be

matched against other melodies is currently not possible.

Other Work

Some MIR research has concentrated on monophonic information and others on polyphonic.
Most research that uses monophonic musical information has as its source of data a collection
of folk songs [42, 93, 99, 116], or a small collection of melodies [71]. A variety of techniques has
been used to locate melodic matches, including dynamic programming [93, 97], n-gram-based
matching [43], feature histograms [75], and state matching [93].

Some researchers have chosen to match a query melody against melodies automatically ex-
tracted from polyphonic musical data [11, 54]. Simple heuristics were used to determine the
melody but there was no evaluation of the techniques. Very little has been published on the
process of melody extraction. There have been attempts at splitting polyphonic music into
parts with moderate success [87], but the melody extraction problem has not previously been
explored in the context of retrieval. Researchers who have chosen polyphonic note data for their
research [11, 34, 54, 80] use collections of files of data in the MIDI (Musical Instrument Digital
Interface) file format as their source. These collections not only provide polyphonic musical
data, but include music in a wide variety of styles. Other researchers have chosen to match
queries against any occurrences within a collection, regardless of whether these are across musi-
cal parts or instruments [23, 34, 80], however, this approach has not yet been shown to produce
effective answers, and based on our own (unpublished) experiments, would require the use of
more detailed queries to produce good results.

Some researchers have tackled the problem of audio retrieval, in which similarity is deter-
mined by extracting features from wave-forms. The state of the art in this area is that it is
possible to determine whether a wave-form contains music or speech, some stylistic aspects can
be detected in musical recordings, the beats and therefore the tempo can be determined, but
identification of actual notes within a non-monophonic piece of music is very difficult. The main

problem is that it is hard to distinguish between harmonics and notes. For example if the note A

at 220 Hz is played on a piano, the wave-form of that note includes harmonics at double (440 Hz
— equivalent to the next highest A note), triple (660 Hz), quadruple (880 Hz) frequency and
so on. Note identification is a little easier if constraints are placed on the music to be analysed,
such as using an instrument with a simple timbre so that features of the instrument’s typical
sound pattern can be used to make sense of the wave-form. However, even so the process is
not accurate. The focus of research in this field is the identification of new techniques for musi-
cal transcription from audio waves [117] and use of non-melodic features for matching, such as
structural information [49, 50].

Few MIR techniques have been evaluated for effectiveness using standard information re-
trieval methodology. Some matching techniques were applied to a small set of pieces and are
subjectively evaluated by the researchers [97, 99]. Others have used statistical measures of suc-
cess [11, 41, 93], or known-item searches [43, 71]. The most comprehensive evaluation technique
that has been applied was the testing of a set of 100 hummed queries against a set of 500 songs.
The number of pieces that were retrieved in the top 10 and top 1 were reported for four different

algorithms [71, 72].

Our Approach

In our work we have applied methodology derived from textual information retrieval to MIR.
We have devised a three-stage approach for MIR consisting of melody extraction, melody stan-
dardisation, and similarity measurement. Melody extraction involves choosing melody notes out
of polyphonic pieces of music to simplify the matching problem and reduce the pool of irrelevant
matches. Melody standardisation converts the melodic information into a form consisting of
a sequence of symbols. The symbols represent the features used for melodic matching. The
similarity measurement stage calculates a similarity score based on the standardised form of the
melodies being matched.

Since melody extraction is inaccurate, and since—even with standardisation—the same
melody can be represented by different sequences of notes, two strings representing the same
melody will not necessarily be identical. Matching must therefore be based on some measure
of the similarity of query and piece. Given a standardised query string and a collection of
standardised piece strings, matching involves computing a numerical score for each piece with

respect to the query. Like other IR systems, the pieces can then be sorted by their score, and

the highest-ranked pieces returned to the user as potential matches.

The main assumption we have made is that queries are likely to be based on the “melody” of
a piece of music. We predict that the majority of monophonic queries will be of this type. It is
quite possible that a query will be on some other part of the music, such as a bass line. However,
as we show, techniques that involve matching against the “melody” of each part of a polyphonic
piece work well and therefore can satisfy queries on non-melody parts. Our approach can also
be used for some forms of polyphonic match, in which case the melody can be automatically
extracted from the query before being matched against the collection. A further, more intensive
matching process can then be applied to a small pool of best answers.

A second assumption is that the use of performance information, such as that found in MIDI
files, will be useful in general for music queries. Most music is not available in this form, but
only as recordings or sheet music. It is currently nearly impossible to generate note information
from polyphonic music recordings that contain more than one instrument. However, sheet music
can be transferred into note information more successfully, and note transcription technology is
improving.

Music perception research provides us with some clues as to what would be perceived as
melody. Typically, the highest pitch notes would be classed as the melody notes unless they are
monotonous. For other notes to be identified as the melody, various compositional tricks need
to be applied such as making it much louder than the accompanying notes and making use of a
single timbre throughout the melodic phrase. Sometimes the pitch of soloists is slightly higher
than normal to accentuate the melody against a large body of sound [61].

Findings from music perception research were a useful guide in deciding what techniques
might be effective at MIR. In particular, the research into how melody is perceived has informed
our approach to melody extraction. Listeners usually hear the highest pitch notes as melody
notes, except when they are monotonous [51]. Pitch proximity is the most important factor
in grouping notes into perceived parts [31]. These concepts have been incorporated into our
melody extraction techniques and tested with human listeners. The results of our experiment
on melody extraction confirm the results from music psychology, in that extracted notes that
consisted of the highest pitch at any instant were deemed to be most like the melody of the
pieces listened to.

The importance of melodic contour as a feature of both musical memory [36] and singers’

accuracy [83] makes it a feature that ideally should be included in any melody standardisa-
tion process. We have chosen standardisation methods that retain contour information for our
matching experiments.

In the final stage of our approach we applied matching techniques, namely, dynamic program-
ming and n-gram scoring, to melody matching. Different variations on the above two methods
were tested to determine retrieval effectiveness.

Our melody matching techniques were tested for effectiveness in two ways. Initially, we
generated automatic queries by extracting melodies from pieces that had more than one version
within the collection. These were applied using many different variations on matching methods
based on dynamic programming and n-gram techniques. The results were evaluated using recall
and precision methods.

Our experiments revealed that our three-stage approach can successfully answer melody
queries. A technique that selected the highest pitch notes commencing at each instant, which
we call “all-mono”, was the most effective melody extraction technique as judged by listeners.
It was also shown to be effective in melody matching. Melody standardisation techniques tested
included contour, directed modulo 12, and exact interval techniques. All three of these use a
relative pitch approach, allowing matching in any key. Contour standardisation reduces the
melody to a string of characters representing “up”, “down” and “same” pitch directions. This
was shown to be insufficient with our collection for queries of about 10 notes. FEzact interval
standardisation retains exact pitch distance information, which, with the source data used,
involves up to 255 unique symbols. Directed modulo 12 standardisation represents melodies as a
sequence of pitch distances in which large pitch distances are reduced to an equivalent one that
is less than an octave in size. This reduces the size of the representation to 25 unique symbols.
Our experiments showed that there was little difference in retrieval results for directed modulo
12 and exact interval standardisations for the collection and queries used.

The local alignment dynamic programming technique and the coordinate matching n-gram
technique were shown to be the best at retrieving useful answers. Retaining a melody represen-
tation of each track or channel of pieces of music was shown to be best for answering manually
produced queries.

As our approach is based on note information, we recognise that this does not allow searches

on all types of music. First, some music created in this century is not note-based at all, consisting

of organised sound instead of melodies. For this type of music, there may not be any melody
which could be used as a query. The user may need to use an audio-based technique for successful
location of the work — probably by using a sample noise as a query. Second, we do not address
music using scales and tunings other than the western scale of twelve notes. This is not a
problem for pentatonic music (five note scale) which is easily represented, but microtonal music
(music containing intervals that are smaller than a semitone) is not catered for at all. Music
intended for different tunings may be represented if the scales contain less than twelve notes
per octave, but will not sound as intended and thus may not match with appropriate pieces.
However, as contour and relative interval size is important for matching, the disadvantage for
differently tuned music may be small.

An important aspect of our work was our experimental methodology. In order to evaluate the
effectiveness of different melody matching techniques, we collected query and relevance sets in
two ways. First we found pieces in the collection for which there was more than one version, using
the filenames and listening. This formed one relevance set. Query sets consisted of melodies
that were automatically extracted from the pieces, and truncated to specific lengths. The second
type of query set was created by obtaining manual queries via a volunteer who listened to pieces
and played a representative melody fragment. Relevance judgements were then collected from
users who listened and judged how similar pieces were to each manual query. These query and
relevance sets were used to measure the quality of the answers retrieved by the different matching
methods. We used two standard IR measures of retrieval effectiveness: eleven-point precision
averages, and precision at ten.

The process of collecting relevance judgements revealed some issues that need to be resolved
for MIR user interfaces. Some tasks are very difficult and time-consuming for users, such as
comparing two unfamiliar pieces of music.

In addition to evaluating the techniques for melody matching, we tested the evaluation
methodology itself, by comparing the effect of the two sets of queries and relevance judgements.
We found that the two query sets gave significantly different results when used to rank melody
matching techniques. In particular, evaluation with the manual set increased the measured
effectiveness of techniques that treat each musical part separately during the melody extraction
process. The two sets of relevance judgements were more consistent but showed some minor

differences.

Organisation of this thesis

In chapter 2, we discuss background information to the field of music information retrieval.
Included is a general summary about music and its standard notation, to enable understanding
of the examples presented throughout this thesis. We describe the findings in music psychology
that are relevant to music information retrieval, in particular, perceived melodic similarity. We
discuss the needs of potential users of a music information retrieval system, including those
of forensic musicologists and lay people. After presenting related research from the field of
musicology, we survey researchers’ work in the field of music information retrieval and discuss
the methods that they have implemented.

There are several possible approaches to matching similar items. In chapter 3 we present
background material on the main techniques that have been proposed for music matching: dy-
namic programming, n-gram matching techniques, tries, and feature histograms. Our experi-
mental methodology is presented in 4.

In chapter 5, we present techniques for automatically extracting a melody from polyphonic
music data and show results of an experiment that evaluates the techniques. This is followed by
a detailed description of many potential methods for melody standardisation in chapter 6.

Using musical data processed in the manner discussed in the extraction and standardisation
chapters, we present an analysis of the frequency distribution of melody n-grams in chapter 7.
This is followed by detailed work on the similarity measurement process for melody matching in
chapter 8, with melody matching experiments presented in 9. We present further experiments
that make use of manual queries and judgements in chapter 10. We discuss future directions

and conclusions in chapter 11.

Chapter 2

Background

Our approach to music information retrieval (MIR) research initially involved surveying related
musicology, music psychology, and information retrieval research. Musicologists and music psy-
chologists have explored such useful concepts as measuring music similarity and memory for
music. The field of information retrieval provides a methodology for examining the effectiveness
of retrieval systems. In this chapter, we cover basic music concepts needed in this thesis, and
important findings in music perception and computer musicology. We introduce concepts from

the field of information retrieval and survey music information retrieval research.

2.1 Music Terminology

2.1.1 Notes and Pitch

Each time a key is pressed on a piano, a bow is struck across a violin string, or air is blown across
a flute mouthpiece to make a sound, we say that a note has been played. Each type of musical
instrument has its own method of playing notes within a certain range. This range refers to
the frequency range of sounds that can be produced from the musical instrument. Musicians do
not usually discuss the frequencies of notes, but refer to them as having a particular pitch. For
example, the note A to which an orchestra is tuned is defined to have a frequency of 440 Hz. A

note with a higher frequency is said to have a higher pitch than one of a lower frequency.

10

11

2.1.2 Intervals and Octaves

The pitch distance between notes is called an interval. If one note has double the frequency
of another, then it is said to be one octave above the lower note, that is, the interval between
the notes is one octave. Notes that are an octave apart sound very similar to each other, which
is reflected in the naming of notes. All notes that are a whole number of octaves apart have
the same note name, which is usually a letter, or a letter combined with a sharp (f) or flat (b)
symbol. For example, the note A with frequency 440 Hz is an octave lower than the note A with
frequency 880 Hz.

The notes used in western music result from dividing up an octave into 12 notes that are a
semitone apart. The note names used for the notes within one octave starting at C and going

up are:
CCtDDEEFFf GGt AAfBC

Ct is read as C sharp. It is the same note as D flat (Db). Similarly, Df, Ff, Gf and Af can be
referred to as Eb, Gb, Ab and Bb respectively. Note that a sharp symbol is used to raise the pitch
of a note letter by one semitone and a flat is used to lower the pitch of a note by a semitone.
The name that is used for a note with two possible names depends on the key of the music.
An interval between notes that is larger than two semitones is often referred to as a “leap”.
For example, a melody may leap from C to G at one point, which is an interval of seven semitones.

In contrast, if the melody has a C followed by a D, this is not a leap but a “step”.

2.1.3 Scales and Key

The octave may be divided into 12 notes, but most simple tunes don’t use all of them. The
term “octave” arose because usually melodies use notes from a particular scale, that is, a list of

eight notes within an octave. For example, the C major scale consists of the notes:
CDEFGABC.

The second C is an octave higher than the first C and is the eighth note in the scale.

Melodies that use these notes exclusively are said to be in the key of C major. Major scales
all follow the same interval pattern: tone, tone, semitone, tone, tone, tone, semitone — where a
tone is equal to two semitones. In the C major scale the first semitone is between E and F and

the second semitone is between B and C. The G major scale consists of the notes:

12

GABCDET} G,

and has the first semitone between B and C and the second semitone between Fff and G. We use
the name Ff because, by convention, a scale should contain each letter-name. Using Gb would
mean that we have two G letter-names and no F letter-name.

Melodies can be “transposed” from one key to another, preserving the intervals between
notes of the melody. When this is done, the melody is preserved, but will sound a little higher
or lower than the original.

Music that largely consists of notes from a particular key is often called “diatonic”. Music

that largely ignores keys is called “atonal”.

2.1.4 Chords and Harmony

When more than one note is played simultaneously, the result is a chord. Each key has a set of
chords that are related to it, usually created by taking every second note of a scale until there
are three notes. For example, the C major chord consists of the notes C, E, and G. Harmony
refers to the chord sequence used in a piece of music. Usually a piece will end on a chord that
is the same as the key of the piece, for example, a melody in C major will end with a C major
chord. The music that is played along with the main melody is called the accompaniment. This
may consist of chords and possibly percussion, or may be a more complex mixture that includes
“counter-melodies”. There may be more than one musical instrument involved, in which case
we use the term “part” to refer to the music for a particular instrument, as in the “violin part”.

Music that only consists of a melody with no accompaniment is called monophonic.

2.1.5 Common Music Notation

The Western sheet music tradition is often known as Common Music Notation (CMN). In CMN,
music is written on a staff consisting of 5 horizontal lines. Notes that sound at the same time
are written one below the other. Notes that occur after another note are written to the right of
the note. Notes that are higher in pitch are written at a higher position on the staff. Notes are
written on the staff according to a particular key and can be placed between lines or on a line.
For example, the scale of C major is shown on the left in Figure 2.1. As can be seen, extra lines
can be added for a note that goes beyond the range of the staff. The C major chord could be

written as shown on the right in the same figure.

13

Figure 2.1: On the left, the C major scale starting on middle C, shown in common music

notation. On the right, a C major chord.

>

Figure 2.2: The first phrase of Mary Had a Little Lamb shown in CMN in the key of C major.

Each part is usually written on a separate staff. The music is normally divided into bars,
each containing the same number of beats. The bars are indicated in CMN by a vertical line.
The number of beats per bar and the quality of the beats is indicated at the start of the piece
by the time signature. The most common time signature is 4/4, which means four “crotchet”
or quarter-note beats to the bar. Figure 2.2 shows two bars of Mary Had a Little Lamb with a
time signature of 4/4.

If there is to be a period in which no notes are played, one or more “rests” are placed on the

staff. These indicate the duration until the next note is to be played.

2.2 Music Perception

Several aspects of music perception are relevant when implementing music database systems.
First is the type of query that a user will present. In the case of someone trying to locate a
half-remembered fragment of music, it is useful to understand how people remember music and
in particular, how they remember melodies. Second, since most music that we hear contains
both melody and accompaniment, we should determine what is likely to be perceived as melody
in an accompanied musical work. Third, since many music queries will involve finding similar
but not exact matches to melodies, we need to decide what similarity means in terms of music

perception. We now discuss the research in these areas and the implications for music databases.

14

2.2.1 Music Memory

There has been much research on how people build mental structures while listening to music
and on how music is remembered. Dowling [36] discovered that melody contour is easier to
remember than exact melodies. Contour refers to the shape of the melody, that is, whether the
next note goes up, goes down, or stays at the same pitch. He postulates that contour and scale
are stored separately in memory. The musical scale is learnt through a lifetime of listening to
music. As a result, subjects found it easier to distinguish between a diatonic melody and an
atonal melody with the same contour, than between a diatonic melody and a copy that stays
within the same scale. The easiest task of all was to distinguish between a melody and another
that didn’t preserve contour. This experiment only tested short-term memory.

Dowling discussed several other experiments that have been used to determine how musical
memory operates. These include long-term memory experiments by Attneave and Olsen, which
showed that people do distinguish between a well-known melody and inexact tonal copies of
it. The ability to distinguish between melodies is discussed further in the section on melody
similarity perception below.

Another situation involving music memory and melodies occurs when a melody has not been
learned thoroughly. The result is often a version that differs from the original being remembered.
There is little in the way of music perception research about this phenomenon, but there is
evidence in musicological research [123].

Further interesting results have been found regarding the absolute nature of musical memory.
For example, we remember the tempo or speed of a known piece of music and can recall it within
8% of the original speed [81]. There are similar results for pitch, showing that, people can sing
their favourite rock songs at the same pitch as the recording without hearing the recording first
(discussed by Levitin and Cook [81]).

The ability to recall a melody also depends on the nature of the melody itself. Melodies with
“consonant accents”, that is, in which the melodic, rhythmic, and stress accents coincide, are
easier to remember than those where the accents do not coincide [96].

For rhythm, it has been proposed that, while listening to music, the listener establishes an
internal clock and that the rhythm of the music is encoded in memory in terms of this internal
clock [103]. Where no internal clock can be established due to the complexity of the rhythm,

some other method of encoding must be used.

15

As with most music perception studies there are significant differences between the results
for highly experienced musicians, people with some music experience, and those with no or little
music training. Usually memory tasks are performed better by experienced musicians than those

with less experience.

2.2.2 Figure and Ground

In order to extract melodies reliably from non-monophonic music files, we need to determine
what a person listening to the music would perceive as the melody. Several papers have explored
the way we perceive groups of notes.

Frances [51] looked at the figure and ground relationship for music. Several factors are
considered. A musical part is heard as the figure if it is higher in pitch than the accompanying
parts. However, if the upper notes are constant and the lower notes form a more interesting
pattern, then the lower notes are heard as the figure. Other factors that can affect a part being
perceived as the figure are its loudness and continuity. The way the music is perceived is not
always constant, however. A listener can make shifts in their attention between different parts
of the music. Frances observed that experienced musicians can more rapidly shift their attention
between parts than non-musicians, allowing them to be more aware of the accompaniment in a
piece of music.

Deutsch [31] discussed the main principles of perception of groups, originally derived from
visual perception, and showed the results for the group perception of music. There are four
main principles of group perception: proximity, similarity, good continuation, and common fate.
The proximity principle states that we group items, that is, we see them as a unit, if they are
close together. In the same way, we group items that are similar in some way, or continue in
the same direction, or end together. These have been clearly shown for visual perception and
apply to perception of groups of notes as well. There is a definite hierarchy amongst these
principles. Proximity of notes is more important than good continuation as illustrated by the
“scale illusion” experiment. If one part is descending in a rapid scale and another part ascends
so that they overlap as shown in Figure 2.3, listeners perceive the upper notes as one part and
the lower notes as a second part (if it is perceived at all). The amplitude or loudness of notes
was found to be fairly unimportant in the perception of musical parts compared to proximity,

but is also used for grouping of notes. The similarity principle for groups of notes can involve the

16

Figure 2.3: The scale illusion. Two overlapping scales, one going up and the other going down.

The listener hears the upper notes as one part and the lower notes as another part.

2%

Igﬁﬂ AFI | | hj
T e ® ¢ Jielal
O v 4 o o

Figure 2.4: Rapid sequences of notes in more than one frequency range are perceived as separate

parts.

timbre of the notes. Those that have a similar timbre are grouped. The timbre is less important
than the proximity of notes, however, as shown by Butler.

If a melody consists of rapid notes where the alternating notes are of a different frequency
range, as shown in Figure 2.4, then two musical parts are perceived. This does not occur to the
same extent when the melody is slowed down. There is a considerable overlap in terms of how
the music will be perceived, so that a melody could be perceived as being two musical parts or

just one over a range of speeds.

2.2.3 Melody Similarity Perception
Pitch

Some aspects of melody similarity were discussed above in the section on memory: two melodies
that have the same contour are perceived as more similar than those that have a different
contour; those that have the same tonality and contour are perceived as more similar than those
with the same contour and different tonality (atonal).

Dowling and Fujitani’s experiment [38] revealed that it was hard to distinguish between two
atonal melodies with the same contour compared to those with different contour. In their second
experiment, it was discovered that, for familiar melodies, it is very easy to identify a well-known

melody played with exact intervals (pitch distances), somewhat harder to identify one with the

17

same contour and relative interval size, slightly harder again to identify based on contour only,
and hardest of all to identify a melody of different contour but the same harmony.

Deutsch (discussed in [37]) showed that changing the octave of notes in a melody makes it
hard to recognise. Dowling and Hollombe [36], and Idson and Massaro (in [37]) showed that it
is slightly easier if the contour remains the same. That this task is difficult is a surprising result,
when one considers that notes of the same octave are usually considered to be harmonically
identical.

Contours versus intervals was further explored by Edworthy [47], who found that intervals
became more important than contour for distinguishing novel melodies once the melodies exceed
a certain length. It is thought that the extra notes help to establish the key to give a frame of
reference for the listener.

Van Egmond and Povel [136] discovered that an exact transposition with one note altered
will be considered more similar to the original melody if the note is altered “chromatically”
than if it is altered diatonically. A chromatically altered note is one that has been changed by
a semitone in such a way that the letter-name remains the same. For example, the note F can
be chromatically changed to F§. Key distance is another factor affecting similarity perception.
A key is closely related to another if it differs in only one note. Distant keys are those with few,
if any, notes in common. Melodies with the same contour and the same key are perceived as
more similar than those in distant keys [9]. However, Van Egmond and Povel [136] found that,
when it came to the comparison of exact transpositions, those with a greater difference in pitch
— regardless of relatedness of key — were considered less similar than those with a very small
difference in pitch.

The music experience of the listener affects how some melodies are perceived. Krumhansl and
Shepard [77] found that musical listeners are more likely to prefer notes that are harmonically

similar, whereas non-musical listeners will consider notes of a similar pitch to be similar.

Other factors

The research discussed above primarily considered pitch. The experiments that used similar
melodies normalised them so that the rhythms were the same. Sundberg [126] discovered that,
when listening to singers, notes that were unstressed would be perceived as being the correct

pitch whereas if the same note were stressed it would not be considered correct. This seems

18

to imply that unstressed notes should be regarded as less important when examining melody
similarity.

An interesting factor in music perception is the difference between what is perceived to what
is actually heard. In work on melodic and rhythmic accents, Tekman [128, 129] discovered that
melodically accented notes are perceived to be louder than others. A melodically accented note
is one that is approached by a leap (interval greater than two semitones). Also, the duration of
a note preceding a louder note is generally perceived to be longer. A model of melodic accent
has been proposed by Thomassen [130] and was considered by Huron and Royal as the best
available model [69].

2.2.4 Implications for MIR Systems

The literature survey of music perception presented earlier suggests that a slightly different
hierarchy of similarity holds for melodies in short-term memory to that of long-term memory. In
the case of a music retrieval system, the melody queries are likely to be from long-term memory,
whereas the set of answers presented to the user will be a mixture of known and unknown pieces.
Another aspect that can affect the hierarchy of similarity is the musical experience of the user.
For example, when comparing melodies, musicians prefer melodies with similar harmony to those
with more similar contour.

We have synthesised the hierarchies shown in Figures 2.5 and 2.6 from our reading of melodic
similarity perception. Figure 2.5 shows a hierarchy for melodies based on melodies that the
listener knows and modified versions of them, that is, based on long-term memory. Figure 2.6
shows the hierarchy for short-term memory for melodies. The hierarchies rank the perceived
similarity of melodies based on specific melodic differences. For example, in the hierarchy for
short-term memory, the node representing melodies that have exactly the same intervals and
pitch is shown at the top (“identical”), as they are perceived as more similar than melodies that
have the same intervals but a different key.

Some of the items in the list cannot really be fully ordered since comparisons have not been
made experimentally. As such, a partially ordered set is the best representation of the hierarchy.
We have separated the long-term memory similarity hierarchy from the short-term memory
hierarchy in our representation, however, there are other factors that affect similarity perception,

such as the duration of the melodies [47], and the musical experience of the participants of an

19

Exact intervals

Same contour and note names Relative intervals, same contour

Different contour, same harmony
Same note names

Figure 2.5: Hierarchy of perceived similarity for exact and modified known melodies. The highest
similarity is between two melodies containing the same sequence of intervals regardless of key
(“exact intervals”). Those types of melodic similarity that are not directly connected have not

been compared experimentally.

experiment [77].
For our purposes the items in the right-most branch of the short-term memory hierarchy can

be condensed into one, since relative intervals are likely to be used in melody comparisons.

2.3 Computer Representation of Music

Music can be represented in many ways. It can be stored as: a wave-form representing the sound,
an image of the sheet music, performance information, or sheet music layout information. Some
formats, such as the draft standard SMDL (Structured Music Description Language), allow for all
of these. However, the MIDI (Musical Instrument Digital Interface) standard, a commonly-used
format for the exchange of music sequences, only stores performance information. Performance
information consists of: when each note is played, how loudly, for how long, and by which
instrument.

Other standards have been developed or adopted by musicologists for their needs, such as
DARMS, which initially aimed to represent music notation, but came to be widely used for
analysis. The standard was developed by Stefan Bauer-Mengelberg in the seventies [68]. A
more flexibly system called Humdrum was developed by Huron [67]. This is more of a music
protocol than a single representation and allows musicologists to represent the aspects of music
in which they are interested.

For music type-setting, there are three related standards for use with the type-setting lan-

20

Identical

\ Same intervals
) Same key Small differencein
|dentical and contour pitch
except for
some chromatically \
altered notes
Same tonality, Same intervals,
same contour, large difference
different key in pitch
Identical except for
some diatonically))
altered notes Different tonality,
same contour

Different contour

Figure 2.6: Hierarchy of perceived melodic similarity for unfamiliar melody fragments, based on
pitch only. The items in the right-most branch can probably be placed between the “identical”
and the “same key and contour” nodes, but to our knowledge there have been no experiments

to confirm this.

guage IATEX: mutex, musictex and musixtex. These allow the type-setter considerable control
over the layout of sheet music but are not intuitive for direct use by users [57]. Among file-
formats for more user-friendly systems for music type-setting, the NIFF (Notation Interchange
File Format) [58] standard was proposed and developed. Despite the development being spon-
sored by several music software companies, it does not yet have wide support.

There have been newer representations published, such as ZIPI [90], which aims to solve
MIDI’s shortcomings. Many extensions have also been proposed for MIDI. More recently, XML
document definitions have been developed (for example [56]). Some of these, and other repre-

sentations of music, are discussed in detail in “Beyond MIDI”, edited by Selfridge-Field [119].

2.3.1 MIDI

The MIDI standard was initially developed for communication between musical instruments.

The standard describes the hardware, speed of data transmission, and the messages that can be

21

sent. Messages are sent whenever a MIDI event occurs.

A MIDI event represents such things as pressing or releasing a key on a music keyboard.
For example, the “Note On” MIDI event occurs when a key is pressed. It consists of a channel
number, representing which instrument played the note, a note number representing which key
was pressed, and a velocity or loudness of the note. The note will sound until a corresponding
“Note Off” event occurs. Note numbers range from 0 to 127. The note number represents the
pitch of the note. For example, note 36 represents C and note 37 represents CH.

Other events that result in MIDI messages being sent occur when controls are changed on
a keyboard. For example the wheel that controls the pitch sends a pitch-bend event when the

wheel is moved.

Standard MIDI File Format

The MIDI file format standard is used to represent the performance of music. It can only be
used to store and play instrumental music and does not store notation information such as the
division of music into bars or measures. There are facilities within the standard for storing
time and key signatures in addition to other meta-information, such as title, copyright, and
instrument names. The inclusion of these elements is not guaranteed however.

Standard MIDI files contain one or more tracks of MIDI events. Each event is preceded with
an integer representing the time that has elapsed since the last MIDI event.

Most MIDI files contain music that is to be played on more than one instrument. Usually,
each instrument has a separate track. When these files are played on a typical PC containing a
soundcard, appropriate sounds are chosen to play each instrument’s tracks. An extension to the
MIDI standard is known as General MIDI, which specifies standard instrument sounds that are
represented by specific codes that can be used in MIDI files. General MIDI drum-kits all have
the same mapping of note numbers to sounds. For example, the Bass drum is associated with
note 36 (C1) and the Acoustic Snare Drum with note 38 (D1).

There are two MIDI file format standards: format 0 and format 1. In format 0, all the
performance information is held in one track (track 1). Each individual instrument has its own
channel and events for the instrument can be identified by the channel number included in the
event structure. In this case, all events are stored in chronological order. In format 1, MIDI files

the instruments still have their own unique channel number, but the events for each instrument

22

MThd

Header Chunk contains the format type,
number of tracks and division (time units)

M Track 1. Inaformat O file, thiswould

be the only track and contain al the
MIDI events for each instrument.

For format 1, it contains the tempo and
other meta-events.

M Tracks2to n. Only appliesto format 1 MIDI
files. Each track typically contains the events for
one channel.

MTrk

Figure 2.7: The structure of a standard MIDI file

are stored in separate tracks. In this case, the first track is usually reserved for meta-information,
such as timing and instrument information. (See Figure 2.7).

The Internet has made large quantities of MIDI data available to users. One site archived
MIDI files sent to a newsgroup and contained over 15 000 files. The files are largely created
by fans, musicians, and employees of software companies that provide demonstration MIDI files
with their product. MIDI data from the Internet is used as a basis for the experiments in our

research.

2.4 Computer Musicology

Originally, musicologists used manual techniques to compare different musical works. New math-
ematical or computerised tools are occasionally discussed in the literature. Examples include
numerical methods of comparing musical styles ([26]), using entropy as a measure of style ([73]),
cluster analysis of melodies ([85]), and music chronology by seriation ([60]). The focus of these
works is the application of new techniques and discovering what they reveal about the music.
Some musicologists have gone beyond mere analysis and have simulated different composers’

style. For example, David Cope [25] applied pattern-matching techniques to locate a composer’s

23

“signatures”, that is, patterns that occur in more than one piece. Using these segments, new
compositions were created in the style of the composer using software.

Other work in the musicology realm has been in the form of collecting musical works of a
particular genre and creating an index for these. Examples include the French Chanson catalogue
compiled by Hudson [66], and Stinson’s database of fourteenth century music ([125]). Computer
programs have been developed to generate new compositions and split a piece of music into its

component parts. There is also much work published about the digital representation of music.

2.4.1 Musical Style and Similarity of Music

Musicologists often perform analyses of musical works and with the advent of computer pro-
cessing power, it became possible to perform larger comparative analyses of works. Several
different approaches have been used to measure similarity for music. Indeed, there are different
types of similarity in music. We could be measuring similarity of style, harmony, structure,
melodies, rhythm, or instrumentation. In the book “The computer and music” [82] published
in the mainframe era of computer use, various articles discuss the comparison of musical styles
using numerical methods. Crane and Fiehler [26] discussed different metrics that can be used to
compare pieces of music. A measurement may consist of a binary value, several possible discrete
values, or a value in a continuous range. These various values can be combined into a single
number representing the similarity of the musical works in many ways. One approach is the
mean of the differences. Another is to consider each measurement to be a dimension in Euclidean
space. Each musical work would be represented as a point in space and their similarity would be
measured by the distance between the two points. How the measurements are applied or scaled
is determined by a certain degree of trial and error. Crane and Fiehler scaled all measurements
to fall between 0 and 1. They applied several approaches to calculating a single value for each
of twenty French Chansons. All gave similar results. Songs by the same composer were usually
grouped together but not always. In principle works can be grouped into clusters based on their
relative distances.

Seriation is a mathematical technique that can be applied to a collection of works that are
assumed to have a sequence in time, for example showing a composer’s change in style over
time or to estimate the order in which various pieces are likely to have been composed. The

technique can be implemented using a dynamic programming approach, as developed by Hubert

24

and Arabie (discussed in [60]) David Halperin [60] applied seriation to determine a sequence for
a collection of songs written by the troubadours. He used such features as average pitch, average
size of rising and falling intervals, ratio of rising and falling intervals, and the number of lines
per song. He found that the seriation technique gave good agreement with historical evidence,
with only two of the thirteen troubadours being swapped from their chronological order.

James Gabura [53] discussed various methods that have been used to measure the style
of musical works, including the entropy in bits per second, number of key changes, and the
distribution of interval sizes in melodies. He applied numerous measures and successfully trained
a neural network to identify the composer of various works.

Logrippo and Stepien [85] used cluster analysis and factor analysis on music to analyse
melodies. They clustered melodies based on the number of occurrences of notes or intervals.
A further approach attempted was to determine the longest sequence of common notes in two
melodies (referred to as “longest common subsequence” in our work). The length of this is
expressed as a proportion of the length of the shortest melody. Any number of notes can occur
between the common notes. They commented that a secondary ranking based on the length of
the sequence may also be required. The resulting distances were used to develop a structure
showing how the melodies are clustered. They found their techniques revealed some useful
relationships in the musicological analysis of songs from Eskimo Point, Rankin Inlet and Thule.

Stech [124] produced a program to locate related melodic patterns within a piece of mu-
sic. The patterns searched for were tonal answers, exact melodic patterns, rhythm matches,
and contour matches. The program also located inverted melodies and retrograde (backwards)
melodic patterns. The music was encoded as a sequence of pitch numbers, optionally qualified
by symbols representing rhythm. Rests were also encoded. The program successfully located
patterns in Dunstable’s Veni Sancte Spiritus motet.

Mongeau and Sankoff [97] calculated an edit distance between melodies, including measure-
ment of insertions and deletions, and weighting of importance of different features. They made
use of both melody and rhythm in their comparisons. They tested their approach on Mozart’s
set of nine variations on the theme “Ah! Vous dirai-je, maman” (K. 300). Local alignment was
also implemented and local similarity within Mozart’s Alleluia (K. 165) was tested using this
method.

In summary, these musicologists chose features of interest to them and compared different

25

pieces of music, in order to group similar pieces, to observe the evolution of musical style, or to

quantify stylistic elements of composers and their works.

2.4.2 Part Splitting and Melody Extraction

We have been unable to find much published work on melody extraction algorithm. There ap-
pears to have been no formal evaluation of different algorithms other than in our own work [132].
Blackburn et al. selected the lowest pitch notes in each track for their “navigation by musical
content” system [11]. Ghias et al [54] mention that they used various extraction heuristics,
one of which consisted of excluding the percussion channel of the MIDI files, which is normally
channel 10. How effective these are is not clear. In recent work, Francu and Nevill-Manning [52]
selected the “highest energy” note, where the energy was calculated by using a combination of
the amplitude and frequency.

In work that followed on from ours, Blackburn and de Roure [12] built a part classifier, that
used a set of features including average pitch and entropy to classify MIDI channels into bass,
rhythm, accompaniment and lead. The techniques were evaluated by selecting melody fragments
from lead parts and averaging the rank of the pieces that these fragments came from. Using the
classifier to reduce the number of pieces to match against improved the rank of these pieces.

Despite the dearth of melody-extraction work, there has been some serious investigation of
part splitting, that is, given the musical data of a piece of music, splitting it into likely separate
monophonic parts. Marsden used perception principles, such as proximity, to split polyphonic
music into its parts [87]. He concluded that it would be impossible to do so reliably with an
algorithm. Similar rule-based expert-system techniques were applied to the task of transcribing

lute tablature by Charnassé and Stepien [17].

2.5 Computer Musicology versus Music Perception

Theories about music and harmony have existed for hundreds of years. For example, Rameau
published his “Treatise on Harmony” in 1722. About twenty years before this, acoustics pioneer
Joseph Sauveur published experimental evidence of overtones [104]. Rameau’s theories were
initially based on a mathematical approach and only later were the physical properties of sound

understood with their relation to music.

26

Music perception research has validated some music concepts, for example the perceived
similarity of exact transpositions. There are instances, however, where music perception and
a strictly musicological approach gives rise to different results. For example, as pointed out
by Butler (and discussed by Deutsch [31]), Tchaikovsky’s sixth symphony has the theme and
accompaniment distributed between two violin parts. The theme is perceived to come from one
set of instruments and the accompaniment from another, however.

This has implications for algorithms that try to extract a melody or convert a collection
of notes into musical parts based on music perception. For example, the result of the melody
extraction process may not be as originally organised by a composer, even if it correctly simulates
how it will be perceived. Conversely, if the stored music is based on the sheet music for a
composition, then the musical work may not be retrieved given the user’s perception of the

melody.

2.6 Information Retrieval

Information Retrieval (IR) is a well established field of research that has been in existence for
longer than the computers that are an important tool for IR today. The field concerns itself
with the techniques that best allow a user’s information need to be satisfied [113]. When a
query representing the user’s information need is presented, the answer to the user’s question
should be produced by the information system. In today’s text retrieval systems, a ranked list of
documents is presented that, it is hoped, best answers the user’s need. The information retrieval
field has various established methods for determining the success of a retrieval technique. These

rely on the concept of relevance. This is discussed in more detail below.

2.6.1 Relevance

In the field of textual IR, a user has an information need that may be expressed as a query
written in English, or as a set of key words. Typically this query is presented to the information
retrieval system, and a list of documents judged to be relevant to the query is displayed to the
user.

IR scientists need to evaluate how well their retrieval techniques perform in terms of produc-

ing useful answers to queries. The main approach used is to determine the proportion of relevant

27

answers. For this to succeed it is important to define what is meant by relevant. The standard
approach is to use human judges to look at each potential answer and make a judgement as to
whether it is relevant or not.

For example, suppose a user wants to find out whether Myasthenia Gravis is related to
thyroid problems. The query could be presented to a retrieval system as a list of words and a
list of documents retrieved by the system would then be presented to the user. Human judges
would look at each of these documents in turn to decide whether they are relevant. A document
that discusses Myasthenia Gravis would probably be classed as relevant: one that discusses
thyroid problems in general but doesn’t refer to Myasthenia Gravis at all may or may not be
judged as irrelevant by an assessor. An article on Gravis Ultrasound soundcards would definitely

be classed as irrelevant.

2.6.2 Experimental Methodology in Information Retrieval

The usual approach to testing a new retrieval algorithm is to make use of a collection of data,
queries, and relevance judgements. Queries are run against the data collection using the algo-
rithm and the results analysed by comparing results to the relevance assessments for the queries
to determine retrieval success. This approach is often referred to as the Cranfield model, after
its first use [24]. For text retrieval, standard collections have been put together to allow dif-
ferent research groups to test their techniques on common data, allowing comparison between
results [70].

Once a set of queries have been applied to a collection, the answers can be analysed to
determine how successful the retrieval technique is. Typical ways of measuring retrieval success
are recall and precision [24]. Recall is measured as the total number of relevant documents
retrieved divided by the total number of relevant documents. Precision is the number of relevant
documents retrieved divided by the total number of documents that were retrieved. There
are other measures that are also applied to test retrieval success. For example, eleven-point
precision average takes the average of the precision at each decile of recall from zero to one
hundred percent. Retrieval techniques can then be compared to others using the same measures
of retrieval success.

To confirm that the differences in retrieval effectiveness of different techniques are statistically

significant a test such as the Wilcoxon test can be applied.

28

2.6.3 IR Models

In developing methods of measuring similarity between queries and documents, several methods
have been devised, each based on a different view of the retrieval problem. Some of the more
well-known ones are the vector-space model and the probabilistic model.

The vector space model treats each unique term in documents as a dimension, and each
document is described as a vector consisting of the weight, such as the term frequency, of each
term. For example, for a set of terms { a, cat, dog, mat, on, sat, scat, the }, the document
“the cat sat on the mat”, could be represented by the vector [0,1,0,1,1,1,0,2]. The similarity
between documents and queries can be determined by calculating the distance between their
vectors using vector space geometry [114].

A probabilistic model has also been applied to document similarity. In this approach, a
similarity formula is developed based on probability theory. Since probabilistic formulae can be
computationally complex for the purpose, a simplified formula is often used that makes use of

term frequencies and document frequencies [106].

2.7 Music Databases

In our discussion of music databases, we distinguish between music repositories, music database
systems, and music retrieval algorithms. When unqualified, the term “music database” refers to
a music collection, that is, a collection of pieces of music that has been electronically stored. We
use the term “music retrieval system” to refer to a system that provides retrieval capabilities for
a collection of music. The term “music retrieval algorithm” is used for the techniques employed

for retrieving answers to music queries.

2.7.1 Existing Music Databases and Retrieval Systems

There are several different kinds of music database available today. Musicologists have compiled
collections of music of specific genre in digital formats since at least the early seventies (for
example see Lincoln [82]). Various different methods of encoding have been used for these
collections. Some have used the formats discussed in the section on computer representation of
music above. Others have developed representations suited to the needs associated with users of

the collection. We are primarily interested in those that store musical content or databases that

29

provide a method for searching by musical content. RISM is a catalogue that does the latter
of these two. It contains information about music manuscripts and other musical works held
in music libraries throughout the world. The catalogue does not contain musical content itself
but does provide an “incipit” or initial melodic phrase of musical works. This allows limited
content-based searching.

There are two main paper-based MIR systems available. The first is Barlow and Mor-
ganstern’s Dictionary of Musical Themes [8]. In this dictionary, themes are represented in the
key of C major or minor as a sequence of note names. No note durations or indications of octave
are used. Despite this, only six notes are required to locate most themes, and a query length
of eleven is the longest needed. Users of this dictionary are required to be sufficiently musically
literate that they can transcribe music they have heard and also present it in a different key.
A later book was produced by Parsons that made the task of searching for themes much easier
for the lay person [100]. This book presented all themes as a sequence of up (U), down (D),
and remain the same (R) characters, that is, a melody contour representation. The dictionary
includes all the themes from Barlow and Morganstern, plus a large collection of popular tunes,
making the total number of themes about 10,000. The author states that queries need to be
sixteen notes long to distinguish all themes, but only nine are required for the popular themes.
Both books exclude ornamentation in their representation of themes.

Several systems are available on the Internet for processing melodic queries, each with its
own unique collection. Stinson [125] provides the ability to enter text or encoded melodic queries
to locate musical works of the 14th century. The New Zealand Digital Library project provides
a melodic search facility for Schaffrath’s collection of folk songs [5]. Users can record a sung
query and submit this as an audio file to the system. The site also provides a limited search
facility for a large collection of MIDI files gathered from the Internet. Blackburn and de Roure’s
system [11, 108] allows users to enter a contour query to search a collection of MIDI files.
The Carnegie-Mellon University “By Content Music Indexing Project” has a user interface that
allows the user to move notes up and down to create a contour query of eight notes [10]. These
notes are compared to the first eight notes of melodies in the collection.

Kornstadt developed a web interface for a database developed by Huron using his Humdrum
language [74]. The user can enter melody queries in a variety of encodings and can restrict the

set of answers with some metadata criteria. The collection consists of over 2000 monophonic

30

themes.

A stand-alone system for “query-by-humming” was developed by Borchers et al. [14, 15], as
part of an interactive music exhibit.

Technologies used for retrieving data from music repositories include standard text retrieval
technology, as used by Schaffrath [116], standard semi-relational databases [45], and custom

systems. We discuss in more detail the techniques that have been studied in section 2.8.

2.7.2 Music Database User Issues

There are several user-related issues in retrieval of music via a melody fragment query. In order
to satisfy the user’s needs, it is necessary to define who the user is, what they want to know,
and what type of results they will consider to be relevant. Once these issues are resolved, an
appropriate means of establishing relevance can be defined as well as a method of evaluating
the retrieval system. This section discusses the different types of users and the queries that
they wish to have answered, the meaning of relevance for these users, and proposed methods of
evaluating a retrieval system given these user needs.

There are several types of user for a music retrieval system: musicologists analysing collec-
tions of music, forensic musicologists who are called upon by music copyright lawyers, composers
or songwriters, Internet users wishing to retrieve a specific music file, customers wishing to pur-
chase recordings or sheet music, music librarians or music retail assistants locating music for
patrons or customers, and people that are just curious about where a particular musical phrase
that they remember comes from. Each of these types of users has slightly different requirements.
Their queries and prior knowledge differ, as will the results that they consider relevant to their
queries. The different users and their needs are discussed below. Issues related to the accuracy

of their queries are also discussed.

Customers and Library patrons

Music retail customers, library patrons, and those that may assist them are usually looking for
a specific piece of music of which they can recall only a fraction. The same is true for those that
are merely curious to recall a piece of music that they only partly remember.

The fraction may consist of part of the sung component of a song, a fragment of the accom-

paniment, or may even consist of a musical part that transfers from one musical instrument to

31

another. The user may be unable to remember more of the musical work, making an iterative
querying process unlikely.

To these users, a query result will only be relevant if it is the same as the musical work
that they remember. The other results may have some similarity that might lead them to be
considered relevant in a general sense, but they will not be of value to the user. This difference

between “topicality” and “utility” is discussed by Blair [13].

Internet users

Web users who are after a specific music file (possibly MIDI) may be able to recall significant
portions of the music that they are after. The nature of MIDI files on the web is that many are
archived with abbreviated song names that can be difficult to decipher. A song may not be able
to be located via its name. Many files may have the title contained within the MIDI file but
this is also no guarantee of success in locating a song, since the MIDI file format does not make
the storage of song titles compulsory.

A Web user is likely to refine their query depending on the number of results retrieved. They
may be after a specific musical work, which may, however, occur as more than one MIDI file.
These files can be quite different in terms of key, arrangement and timing. There may be more
than one relevant answer in this case. In terms of file location, there are likely to be duplicates

of a file occurring at different locations.

Composers

Composers or songwriters may be concerned about whether their work infringes the copyright of
existing works, or may merely wish to confirm the source of their inspiration. The nature of the
process of composition makes it difficult to distinguish between an inspired original musical idea
and a musical theme that was once heard and half remembered. It is quite easy to unconsciously
re-write an existing work. If a composer’s new work has a recognisable similar portion to an
existing work and the composer is likely to have heard the similar prior work, then copyright
infringement may have occurred.

A composer’s query may consist of a fragment of melody that she wishes to verify is not
in infringement. It may also consist of a complete arranged piece of music. Queries may fall

somewhere in between these two extremes.

32

The results of a composer’s query will be relevant if the melodies or arrangements are similar
in terms of copyright. Copyright similarity may be different from similarity perceived by humans.
Results would need to be ranked according to a hierarchy of similarity criteria. These would
include the number of contiguous notes that are similar in terms of melody contour, precise
intervals, rhythm contour, precise rhythm, and harmony similarity.

Composers may also be interested in different types of queries that could aid the composition
process. If a melody is being harmonised or arranged and the composer would like to see how
other composers handled a particularly difficult sequence of notes, a query could be used to
retrieve this information. For long musical works, the location within the work would be useful
to allow the user to locate the relevant part of the work. The composer may wish to add other

constraints to the query such as the period or style of the work to ensure relevance.

Forensic Musicologists and Music Copyright Lawyers

Music copyright lawyers in the act of defending or carrying out litigation on behalf of composers
would have similar queries to the copyright queries described above.

These lawyers call upon a forensic musicologist to present evidence regarding the similarity
of two pieces of music and the possible existence of prior art. The musicologist analyses the two
pieces and makes use of whatever tools are available, such as theme and incipit (see Subsection
2.7.1) indexes, to locate prior art. For most early court cases the analyses have been quite
ad hoc [30], however, the methods of forensic musicology have become more formal in recent
years [105]. There are two classes of results that are of interest for copyright queries: works that
are copyright and those that are in the public domain. Depending on whether a case is being

made to defend or prosecute will determine the query results in which the user is interested.

Musicologists

Musicologists are interested in a wide variety of aspects of a collection of music. The kinds of
tasks carried out include the analysis of music, and the comparison of different pieces, composers,
or music from different eras or countries. Examples of the kinds of analysis that can be performed
with a set of music stored electronically and a set of tools include determining the frequency
of particular musical motifs in composers’ works, the shapes of melodies used, and the use of

particular musical intervals in styles of music. Musicologists may wish to locate previously

33

undiscovered features that occur in composers’ musical styles. This may be used to confirm
authorship of works (for example, Halperin’s use of seriation [60]). Sometimes musicologists
build special-purpose databases, which may in turn be used for further analysis (for example,

Stinson’s collection of fourteenth century music [125]).

2.7.3 Query Accuracy

Different types of users have different levels of skills when it comes to describing their query.
Composers, musicologists and other musicians could be expected to prepare a query using a
keyboard or notation with a good degree of accuracy. For queries comparing an entire piece
of music, a MIDI file or other standard means of describing music may be used as the query.
Music retail staff often have music skills and would also be able to describe queries to the system
adequately.

The lay person may have some difficulty in preparing a music query. Several systems have
been described that allow the user to create queries by humming or singing. Problems that
occur when using this method is that people do not sing very accurately, especially if they are
inexperienced singers or unaccompanied. Even skilled musicians have difficulty in retaining pitch
for the duration of a song when singing without accompaniment. Programs that process this
audio input need to perform pitch tracking to decide what pitch the user really meant rather
than what was actually sung. Melody contour, however, is usually accurate.

This leads to the issue of user error. Some users will be very precise in their queries. Others
may have errors due to the method used to enter their query. There may need to be some means
of addressing the issue of helping the user prepare an accurate query to aid the retrieval process.
In a large database there may be too many irrelevant pieces returned if a percentage of user
error in the query has been allowed for. It may be best to give this control to the user as a series

of options.

2.7.4 Music Databases in the Future

The amount of music available in digital formats will continue to increase, and automated
methods will be needed for preparing data for searching by content. The majority of that music,
however, will only be available in audio formats such as that found on audio CDs and MPEG

files on the internet. In the future we will need to be able to convert an audio recording into

34

discrete note data for a content-based music retrieval system to be practical for a representative
collection of the world’s music. This problem is yet to be solved, the difficulty arising out of
the complexity of typical audio recordings. These are usually multi-timbral as well as having

multiple simultaneous notes.

2.8 Survey of Music Information Retrieval Research

Several researchers have explored the problem of searching music databases for melodies. Other
research exists on calculating the similarity of musical works.

Dillon and Hunter [33] discussed the location of melodic variants of pieces of music. They
referred to research by Bayard, who concluded that variants of Anglo-American folk music differ
more at the starts and ends of phrases than they do in the middle. The pitch of melodies were
more stable across variants than rhythm. Stressed pitches were considered more important for
matching melodies. Syncopated notes — notes that seem to be stressed despite being on a weak
beat because they have a long duration — were not treated as stressed notes. The issue of
identifying melodies that only differ in their mode, that is, start on different notes of the same
scale, was also raised. Dillon and Hunter developed a set of melody representations that were
based on scale numbers. For example, in one of their representations the first phrase of Mary

Had a Little Lamb would be encoded as:
3212333

Another representation included bar numbers, by preceding each bar with a bar number enclosed

in hyphens:
-1-3212-2-333

Other variations included, the representation of only the stressed pitches in the same format,
and separating phrases with a “/” character. It was proposed that the melodies in the database
be represented in each of these formats. Queries would then be presented in the same manner
allowing exact matches to be used for searching. While it was recognised that evaluation using
recall and precision measurements should occur, the lack of a body of music in the format

required and lack of agreement were cited as impediments to such an evaluation.

35

Hawley [62] performed exact matches using a binary search on melodies that were stored as
a series of relative pitches in a text format.

Some have tried to apply traditional database modelling techniques to musical data stor-
age. Rubenstein [111] applied ER-modelling to the storage of musical notation information.
Eaglestone [45] proposed extending the relational model for the storage of music. He made use
of temporal database techniques in his approach. The approach allowed the maintenance of
historical information about data updates. It allowed queries on note events using its extension
of SQL, but was not really proposed as a MIR system in the sense of answer melody queries to
find matching pieces.

Chou et al. [21] used Pat trees to index melodies. The notes of each measure of the melody
were combined to determine the “chord” and this chord sequence was used as an index term.
This allowed for some kinds of user input errors, and may also be useful for locating pieces with
similar harmonic sequences. The music was stored in a diatonic fashion, not allowing for notes
that are outside the key of the piece of music. The approach is unlikely to scale well due to the
difficulties relating to the key changes in general collections of music, and the coarseness of the
index terms. There was no evaluation of the effectiveness of the technique at finding answers.

B. Chen [19] built a query-by-humming system that used absolute pitch representation of
pieces, and used a Fuclidean distance to calculate similarity between query and pieces in the
collection. There was no evaluation of the techniques used.

Hsu et al. [65] used a correlative matrix in their approach, that is, a dynamic programming
algorithm to match a melody string against itself to locate all substrings that are repeated.
The symbols used to represent the melody consisted of absolute pitch, however, the authors
generalise the technique to other representations. The technique was tested for speed in relation
to the number of notes and patterns found. In related work Liu et al. [84] applied an “RP-tree”
to the task of finding non-trivial repeating patterns in a piece of music. RP-trees compress the
music string into a tree. Experiments showed that the approach was faster than the use of a
suffix tree or dynamic programming.

J. C. C. Chen and A. L. P. Chen [20] developed an index on rhythm for their system. The
structure used was an “L-tree”, which is a kind of trie and k-similar matches were used as a
basis for matching. They used the rhythm of each bar as a symbol in a rhythm string to be

indexed in the tree structure. Experiments examined tree-size, response time and the average

36

number of songs containing rhythm substrings of different lengths. Rhythm strings greater than
four bars in length were generally unique in a collection of 102 folk songs, and a single bar of
rhythm was found in about four songs on average.

In later work by A. L. P. Chen et al. [18], sequences of pitch and duration information were
indexed. Each note or sequence of notes of the same pitch was represented by a segment type,
a duration in number of beats, and an interval size. The segment type represented the local
contour of the melody. A variation on the suffix tree was used to index the information and
found to be more efficient than a normal suffix tree for this task.

Kageyama et al. [71, 72] created indexes of their melodies, indexing from the start of each
phrase, reasoning that users will usually start a query at the start of a phrase. This reduces
the number of terms required to index each melody at the expense of supporting queries that
start in the middle of phrases. Inexact matches were permitted. They experimented with four
matching techniques and evaluated these by searching for 100 hummed queries in a database of
500 songs. The measure of retrieval success used was the percentage of queries that had the piece
that the hummed melody was based on in the top 1 or top 10. The technique that worked the
best under this evaluation scheme was a dynamic programming technique that used a weighted
combination of pitch and duration, and allowed semitone errors.

Kageyama et al. also refer to work published in 1988 by Yamamoto, who developed a system
allowing melody queries that performed exact matching only.

Downie et al. [39, 40, 41, 42, 43, 127] applied an informetric approach to MIR, that is,
they analysed the statistical properties of a collection of folk-songs in order to predict the
most appropriate melody matching strategy (See also, section 7.1). They listed several possible
methods of representing melodies, which were analysed for term distribution, The SMART text
retrieval system was used for their experiments. Based on their analysis, they concluded that
the contour representation of melodies was insufficient for melody retrieval.

Ghias et al. [54] used a collection of MIDI files as data. Melodies were extracted from these
files as contour strings, discussed below. These were stored in a text file and searched for matches
to users’ hummed queries. For a collection of 183 songs, queries of 10 to 12 notes were required to
retrieve 10 percent of the collection. Ghias et al. stated that using a more fine-grained melody
representation than contour, such as an alphabet of five possible pitch transitions, would be

promising.

37

Blackburn and de Roure’s approach consisted of building a system for hypermedia navigation
based on melody contour [11]. In later work, they used secondary contours to improve the accu-
racy of searches [108]. The contours were split into n-grams of lengths twelve to fourteen. The
researchers believed that the frequency of n-gram occurrences within a MIDI file was significant
for matching, particularly for inexact matching. The search structure used was a tertiary tree
with a branch for each possible contour symbol, that is, it was a suffix tree. Evaluation of their
work consisted of testing the uniqueness of contour n-grams in the collection.

McNab et al. [91, 93, 92] converted melodies to contour strings, but also explored the effect
of storing exact interval and contour and exact rhythm information. He discovered that after
exact interval and rhythm, exact contour and rhythm was the combination with the greatest
discriminatory power. He used a modified version of the edit distance algorithm to allow for
two dimensions: pitch and duration. The techniques have been implemented as part of the New
Zealand Digital Library project [4, 5].

Crawford et al. [27] surveyed possible string-matching techniques that could be applied to
music matching. They list twelve types of melody matching problems, including exact matching,
chord recognition and approximate matching. For each problem they list techniques that could
be applied to the problem, for example, the Boyer-Moore algorithm can be applied to the exact
matching problem.

Crochemore et al. [29] presented an algorithm to solve a rather unusual matching task, to
locate evolutionary sequences in music or molecules. This algorithm finds sequences of substrings
within a string that have an edit distance of (say) one between adjacent pairs of strings.

Salosaari and Jérvelin [112] explored the possibility of using n-grams of lengths two to four for
melody matching. The similarity measure used was the number of n-grams in common between
the query and document divided by the number of n-grams in the query. They tested their
approach on a set of themes from a Bach fugue. They classed nine of the seventeen themes as
relevant and the rest as irrelevant. They concluded that the longer n-grams gave better results
but missed some answers. They doubted whether n-grams would be effective in large-scale music
databases.

O Maidin [99] calculated the pitch difference between two melodies by aligning them in time.
For this approach to work, both melodies must be in the same key. A statistical theorem allowed

the most appropriate transposition one of the pieces to be matched to determine the smallest

38

possible pitch difference between melodies. O Maidin also applied weights so that longer notes
had more influence on the matching process. He tested the technique on a set of 419 Irish tunes
and reported that it worked well on this set at identifying matches. The matching method
required melody fragments to be the same length. We believe that the technique could be
extended to pieces of different lengths by using a windowing technique.

Pollastri [102] implemented a pitch extraction algorithm for extracting the melody from a
monophonic audio source. In addition he applied dynamic programming to the task of matching
melodies extracted from audio. To test his approach he used a set of audio files that were versions
of a melody that included or excluded ornamentation, expression, or errors. He concluded that
the matching approach worked but was uncertain how well it would succeed with shorter melody
strings and large collections.

Melucci and Orio [94, 95] implemented a phrase-based MIR system that used several different
kinds of melody “normalisation”, including pitch normalisation, so that phrases start on the same
note, and duration normalisation that makes use of the greatest common divisor of the durations.
Evaluation of their approach was carried out using a collection of 419 pieces of classical music,
and a set of automatically generated incipits of these pieces of varying lengths. They found that
the answers to a query usually contained a significant number of pieces by the same composer.

Kosugi et al. [75, 76] developed a MIR system that uses a feature vector consisting of tone
distribution and tone transition features. Tone distribution consists of the amount of time spent
at each pitch relative to some base pitch. Tone transitions were defined as musical intervals
relative to positions within a bar. The researchers found that the combination of the two
features gave better results than just using one feature. The tone transition feature was almost
as successful as the combined features. The measure of retrieval effectiveness used was the rank
of known-item searches for a set of 186 hummed queries in a collection of 10,069 melodies.

Tseng [131] tested a music index consisting of n-grams of lengths two and three. Both relative
and absolute pitch representations were used. It was discovered that 3-grams were better than
2-grams for retrieval.

Lemstrom et al. initially used fuzzy intervals and tries for music matching [78], but later
changed to matching against polyphonic musical data using bit-parallel techniques [80]. This is
discussed further in Chapter 3. This team also experimented with combining pitch and duration

into a single value for matching [79].

39

Rolland et al. [107] are developing a system that takes hummed queries as input and uses
a similarity measurement method that takes into account structural properties of the music
and different types of error. Like Mongeau and Sankoff, they have applied a different weight
depending on the specific note substitution made. To our knowledge there was no evaluation of
the similarity measurement technique in terms of retrieval effectiveness.

Dovey [35, 34] presented the theory behind a brute-force approach to locating matches of
melody fragments in a collection of music. As the technique involved absolute pitch, queries
needed to be transposed into each of the 128 possible starting pitches for matching. He presented
a means of ranking answers based on the level of similarity to the query. Examples were presented
that showed where the techniques succeed and fail.

Clausen et al. [23] built an index on absolute pitch of notes quantised to a small time unit,
so that rhythm and stress were incorporated into the matching process. Searching for answers
to a query involved searching at each possible starting pitch. They proposed a technique that
would limit the cost of this search by building a set of smaller indexes. This is discussed in more
detail in Chapter 3.

Francu and Nevill-Manning [52] built an index on 200 millisecond fragments of each channel,
excluding any such fragments that would be extremely difficult to sing, and used this as the first
stage in the matching process. The second stage involved a more comprehensive matching of the
query against the pool of potential answers retrieved via the index. The matching process extends
the idea of O Maidin in that the key in which the piece and query match with the minimum
difference in pitch is determined. The approach was evaluated by observing its effectiveness at
retrieving pieces given a sung query. The system was shown to be more effective in answering
queries than six musically untrained listeners.

Pickens [101] explored the use of n-grams on a collection of folk-songs. He applied Bayesian
inference networks using unigrams and bigrams. He found that the techniques were quite suc-
cessful for known-item searches consisting of seven or twelve note incipits on the collection.

Sonoda and Muraoka [122] represented melodies with relative pitch and duration. They
used a combination of “short DP matching”, that is, using dynamic programming to match
substrings of length n between the query and potential answers. Once the top 100 results were
retrieved, full dynamic programming matching was applied. Evaluation of the system was in

terms of speed, space consumed by the index, and accuracy. They used 120 manual queries to

40

test their system with a database of 10,000 randomly generated melodies and 206 real tunes.
Accuracy was stated as being 92.5%, where success in the known-item search was defined as
being retrieved as the top ranked item.

Other methods explored include the encoding of whether a note is stressed or not, (for
example, Schaffrath [116], Bakhmutova et al. [6, 7]). Stress may be important for ranking
similar melodies, since experience suggests that those melodies that only differ on an unstressed
note are more similar than those that differ on a stressed note. Both Schaffrath and Bakhmutova
et al. used diatonic information, that is, the notes were numbered according to the note number
in the scale or key of the music. Schaffrath stored the music in the STAIRS text retrieval
system. He successfully used the combination of the retrieval system and his collection of folk
songs to perform statistical analyses of folk songs from different countries (for example Germany
and China). Bakhmutova et al. used their method of calculating melodic similarity to locate

variants of Russian and French folk songs.

2.9 Summary

In this chapter we introduced the various fields that form the background to this thesis, that
is, music, music psychology, information retrieval, musicology, and music information retrieval.
We also discussed the needs of potential users of MIR systems.

Music perception research informs us of some factors in determining similarity between
melodies. It also provides us with clues on how simultaneous musical parts are perceived. This
may aid the development of better algorithms for separating a performed musical work into its
parts and extracting a melody.

Some approaches have been applied by musicologists to analyse and compare pieces of music.
In addition, various methods have been implemented for MIR systems. Most of these haven’t
been evaluated for effectiveness using IR evaluation techniques, and those that do have used
known-item searches or a set of variations on a theme as their basis for evaluation.

We discuss matching techniques in more detail in Chapter 3. Their application to music is

described in Chapter 8.

Chapter 3

Matching Techniques

Since our aim is to be able to search for melodies in a music collection, we have surveyed
techniques for matching and searching. Many techniques have been proposed for music match-
ing, including dynamic programming [93, 97, 133], n-gram techniques [40, 133], bit-parallel
techniques [80, 93], suffix trees [21, 78], indexing individual notes for lookup [23], feature vec-
tors [76], and calculations that are specific to melodies, such as the sum of the pitch differences
between two sequences of notes [99]. Several of these techniques use string-based representations
of melodies.

Besides their use for text, string matching techniques have been applied to a range of different
types of data. The data to be matched is usually represented as a sequence of symbols which
may be printable characters. An example is the representation of genomic data, which usually
consists of sequences of the characters C, G, T, and A, representing the four nucleotide bases
found in DNA. A further example is the representation of speech as a sequence of phonemes.
Melodies can be represented by a sequence of notes, or musical intervals stored as a string,
therefore string matching techniques are potentially useful for melodic matching.

In this chapter we survey different types of matching techniques that have been proposed
for music and string databases. We also discuss a few other matching techniques that are not
entirely string-based, but have been applied to music matching problems. We describe both
exhaustive techniques and indexing approaches for both exact and inexact matching. We then
discuss the potential of these techniques for MIR systems. The techniques that we have explored

in our experiments are discussed in Sections 3.4 and 3.5.

41

42

3.1 Terminology

A string is a sequence of symbols, usually characters. A pattern p is the string of characters that
is being searched for within a body of text t. In this chapter we assume the pattern consists of
m symbols and the text n symbols.

String matching can be ezact or inexact. String searching usually refers to locating exact
matches within the text, whereas matching is a more general term. All these matching prob-
lems are part of the more general group of problems known as pattern matching. The pattern
matching problem domain includes matching two-dimensional structures and trees, in addition
to strings [1]. For inexact matching the problem is expressed in different ways: find all matches
that have up to k errors, and use a scoring approach to measure how similar strings are. The
types of errors that occur are mismatches, where two characters being compared are different,
inserts and deletes, where a character is inserted in one string to align it with the other string.
As inserting in one string has the same alignment effect as deleting from the other string, the
two types of error are defined as indels. A gap is a contiguous sequence of inserts. Consider the
example of matching “caterwaul” with “call”. If the first “1” in “call” is a mismatch against the
“t” in “caterwaul”, then there is a gap of length five consisting of the letters “erwau”. Each of
the letters in the gap is an indel.

Ezhaustive matching techniques scan the entire text for matches to the pattern. The pattern
is often preprocessed to make the matching process more efficient, but the text itself is not.
The alternative to exhaustive matching involves preprocessing the text to make an index. These

techniques we have termed indexing techniques.

3.2 Exact Matching

Some MIR systems use exact matching techniques for query processing [71]. However, inexact
matching is generally more useful for MIR. Some techniques that have been developed for exact
matching have been modified for inexact matching, but others are not easily modified. Here
we briefly discuss existing exact matching techniques, but explain the bit-parallel method of
Baeza-Yates and Gonnet in more detail, as this is the basis of several techniques for inexact
matching [146], and has been extended for use in MIR systems [80, 91].

Several of the most efficient algorithms for finding exact matches are the Boyer-Moore-

43

Horspool, Rabin-Karp [118], and Baeza-Yates and Gonnet [2] algorithms. The brute-force ap-
proach to exact matching commences comparison of the pattern at each location in the text.
This requires O(mn) character comparisons, though in practice the cost is less since checking
the pattern at a particular position can stop as soon as a mismatch occurs. The Knuth-Morris-
Pratt approach to string matching improves on the brute force technique by first analysing the
pattern to determine where to resume matching when a mismatch occurs, eliminating the need
to back-track. As a result, the algorithm has a maximum of O(m + n) comparison operations.
The Boyer-Moore algorithm improves on this technique by matching from right to left within
the pattern so that larger skips are possible. When the characters at each end of a pattern
are examined, the largest skip that can be made is determined. The algorithm was further
improved by Horspool for long patterns [2]. Rabin and Karp applied a hashing technique in
their approach. At worst the algorithm is O(mn) but this is highly unlikely [118]. More recent
work in exact string matching was surveyed by Crochemore [28].

For short patterns, particularly those of length less than five, the Shift-Or bit-parallel ap-
proach suggested by Baeza-Yates and Gonnet is faster than the Boyer-Moore family of tech-
niques [2]. It is also easier to adapt to inexact matching than the other algorithms mentioned
above [146]. This approach performs at its best when the pattern to be matched is smaller than
the word-size of the machine it runs on. It uses O(n) time.

A bit-pattern is created for each character in the alphabet representing the positions at
which the character occurs in the pattern. This bit pattern is used to calculate the state at each
position in the text during matching. Moving from one position in the text to the next involves
applying a shift-left operation to the previous state and then using logical Or of the current text
character’s bit pattern with the state bit pattern. A complete match is found once the most
significant bit of the state is set to zero. For example, consider the pattern “a-cat”, the text
“ta-gat-a-cat” and the alphabet {‘a’, ‘¢’, ‘g’, ‘t’, *’}. An array T is created that contains bit
patterns as shown in Table 3.1. The letter ’a’ occurs at positions one and four in the pattern,
therefore the value for the array element representing ’a’ contains 10110, which is set to zero at
positions one and four.

A state variable keeps track of the matching process. Table 3.2 shows the state values at each
stage of the matching process. The state is initialised to 11111. Zeroes in the state bit pattern

show the length of matches, so the 0 in the state value occurring under the third character of

44

i char t a ¢ - a

Table 3.1: Preprocessing for the Baeza-Yates and Gonnet algorithm. A bit pattern representing
the occurrence of each alphabetic character in the pattern is stored in array T. Columns one and
two are the array index and characters of the alphabet respectively. A 0 is stored at positions

where the character occurs in the pattern (“a-cat” shown in reverse order).

Text t a - g a t - a . c a t
T[] 01111 10110 11101 11111 10110 01111 11101 10110 11101 11011 10110 01111
State 11111 11110 11101 11111 11110 11111 11111 11110 11101 11011 10110 01111

Table 3.2: Matching process for the Baeza-Yates and Gonnet algorithm. The bottom row shows
the state of the matching process at each position in the text. When a zero exists in the state,
then there is a partial match at that point. A zero in the most significant bit indicates a complete

match between the pattern and the text.

the text (11101) indicates a match of length two (“a-”).

Lemstrom et al. used a variation of Baeza-Yates and Gonnet’s algorithm for music match-
ing [80]. They applied it to absolute pitch matches against a polyphonic music collection. Thus
the algorithm had to be modified to handle data that was not really a string. Their approach
was to modify the main matching process to allow a pattern character to be within a set of
pitches that occur at a particular instant in the text. The technique consisted of exact matching
of pitches and was modified to allow transposition invariance, that is, matches to a melody query

would be found in the database regardless of the key in which the query is presented.

45

3.3 Inexact Matching with k£ Errors

The bit-parallel techniques described above have been extended to solve the matching prob-
lem with k errors. Baeza-Yates and Gonnet showed extensions to their algorithm that allow k
mismatches and a few class-based matches, such as “don’t care” symbols, and ranges of charac-
ters [2]. The mismatch problem is dealt with by allocating more than one bit per position and
using a sum instead of logical Or to calculate the state in each iteration.

Wu and Manber extended the algorithm to allow inserts and deletes in addition to mis-
matches. The algorithm uses k bit arrays, where k is the number of permitted errors. The
algorithm can be extended to have different penalties for inserts, deletes or mismatches by mak-
ing a single instance of these count for more than one error. For example, if deletes are to have
twice the penalty of mismatches or inserts, then a delete equates to two errors. The algorithm
is O(kn) in time [146].

McNab et al. [91] applied Wu and Manber’s technique to music matching. In the preprocess-
ing stage they created two matrices, one to represent pitch and the other to represent duration.
For their work, all note durations were quantised to 16th notes (semiquavers). They found that
the state-matching approach was less discriminating than the dynamic programming approach
based on Mongeau and Sankoff, but much faster. However, their tests for discrimination involved
using a single value for the number of errors, regardless of the pattern length. As a result, short
queries returned the entire collection.

Ghias et al. [54] used Baeza-Yates and Perleberg’s matching algorithm (described in [3]),
which is O(n + R) time in the general case, where R is the number of positions where the text
and pattern match [3], but O(mn) in the worst case when the pattern and text are entirely
made up of the same repeated character [54]. For matching with & errors, the algorithm makes
use of a pattern partitioning technique. In practice the algorithm is faster than that of Wu
and Manber. Ghias et al. applied the algorithm to contour strings representing melodies in a

database of MIDI files.

3.4 Dynamic Programming

Dynamic programming is the name given to an approach that evaluates small subproblems that

can be combined to produce answers to a larger problem without revisiting the small problems.

46

The class of string matching techniques based on dynamic programming use a scoring matrix to
find regions of similarity in data.

Dynamic programming-based string matching in its most basic form involves creating a two-
dimensional array that stores the results of comparisons between two strings. Unlike techniques
that locate occurrences of a pattern, the purpose of dynamic programming is to calculate a
score that states how similar (or different) the two strings are. This similarity can be local
— the score of the best matching substrings — or global — the overall quality of the match.
Whether the matches are local or global, the alignment of the strings can be determined once
the two-dimensional array has been filled.

The technique was originally developed independently by about nine different researchers [115],
including Needleman and Wunsch, and Sankoff, although the algorithm originally published by
Needleman and Wunsch ran in cubic time [59]. The use of an edit distance to determine similarity
between strings was first proposed by Levenshtein and it is often referred to as the Levenshtein
distance. The edit distance comprises of a count of inserts, deletes, and substitutions required
to make one string match another exactly. The combination of the dynamic programming tech-
nique and a distance measure is frequently used for the comparison of DNA strands [59], text,

musical data [93, 97], and audio signals [50, 115].

3.4.1 Example Using Longest Common Subsequence

One of the dynamic programming family of techniques calculates the longest common subse-
quence (LCS) in two strings. As an example, consider the strings “the-fact-that” and “the-fat-cat”.
The longest common subsequence would consist of the characters “the-fat-at”. There are two

possible alignments that result:

the.-fact-that

the-fa-t-c-at
and:

the-fact-that
the.-fa-t--cat

where “-” represents an insertion, and the common subsequence is shown in bold.

47

A formula for calculating the score for longest common subsequence is shown below:

ali — 1, j] 121

afi,j—1 > 1

dfi.g] = maz [i,5 -1 J (3.1)
ali—1,j—1]+1 p(i) =t(j) and i,j > 1

0

\
where a represents the array, p the pattern, and t the text. If each common character found
in sequence contributes a score of 1, then the score produced by the technique for the example
would be 10. Figure 3.1 shows the values in the array as a result of applying the formula. For
example, at position [1, 1] the first character of each of the strings align and are equal, therefore
the value stored at the position is 1 (04 1). The number in the bottom right corner of the array
is the length of the longest common subsequence of the two strings, that is, 10. The actual
subsequence can be determined by tracing backwards through the array.

LCS can be implemented by creating an n X m array and using a nested loop to fill it with

the values according to the formula, and completes in O(mn) time.

3.4.2 Dynamic Programming Variations

The longest common subsequence algorithm adds one to the previous score if the current two
characters match and otherwise uses the previous score. The formulation has no penalty for
gaps between matching symbols. There are other kinds of scoring technique that have been
developed for use with dynamic programming. Most of these vary the weights applied when
contributing to the score at each point in the matrix. Variants include global alignment, local
alignment, and longest common substring.

Global alignment (also known as Needleman-Wunsch alignment [59]) typically assigns a
positive score for a match and negative scores for mismatches, inserts and deletes (indels). A

commonly used set of weights is 1 for a match, —1 for a mismatch, and —2 for an indel.

48

9

t o 1 2 3 4 5 6 7 8 8 9 9 9 10

Figure 3.1: LCS array created when matching the strings “the fact that” and “the fat cat”. At
position [1,1] the first character of each of the strings align and are equal, therefore the value

stored at the position is 1 (0+1).

49

ali —1,j]+d i>1
ali,j—1+d j>1
ali,j]=marq afi —1,5 1] +e P
ali—1,7—1]+m P

0 i,j=0

\
where d is the cost of an insert or delete, e is the value of an exact match, and m is the cost of
a mismatch.

Local alignment, also known as Smith-Waterman alignment, uses a similar technique to
global alignment but does not allow a score to become negative. The final score for the match is
the maximum of each of the local maxima. This represents the best match between substrings

of the two strings.

ai—1,5]+d i>1
ali,j—1+d j>1

ali,jl=mazq ali—1,j-1+e p(i) =t(j) and i,j > 1 (3.3)
ali = 1,7 =1]+m p(i) # t(j)
0

\
It is also possible to use dynamic programming to calculate the longest common substring by
setting the score in the array position to zero as soon as a mismatch or indel occurs. The largest
value in the array then represents the length of the longest common substring. As with the
other methods above, it is possible to trace back through the array to determine the substrings
that have matched.

Another variation in the use of dynamic programming is the application of different scores
for gaps. A gap occurs when a long run of inserted characters occurs during matching. For
example, if the word “birthday” were to be matched against the word “bay”, there would be a
gap of five characters. For some applications the penalty for long gaps would not be as heavy
as would occur if the normal indel penalty is used for each character position. This approach
has been applied to genomic matching [59].

Another extension to the matching process has been the application of a substitution matrix

that is used to determine the weights to be applied for any particular pair of characters that are

50

being compared. One of the substitution matrices used in genomics is the PAM matrix (discussed
by Gusfield [59]). This contains values based on how frequently a particular DNA component is
substituted for another in highly similar sequences of DNA. Mongeau and Sankoff [97] applied a
similar approach to melody comparison, in that they used different weights depending on which
notes were being matched. They penalised dissonant melodic intervals more than consonant

(pleasing) ones on the basis that consonant substitutions are more likely than dissonant ones.

3.4.3 Other Issues

An advantage of dynamic programming techniques is the ability to define the way in which
strings are to be compared. It is possible to reward symbols occurring in sequence regardless
of intervening symbols by using longest common subsequence, restrict to exact matching, or
fine-tune weights for mismatches and indels in order to suit the types of data being compared.

There are two disadvantages of dynamic programming-based string-matching techniques.
For long strings they use a large amount of memory (O(mn)). Also, being O(mn) in speed, they
may be slow compared to an indexed approach or a technique optimised for matching with &
errors.

Storage requirements can be reduced by only storing the current and previous rows of the
array, which is feasible because for typical use of dynamic programming the value in each cell
only depends on those on the previous row or previous column. If alignment of the strings is
also required, then a recursive algorithm to determine how the strings have been matched can
be implemented (described by Gusfield [59]).

There are techniques that address the speed of the DP algorithm, making it subquadratic [64].
However, a technique that has been more useful in practice is to reduce the number of cells in the
array that are calculated. Techniques that do this limit the number of consecutive errors, or the
total number of errors, which reduces the proportion of the array that must be calculated [140],

thereby reducing the time required.

3.5 Indexing

MIR systems could benefit from an indexing approach to speed up melody queries. Several

researchers have developed indexes for melody retrieval systems [11, 23, 76] while others have

51

created indexes on non-melodic features of music [138]. An indexing approach consists of a
search structure and a set of information about the location of occurrences of each index term.

Here we discuss index terms and different types of index structure.

3.5.1 Index Terms

In textual databases, each word occurring in documents is indexed. Looking up the word in the
index would result in a list of documents containing the word being retrieved. For melodic data
there are no words as such. Individual notes [23] or melodic phrases [71] could be indexed. If the
index terms are individual notes, many look-ups would be required for a single query. Further
difficulties need to be solved when answering queries that are inexact because query terms may
not be present in matching pieces. Using melodic phrases, however, limits the start position of
a melodic query.

Another possibility for melody indexing is to use n-grams. An n-gram is a set of n adjacent
symbols in a stream of text or other symbols. For example, the 3-grams (tri-grams) of the phrase

“the-cat” are:

the

he-

e-c

-ca

cat
An n-gram index contains all possible n-grams for documents in the collection.

Sometimes the terms to be indexed are “features” of complex data. Using a feature histogram
involves choosing certain features of the item to be indexed and creating an array of values for
each item. An index is created of these items. Special structures such as r*-trees are used to
cater for the multi-dimensional nature of the index terms. These structures are typically used
for image retrieval, in which case the features include colour and texture. As colour histograms
can be of fairly high dimensions, summary features such as the average colour are used in the
first instance to filter potential answers [147]. For music retrieval, features that have been used
are a “tone distribution” and “tone transitions” relative to a base pitch [76]. When evaluated,
the combination of the two features was shown to be more effective than when used individually,

with 75% of melodies being retrieved in the top five answers.

52

3.5.2 Index Structures

There are several potential methods for indexing the terms that occur in a string database. Two
components are required: a search structure and method for locating the term in the index, and
a set of information about the locations of terms in the collection. Potential indexing structures
include arrays, hash indexes, and various tree structures, such as binary trees, B-trees, and tries.

In some situations the best approach for looking up terms is to have an array of sorted terms
and to apply a binary search. This is applicable when the set of terms is sufficiently static and
small enough to be kept in memory [144].

Hashing involves computing the address of a record based on the user’s query. Storage and
retrieval using hashing is O(1) if records are stored without overflow in the hash-table. This
approach is appropriate for data that is relatively static and where range queries or ordering
are not needed. Hashing in which order is preserved has been applied to genomic data [139].
A perfect hashing function was applied that involved a simple mapping from a character to a
component of a key. Wilbur and Lipman used a formula that makes use of the small character
set for genomic data by creating an array of size s™ where s is the size of the alphabet and n the
n-gram length. For example, characters in the four character set for DNA: ‘A’ *C’‘G’, and ‘T”,
may be represented by 00, 01, 10, 11 respectively when calculating the key. A 4-gram “AACG”
would then have the key 00000110, that is, 6.

Another search structure that has been proposed for string matching is the suffix tree, a
tree that has each node representing a character in a string, and all suffixes of a string are
stored in it. There are several formulations of this type of tree. The trie is used for storing
multiple strings, using the individual characters in sequence as look-up terms. The Patricia tree
is another variation, that stores the next string position that needs to be checked in internal
nodes to determine which path in the tree to follow.

Chou et al. [21] used the Patricia tree to store chordal representations of melody notes in
each bar of music. Lemstrom et al. [78] applied a suffix-trie to a specific depth and suffix trees
for the remainder of the index structure to their melody search problem. Tries were not used for
the entire structure due to the space cost. Lemstrom et al. have since changed their approach
to one that extends Baeza-Yates and Gonnet’s algorithm [80] as a means of locating matches.

In addition to their application to text and music, suffix tree algorithms have been extended

to other types of data such as matrices [55]. A new generalisation of the trie, called the burst

53

trie has recently been explored in detail [63]. In this structure, trie nodes are combined with
containers of another type. A container is “burst” into a new trie node once some criterion is
met. The structure has been shown to be more efficient for certain types of data than several
other commonly used structures. In particular it was shown to be very efficient for music n-grams
of length seven using our all-channels data-set (see Chapter 5).

A common approach to indexing is to use B-trees (or similar) as a search structure. This
class of trees allows reasonably efficient (O(logN), where N is the number of records) retrieval
of records and is guaranteed to have a balanced structure. The B-tree was used by Chou et
al. [21] to implement their PAT-tree of chordal representations of notes.

In addition to providing a fast way of locating a term’s record, the search structure must
provide access to information about the term’s locations in the database. The structure that has
been shown to be the most efficient for information retrieval is known as an inverted list [153].
This consists of an index of all terms in the collection. For each term in the index there is a
list of documents that contain the term. The information contained in the list for each term-
document pair varies depending on the application requirements, but may include the number
of occurrences and the position within each document that the term occurs.

Clausen et al. [23] used inverted lists for the music searching problem. Individual notes were
stored as ordered pairs of quantised start time and MIDI pitch number. Queries and answers were
required to have the same metrical position within a bar to be considered a match. A restricted
form of inexact matching was proposed for systems using this type of index, consisting of sets
of alternative notes, but the use of unrestricted inexact matching was not discussed. The size
of the index for a database of 12,000 classical pieces containing 327 Mb of MIDI data and over
33 million notes, was 110 Mb when uncompressed and 22 Mb when compressed with Golomb
encoding. This index requires queries to be in the same key and octave, or the index to be
searched 128 times. A set of smaller indexes was proposed that makes use of the “Chinese
Remainder Theorem” to reduce the number of searches required for matching occurrences of a

query in any key.

3.5.3 Index Heuristics

One technique used to reduce the size of an index is called stopping. This involves removing

the most frequently occurring words from the index. For example the word “the” occurs in

54

virtually every text document, so a query on it would not be useful. If the list structure used
is proportional in size to the number of documents containing the word, then the list for very
frequent words would be much larger than those for more useful query terms.

Zobel and Dart [151] built n-gram indexes as part of a two-phase approach (coarse-and-fine
search) to locating matches. A search involved looking up all n-grams of the query in the index
and retrieving the lists of answers that contained any of these n-grams. The list of answers was
ranked based on the number of n-grams each answer had in common with the query. The best k
answers were then examined closely using a distance measure. They found that the combination
of an n-gram index and a simplification of Ukkonen’s n-gram-based measure was very effective
for matching personal names and spell-checking,.

The coarse and fine approach was applied to very large databases of nucleotides by Williams
and Zobel [142, 141]. Stopping and various data compression techniques were used to reduce
the size of the index. The indexes built were tested against the current method of retrieving
matching nucleotide sequences and out-performed it in speed.

Once index terms are looked up, they must be applied in some way to calculate the similarity
between the query and the set of potential answers. The similarity measures applied to the
words occurring in documents could be used with n-grams. We discuss some of these in detail

in Chapter 8.

3.6 Summary

Many techniques have been proposed for music matching. In addition to music matching tech-
niques, much can be learned from the matching techniques applied to other types of collection,
such as text, genomic, and speech data.

The notes in a melody string can be represented in a variety of levels of detail. They can
include information about the pitch, duration and stress of notes or just the pitch or rhythm.
The alphabet size for music strings depends on the representation chosen, but unlike genomic
databases, and more like text, the distribution of symbols within a collection is not even. Music
strings often represent relative pitches instead of absolute ones so that the representation is key
independent. This allows matching of music that is played or stored in different keys. However,
matching in different keys can also be achieved with indexes that store notes as absolute pitch by

searching the index multiple times, or using a set of multiple indexes such as those proposed by

55

Clausen et al. [23]. We discuss the representation of music as strings in more detail in Chapter 6.

Disregarding the representation and formulae used for measuring similarity, matching tech-
niques fall into four main categories, exhaustive exact matching, exhaustive inexact matching,
indexed exact matching, and indexed inexact matching. For reasons elaborated in Chapter 2,
techniques that support inexact matching are more useful for MIR purposes. Exhaustive tech-
niques such as dynamic programming and state matching are useful if they can provide greater
precision than practical implementations of indexing techniques. Of the indexing techniques
proposed, there is no evidence of a best approach; however, for n-grams, burst tries or a form
of hashing may be an efficient choice.

In this chapter we focused on the algorithms and data structures that are behind matching
techniques, and described how these have been applied to music matching. Further details about

how the similarity of melodies is measured is discussed in Chapter 8.

Chapter 4

Methodology for Music Retrieval

Research

The aim of music information retrieval research is to build effective MIR systems that answer
queries satisfactorily and rapidly. There are various areas that require study to establish the
best techniques for MIR, including music perception, music similarity measurement, and efficient
musical query processing. We establish a framework for the development and testing of MIR
techniques, with particular attention to retrieval effectiveness. We demonstrate this framework
by developing several techniques for melody matching, and applying the evaluation techniques
described in this chapter. Our approach to music similarity measurement, making use of results
from music perception research. Within the domain of music similarity measurement, there
are many variables to be addressed, such as the portion of the music that should be used for
matching, how should these portions be compared, and how these methods of comparison can
best be implemented.

Deciding which portion of the music should be compared is partly an efficiency consideration,
as an exhaustive comparison of all aspects of all pieces of music results in combinatorial explosion.
Moreover, such an approach may result in the user being swamped with poor matches. Sensible
choices for the design of algorithms can be made through the use of information about how people
perceive music. Regardless of the choice, the approach would need to be validated. Not only
should the efficiency of the approach be examined, but the effectiveness in producing answers to
queries should be measured. In this chapter we describe techniques used to evaluate IR systems

and evaluation approaches in other existing MIR research. We then present the methodology we

56

57

have chosen for our MIR research and our experiences in obtaining the data necessary for the

evaluation process. Finally we discuss the applicability of our methodology to MIR in general.

4.1 Evaluating Information Retrieval Systems

Information retrieval systems require testing to determine how successful they are at retrieving
answers that a user perceives to be relevant. In the context of text retrieval, such testing is
achieved with a collection of documents and an associated collection of queries. For each query,
there is a set of relevance judgements, where users have evaluated each answer to determine
whether it is relevant to the query. Relevance must be defined before such evaluations can
proceed. There is some variation in how this can be defined [13]. A document can be considered
relevant if it answers the information need represented by the query, or if it discusses the same
topic, regardless of whether it actually answers the user’s specific question.

To determine how effective a system is at answering users’ queries, various measures can be
applied. The best-known of these are recall and precision. Recall is calculated as the proportion
of the relevant documents that have been retrieved, expressing how complete the answer set is.
Precision is the proportion of retrieved documents that are relevant, expressing how accurate
the answer set is. These can be combined by, for example, averaging precision at 0%, 10%,
20%, ... , 100% recall [144]. Other measures of retrieval performance are also used: one can
compare the rank of the first relevant answer, the rank of the first irrelevant answer, and so on.
In addition to determining the recall or precision of the results and comparing these to those
of other retrieval techniques, it is usually necessary to check the statistical significance of the
results, with a test such as the Wilcoxon test [150].

The above tools allow different similarity measurement techniques to be compared in a con-
sistent manner. However, a further issue is that measured retrieval effectiveness tends to differ,
depending on the data collection used as a basis for comparison [151]. The TREC conferences
address this problem by having many competing research teams apply their techniques to the

same collections.

58

4.2 Evaluation of MIR systems

As with other IR systems, MIR systems need to be objectively evaluated to determine whether
they produce useful answers to queries posed by users. MIR systems can be evaluated in a
similar manner to other IR systems. As with traditional IR, we need to decide what is a query,
what is an answer, and what is meant by relevance, that is, what constitutes similarity.

The usual definition of an ad hoc music query is a melody fragment consisting of a sequence
of notes. These could be presented by, for example, singing, playing on a keyboard, using a
graphical representation, or by entering a sequence of symbols [10, 11, 71]. Some researchers
have built systems that try to answer non-melodic queries [20, 34, 80]. The information need
of the user may be that: they half-remember some piece of music and would like to know what
it is; they wish to locate an on-line version of some favourite song; they wish to find other
performances of a given piece of music; they wish to find out the source of the inspiration for
their composition; or they wish to find web-sites that are violating copyright restrictions on a
given piece of music. For legal queries, users may wish to check if works are similar enough to
be in breach of copyright.

From a user’s perspective, an answer to the first kind of music information need is relevant if it
is the same as the piece of music that they half-remembered. For the copyright search, relevant
answers are those that are similar enough to be considered so in a court of law. Similarity
measurement is likely to require a basis in knowledge about how we assess musical similarity.
From a practical perspective, we would need to be able to measure relevance of answers to a set
of queries in order to test our MIR systems.

Some researchers have evaluated the retrieval effectiveness of their systems, using a variety
of methods:

Mongeau and Sankoff [97] used two compositions by Mozart as their test data. Cluster
analysis was used to show the similarity of the different variations. This was based on the
scores obtained by comparing pairs of variations using their dynamic programming algorithm.
The results were evaluated by comparing the results to the authors’ intuitive notions of the
similarity of the different variations and theme used.

Kageyama et al. [71] used one of the melodies within the database as a query and measured
success in terms of the rank the melody received in the set of answers. This is sometimes

called a “known-item search”. This approach showed that their dynamic programming approach

59

successfully retrieved answers to queries based on songs in the collection of 500 songs. The
database itself was a monophonic collection of melodies.

Downie and Nelson [44] used normalised precision to evaluate a wide range of n-gram repre-
sentations of melodies in a collection of 9354 folksongs. Downie used a form of known-item search
approach in his evaluation of techniques. In addition, analysis of the uniqueness of intervals and
n-gram occurrence was used to make recommendations for n-gram use [42].

Other researchers have also tested the expected uniqueness of melody fragments of specific
lengths in different representations [11, 41, 93], thereby providing an estimate of the query length
required for exact match. Estimates vary depending on the representation used and the size of
the collection.

However, these approaches do not address the issue of whether matches would be found
to be similar by a listener, nor the issue of whether close but inexact matches can be found.
There is a danger in relying only on uniqueness-based evaluation as it may be easy to construct
a “similarity” measure that discriminates well between melodies in the database but doesn’t

retrieve good answers to queries.

4.3 Our MIR Methodology

Our methodology is based on the traditional IR approach of using a collection, a set of queries,
and lists of relevant pieces for each query. We apply various evaluation measures to the query
results, in particular eleven-point precision averages and precision at k items retrieved, although

other measures listed above are also useful.

4.3.1 Testing Melody Extraction

In addition to our study of melodic similarity measurement, we have examined techniques for
extracting the melody from a polyphonic piece of music. Our methodology for evaluating these
techniques involved two stages. In the first stage our aim was to determine which algorithm
performed best at extracting melodies as perceived by listeners. This was done by presenting
pieces of music to listeners along with the melodies extracted by each algorithm. Each listener
ranked the extracted melodies for each piece.

The second stage in evaluating melody extraction involved using it in our melodic similar-

60

ity measurement experiments to determine how well the techniques would work in practice.
Extraction technique was one of several variables tested in our experiments that evaluated simi-
larity measurement. The results of the melody extraction experiments are discussed in Chapter
5, while in Chapter 8 we discuss the effect of the different extraction techniques on similarity

measurement.

4.3.2 The Music Collection

In our work we have used a collection of MIDI files downloaded from the Internet. We chose
MIDI files as a readily-available source of polyphonic musical data. Non-standard MIDI files were
excluded from our collection but duplicates were retained. The collection as used for similarity
measurement experiments consists of 10,466 MIDI files. MIDI files do not represent all music,
for example, some styles of music from the twentieth century that are not really note-based
cannot be represented well in this format. Music that uses tunings that differ from those in
standard Western music also presents problems. However, the collection includes a wide variety
of music genres and pieces of greatly varying length. Most earlier retrieval experiments used

monophonic collections of one or two types of music [44, 71, 93].

4.3.3 First-Stage Queries and Relevance

As an initial source for queries, we selected queries and relevance judgements from the collection
by assuming that alternative arrangements or performances of a piece chosen as a query were
relevant. Eighty-one pieces were located in a variety of genres that had more than one distinct
version within the collection. Versions were detected by locating likely pieces of music via the
filenames and then verifying by listening to these pieces. These pieces were only considered to
have distinct versions if there were obvious differences in the arrangement, such as being in a
different key, using different instruments or having other more obvious arrangement differences,
such as in the rhythm, dynamics, or structure.

This set of pieces was used to measure retrieval effectiveness with the standard techniques of
eleven-point precision averages and precision at k pieces retrieved. It was used to to determine
which matching techniques were most successful and to yield a pool of answers that could be
judged for relevance for later experiments. Whether these relevance judgements correspond to

— or yield the same ranking of techniques as — human relevance judgements was at that stage

61

an open question.

One of the arrangements in each set of arrangements of a piece of music was randomly chosen
to be an “automatic” query. All arrangements of the piece were assumed to be relevant and all
other pieces assumed to be irrelevant, thus giving “automatic” relevance judgements.

The automatic queries and relevance judgements were then used to evaluate matching algo-
rithms. The answers retrieved by the best algorithms could then be used as a basis for collecting

real relevance judgements.

4.3.4 Obtaining Manual Queries

Having established some basic results using the automatic queries and judgements, it is valuable
to use manual queries and judgements. In particular, it is necessary to be able to present the
listener with a set of answers to judge as similar or not similar to melody queries. To produce
a meaningful set of relevance judgements, the pool of pieces presented to the listener should
include a good proportion of potentially relevant answers. The answers found by the algorithms
judged to perform well using the automatic queries and judgements are an excellent starting
point.

Music retrieval systems may receive queries from a variety of types of user and will be of
varying accuracy. For MIR research, there are several potential sources for manual queries.
One could collect actual queries posed at music libraries and shops. One could ask a group
of volunteers to note down whenever they are reminded of a bit of melody that they cannot
put a name to. One could randomly select portions of music pieces and transcribe these as
queries. The queries we have collected are created by a musician via an electronic keyboard.
Naturally these queries will not be the same as those that are hummed, but may be more like
those presented by a music librarian or composer. The advantage of our approach is that we
were able to control the selection of pieces to match our pool of pieces with multiple versions.

We gathered manual queries by asking an expert musician to listen to a given set of pieces for
which we had located multiple versions in the collection, and to play the melody of these pieces.
This musician has perfect pitch and can reproduce melodies that she hears on a keyboard. Each
MIDI file that she listened to was from the same set of files used for the automatic queries. Each
of these files was randomly selected from the list of different versions of the same piece. This

collection of MIDI files was presented to the expert in sequence. She was given the following

62

Instructions:

Please listen to the pieces of music presented to you. After listening to each piece,
you are to play a portion of the piece’s melody that is long enough (but no longer)

to make it recognisable to someone who knows the piece.

The expert was permitted to listen to the piece as often as she wished. She then played a key-
board rendition of a portion of the melody, which was recorded via MIDI to a music sequencing
program. For each piece of music it was noted whether the expert knew the piece of music by

name, whether it sounded familiar but could not name it, or that it was unknown.

Discussion

There were some problems encountered with the chosen music collection. One problem was
that some versions of pieces didn’t actually contain what most people would consider to be the
melody of the piece. This happened for about two of the pieces that the expert was asked to
transcribe. In these situations parts of the accompaniment were chosen as the melody. It was
interesting to note that this particular musician would not consider themes that occurred at the
start of the piece to be “the melody”. The melody was typically chosen to be something that
started after the introduction had finished. With the MIDI representation of songs the location
of the start of “the melody” did not have the usual cues found when a voice sings the song. As
a result, some choices for the commencement of the melody were quite different to that which
would be chosen by someone who was familiar with the piece of music. The musician we used
is a professional accompanist. We suspect that this focus on the melody as something that
starts after the introduction could be a result of this focus of the soloist providing the melody
and the accompaniment being purely of a background nature. It would be interesting — but
beyond the scope of this thesis — to explore this aspect of the definition of melody further.
The use of a single volunteer for the generation of melody queries may have introduced some
loss of generality, particularly given the different interpretations of the word “melody”. The
melody starting points chosen by the volunteer would be significant for the matching process
if the database “melodies” to which they are compared are truncated, however, in our melody
matching experiments they are not. In general, the notes that were selected still had much in
common with those determined by other listeners when comparing melody extraction algorithms

(see Chapter 5), that is, they tended to be from parts that were either higher in pitch or entropy.

63

For some pieces that were unknown to the expert, multiple listenings were required. Also,
some mental fatigue may have affected consistency across the set of queries, with later queries
being less carefully prepared. The expert was only available for one session of two hours making
it difficult to avoid any fatigue that could arise.

This process resulted in a set of 30 manually produced queries. The number of notes in
the queries varied from a minimum of 15 to a maximum of 88, with the mean number of notes
being 31.9 and the median 28. The expert’s queries tended to become longer as she progressed

through the set. Collecting 30 queries took approximately two hours.

4.3.5 Manual Relevance Judgements

As mentioned above, our initial definition of whether an answer was relevant was “if it is a version
of the same piece of music that the query came from”. This was a good first approximation,
and describes answers to one type of query. However, to further test queries that are looking
for highly similar pieces of music, a different approach is needed. Our approach was to collect
relevance judgements for melody queries and to use these to evaluate MIR techniques.

In order to collect judgements from several volunteers in a methodical manner, we developed
software that displays pieces that judges were to listen to, and that collected the judgements.
The tool developed for this purpose has a web client interface that stores inputs from judges in a
database. A web client was chosen because it provides portability and accessibility. The system
can be used by any web-browser capable of handling JavaScript and a plug-in for playing media
files in MIDI format. The query and answers appear with individual media panels that have
standard music player functionality, such as play, stop, pause, and volume.

For each query, the judge is presented with a media panel for the query itself and a number
of answers to the query, each with its own media panel. The judge is allowed to listen to the

query and answers as many times as they wish, after which they are required to identify:
e For the query, whether the judge:

— recognises the piece of music and can name it, or
— recognises the piece of music but cannot name it, or

— cannot recognise the piece of music.

e For each answer, whether it:

64

Adm|n|st:rat|0n Music Query
Save Judge Profil 3 Processor
Judges/Users
1 Output
! Save Judgement | Database 453\/6 Query
Get|Query 3 Query
Get Relevance Collater
o Infarmatian
0b——— Judge Profile ;
| Relevance Judgement o Query and Answers
veb i ent Query/Answers Manager |
Judgement | Show Relevance |49°

Filé
! Web dient

Schematic Representation of the Relevance Judgement Collection System

Figure 4.1: Components of our Judgement Acquisition and Management JAM system for collec-

tion of music relevance judgements.

— is the same as the query or,
— is different to the query.
Inputs from the judges are stored in a database, along with the time taken by the judge to
complete each set of answers and queries. An extension of the system is an interface for admin-
istration, that allows:
e Managing the set of queries presented to judges.
e Generating relevance files based on judgements received on particular queries.
e Viewing statistics on judgements.

The system is shown in outline in Figure 4.1.

Before assessing the queries, the judges were presented with the following instructions:

You are about to listen to a collection of pieces of music that may or may not be
similar to the given melody that we shall call the “query melody”. For each piece,
you are to make a judgement as to whether it has the same or very similar melody

to the query melody. Please choose the “same” or “different” button as appropriate

65

for each piece. You may listen to the query melody and other pieces again if you

wish.

The judges were asked to state whether each of the returned pieces was relevant or not. In
generating the file of manual judgements, we assumed an answer was relevant if at least one
judge marked it as being the same as the query.

To best simulate queries provided by users, we collected human judgements for the set of
manual queries provided by our expert. The queries created were fed to the music retrieval
system using each of the main promising techniques. The top 20 answers from each method

were pooled and presented to the expert user to be judged for relevance.

Results

To create a set of MIDI files to be judged, the top ten answers were selected for each manual query
using our “all channels” version of the database and three similarity measures. In addition to
these answers, the files considered relevant by inspecting those with similar names to the original
were added to the collection to be judged. Twenty-eight of the thirty queries were judged, each
query having one or two assessors. The judgements were made by six judges in total. Most of
the sets of judgements (30 of 43) were made by those who were musically unskilled or who had
only a basic level of musical skill.

We compared the content of the two sets of relevance judgements and found that only five
of the twenty-eight queries had identical sets of assessments. Four of the queries in the manual
set of judgements were judged to have no relevant answers. In some cases it was clear that the
automatic set was missing some answers that would have been found upon a more thorough
search of the collection. For example, the automatic set of relevance judgements contained three
pieces that matched Auld Lang Syne, but, the combination of applying our search techniques
to locate matches and collecting relevance judgements found an extra two pieces, one of which
did not have an obviously similar filename. In most cases the intersection of relevant pieces was
greater than the difference, but in two cases there were no pieces in common. Further detail
about the two sets of judgements is in Table 4.1.

Assessing musical relevance proves to be quite difficult for the listener in some situations.
We observed that when the piece on which the query was based was known to the listener,

then the judgements were easy to make, with the listener not needing to listen to more than

66

Total number of manual queries with judgements 28
Queries with identical sets of matches for both kinds of relevance 5
Manual queries with no relevant files in the manual relevance set 4
Queries in which 100% of the manual set matches are automatic matches 9
Queries in which 100% of the automatic set matches are manual matches 11
Queries in which there is no intersection (excluding empty queries) 2

Queries with less than 50% overlap with either set (excluding empty queries) 4

Table 4.1: Statistics about automatic and manual relevance judgements. The manual relevance
Judgements were collected using six judges listening to manual queries and a collection of MIDI
files. The “automatic” set was collected by listening to MIDI files that had similar file names

and confirming whether they were versions of the same piece of music.

a few seconds of the answer. When the query is not recognised, the listener needs to listen to
the query repeatedly when comparing it to the answers, especially where the answers are also
unfamiliar. Tt is an extremely difficult task, especially for those who are not musically trained or
experienced. The accuracy of judgements on queries that are not known is likely to be less than
that on known queries. We believe that in some cases a “relevant” rating was given, not because
the piece was similar to the query, but that it was similar to other answers in the answer set.

A further difficulty is that the MIDI files were presented as is. The user could listen to the
entire MIDI file or as much of it as they wished. Sometimes users would listen to the first part
of the file and not hear the part that was relevant to the query, a particular problem when the
matching piece was minutes or tens of minutes in length. It would have been helpful to mark
up the slider bar on the on-screen MIDI player to indicate which region in each piece had best
matched the query, but to do so would have been difficult with the tools and time available
to us.

To obtain better relevance judgements, participants should judge pieces with which they are
familiar and be presented with the portion of the answer that matched the query. Restricting
the participants to skilled musicians may improve the quality of the relevance judgements at the
expense of representing the range of abilities of potential users of MIR systems. However, despite
these shortcomings, we believe that the relevance judgements we obtained allow evaluation of

an MIR system with reasonable confidence, as illustrated in the chapter discussing experiments

67
with manual queries.

4.3.6 Second-Stage Melodic Similarity Experiments

Once manual queries and judgements are obtained these can be used for further experiments
on melodic similarity. We used the same approach as that of our earlier similarity experiments.
The manual queries and judgements were compared with the earlier queries and relevance data
to see if differences in comparing algorithms were apparent. The results of these experiments

are reported in chapter 10.

4.4 Summary

In this chapter we have discussed the basics of the techniques for evaluating IR systems. We
have discussed approaches used by other researchers in the MIR field and followed this with a
description of our own approach. We recognise that there are some limitations in terms of types
of music that can best be handled using the MIDI collection we have chosen as our data-set,
but that it has the widest range of styles of music in any collection being used for evaluation
of music retrieval to date. The method of query generation used in our first-stage experiments
is only a first approximation to manual queries. However, this may be a useful approach for
some types of real query, such as when matching pieces that are presented as a whole, rather
than a melodic fragment. We then collect manual queries and relevance judgements to better
simulate the information needs of potential users of MIR systems. These form the basis of our
second-stage evaluation experiments. In terms of a general approach to MIR research, our model
can be applied to the evaluation of MIR techniques, regardless of the collection chosen and the

type of query.

Chapter 5

Melody Extraction

Melody extraction is the first of three phases that make up our approach to music matching.
The purpose of a melody extraction technique is to identify sequences of notes that are likely
to correspond to the perceived melody. Given the volumes of music available online, it is not
practicable to do this by hand. The effect is to reduce the musical data to be searched to that
which the users are most likely to present as queries, which helps to increase the precision of
the melody matching process. Our aim, in this chapter, is to describe the melody extraction
techniques that we have explored, and report on an experiment that tested the effectiveness of

each of these techniques.

5.1 Melody Extraction Issues

The data upon which we base our experiments is a collection of MIDI files, which usually contain
note events for each instrument in separate channels. Some MIDI files contain information such
as bars and keys but this is not guaranteed. The individual instruments occurring in a MIDI
file can be playing chordal parts, consisting of several simultaneous notes; there may be more
than one “counter-melody” occurring simultaneously; and the perceptible melody can move from
instrument to instrument. That is, the melody may not be present in any individual part, thus
it is far from clear which sequence (or sequences) of notes should be used in the comparison.
Additionally, some “notes” are actually percussion and therefore have no pitch. Extraction of
all sequences would lead both to combinatorial explosion and large numbers of sequences with

little perceived connection to the original music; indeed, most such sequences would sound like

68

69

no more than a random series of notes. For example, the music fragment at Figure 5.1A has
22 instants at which notes commence. If it were a monophonic sequence, that is, only one note
occurring at a time, then there would be (%g) = 646646 possible subsequences consisting of 10
notes. However, as there are several notes occurring simultaneously, the number of subsequences
is considerably larger. Moreover, if rhythm is ignored, we can find in the example the first seven
notes of the Camptown Races and Silent Night, the first six notes of Frére Jacques, Danny Boy,
and the choruses of Just Because and I Was Made for Lovin’ You, the first five notes of Mary
Had a Little Lamb, Go Tell Aunt Rhodie, The First Nowell, Good King Wenceslas, Oh Little
Town of Bethlehem, Hey Jude, Au Clair de la Lune, Yankee Doodle, and Oh Susannah, and the
first four notes of many other tunes. This list of songs is by no means exhaustive and clearly
illustrates the need for selectivity in the matching process for meaningful results to be found.
There does not appear to have been much research on the problem of extracting a melody
from a piece of music. Several systems have been built that use a simple approach to melody
extraction. For example, the approach of Ghias et al. [54] was to ignore percussion and apply
other simple heuristics (not described in their paper) to collect melodies. Blackburn and de

“melody” extractor that retained the lowest pitch notes of each channel

Roure implemented a
for matching [11].
Researchers have discussed the splitting of polyphonic-style music into its parts using rules,
largely based on pitch proximity and usually for a set of music with a fairly uniform style [17, 87].
Marsden et al. applied the proximity principle in a rule-based approach, and attempted to refine
the rules to split the parts of a Bach fugue [87]. Charnasse and Stepien [17] allocated notes
to parts when transcribing German lute tablature. Their approach was also rule-based, mainly
using pitch proximity. The number of parts was estimated from chords in the music and the
actual parts were produced by processing musical chunks delimited by chords that contain
the maximum number of voices. Similar psychoacoustic-influenced approaches are used when
analysing sound wave-forms. In this case, the components being grouped are parts of a sound,
with the aim of separating different sources of simultaneously occurring sounds. [48, 89]
According to Frances [51], the notes with the highest pitch are usually heard as the melody,
unless they are monotonous. As discussed earlier, the most important factor in the grouping
of musical notes is proximity in pitch [31]. Other principles that apply are timbre and volume;

however, these are less important than proximity.

70

A)
o 2 Rl — L
e e = — e
S s I B B
‘F.g i _IF_}
. ﬁ
) I ——— = =
B)
f) 2 ?'_'_'_‘ 4;
i e — e ——
A= ST e:::'ié—d—d—é—
<5 o
0)
2 3 4

|

]

U
"
Q|
o

[. }
QL

| [YEN
{

D)
? o @@ A
T —— o
E)

-F' I\ |
Fd—— e e T
7 I C /1 I I e
' —_— @]
|

Figure 5.1: Melody extraction techniques. The example fragment of music at A) has a melody
consisting of the highest notes in the top staff. In B), with all-mono melody extraction, the
melody is captured in addition to intervening notes. At C), the top-channel method is illus-
trated. In this case, the melody is perfectly extracted. At D) the entropy-channel method has
determined that the lower part is more interesting and has selected the highest notes starting
at any instant within that channel as the melody. At E) entropy-part has selected notes based

on their proximity, and the part with the highest entropy was chosen as the melody.

71

5.2 Owur Techniques

We tried several approaches to automatic melody extraction that make use of music perception
principles: the highest musical part is usually perceived to be the melody, and notes that are
close together in pitch are usually considered to belong to the same musical part. As melodies
are likely to be less repetitive or monotonous than accompanying parts, we tested the use of
first-order predictive entropy as a means of predicting which part contains the melody. This
calculation is in effect based on the probabilities in a simple Markov model with one state for
each note. In highly repetitive tracks, such as some forms of accompaniment, each note is reliably
predicted by its predecessor, giving a low entropy, whereas in more varied tracks the entropy is
high.

We developed four techniques for extracting melodies from pieces of music, which we have
named all-mono, entropy-channel, entropy-part, and top-channel. All the methods made a single
pass through the note stream to select the melody notes, ignoring the note events from channel
10 as these are percussion events in standard MIDI files. In some circumstances, different
methods generate identical melodies, most often when the music consists of a melody with a
simple chordal accompaniment below it, with the chords occurring at the same time as melody
notes. The four algorithms are described below. The effect of each algorithm is illustrated in

Figure 5.1.

5.2.1 All-Mono

The all-mono technique combines all the note events from every channel into a single stream of
events. At each instant in which there were notes starting, the highest-pitched of these notes
was selected as a “melody” note.

This results in many overlapping notes, as a note that is sustained in one track covers the
start of other notes. Extra notes are often included in the melody, as illustrated by Figure 5.1B.
In this example, there are two channels in the original piece shown at A, each represented by
a separate staff in the score. The melody consists of the highest notes in the upper staff. The
all-mono technique has selected all the melody notes in addition to accompanying notes that
occur whilst a melody note is sustained.

There is an advantage as well as disadvantages to the all-mono technique. As the melody is

often the highest part in pitch, the majority of the melody will be selected. In the case where

72

a melody is not the highest part, there is the possibility of still collecting some of the melody
with the algorithm. One disadvantage of the technique is that it will rarely select the melody
cleanly from a piece of music. Another is that it will not select the melody at all if it is lower in
pitch than other parts.

For the purpose of evaluation in our experiment, note lengths were truncated so that the

resulting melody was monophonic.

5.2.2 Top-Channel

The top-channel algorithm makes use of the structure of MIDI files (tracks and channels) by ex-
amining each channel separately. Each channel is processed by applying the all-mono algorithm
to it to produce a melody for the channel. The channel melody with the highest average (mean)
pitch is then chosen as the melody. Each note in the channel melody is given equal weighting
in the calculation, regardless of duration.

The algorithm, illustrated in Figure 5.1C, works well for the example but in practice some-
times wrongly identifies a high accompanying part. Channel-based techniques such as top-

channel also fail to select the entire melody if it moves from one part to another.

5.2.3 Entropy-Channel

The entropy-channel technique also makes use of the channel structure of the MIDI file. It
applies the all-mono technique to each individual channel of the piece, then the channel with
the highest first-order predictive entropy is selected as the melody.

Entropy measures the amount of “information” in a message by calculating the average
number of bits needed to represent each symbol of the message. In our case the message is a
sequence of notes. The entropy was calculated in the following manner: The pitch of each note
of the melody was represented as a MIDI note number between 0 and 127 inclusive. The formula

for the first-order predictive entropy [86] used was:

- Zp(xdﬂ«"i—l) log(p(xi|xi-1)) (5.1)

]

where each x; is a note.

73

A sequence of repeated notes would have a lower entropy than a sequence with greater
variation. When a sequence of notes is monotonous, the listener tends to focus on a part of the
music that is more interesting, regardless of the relative pitch of the parts [51]. We suggest that
entropy can be used to measure how interesting a musical channel or part is in order to select
the melody of a piece of music. In the example the lower part had the greatest entropy and so

was chosen.

5.2.4 Entropy-Part

The entropy-part technique uses timing and pitch proximity information to split the music into
parts. The notes from each channel were analysed in turn and allocated to an appropriate part.
If the current note occurred at the same time as those in the existing parts then a new part was
created. Otherwise the note was allocated to the part that was the most similar in pitch, using
the most recent note in each part to make that decision.

The part with the highest entropy is then chosen as the melody. The splitting algorithm
compares the current note to previous notes in the piece. Unfortunately, if there are multiple
notes occurring at precisely the same time, as happens with non-natural performance informa-
tion, then the algorithm may allocate notes in unexpected ways. This is shown in the example
in Figure 5.1E, where the part selected goes from middle C to F instead of back to middle C,
because in the note stream the F occurred before the second middle C. If the simultaneous notes
C and F were reversed in the note stream a rather different part would be produced. The rest
in the third bar occurs because the E has been allocated to the part that contains the previous

E at the start of the bar.

5.2.5 Discussion

In the example in Figure 5.1, the melody was correctly selected by the top-channel method. In
general this is not the case, however, as our experiment reveals.

The methods described here form a foundation for future melody extraction research. All
of them are fairly simple. It remains an open question as to whether significant improvements
can be gained by more sophisticated algorithms applied to a wide variety of musical works. An
improvement in part-splitting would be to group notes that occur at the same time and then

allocate them to the appropriate part. Each method could make use of simple heuristics based on

74

duration and other factors to improve their performance. Combining average pitch and entropy
information is also likely to improve results. These four methods are, however, the basis of our
first and only experiment in determining what users judge to be the best approach.

In our melody matching work we also make use of the melody extracted from each channel,
thereby removing the need to select which channel is the melody. The name we have given to
this approach is “all-channels”. If the all channels approach turns out to be the most effective,
then there would be no need to use entropy or average pitch as part of the melody selection

procedure.

5.3 Experiment

From our analysis of the needs of music databases users and from well-known results in music
perception, we believe that each of these algorithms has potential as a method of extracting
melodies from music. However, application of these methods to actual music shows that they
can produce very different results. We applied the four algorithms to ten MIDI files, representing
a range of styles and methods of organisation within a file. Each of our eight listeners was
presented with the original MIDI file and the four automatically-extracted melodies for each of
the ten files.!

The melodies generated for each piece of music were presented in random order. The listeners
were able to play the pieces as often as they wished, and sometimes only played a small portion
of the melodies if that was sufficient to make a decision. The extracted melodies were ranked
from one to four according to how well they represented the melody of the original piece. The
listeners were asked to consider the presence of extra notes and absence of melody notes in their

evaluation, and were permitted to give melodies equal ranking.

5.3.1 Results

The sum of the ratings for each algorithm for each piece are shown in the table at Table 5.1.
Low scores indicate a high rating. The range of possible scores is 8 to 32. As can be seen
from the results, most algorithms performed well for some pieces and badly for others. The

only algorithm to work consistently well was algorithm one (all-mono) —the most naive of the

!The MIDI files are available at http://www.mds.rmit.edu.au /~sandra/melexp.

75

Algorithm Best Worst

all-mono (am) top-chan. (t¢) entropy-ch. (ec) entropy-part (ep) Alg Alg

1 18,0.70/0.13 30,0.00/0.00 14, 1.00/1.00 17,0.76/1.00 ec tc
2 10, 1.00/1.00 24, 0.00/0.03 19, 0.16/0.47 21,0.16/0.47 am tc
3 9,1.00/1.00 32,0.00/0.00 20,0.13/0.19 19, 0.13/0.19 am tc
4 14,1.00/1.00 14, 1.00/1.00 13, 1.00/1.00 32, 0.35/0.55 ec ep
5 11,1.00/1.00 22,1.00/1.00 13, 1.00/1.00 13, 0.93/1.00 am te
6 16,0.99/0.34 12, 1.00/1.00 16, 0.91/0.38 32, 0.00/0.00 tc ep
7 14,0.99/0.69 12,1.00/1.00 26, 0.00/0.00 24, 0.00/0.00 tc ec
8 22,1.00/1.00 14, 1.00/1.00 16, 1.00/1.00 25,0.43/0.93 tc ep
9 13,1.00/1.00 31,0.11/0.59 21, 0.02/0.03 20, 0.02/0.03 am tc
10 13,1.00/1.00 14,0.78/1.00 32, 0.22/0.25 19, 0.30/0.49 am ec

Table 5.1: Results of ranking melody extraction algorithms. The first number in each algorithm
column is the sum of the rankings given for the melodies by the 10 evaluators. The second number
1s the proportion of notes in common with the melody selected as the best by the evaluators,
expressed as a ratio of number of common notes over the number of notes in the best melody.
The third number is the ratio of the number of common notes over the number of notes in the
melody generated by that algorithm. For example, the most successful algorithm for piece number
one was judged to be the entropy-channel algorithm. The number of notes it had in common with
the all-mono algorithm divided by the number of notes in the entropy-channel algorithm melody
equals 0.70. The number of common notes divided by the number of notes in the all-mono
algorithm melody is 0.13.

methods we considered. Interestingly, for pieces 5 and 8 the first three algorithms produced
identical melodies but were ranked somewhat differently. For piece number 5 (“Scotland the
Brave”) it is our opinion that the entropy-part algorithm performed the best, as accompanying
notes at the start and during the piece were removed. This difference was not detected by the
evaluators, however.

Sometimes music is perceived differently if it is recognised. In this experiment, however, the
algorithm rankings were similar regardless of whether or not the music was recognised. The
music experience of the evaluators did not reveal any clear-cut trends in algorithm preference.
The least skilled group (three people) and the most skilled group (three people) ranked algorithm
one as the best whereas the middle group (two people) ranked algorithm three the best overall.

In conclusion, choosing the highest pitch notes starting at each instant (all-mono) usually
best selects the melody of a piece of music, but garners extra notes. The other three methods can
select a part which has no notes in common with the melody of the music; as our example shows,
there can be almost no notes in common between the melodies generated by these algorithms.

In some cases, this involves the selection of a part with very few notes in it, sometimes widely

76

separated in time. In the case of top-channel, this may happen with a brief high accompaniment,
whereas with entropy-channel or entropy part a sequence of seemingly random — therefore high
entropy — notes may be selected.

It may be possible to improve the melody extraction process. The first algorithm often
included notes that have a much lower or higher pitch than the majority of the notes. In some
circumstances these could be removed. The difficulty is knowing whether these outlying notes
are indeed extraneous, or the only notes from the melody that have been extracted from the
piece. The part extraction algorithm could possibly be improved by considering all notes that
start simultaneously as a group. We speculate that combining entropy with average pitch and
other information may yield more reliable results when selecting the melody part. However,
others who have attempted more sophistication in part splitting have also found it difficult to

achieve reliability [87].

5.4 Summary

Several algorithms that extract melodies from polyphonic pieces of music were presented. Each
one was based on aspects of simultaneous notes perception. The simplest of these, that selects
the highest pitch note starting at any instant worked the best compared to the other more
sophisticated algorithms when evaluated by listeners. None of the algorithms can reliably extract
melodies from all types of music, but this is likely to be impossible. We speculate that better
results could be achieved with the combination of the factors used in our experiment, namely
pitch proximity, entropy, and pitch height, and possibly with more detailed analysis of the
musical data. However, as the simplest algorithm worked the best in our experiments, it is not
clear that significant gains could be achieved by more sophisticated methods when applied to

such a wide variety of music.

Chapter 6

Melody Standardisation

The aim of melody standardisation is to produce a normalised form so that different performances
of the same piece of music can be readily compared. By selecting the most important features
of melodies for matching we also reduce the storage space required and the time taken to search
for answers to a melody query. More importantly, we ensure that the most relevant answers to
a query will be retrieved from the collection.

Some kinds of melodic information are more important than others for comparing melodies.
It has been found that pitch is the most important for human comparisons, so a standardisation
method should include pitch in its representation if the matching is to be successful. Extra
features such as rhythm are also helpful. It is possible that the best standardisation technique
may vary depending on which similarity measurement method is chosen. In this chapter we define
various methods of melody standardisation and discuss their advantages and disadvantages.

There are many possible methods of melody standardisation. They can purely represent the
pitch of successive notes or combine other features such as duration and stress. We discuss the
possible pitch representations in detail below and after that the other features that can be used
in the representations of melody. Most of the methods discussed in this chapter have been used
by other researchers. In this thesis our experiments focus on the contour, directed modulo and

exact interval methods discussed in Subsections 6.1.1, 6.1.7, and 6.1.5 respectively.

7

78

o) el
7 i
y N—N)
~>) 4
\\IY f
oJ

Figure 6.1: Ezample melody fragment that contains a leap of more than an octave (from Domine

Deus by Mozart, K427).

6.1 Representing Pitch

When representing the pitch of each note of a melody, we can do so in several ways: absolute
pitch, relative to the key, or relative to the previous note. The other main factor in representing
the pitch is the precision of the pitch representation. A further variation on pitch representation
is whether use is made of the fact that notes repeat every octave. Table 6.1 lists the various
combinations and the terminology that we will use for the methods in our discussion. We discuss

each of the methods in turn below.

6.1.1 Contour

A melody’s contour represents a melody’s shape in terms of pitch direction only. The contour
representation of the melody fragment shown in Figure 6.1, using U for up, D for down and S

for same pitch, is:
SSUDDDDDD

Contour representation has the advantage that singers usually get the contour of a melody right
but usually don’t sing the intervals accurately, an important consideration when queries are
sung. A melody query would need to be quite long for relevant answers to be found, however.
In particular, two melodies can be represented by the same contour string yet have no perceived
similarity. For example, the two phrases of Twinkle Twinkle Little Star have the same contour
(and rhythm) as those of the second movement of Haydn’s Surprise Symphony, yet the melodies

are quite different.

Method Symbols Relativity Direction Comments
Name
contour 3 previous yes
note
extended 5 previous yes
contour note
Cn n previous yes Downie’s nomenclature for vari-
note ous classifications, based on fre-
quency of occurrences, so high
precision for small intervals and
low precision for large ones.
absolute 128 none yes Based on MIDI note numbers
pitch
exact 255 previous yes Difference between MIDI note
interval note numbers
modulo 12 previous none All intervals converted to the
interval note equivalent interval less than an
octave
directed 23 previous yes As above, but interval direction
modulo note is kept, eg. “up two semi-
tones” is different to “down two
semitones”
key-relative 12 key note none Requires key information
directed key- 23 key note and yes Requires key information
relative previous
note
base-tone- anote within yes Kosugi et al.’s method [76]
relative the bar
scale- 7 key note none Allows tonal matches in different
independent scales, such as minor to major
directed 15 key note yes Tonal matches in different scales
scale- preserving contour
independent
fuzzy overlap for
extended intervals
contour that could
be
considered
large or
small
secondary 3 current yes Used in addition to contour to in-
contours note—2 crease precision

Table 6.1: Different methods of melody standardisation.

80

Interval Representation
Cr C15
up down up down

0 a a a a
1 C ¢ B b
2 B b C ¢
3 C ¢ D d
4 D d E e
5 D d F f
6 D d G g
7 D d G g
8 D d G g
9 D d G g
10 D d G g
11 D d G g
12 D d G g

Table 6.2: Downie’s C7 and C15 melody classifications

6.1.2 Extended Contour

Extended contour is a more fine-grained approach to melody representation. In this version
of extended contour, we distinguish between large and small intervals with a different symbol.
For example, we could use U for a large interval upwards, u for a small one, and similarly use
D and d for large and small downward intervals respectively. A decision needs to be made
regarding the classification of intervals as large and small. It is clear that step intervals of one
or two semitones are small and intervals that are greater than five semitones are large. If we use
the musical concept of steps and leaps, then all intervals of three or more semitones would be
classed as large intervals. If we used the entropy-maximising classification approach of Downie
(discussed below and elsewhere [41]), then the same decision would be reached, as intervals of
one or two semitones are the most frequently occurring intervals in melodies. In this case, our

example melody would be represented as:
SSUDDDDdd

The advantage of this technique is that it still allows for inaccurate singing, but would be
more discriminating when searching a database of melodies. When considering pitch errors of
singers, however, there may still be some mis-classification of intervals as singers often have an

error of up to one semitone [83].

81

6.1.3 Cn Classifications

Downie [41] produced a set of representations of melodies based on pitch intervals only. The
name given to each representation was the letter C followed by the number of unique symbols
used in the representation. Where there was no restriction on the number of symbols, CU
was used. He performed informetric analyses of a collection of 9354 folk-songs and based his
classifications on the frequency of each interval. The main classes analysed were C3 (contour),
C7, C15, and CU. The representation of the intervals is shown in Table 6.2.

C7 is interesting in that intervals of one and three semitones are represented by the same
symbol. Zero and two semitone intervals are each uniquely represented and all intervals that

are at least four semitones are represented by the same symbol.

6.1.4 Absolute Pitch

Absolute pitch standardisation represents the exact pitch of each note, rather than the relation-
ship between notes. Our example melody may be represented using absolute pitch standardisa-

tion by using the MIDI note numbers:
65 65 65 81 77 74 69 65 64 62

As another example, the song “Mary Had a Little Lamb” is encoded as shown in Figure 2.2
when using common music notation. Using numbers to represent the pitch (for example, MIDI

note numbers) we could represent it as:
64 62 60 62 64 64 64

It may not be very useful to represent the data as an absolute pitch, since the same melody
can be played or sung at different pitches. When this happens there would be very few symbols
in common. There are some published techniques that use absolute pitches with some success,

however [99, 35, 23].

6.1.5 Exact Interval

In the exact interval representation the number of semitones between successive notes is used

to represent the melody. For example:

82

0016 -4 -3 —5 —4 —1 —2.

represents the example melodic fragment shown in Figure 6.1.

Exact interval representation has the advantage that it is one of the most precise ways of
representing the pitch of a melody. As such it is more likely to contribute to high-precision
matching of melodies.

All three methods have the problem that an error in a pitch can result in two consecutive
errors in a matched melody when using string-based pattern matching techniques. For example,

if a query melody contained a G instead of an F in bar 3, its representation would be:

0016 —4 -3 =5 -2 -3 2.

which has two adjacent symbols that differ from the original melody, despite only one note being

different.

6.1.6 Modulo Interval

Another possible method of representing the melody is to store the relative pitches reduced
to the scope of one octave, which we refer to as “modulo-12 intervals”. This may be of use
from a musicological perspective, or when looking at the harmony of a musical work, but loses
information about the aspect of melody that people remember the best — the contour. If used,

it would need to be combined with a search on contour before presenting answers to the user.

6.1.7 Directed Modulo

Directed modulo-12 intervals retain the direction information but reduce any intervals greater
than an octave to the harmonically similar interval that is no more than an octave in size. This

method has 25 distinct symbols. The Mozart melody fragment would be represented as:

004-4-3-5-4-1-2

Exact interval representation provides for more accurate matching, however the directed modulo-

12 interval method allows a smaller representation.

83

6.1.8 Key-Relative

The standardisation method that we have dubbed key-relative represents all notes relative to
the key of the melody. In this version, the number zero represents the key or tonic note, and we
represent notes by the number of semitones distance from the tonic note. This representation
is equivalent to remembering the letter names of notes. The example melody extract would be

encoded as:
3337307320

since the melody is in D minor. If encoded in the related key F major it would be represented

as:
00040940119

This highlights one of the difficulties of this approach, namely, that the numbers used depend
on the key note selected. In terms of melody matching, the user presenting a query is unlikely
to indicate which key the melody is in. Since this is the case, we would need to either determine
this key and risk missing matches that are identical but shifted to a different part of the key, or
ensure that all possible matches are examined regardless of key.

This particular key-relative representation has further problems in that it doesn’t preserve
contour information. Directed key-relative standardisation, discussed below, retains contour

information.

6.1.9 Directed Key-Relative

In this representation the direction of the note transition is recorded in addition to the pitch
relative to the key note. This can be done by using positive numbers to represent going up to
the note and negative numbers when the melody moves down. It is also necessary to encode the
fact that sometimes the pitch remains the same. To demonstrate this in a consistent manner
with the examples above, we use an extra symbol “.” to represent a repeated note and use the
number of semitones from the key note to represent all other notes. In addition we assume that
we can associate a sign with the number zero. The example melody fragment would then look

like the following:

3..7-3-0-7-3-2-0

84

This representation captures both contour and information about the individual pitches. It still
has the problem that a melody fragment that is represented in a different portion of the scale
may not be located, but, unlike the interval-based representations, a single incorrect note only

causes a single symbol to differ.

6.1.10 Base-Tone-Relative

Kosugi et al. [76] proposed storing melody fragments as pitch transitions relative to a “base
tone”. As each bar of notes was stored separately, they selected a pitch within the bar as the
base tone and all other notes were represented relative to it. A candidate for the base tone could
be the most frequently occurring pitch in the bar, or possibly the first pitch in the bar. In their
representation rhythm was also a represented. The base-tone-relative representation of the first

two bars of “Mary Had a Little Lamb” when stored relative to the first pitch would be:
0-2-4-2000
and relative to the most frequent pitch in the bar:
20-201]000

where | represents a bar line, indicating where a change in base tone has occurred.

6.1.11 Scale Independent

For independence of scale, a different approach could be used for representing the melody.
Sometimes we may wish to match the same melody without considering whether it is a major or
minor key. In this case we could represent the note’s position in the scale. “Mary Had a Little

Lamb”’s first phrase would be represented thus:
3212333

where 1 is the first, or key note of the scale. This would also match “Mary Had a Little Lamb”
played in a minor key, where E is replaced with Eb. The interval representation in this case

would be:

-1-22100

85

As with the other representations that are relative to the tonic or key note, a decision needs
to be made about how to represent pitches that exceed the scale. In this case, we apply the
same technique as the key-relative technique shown above, namely, just represent the position
in a single scale octave of seven unique notes. For example, the example melody would be

represented as:
3335315321

A scale-independent technique was used by Schaffrath [116] and others to allow matching of

folk music melodies regardless of the scale used.

6.1.12 Directed Scale Independent

Directed Scale Independent standardisation adds the contour information to the representation.
This can be done in the same way as for the Directed Key-Relative technique. That is, when
the melody rises to a note, the note is represented as positive; when the melody falls, the note is
represented as negative. In this case, repeated notes can be represented by zero. The example

melody would be represented as:
3005-3-1-5-3-2-1

In this way it is fairly clear which notes follow the starting note. The only time the pitch is

unclear is in the case of leaps of greater than one octave.

6.1.13 Fuzzy Extended Contour

This technique was first reported by Lemstrom et al [78]. It involves allowing an overlap in the
range of intervals that are classed as large or small. This ambiguity is used in the matching
process, so that intervals in the range will be accepted as a match against other intervals in the
same direction regardless of whether they are large or small, whereas an interval classed as small

can only match other small or ambiguous intervals. The same case applies for large intervals.

6.1.14 Multiple Contours

De Roure and Blackburn [108] reported the use of secondary contours in their implementation.

This consists of comparing each note, not with the previous note, but with the one before that.

86

Using a combination of a contour and a secondary contour index gave greater precision without

needing to decide how to divide up extended contour representations.

6.1.15 Other Pitch-based Methods

Some methods try to capture both key and pitch information. For example, the note Cf, at
least with modern tuning, is the same as Db, however, in the musical context of keys they
are different notes. Hewlett developed a base-40 system of pitch representation that allocates a
different number to each possible modification of a note letter (discussed by Selfridge-Field [120]).
Cbb and Ctff are included as well as the single and double sharps and flats for all other notes.
Our approach was to combine modulo-12 with direction, using a representation that has
+12 for a leap up of an octave and —12 for a leap down. Any intervals greater than one octave
would be mapped to the corresponding interval within an octave. For example, a leap up of 17

semitones from A to D would be replaced with a leap up of 5 semitones from A to D.

6.2 Other Features

Other features that are sometimes used for melody matching include rhythm and stress. Rhythm
can be encoded in several ways: as an exact duration, a contour, or in a more detailed relative
manner.

Exact duration holds many difficulties for melody matching as it is quite likely that a pre-
sented query and set of answers differ in their tempo or speed. Ideally, matching should consider
the relative durations of notes.

Rhythm contour merely states whether the current note is longer than, shorter than, or the
same duration as the previous note. This information is not always as straightforward as it may
seem. If information derived from an actual human performance is used, differences in duration
of notes tends to vary, even for notes that are intended to be the same. It may be necessary
to have a cut-off threshold or similar approach to handle this case. Kageyama et al. [72] had
a simple approach for rhythm: if the current note was less than double, or more than half of
the previous one in duration, then it was encoded as the same duration. All others were classed
as different in duration. This was not expressed in the encoding of the melody itself but in the

matching process.

87

Other relative duration approaches that have been tried include examining the ratio of
the durations of successive notes [79] and performing a kind of normalisation of durations by
replacing a note of two beats with two notes of one beat, so that the weight of the match is
increased for longer duration notes [97] when matching.

A feature that is related to rhythm is the encoding of rests. A separate symbol can be
used to represent a rest in a melody. This can be useful for some rhythmic tunes and also for
delineating the start and end of melodic phrases. Rests can be encoded in a similar manner to
notes, however they do not have a pitch and cannot be compared in pitch to the previous note.
In our experiments reported later on the use of rests in matching, it usually reduced the quality
of answers. However, the minimum size of rests may have been too small for the method to have
been useful.

Stress is another feature that is sometimes encoded. It usually represents the note’s position
within a bar. If a note falls on the first beat of the bar, it has a strong stress. In 4/4 time,
the third beat of the bar has a medium stress. Similarly, in 6/8 time the fourth beat of the bar
has a medium stress. All other notes have a weak stress. In playing music, musicians conform
to this pattern of stresses to emphasise the rhythm of the music, making the first note of the
bar slightly louder than the others. Sometimes the dynamics of a piece of music change this
pattern slightly, particularly with the introduction of syncopation, that is, accents at normally
unstressed positions within the bar, and also in certain styles of music where syncopated rhythms
are typical. The three or possibly more levels of stress can be encoded for each note in a melody.
On their own they are fairly meaningless, but could be used in combination with other features,

as discussed in the next section.

6.3 Combining Features

For greater precision, the combination of pitch and rhythm can be used. As some notes are more
important in matching than others due to the stress on the notes, a stress component could also
be included.

In its simplest form, pitch and rhythm encoding can be achieved by having an ordered pair

for each note. For example, the phrase from “Mary Had a Little Lamb” could be encoded as:

(64,1) (62,1) (60,1) (62,1) (64,1) (64,1) (64,2)

88

if exact pitch and duration (in beats) were used. Similarly if stress were also encoded, a triple

would represent each note:

(64,1,2) (62,1,0) (60,1,1) (62,1,0) (64,1,2) (64,1,0) (64,2,1)

In this case, we have encoded the standard text-book relative stresses for notes within a bar
in 4/4 time: strong, weak, medium, weak.

The above methods may seem to be two and three dimensional representations, but, de-
pending on the level of detail required, they could easily be encoded for matching into a single
symbol. For example, the use of modulo-12 intervals with direction and rhythm contour can be
encoded using three ranges of ASCII characters: the lower case could be used for intervals that
have a longer duration, upper case can represent the same duration as the previous note, and

the non-alphabetic printable characters can represent shorter duration notes.

6.4 Summary

It has already been discovered that pitch and especially the contour of melody is the most im-
portant feature for humans when comparing melodies. Rhythm alone is not sufficiently discrim-
inating, for example, consider the melodies of “Twinkle Twinkle Little Star”, “Old MacDonald”
and “Mary Had a Little Lamb”: all three commence with identical rhythms. It is possible that
pitch contour and rhythm may be a useful combination, especially considering the abilities of
the average person in presenting a query. For more refined matching the exact intervals between
notes is important, with some allowance for the less important notes, that is, the unstressed
ones.

While it seems to be important to include not only contour information but more precise
pitch information, the best approach to use is not clear. The transition-based methods such as
extended contour, secondary contours, and intervals all have the disadvantage of possibly having
two adjacent symbols incorrect when a single note is different between two melodies that are
being compared. However, all these methods are flexible in that melodies can be easily compared
without needing to worry about transposing melodies to the same key in some way. Absolute

pitch representation requires comparisons in all keys and octaves [34], or a compromise in the

89

precision of the match [99]. Methods that are relative to the key, such as the scale-independent
and key-relative methods described above, do not scale well with pieces containing modulations
to different keys.

Stress may be important in removing answers that are less likely to be relevant. In particular,
some answers may have the same pitch and rhythm contour, but may be perceived as unrelated
due to being shifted to commence at a different position within a bar, or in a different time
signature. However, it is probably unnecessary to include stress for melody matching for the
current music collections available for research. In our experimental work we focus on three
standardisation techniques, contour, directed modulo-12, and exact interval. These are tested

in conjunction with similarity measurement techniques in Chapter 9.

Chapter 7

Musical Data

Implementers of IR systems sometimes analyse the data in order to predict the most appropriate
indexes to build [145]. The extent of the analysis can be merely determining the alphabet size and
the number of distinct terms to be indexed, or may involve a more detailed analysis of the data’s
properties, including its distribution. In this chapter we discuss the difference between musical
data and other types of IR data, describe the musical data that we use for our experiments, and

examine the term distribution of that data.

7.1 Informetrics

The study of the statistical properties of information is sometimes known as informetrics. One
of the aims in the use of informetrics for information retrieval is to suggest likely techniques
that would be applicable to a collection of data. Wolfram [145] lists some types of statistics
about a collection that can be used to inform IR design. These include term distribution, term
co-occurrence, and database growth. In addition to the above, other features that can describe
a collection of data used for retrieval include the type of term, alphabet size, the frequency of
each character in the alphabet, and the range of document lengths within the collection.

Knowing the term frequency distribution can help determine the best structure for an in-
dex, for example, to determine whether stopping, that is, the removal of the most frequent
terms, is applicable. Informetrics has mainly been applied to improve the performance of search
techniques, and to determine the size of indexes [145].

The query resolution techniques that are most appropriate to an information retrieval system

90

91

depend on the nature of the data, the queries, and relevance. Relevance is harder to quantify, but
for music, genomic, and some types of text searching, such as spell-checking and name searches
it may be possible to characterise it to some extent.

Once reduced to sequences of characters, melodic data can be described by various pa-
rameters such as alphabet size and distribution, allowing comparison with other types of data
collections used in retrieval such as text and genomic data collections. Like melodic data in
this form, the textual representation of genomic data is actually a reduction that excludes some
information.

If musical data resembles other forms of data for which information retrieval techniques are
already successful, then the same techniques could be applied to music retrieval. However, a
retrieval technique that is effective on one collection may not be as effective on even another
collection of the same type of data [152], so experiments to determine effectiveness are still

necessary.

7.1.1 Textual Data

For text, there are two main approaches to searching: searching for strings in the manner of a
pattern matcher and searching for documents that answer an information need. Various types
of term have been explored for use in string matching or document retrieval, the most common
being characters, n-grams of characters and words. Sometimes, sequences of words are also used,
typically of length two. The alphabet size for characters is anywhere from 27 to approximately
100 for English text, depending on whether case, punctuation, and extra symbols are used. The
frequency of each character can vary from negligible to over 17% (for spaces) in an alphabet of
94 characters [143].

If the terms are words, then the number of distinct terms rises to tens or hundreds of
thousands or more, depending on how a word is defined [143]. Whether characters or words
are used as the basic unit, there are different frequencies for each different unit. There are
also different frequencies with which pairs of characters or words occur adjacent to each other.
In document retrieval, search engine designers make use of the fact that words in a query are
likely to occur in relevant documents, but less likely to occur in irrelevant documents. Words
that occur in most documents are not useful for discriminating between relevant and irrelevant

documents, so they are either not used or contribute in a very minor way to the ranking process.

92

A simple model that approximates the distribution of words in text is Zipf’s law [149], which
states that the rank multiplied by the frequency is approximately constant, that is, the distri-
bution of words in text is approximately hyperbolic. There have been better models proposed,
such as the Zipf-Mandelbrot function [109] which improves the fit for terms at each end of the
distribution. For n-grams of text, however, the models are a poor fit. Using a model based on
the random division of the probabilities of each character that occurs works somewhat better

but the fit is still fairly poor [143].

7.1.2 Genomic Data

Genomic data is typically expressed as a sequence of symbols representing nucleotides or amino
acids in strands of DNA. There is no unit equivalent to a word as such, but each nucleotide or
amino acid is represented by a letter. There are only four letters in the nucleotide alphabet:
C, G, T and A. In addition, there are eleven standard wildcard characters that are used to
represent parts of a DNA sequence that are not fully known (Described by Williams [140]).
Alternatively, amino-acid sequences can be used, each of which is made up of three adjacent
nucleotide symbols, in which case there is an alphabet size of 20. The frequency distribution of
both these representations is fairly flat. Indeed, some researchers have concluded that protein
is incompressible [98]. However, Mantegna et al. discovered that the non-coding part of DNA
follows the Zipfian distribution better than coding DNA (discussed by Rousseau [110]). Indexing
has only recently been used successfully for genomic data [142] and n-grams are the chosen
index terms. The small alphabet size would result in high repetition within genomic sequences,

particularly with short n-grams.

7.1.3 Musical Data

Musical data can be represented in many ways. Although some researchers choose to retain
all notes for matching in their approach to music retrieval, it is likely to be valuable to extract
melodic data from the source.

Melodies can be expressed as a sequence of symbols representing the pitch of each note or
the pitch distance (interval) between notes. Alternatively, notes or intervals can be represented
as ordered pairs consisting of pitch and rhythm. In some research [7, 99], stress is also included

in the note representation. The pitches themselves can be represented in many ways: exact

93

pitches, relative pitches or intervals, pitches relative to the key of the melody, or a reduced-
precision representation such as melody contour instead of exact intervals. The alphabet size
varies with the representation method used. If melody contour is used, the alphabet consists
of just three symbols representing whether the melody goes up, goes down, or stays the same
in pitch. If exact interval standardisation is used as defined in Chapter 6 for an automatically
extracted set of melodies, the interval representation alone may include a range of up to 255
values. Rhythm information would increase this further. As with genomic data, there is a
high likelihood of repetition within a melody, as repetition is a common technique in musical
composition.

As an extracted, standardised melody can be represented as a text string, suggesting that
text-based techniques may work well for melody retrieval, but the best approach needs to be

determined via experiment.

7.2 The Music Collection

There are many collections of musical data. Most of these are monophonic, such as the Essen
collection of folk songs and Parson’s collection of themes originally published in book form.

The main source of polyphonic musical data is the Internet’s accumulation of MIDI files,
contributed by many people. Unlike the data collections prepared by musicologists, the Internet
MIDI data is prepared in an uncontrolled manner. The files do not always fully conform to the
standard format, making it difficult to assume that certain features will be present in each MIDI
file.

Our focus in this research has been the querying of polyphonic music for melodies using
musical note information as opposed to audio information. Therefore we chose to use the MIDI
data available to us as a basis for our experiments. In this chapter we examine the data to
provide a picture of the characteristics of musical performance data. We apply one of our melody
extraction techniques to the data and show the frequency distributions of substrings of that data

in the hope that it provides an insight into how melody retrieval should be implemented.

94

7.3 A Survey of Musical Data Analyses

Much has been published on the nature of musical data. Zipf [149], argued that music follows
the same distribution as text and showed this behaviour in reference to one or two specific
musical works. Dowling [36] counted the frequency of different interval sizes in a collection
of 80 Appalachian songs and discovered that the smallest intervals were the most common.
Zaripov [148] looked at the frequency distribution of parts of melodies, concentrating on a
collection of Russian folk melodies. In addition, there has been work in the musicology [73] and
fractal [121, 46] fields regarding entropy and music.

Bainbridge [5] used gzip to estimate the repetitive nature of musical data. He concluded
that the entropy is 1.6 bits per note, and that 18 notes would be required to uniquely identify a
melody in their collection of about 99,000 MIDI files if pitch was the only information used. The
other statistics determined about the collection are that on average files contained 7.4 channels,
each containing an average of 700 notes. The average duration was about 5 minutes.

Downie [42] analysed the folk-song database that was also used by McNab [93] and concluded

that there were no likely candidates for removal as stop-words.

7.4 An Analysis of Melodies Extracted from MIDI Files

We ran a series of experiments to determine the distribution of the n-grams for a body of
musical works. The works initially used were MIDI files downloaded from the Internet. Several

sub-collections were used:
e Approximately 500 MIDI files of a mixed variety gathered from several WWW locations;

o Approximately 15 000 files from an ftp site that collected all MIDI files posted to a par-

ticular newsgroup; and

e A subset of the 15 000 MIDI files consisting of all those MIDI files that contained only one
track, with this track only containing one channel. This ensured that all notes were likely
to have been played on one instrument only and so the melody extraction process would

produce one melody per MIDI file. There were 209 files in this collection.

The melodies were extracted from each MIDI file as a contour string, a modulo-12 interval string

or an exact interval string. Where there was more than one track in the MIDI file, a melody

95

10000 —— —— T ——————
5-grams +
6-grams X
7-grams *
8-grams O
4
X
1000 ¥ * _
d o o+ o4
X
*
> =]
o
5]
=] 100 | E
o
@
[
10 | B
1
+ X
x X
X P
X X .
+ X EE
l L L PR | L L PR | L L PR v | . s
1 10 100 1000 10000

Rank

Figure 7.1: Graph of the n-gram frequency distribution of melody contour strings extracted from

209 single-track single-channel MIDI files.

string was extracted for each track and treated as if it were a separate melody. The collection
of melody strings was then processed to produce a rank-frequency distribution of the n-grams,
for values of n between 1 and 13. The results were then examined and graphed. Some of the
graphs obtained from the data are shown in Figures 7.1 and 7.2.

To determine how many melodies contain each n-gram the melody strings were re-processed
to produce another rank-frequency distribution that ignored the number of times n-grams occur
within a piece of music. For example, an n-gram that occurs in all 2 697 tracks would get a
frequency score of 2 697, regardless of the number of occurrences within each melody string.

We then determined the number of tracks expected to be retrieved by an average query by
calculating the median point when n-grams were ranked and observing the number of tracks in
which the n-gram at the median point occurs. This result was graphed for n-gram sizes from 1

to 12.

96

le+06 —— T T ————————7 ——
8-grams +
7-grams X
6-grams
g 5-grams O
100000 % % g
O
*
X
+
10000 E
>
o
5
=) 1000 | R
o
<
[T
100 | e
10 | —
T
T
4
l L PR R S SR | L PR R S SR | L L PR | L P ST
1 10 100 1000 10000

Rank

Figure 7.2: Graph of the n-gram frequency distribution of melody contour strings extracted from

11270 MIDI file tracks.

7.4.1 Results

Figures 7.1 and 7.2 show that the data follows a distribution similar in shape to that of text
n-grams, as shown in Witten’s paper on text models [143]. The distribution is quite far removed
from the kind described by Zipf’s function. The shape remains similar for different choices of n.
The distribution of n-grams using other standardisation methods (not shown) were similar in
shape, but the individual n-grams were less frequent. This indicates that melodic information
behaves in a similar way to text and similar techniques could be used to optimise retrieval of it.
Figure 7.3 shows the distribution of the contour n-grams found in a collection of 500 MIDI files.
These files contained a total of 2 697 tracks that were each processed individually to extract
their melody n-grams. Many of the n-grams are very common, occurring in over one third of
the tracks. These would be poor at providing answers to queries.

Figure 7.4 shows the relationship between n-gram size and the expected number of tracks to

be retrieved for a database size of 2 697 and contour standardisation. To retrieve less than 10

97

10000 T T T T —————
5-grams +
6-grams X
7-grams *
8-grams O
] Tt ey
1000 * XXX XXX XX 4
q 0 x xx K Kokorory
Y O 0oogmy,
100 | e
10 £ 2 r
==
X H
X a
X a
* o
* o
l 1 1 1 - Pt
1 10 100 1000 10000

Figure 7.3: Graph showing the number of tracks (out of a total of 2 697 tracks) containing each

contour n-gram for the collection of about 500 files.

tracks from among 2 697 requires a query consisting of 12 notes on average. A query of 6 notes
would result in about 330 tracks with an exact match being returned. In the collection of nearly
15 000 files (not shown), about 1 220 tracks out of about 65 000 tracks would be retrieved by
a query of the same length. Clearly, a longer string of notes would be required in queries, or
greater precision in the search for melodies.

In an examination of the n-grams of the collection of 10,466 pieces used in our other ex-
periments (directed modulo standardisation of melodies extracted using the all-mono method),
the most frequently occurring n-gram was a series of repeated notes. For n = 4 this n-gram
occurred 589,700 times, in 7,960 pieces. The next most frequent 4-gram occurred 23,606 times in
5,045 pieces. Of the 279,841 possible 4-grams using this type of melody standardisation, 181,404
occurred in the collection. For n = 5 the repeated-note n-gram occurred 254,949 times in 4,903
pieces, with the next most frequent n-gram occurring 14,742 times in 1,514 pieces. The collection

contained 1,325,963 of the possible 9,765,625 n-grams. Only when n < 3 are all n-grams present

98

10000 T T T T T

1000 + E

100 ¢ E

Expected no. of tracks retrieved

10 | E

1 1 1 1 1 1
0 2 4 6 8 10 12
n-gram size

Figure 7.4: Graph showing the number of tracks expected to be retrieved given the contour n-gram

size for the database containing 2 697 tracks.

in the collection. Figure 7.5 shows a rank-frequency plot of the number of melodies containing

each n-gram.

7.4.2 Discussion

The data analysis above suggests that using melody contour as the only basis for preparing
answers to a query would be insufficient as databases grow larger. Despite this, it may still be
useful to index contour n-grams for answering queries by inaccurate singers, particularly if in
addition a secondary contour is used [108]. Contour representation’s usefulness for music queries
would depend on the typical length of queries, however. Contour n-grams can be compressed
to a greater extent than an exact interval n-gram but their use would reduce the precision of

answers to queries.

99

10000 T T T T T T
3-grams
4-grams -------
5-grams -~
1000 E
>
o
=
$ 100 i
o
Qo
>‘~“\1‘"
10 ‘ i
1 1 1 1 1 1 1 3 1
1 10 100 1000 10000 100000 1le+06 1le+07

rank

Figure 7.5: Graph showing the number of pieces (out of a total of 10,466) containing each directed

modulo n-gram for the all-mono database.

Stopping is a technique that is often used with the indexing of terms for retrieval. It involves
omitting the most frequently used terms from the index in order to reduce the index size. This
can usually be done without affecting retrieval effectiveness because the most frequent terms
are not useful in discriminating between documents. The data analysis above shows that some
terms are very frequent, particularly for contour representation. This suggests that stopping
would be a useful tool for reducing the size of an n-gram index. For richer representations of
melody than contour the frequency of terms is not so large, however, there is one n-gram that
is very frequent in this collection regardless of the standardisation method used, the one that
represents a sequence of notes of the same pitch.

Since a large number of answers could be retrieved from a music database which would be
time-consuming to check, ranking of results will be essential. Once a set of melodies is retrieved
using an n-gram index, they could be examined more closely with a fine search. The index terms
could consist of n-grams of some kind, where the individual symbols represent note intervals.
This n-gram-based coarse-and-fine search approach has been applied to text for spell-checking

and personal name searching [151], as well as to genomic data [142].

100

7.5 Summary

Musical data, once in the form of a standardised melody, resembles text in many ways, including
the frequency distribution of n-grams. Some of the techniques used for text, such as n-gram
indexes and stopping could be applied to music in order to better search for matches to a user’s
melody queries. A melody contour query, however, would need to be fairly long in order to
retrieve a small number of answers as databases grow larger.

Despite some similarities between textual, genomic, and melodic data it is not clear that
methods that work for one data type will work for the others. For example, ranking genomic
data by using a TF-IDF similarity measure (explained in Chapter 8) has been shown to be less
effective than a simple count of distinct common n-grams [140], whereas the reverse is true for
text retrieval [113]. Nevertheless, our results reveal a similarity to the distribution associated
with text n-grams and suggest a likely query length needed for good answers with the shown

melodic representations.

Chapter 8

Similarity Measurement

There are many candidate methods for measuring the similarity of melodies. Some were origi-
nally applied to fields such as text retrieval and genomic database searching. Ranking of text
documents is usually carried out by calculating a similarity measure based on the frequency of
words within the document and in the text database as a whole. It is not clear what would be
considered a word or term in a melodic document and whether the same techniques would be
useful for melody databases. If n-grams are used as melodic words, their distribution is some-
what different to that of words in text, and techniques that work best for melodies are not the
same as those for text, as shown by our experimental results in chapter 9.

In genomic database searching, protein sequences are compared using a dynamic program-
ming technique known as local alignment. More recently, n-gram indexing has been applied as
part of a two stage approach to matching [151], with local alignment being the basis of the sec-
ond stage. As discussed in chapter 7, and shown by our experiments in chapter 9, this approach
may be applicable to searching music databases.

In this chapter, we discuss the two main approaches that are the focus of our work, namely,
dynamic programming and n-grams. Experiments that test these techniques are described in

chapter 9.

8.1 Adapting Dynamic Programming to Music Matching

If a melody standardisation technique is used that represents the melody as a sequence of

symbols, that is, a string, then we can apply string matching techniques to compare melodies.

101

102

One established way of comparing strings is to use edit distances. This family of string matching
techniques have been widely applied in related applications including genomics and phonetic
name matching [142, 151].

There are three main types of edit distance matching techniques that we consider here:
longest common subsequence, local alignment, and longest common substring. Another approach
that could be used is global alignment. However, this is less likely to be useful when comparing

a fragment of a melody to a full piece of music as it measures global similarity.

8.1.1 Longest Common Subsequence

With the longest common subsequence (LCS) technique, the query is matched against pieces
with no penalty for gaps of any size between the matching symbols. LCS has potential for
this task because melody extraction often yields additional non-melody notes. In essence, LCS
counts how many symbols occur in sequence in both strings. The similarity score is the largest
such common subsequence. For example, consider the sequence of intervals below for the first
phrase of Beethoven’s Fifth Symphony, represented as the number of semitones, with positive

numbers meaning an increase in pitch.
00-4200-3

Suppose this is to be matched against the start of “Au Clair de la Lune”, represented as:
0022 -2

By visual inspection it can be seen that they both contain the subsequence:
002

Consider what would happen in the case where one note of Beethoven’s Fifth was incorrectly

played. For example, consider the representation below:
00-420-2-1

Immediately there are two symbols that are different even though the melodies only differ by one
note. A perfect score for comparison of the original melody fragment to itself would have been

7 (that is, seven common symbols in sequence). With a single wrong note, the score reduces

103

A) “Année Passée”

o) R N N R

p) e e N N —
N4 D 7 ™ AP~ 7) P~ AP~ PR 7
{)

p = N Ne S ——
@ ,/ ¢ 7/ 7/ /),\)/
- o u— o

B) “Rum and Coca Cola”

o) [
N\

Y .])]]

[£an) J.L_._. 0@ . oo P

A

A

CION> N
v\
Q

Figure 8.1: Melody extracts of the songs “Année Passée” and “Rum and Coca Cola”.

to 5. A melody of the same length with one symbol altered has only the note occurring before
the changed symbol in common with the melody. All notes following it are shifted in key. For
example, the melody string below has the first four notes in common. This fragment could also

receive a score of 5.
00—-4000 -3

In this case, the relationship between the notes after the mismatch is totally different to that of
the original melody fragment.

The above melodic fragments do not have much in common other than that the starting note
is played evenly three times. In general, pieces with significant similarity would have more notes
in common and therefore would have longer subsequences in common. To see what happens
with a longer example, consider the two songs “Rum and Coca-Cola” and “Année Passée”, the
composers of which were involved in a copyright infringement case [30]. The melodies are shown

in Figure 8.1. The songs have a lot in common melodically, but are not identical. The melody

104

extract of “Année Passée” is represented by the following interval sequence:
302-5302-5302-530-1-1-3302-5302-5302-53-1-4

The first 21 notes of the “Rum and Coca-Cola” extract are represented as follows:
12020-202-5302-530-2-3302

When LCS is applied, a common subsequence (0 202 -5302-530-3302) of length 15 is
found.

A dynamic programming approach can be used to calculate the length of this maximal
subsequence [64]. A two-dimensional array is filled according to the formula where a represents
the array, ¢ and p represent the query melody string and piece to match against respectively,

array index ¢ ranges from 0 to query length, and index j ranges from 0 to piece length:

ali —1,7] 1>1

ali,j—1 > 1

i,] = maa (6,5 =1 J (8.1)
ali —1,j—1]+1 q(i) =p(j) and 3,5 > 1

0

\
The array values for the above example are shown in Figure 8.2.

Our initial hypothesis was that the longest common subsequence may be useful for matching
with extra or omitted notes. As can be seen in the examples above, the technique may work
well for long matches. However, there is the potential for many false matches, particularly for
short queries. Its usefulness would depend greatly on the methods of melody standardisation
used. It may be more suited to representations such as the key-relative group described in the
chapter on standardisation. In these methods, there is no loss of key information when a note

is omitted or added in a match.

8.1.2 Local Alignment

For local alignment, dynamic programming is used to determine the region of best match for
two strings. The technique involves calculating a score, incorporating a penalty for mismatches,
insertions, and deletions. The resulting score represents how good the best local alignment is,

and the positions at which to best align the two strings.

105

For example, using the two melody fragments above, we would fill a two-dimensional array
of values according to the following formula, where a represents the array, ¢ and p represent
the query melody string and piece to match against respectively, array index i ranges from 0 to

query length, and index j ranges from 0 to piece length:

ali—1,5]+d i>1
ali,j—1]+d j>1

ali,jl=maz{ ali—1,5—1+e q(i)=p(j) and i,j > 1 (8.2)
ali —1,j —1]+m q() # p(j)
0

\
where d is the cost of an insert or delete, e is the value of an exact match, and m is the cost of
a mismatch. In this example we used d = —2, ¢ = 1 and m = —1.

The resulting array for our example melody fragments is shown in Figure 8.3. The best
alignment commences with a common substring (302 —5302 —5 3 0). This is followed either
by an indel (insert or delete) and a mismatch, or vice versa, representing the (—1 —1) substring
matching against (—2). The alignment ends with the common substring (—3 3 0 2).

As occurs with the longest common subsequence method, the interval representation causes
a single different note to be represented as two different adjacent symbols. However, in contrast
with longest common subsequence, local alignment rewards adjacent symbols and has a signifi-
cant penalty for gaps when matching. As a result, a long run of exactly matched symbols will

not be greatly penalised by a double mismatch, as seen in the example above.

8.1.3 Longest Common Substring

The longest common substring of two strings can also be found using dynamic programming
techniques. In this case, the algorithm does not permit indels or mismatches to contribute to
a match. Instead, scores are reset to zero whenever the two strings do not match. Matching
the correct and incorrect Beethoven’s Fifth fragments described above would result in the same
scores as for local alignment. When matching “Année Passée” to “Rum and Coca-Cola”, the
resulting score is 9, from the longest common substring (02 —53 0 2 —5 3 0). The advantage
of this method is that there are no incorrect matches on pitch due to key shifts from mismatches

and indels.

106

8.1.4 Thresholded Alignment

The technique that we have named thresholded alignment is a variation of local alignment. The
technique gives a score of zero to matches that are less than k characters long. This technique
aims to reduce the number of trivial matches. In the case of Beethoven’s Fifth matched to Au
Clair de la Lune, with a threshold of four, the score would be zero. Matching “Année Passée”
to “Rum and Coca-Cola” has a score of six, as scores for matches start to be accumulated once

a substring match reaches a length of four.

8.1.5 Cumulative Weight Matching

Another variation explored in our experiments increases the weight to be applied each time a
new adjacent symbol is found in a match. The aim of this technique is to reward long matches.
For example, with an arithmetic cumulative factor of 1, and a match weight of 1, the first match
in a contiguous set of matches would contribute 1 to the score, the second adds 2, the third
3, and so on, so that the score for three consecutive matches, as occurs in the Beethoven’s 5th
example and its incorrectly played version, results in a score of 6. As soon as a mismatch or

indel occurs, the cumulative weights are set back to zero.

8.1.6 Other Dynamic Programming Approaches

Some of the above approaches are basic techniques that have already been applied to other
types of string-based information. Musical information is multi-dimensional, however, so the
techniques can be extended to capture more information for comparison. For example, Mon-
geau and Sankoff extended their edit distance computations to use two dimensions—pitch and
rhythm [97]. The pitches are relative to the key of the melody. A set of weights was devised to
distinguish between consonant intervals (pleasing intervals such as octaves, and those that make
up a major chord) and dissonant intervals (intervals that sound unpleasant together, such as
semitones). Other techniques used were fragmentation and consolidation. This involves match-
ing a single long note to repeated short notes with only a small penalty score. The method was
tested on two compositions by Mozart and for this small data-set, successfully grouped musical
themes and their variations. However, the example piece, unlike many pieces, remains in one
key. The technique does not locate all occurrences of a theme or melody when a piece modulates

to a different key [137].

107

Later, Kageyama et al. [71] applied a simplified approach that combines pitch with rhythm
contour, each with a different set of weights in their dynamic programming-based algorithms.
The technique was shown to rank highly the melody on which hummed queries were based, in
a database of 500 melodies.

In chapter 11, we discuss another technique that compensates for the double errors that

occur when a single pitch is incorrect.

8.2 N-grams and Music Retrieval

Melody strings can be broken down into n-grams, or substrings of a given length n for matching.
In information retrieval, n-grams are sometimes used as terms for matching. The calculation of
similarity is based on the existence or frequency of terms in the query and in the collection of
documents. In the case of melodies, n-grams taken from the string representation of a melody
can be used as terms for computing similarity for ranking.

The length of a typical melodic query is likely to affect the usefulness of n-grams. We expect
that the first attempt at a melody query by a user will consist of the notes of a single phrase.
This may be as little as four notes but is often considerably longer. The chosen length for
n-grams not only affects the answers retrieved, but places a limit on the minimum length of
queries that can be processed. However, queries that are shorter than typical n-gram lengths
are unlikely to be successful with most matching methods on a substantial music collection.
As our chosen melody standardisation methods represent note transitions instead of notes, the
number of notes represented by an n-gram is one more than the n-gram size. For example, an
n-gram of length five, such as the contour n-gram SSDUS, represents six notes.

In the experiments described in chapter 9 we tested several ways of computing a similarity
score using n-grams: coordinate matching, sum common, the Ukkonen measure, and TF-IDF.

These are illustrated below using a contour representation.

8.2.1 The Sum Common Measure

The sum common measure was calculated as follows (shown using notation from Zobel and

Moffat [152]):

108

N-grams SSUDDDDDD SSUDDDUDDD Sum Coord. Ukkonen IDF TF-IDF
SSU 1 1 1 1 0 1.31 1.31
SUD 1 1 1 1 0 1.12 1.12
UDD 1 2 1 2 1 1.03 1.03
DDD 4 2 2 1 2 1.09 2.18
DDU 0 1 0 0 1 1.03 1.03
DUD 0 1 0 0 1 1.02 1.02

6 4) 7.69

Table 8.1: The 3-grams of two similar contour strings and the resulting similarity scores. The
“sum common” (Sum) method gives a score of 5, coordinate matching (Coord.) a score of 4,
and the Ukkonen measure a score of 5. Using some IDF figures based on the all-mono melody
collection, the TF-IDF' score for the pair is 7.69.

Sgd = Z faz (8.3)

tE€Ty d

where 7, 4 is the set of distinct n-grams that occur in both the query ¢ and the melody d, fq:
is the frequency of n-gram ¢ in the melody. That is, for every distinct n-gram in the query we
counted the number of occurrences of the n-gram in the stored piece.

As an example, consider 3-grams and the contour representation of the Mozart melody
example from chapter 6, SSUDDDDDD, and compare it to a slightly different contour string,
SSUDDDUDDD. The frequency of each of the 3-grams is shown in Table 8.1. The score is the
sum of the frequencies of the 3-grams in the melody that also occur at least once in the query,

in this case 6.

8.2.2 The Ukkonen Measure

The Ukkonen measure [135] is a difference measure, that is, it counts the number of n-grams in
each string that do not occur in both strings. To make it consistent with our other measures,

we negate it. The formula used is:

Sea == |far— fail (8.4)

ter
where 7 is the set of possible n-grams, fg: and f;; represent the frequency of term ¢ in the query

and document respectively.

109

In the example shown in table 8.1, the Ukkonen measure results in a score of —5, which is

the sum of the differences between query and piece shown in the “Ukkonen” column of the table.

8.2.3 The Count Distinct Measure

Also known as coordinate matching, the count distinct measure ignores term frequency and just

counts the number of distinct n-grams that occur in both strings. The formula is:

Sqa =lrqdl =) 1 (8.5)

=
where 7, 4 is the set of distinct n-grams that occur in both the query and the melody.

For example, in the example shown in table 8.1, the query and melody have four distinct
n-grams in common. The count distinct measure ignores the fact that some of these n-grams

occur more than once in the query and melody.

8.2.4 The TF-IDF Measure

There are many variations of the TF-IDF similarity measure, so called because they include
the term frequency (TF) and the inverse document frequency (IDF) in some form. They all
combine information about the frequency of terms in the documents and the frequency of a
term in the collection as a whole. A term that is very common in a collection, such as the word
“the” in a text collection or a sequence of repeated notes in a music collection, will not be very
discriminating as a dominant component of a similarity measure. Important terms for searching
tend to be less frequent. For this reason similarity measures of this class multiply weights by
the IDF or a related factor which increases the weight of important, less frequent terms and
decreases the weight of frequent, less important ones.

TF-IDF is the family of similarity measures based on summing the weights of the n-grams
in the piece that match n-grams in the query. In one formulation, the weight of an n-gram is
determined by its frequency in the piece and by the reciprocal of the number of pieces containing

it. The formulae we use for TF-IDF, using the same notation as defined above, are:

N
CEDY % (8.6)

teETy d

110

and

N
Sqa = Z = falog(———) (8.7)
t€Tg.a fe41

where f; is the number of pieces in the collection that contain the n-gram ¢, and N is the number
of pieces in the collection . One is added to the denominator to avoid division by zero in the
implementation.

As an example, consider 3-grams and the contour representation of the Mozart melody
example, SSUDDDDDD, and compare it to a slightly different contour string, SSUDDDUDDD.
Using some IDF figures based on the all-mono melody collection, the TF-IDF score for the pair
is 7.69.

8.3 Efficiency Considerations

When a query is presented to an information retrieval system, the query is transformed to
allow it to be applied to the index or to allow straightforward comparison with items in the
database. There are essentially two approaches to query evaluation: search the entire collection
or look up terms in an index. A third approach consists of using a combination of these two.
Typically, the use of an index makes searching much faster than searching directly through the
collection. Improvements can be made in direct searching of a collection by using a compact
representation of the most salient features for successful query evaluation and using the fastest
available algorithms.

Dynamic programming is a technique that allows strings to be compared and the best
matches found, by aligning strings and producing a score representing how similar (or dif-
ferent) they are. When applied to a string database, such as a collection of strings representing
melodies, the entire collection is searched to find the best matches. The naive technique uses a
significant amount of storage space, in that a two-dimensional array is kept in memory. If the
strings being compared are very long then this can be a significant factor. The actual processing
time is O(mn). Again, if the amount of text to be processed is large then this can be slow.
There are techniques published that reduce the space and speed of this approach (for example,
see Apostolico and Galil [1] for an overview of efficient serial and parallel dynamic programming

algorithms) however the use of an index to speed up processing would be preferable.

111

An indexing strategy that has been shown to be effective for personal name searches, spell-
checking [151] and genomic database searching [142] combines a coarse search using an n-gram
index with a fine search of the results retrieved by the index. For genomic data searching,
Williams [140] constructed frames that are bounded by n-gram matches in the strings being
compared, and then a dynamic programming technique is used to compare the best of a pool of
matches. Whether this is necessary for music is not really clear. Our results have shown that
n-gram indexes work about as well as dynamic programming for manual queries in particular
for our data set. Regardless of whether dynamic programming is needed, indexing is achievable

and therefore desirable. We discuss approaches to indexing n-grams for music below.

8.3.1 Music Index Terms

There are many candidates for music index terms. There are some aspects that need to be
considered before deciding on the appropriate index term.

First, a music query will not necessarily begin at the start of a melody. It may, however,
begin at the start of a musical phrase, as suggested by Kageyama et al. [71]. Queries may
possibly be chordal or may even cross from one musical part to another. Indeed, it may be a
part of the melody that is being queried, or a part of the accompaniment.

We assume that melodic queries will be used, possibly with the melodies coming from any
musical part. To allow for queries that start anywhere within a melody, the indexing of n-grams
is a useful approach. In this case, the symbols represent absolute or relative pitches and possibly

other features of each note.

8.3.2 Building an N-Gram Index

When using n-gram terms, an approach to indexing that has been used for genomic data involves
a hash index with pointers to a list of occurrences of the n-gram [139]. This is particularly
useful for genomic data as the hash index can be quite small despite using a simple perfect
hashing function that maps each of the four characters to two binary digits. If a simple contour
representation is being used for representing melody, then a similar approach can be used.
However, once a representation exceeds a certain size, it may be necessary to consider alternative
methods as the hash index size grows rapidly with alphabet size. For example, contour 4-grams

can be represented with 3* = 81 slots, but the directed modulo 12 standardisation method with

112

Standardisation Method Extraction DB Size DB Size
(Alphabet Size) Method (uncompressed K) (compressed K)
Contour (3) all-channels 20,803.5 2,413.8
all-mono 9,670.7 1,456.5
entropy-channel 4,558.6 694.4
entropy-part 2,744.1 514.4
top-channel 2,905.0 452.2
Directed Modulo-12 (25) all-channels 20,803.5 4025.6
all-mono 9,670.7 3235.0
entropy-channel 4,558.6 1323.5
entropy-part 2,744.1 856.2
top-channel 2,905.0 802.9
Exact Interval (255) all-channels 21005.7 4354.1
all-mono 9701.3 3910.1
entropy-channel 4589.3 1466.5
entropy-part 2774.8 912.2
top-channel 2935.7 894.6

Table 8.2: The relative sizes of extraction and standardisation methods for the collection of
10,466 MIDI files (and 69,032 channels). Database sizes are in kilobytes. The last column
shows the compressibility of the database, by showing the size after compression with gzip.

alphabet size of 25 requires 25* = 390625 slots.

The n-gram approach used for our experiments consisted of using the first part of the n-gram
to calculate an index to an array structure. Each array element then pointed to a binary tree of
n-gram information. This allowed rapid look-up of n-grams that occurred in the query string.
The pieces in the database were then scanned for n-grams and tallies kept of the number of
common n-grams or different n-grams as appropriate for the type of similarity measure being
applied for the query. Thus we preprocessed the query to create a rapid means of locating its
n-grams and used an exhaustive search of the standardised collection in memory to find answers.
While this approach was applicable for experiments testing multiple MIR methods, a practical

MIR system would benefit from an indexed collection.

8.3.3 The Size of Music Representations

All the melody standardisation methods discussed in chapter 6 can be compressed to allow more
efficient storage and matching. When deciding on an appropriate implementation for a music

retrieval system, it is useful to look at the space and speed trade-offs in relation to the retrieval

113

effectiveness of different methods. Table 8.2 shows the relative sizes of the extraction and stan-
dardisation methods explored in this thesis. The figure for the compressed size of the database
was produced by compressing the file containing the standardised melodies with a standard
compression utility (gzip). The uncompressed size relates directly to the number of symbols
used to represent the melodies. These figures show that despite the raw size of the all-channels
database, it compresses very well compared to the other databases, so that it is not much larger
than the all-mono database. Databases represented by ezact interval standardisation are not
much larger than those using directed modulo-12 standardisation. Contour standardisation re-
sults in a compressed database that is approximately half the size of the others. While the
figures in Table 8.2 are a guide, the relationship between the size of indexes on this information
may be slightly different, as it will depend on how the indexed information is organised and

compressed.

8.4 Other Music Matching Techniques

While dynamic programming and n-gram techniques are our main focus and have been pro-
totyped in different ways by other researchers [11, 93, 97|, there have been a range of other
techniques applied to the problem. Many researchers have applied variations on Baeza-Yates
and Gonnet’s [80], Baeza-Yates and Perleberg’s [54] or Wu and Manber’s [80, 92, 146] string
matching techniques. These techniques are discussed in more detail in chapter 3. Some have
applied polyphonic matching techniques [23, 34, 80], feature vectors [75, 76], rhythm, or chord
matching [20, 21]. These are discussed briefly below.

Dovey’s work [34] discusses polyphonic matching from a theoretical standpoint, and describes
how a brute-force algorithm can be applied to matching with absolute pitches. Each instant in
which notes commence is represented by a bit array containing a one for each pitch that starts at
that instant. The approach consists of attempting a melody match at each of the possible pitches.
To cut down on irrelevant matches, Dovey suggests having a limit to the number of events that
can occur between matching notes. The approach was not evaluated for effectiveness. Dovey’s
approach ensures that there is a high recall of pieces that match a query exactly. However, there
is likely to be low precision due to the comprehensive nature of the matching process producing
many matches that do not make musical sense.

Clausen et al. [23] engineered an index solution to the music search problem. They stored

114

absolute pitch and time for each note in an index. Matches were carried out by quantising
the query and piece to the same level, for example semiquavers (16th notes). A sequence of
notes was only matched if it occurs at the same position in a bar. Fuzzy matching involving
sets of notes was also discussed. The technique was not evaluated for effectiveness. Clausen
et al. sensibly combined pitch and time for their approach as the precision would otherwise
be poor. The technique may not be robust for query-by-humming queries where there is pitch
drift, however. There is also the limitation that queries must match the position in the bar.
For example, if a melody was shifted by two beats compared to the matching piece in the
database, the match would not be found. A further type of match that would not work well is
one in which an arrangement changes the timing, as often happens in popular arrangements of
traditional and classical pieces. For example, melodies by Bach have been converted from triple
time to quadruple time for inclusion in popular songs.

Lemstrom et al. converted Baeza-Yates’ and Gonnet’s shift-or algorithm to the problem of
matching polyphonic music [80]. They applied the technique to absolute pitch matching by using
bitwise and to combine all the notes that occur in a single instant before applying the bitmask at
each iteration through the piece. A further variation was developed that uses intervals instead
of absolute pitches. In this case an algorithm collected appropriate intervals to match against
before being applied to the mask. Due to the lack of filtering the approach is likely to have low
precision.

Kosugi et al. [75, 76] applied the concept of feature vectors to music retrieval. Two main
types of information were stored in the feature vectors. First, a “tone transition” feature vector
contained pitch sequence information relative to divisions within a bar. Pitches were stored
relative to a “base tone”, which could be the most frequent pitch in the bar. The second
feature vector stored “tone distribution”, a vector representing the number of time divisions
containing each pitch. Combining the two feature vectors in answering queries produced a slight
improvement in retrieval effectiveness for a set of 186 hummed queries on a database of 10,069
MIDI files. The main limitation of the approach is that queries that are sung in a way that shifts
their start position relative to the bar will not be successful. This will affect the retrieval of
different arrangements of pieces, as variations in rhythm are quite common, such as anticipating
a note, by playing it slightly before the beat.

Chou et al. [21] used a “PAT-tree” structure to store melodic information in the form of

115

chords. This is a suffix tree structure that stores sub-strings for inexact string matching. All
possible substrings are represented at the leaf nodes, and a tree structure leading to them is
built based on each character sequence. Chou et al. implemented their PAT-tree by building
a B+ tree of “chords” made up of the notes found in each bar of each melody. This system
appeared to use absolute pitches in its representation. The indexing was quite coarse and could
only be applied to pieces that remained in one key throughout, thus the technique is not scalable
to large collections. In later work by Chen et al. [18] the suffix tree approach has been applied
to other representations of melody fragments that include both pitch and duration information.
The technique was not evaluated for effectiveness, however the precision should be quite good

for exact matching.

8.5 Summary

Of the candidate methods for melody matching, we have explored several variations of dy-
namic programming and n-gram-based searching. The dynamic programming approach involves
matching the query against each melody in the database. In contrast, the n-gram approach, is
implemented as an index. When used with standardisation techniques based on pitch transitions
these matching methods should allow successful matching regardless of the key in which pieces
and queries are presented, or the beats per bar, and yet be sufficiently discriminating due to the
melody extraction phase. Both the local alignment and n-gram techniques allow for errors in
the matching process, and at the same time provide some flexibility for the location of different
arrangements of the same piece. Other researchers have applied different techniques, some of
which may be valuable. However, we have limited this work to the above-mentioned techniques.
These techniques were implemented and used with the three main standardisation methods ex-
plored in this thesis, that is, contour, directed modulo-12, and exact interval standardisation.

The success of each method is evaluated in our experiments in the next chapter.

116

3 0 2-5230 0-1-1-3 0 2-5

00 0O O0OOOOOO OO OO OO 0 0 0 0O OO 00 0O O0OOOOOOO OO ODO
110 0 0 0 0O0OO0OOOOOO 0 00 O0O0OOO 00 0 O0OOOOOOOODO
2/0 00111111111 1111111 111111111111
ofjo 01111222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2/0 0 1 2»2—-2 2 3 3 3 3 3 3 33 3 3 3 3 3 333 333333 3 3
0/0 01 2 2 2 3 3 3 3 4
-2/ 0 0 1 2522 % 3 3 3 4
00 01 2 2 2\% 3 3 3 4 4 4 55 65 5 5 5 555555555 5 5 5
2/0 01 2 2 2 3\4 4 4 4 5 55 5 55 5 5 6 6 6 6 6 6 6 6 6 6 6 6
-5/0 0 1 2 3 3 3 45 55 5 6 6 6 6 6 6 6 7T 77 7T 77T 77777
3]0 11 2 3 4 4 4 5\6 6 6 T 7 77 7 77 7 8 8 8 8 8 8 8 8 8 8 8
0fj0 12 2 3 45556 77 7 8 8 8 8 8 8 8 8 9 9 9 9 99 9 9 9 9
01 2 3 3 45 6 6 6 7\8 8 8 8 8 8 8 8 9 9 9101010 10 10 10 10 10 10
-5/0 1 2 3 4 45 6 7 7 7 8 9 9 9 9 9 9 9 10 10 11 11 11 11 11 11
3]0 1 2 3 4556 7 8 8 8 }O 10 10 10 10 10 10 10 12 12 12 12 12 12
001 2 3 456 6 7 8 9 9 10 11 11 11 11 11 11 11 13 13 13 13 13 13
-2/0 1 2 3 45 6 6 7 8 9 9 10 2%1%1&1 11 11 11 11 13 13 13 13 13 13
-3]0 1 2 3 45 6 6 7 8 9 9 10 11 11 11 124232 9232324221242 13 13 13 13 13 13
301 2 3 4566 7 8 9 9 1011 11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14
0fj0 1 2 3 456 6 7 8 9 9 10 11 11 11 12 13\14 14 14 14 14 14 14 14 14 14 14 14 14 14
2/0 1 2 3 456 7 7 8 910 10 11 11 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15

Figure 8.2: “Année Passée” and “Rum and Coca-Cola” matched using LCS. The interval se-
quence for “Année Passée” is shown in the horizontal margin, and “Rum and Coca-Cola”’s
interval sequence is shown in the vertical margin. Components of the longest common subse-
quences are shown in bold. Arrows indicate the different possible longest common subsequences.

Vertical and horizontal arrows indicate gaps in the sequence; diagonals indicate a matching pair

of symbols.

117

Figure 8.3: Local alignment of melody fragments of the songs “Année Passée” (horizontal mar-

gin) and “Rum and Coca-Cola” (vertical margin). Once the array has been filled, the arrows,

representing how the values pointed to were calculated, are followed to determine the parts that

have been aligned.

Chapter 9

Melody Matching Experiments

Having developed a range of methods for melody matching, we now need to test them. Our
aim in these experiments was threefold: first, to confirm that the three-stage framework can be
used to find matching melodies in a large corpus of musical works; second, to identify appro-
priate techniques for each stage of the retrieval process; and third, to verify that our IR-based
methodology could be successfully applied to music.

As outlined in chapter 4, for the measurement of a retrieval system we need [113]: a collection
of melodies, a collection of queries, and, for each query, relevance judgements as to which of the
melodies are similar to each query. When a system is used to determine a ranking of melodies for
a given query, the relevance judgements can be used to assign a score to the retrieval system; a
system should get a high score if it is good at highly ranking similar melodies. We used precision-
at-k and eleven-point precision average measures (described in Chapter 4) in the experiments
described below. We have chosen precision-at-ten as the number of relevant answers for each
query in our collection is usually less than 10. To our knowledge this was the first application

of this standard system measurement technique to music retrieval.

9.1 The Query Set

The experiments described in this chapter used query melodies automatically extracted from
pieces of music, using the algorithms described in Chapter 5. The pieces of music on which the
queries were based were selected as described in Section 4.3. All arrangements were designated

as the relevant pieces for each of the queries, including duplicate arrangements. Some alternative

118

119

arrangements were not identified, usually where non-obvious names had been chosen for the files.
These were classed as irrelevant in the evaluation process.

Typically there were two to six relevant pieces of music for each query, on the assumption
that all other pieces are not similar—a reasonable assumption if the retrieval task is to find
variant forms of the same piece of music. While the assumption may not be valid for other
retrieval tasks, it should not discriminate against particular retrieval methods.

Two query sets were created, one containing 28 queries and the other 51. For each piece,
the query was randomly selected from the set of versions. The experiments reported here use
the smaller set of queries, but the results with the set of 51 queries were entirely consistent, and
therefore have not been included for all experiments. The query sets contain melodies from a
range of music genres, including pop and rock music from every decade since the fifties, some
jazz works, classical compositions, country music, a Christmas carol, and several TV and movie
themes. After the queries were chosen, the various extraction and standardisation techniques
were applied. To simulate queries of varying lengths, each string was truncated to 10, 20, 40
and 80 notes, thus giving four versions of the collection of queries. This range approximates the

range of manual queries gathered later for our manual experiments.

9.2 Dynamic Programming Experiments

In this first experiment, our aim was to determine whether techniques based on dynamic pro-
gramming would work well at matching melodies in a large music database. We tested three
dynamic programming techniques for their suitability to the task: local alignment, longest com-
mon subsequence, and longest common substring. Each technique was tested with variation
in several parameters, including melody extraction method, melody standardisation type, and
song length normalisation. We tested the techniques against databases of automatically ex-
tracted melodies and also the “all-channels” database that consists of melodies extracted from
each channel of each piece in the collection.

A common experimental methodology for a retrieval system is to ask users to specify queries,
but it is difficult to eliminate the possibility that the experimenter has influenced the query
development process. For example, for a query-by-contour system an experimenter could sub-
consciously encourage less accurate queries than those that might be specified in other contexts.

The query set we have gathered for these experiments does not have this bias, and therefore

120

10 20 10 80
0 1 L 0 1 L 0 1 L 0 1 L
a amdb ¢ | 0L77 0006 (0068 1846 00.08 07.99 3586 00.13 2576 40.05 00.33 35.02
d 40.11 [00.25 36.69 51.86 | 00.41 50.64 51.89 | 00.89 48.96 53.32 | 02.04 49.79
i 42.32 | 00.07 | 3534 49.06 | 00.15 46.87 48.08 | 00.75 44.83 48.76 | 01.96 45.87
cedb ¢ 0099 00.15 01.06 1557 0020 0803 3193 00.78 23.87 3210 0271 20.61
d 8859 00.57 2677 38.61 0222 3632 3805 0428 37.33 3949 0406 3638
i 8422 0049 26.60 37.61 0208 3598 3751 03.98 3635 3840 0482 36.04
epdb < 0023 0019 0130 1019 0077 1018 2170 0257 2300 2218 0355 2285
d 1393 0121 1276 23.41 0220 2364 2357 03.69 2335 2583 0550 2687
i 1585 0096 12.08 23.42 0227 2312 2488 0340 2460 2600 0497 27.28
tedb < 0252 0009 0126 1868 | 00.14 1112 3202 | 00.17 2462 3173 | 00.39 2882
d 3008 0020 1042 3548 0040 31.96 37.63 | 00.98 36.98 39.52 00.77 3883
i 30.73 0014 1965 36.41 | 00.42 3280 3676 |00.70 36.49 39.64 | 00.75 39.08
| amdb ¢ 0001 0004 0004 00.01 00.04 00.06 00.0 00.04 00.15 00.08 00.04 OL72
4 00.00 00.04 0034 0015 00.05 0226 0015 00.06 1056 00.92 0010 27.77
i 00.31 00.06 0074 00.40 00.09 0671 0L50 00.07 2031 07.63 0013 3462
cedb < 00.00 0019 00.36 00.00 00.25 0049 00.07 00.20 0144 00.25 0149 0434
d 0007 0020 0392 0048 0055 0654 0097 00.97 1687 0278 0211 27.85
i 0033 00.27 03.85 0084 00.41 09.79 0279 01.05 1912 1047 0268 27.97
epdb < 00.01 00.17 0026 00.00 0021 0091 00.01 0190 03.26 00.20 0232 06.92
d 0016 00.50 0358 0172 0L24 0751 0214 0257 1322 0645 0293 2094
i 0011 0048 0344 0077 0122 0741 0434 0281 1462 0877 0317 2149
tedb ¢ 00.00 00.03 0042 0025 00.05 0203 0012 00.05 03.08 0016 0047 1520
d 0041 0011 0448 0050 00.14 1402 0185 00.19 2393 0508 00.68 2650
i 0023 00.07 0445 0188 0020 1527 0263 0034 2341 1190 0054 27.93
s amdb ¢ | 0L84 00.06 (0091 1876 0011 1694 3508 00.21 3215 37.56 00.50 39.22
d 41.16 [00.25 | 37.51 48.79 | 0042 46.81 47.37 | 00.87 45.51 47.86 |01.59 47.19
i [00.07 3534 [00.15° 46.87 48.08 | 00.75 4483 48.76 |01.96
cedb ¢ 0192 0016 0126 1819 0040 1256 3004 O0L57 2675 33.63 0272 3115
d 8170 0057 2604 38.28 0223 3563 3730 0430 3650 3672 0467 37.82
i 3422 0049 26.60 37.61 0208 3598 3751 03.98 3635 3840 0482 3604
epdb < 00.24 0019 0134 1081 00.79 1454 2245 0247 2239 2271 03.33 2369
d 1433 0121 1281 2205 0220 2277 2461 0354 2350 2590 0561 2696
i 1585 0096 12.08 23.42 0227 2312 2488 03.40 2460 2600 0497 27.28
tedb < 0295 0003 0152 2007 |00.09 1417 3052 | 00.17 2801 3216 | 00.25 3267
d 2040 0020 2052 3320 0043 3316 3510 0088 3595 39.38 00.71 4027

Table 9.1: Eleven-point recall-precision averages (as percentages) for dynamic programming-
based matching without rests. Query lengths are 10, 20, 40, and 80. Melody length normalisa-
tions shown are: no normalisation (0), divide by the song length (1), and log normalisation (L).
Similarity measures are: local alignment (a), longest common subsequence (1), and longest com-
mon substring (s). Melody standardisations are contour (c), directed modulo-12 (d), and exact
interval (i). Melody extraction methods used for both the query and the database are: all-mono
(am), entropy-channel (ec), entropy part (ep), and top-channel (tc). The best precision average
— and values that were not statistically significantly different from it — for each query length

18 highlighted.

121

80

40

20

10

T w0 T om0 T om0 T A T om0 T om0 T om0 T A T om0 T om0 T im0 T A

o
2
T
g
[

ecdb
epdb
tedb
amdb ¢
ecdb
epdb
tcdb

a amdb ¢
ecdb
epdb
tedb

1
s

Table 9.2: Precision at 10 values (as percentages) for dynamic programming-based matching

The same melody extraction methods used for both the query and the database.

without rests.

122

010

020

040

080

L

0 L

0 L

0 L

acdb amdb 05.98
26.68
25.00
08.28
27.82
29.27
04.72
25.56

26.05

ecdb

tcdb

o0 o0 oo

amdb amdb ¢ 05.83
d 30.33

i 31.01

01.36
15.71
16.66
00.66
16.53
17.12
02.87
21.12
20.28

02.09
28.83
29.76

11.31
29.66
29.71
22.33
33.45
33.58
20.21
29.82
30.56

06.32
22.91
22.12
11.65
27.49
27.47
16.50
27.59
29.04

22.26 15.85
34.83 35.44
35.57 35.50

13.79 11.22
34.90 31.40
35.82 29.81
28.60 24.60
36.94 34.53
37.47 34.42
26.31 24.14
31.60 31.21
31.71 31.77

26.01 25.33
37.04 35.84
36.81 35.71

14.86
32.58
31.39
31.45
35.68
35.23 30.78
26.54 25.43
29.87 29.97
30.17 29.96

10.41
27.87
27.83
29.88
30.97

26.24 26.68
33.14 32.36
32.51 32.18

ecdb ecdb ¢ 07.24
d 25.24

i 26.93

06.70
20.01
20.72

17.35
27.63
28.11

15.45
26.74
27.10

21.20 20.16
29.69 29.24
29.72 29.43

23.31
27.86
28.29

24.01
27.97
28.04

Table 9.3: Eleven-point recall-precision averages (as percentages) for local alignment matching
with rests. The first column shows which database was used, and the second the melody extraction
method used for the queries.

should provide an excellent test of a music retrieval system. In addition, it is useful in its own

right for answering queries that ask to find other versions of a given piece.

9.2.1 Method

For our experiment, we used each of our four melody extraction techniques in turn for both
the queries and the collection. In addition, we used an all-channels technique that generated a
separate melody from each channel, so that each piece could be represented several times. This
reduces the chance of missing melodies but increases the chance of false matches—that is, recall
should improve at some cost to precision. Use of all-channels increases the size of the collection
to about six times the original. In this case, the collection contained 69,032 separate parts.
The melody standardisation methods tested were contour, directed modulo, and exact inter-
val. In each case we tested inclusion and omission of rests. When rests were included, they were
represented as a single symbol. Intervals following a rest were calculated using the note before

the rest. Rests were inserted if there was a break of at least five time units between notes. This

123

80

40

20

10

© - o n 9 © o [)
5 54_ _I.j 44_ !J
2 S—D B—D
< <+ “ M < M M
¥ © o ® 1 © o @ © w © 10 © N o
L QK O c ¢ el = @ ¥ ¥
0~ N O O 0 ®© N § O S 9 %
4 & ¥ o w0 <+ « 4 & ¥ o o0 ¥ o4
~ B~ ©Q N < b~ = N
S S Sl =
<+ <
<+ ﬂﬂ <+ ﬂu
¥ @ o o (SR N ® o ® = 0
N = 4 N = 0 o = L Lo)
4 0 o N NN < 0 BN @ N
4 o n o 4 o oo oo 4 o

T s« U YU x0T .« O T A

T~ U T w U T .« U T .~ T om U T w0 T a0 T A

ecdb
epdb
tedb
amdb ¢
ecdb
epdb
tcdb
amdb ¢

a amdb ¢
ecdb
epdb
tedb

1
s

Table 9.4: Eleven-point recall-precision averages (as percentages) for dynamic programming-

based matching against all channels without rests.

124

80

40

20

10

T =« U T w U T .« LU T .~ T w O T w0 T = U T .« T =« U T v U T .« U T A

2

ecdb
epdb
tedb
amdb ¢
ecdb
tcdb
amdb ¢
ecdb
epdb
tcdb

a amdb c
epd

1
s

Table 9.5: Precision at 10 (as percentages) for dynamic programming matching against all chan-

nels without rests.

125

is a fairly short value whose actual duration varies between pieces, depending on the speed of
the music.

The similarity measures were local alignment, longest common subsequence, and longest
common substring. The scores calculated for each method were normalised in three different
ways: dividing by the log of the melody length plus one, dividing by the melody length, and
leaving the score unchanged. This was done to determine if it was necessary to compensate for
varying piece length. The melody length used for the normalisation process was defined as the
number of characters in the melody string.

The experiment itself was factorially exhaustive. We combined every melody extraction
technique with every standardisation method and every edit distance, over the database as well
as over each of the four query lengths. We ran all possible experiments in which queries processed
with one extraction technique were run against a version of the database processed with another
extraction technique. Statistical significance of the results was measured using the Wilcoxon
test. This design is intended to allow complete analysis of which factors are important for music

similarity measurement.

9.2.2 Results

Results are shown in Tables 9.1, 9.2, 9.4, and 9.5. Table 9.1 shows the effect of varying query
length, melody extraction technique, standardisation technique, song length normalisation, and
similarity measure, where queries and the database are identically processed, measured by a
recall-precision average. Perhaps the most important result in this table is that it demonstrates
that the framework is effective: matching melodies can be found using the appropriate combi-
nation of extraction, standardisation, normalisation, and similarity measure, with, in the best
case, even for short queries one in three retrieved melodies being correct (and, in the top 10 as
shown in Table 9.2, thirty percent being correct). By the performance standards of document
retrieval systems, these are good results.

Table 9.1 shows that contour is always the worst standardisation technique, and is almost
certainly not usable in practice. Modulo and exact intervals have similar performance to each
other, with modulo better for long queries and exact interval better for short queries. Only for
queries of 40 notes or more does contour have any success at finding matches. Note that in many

cases 40 notes is more or less the whole melody; extending to 100 notes often just introduces

126

repetition of the theme.

Another clear result is that local alignment is the best similarity measure, followed by longest
common substring. Predictably, longest common substring was about as effective as local align-
ment for short queries. Longest common subsequence performed poorly. Local alignment has
allowed good matching with all melody extraction techniques, even for short queries. It is quite
clear from these experimental results that no normalisation should be used when applying local
alignment to melody matching.

Of the melody extraction techniques, the entropy-part method (the most complex technique
tried) was the weakest; the others have all worked well, with all-mono and entropy-channel both
giving good results. All-mono was usually the best in conjunction with local alignment. We also
found that using the same melody extraction method as that used for the database melodies is
always better than matching queries processed one way against a database processed in another.

Table 9.2 concerns the same experiments and variables as in Table 9.1, but using precision
at 10—the number of correct answers in the first 10 pieces retrieved—instead of recall-precision.
This table shows that the results are independent of the performance measure.

Table 9.3 shows the results of experiments where rests are included in the melody stan-
dardisation; in all other respects the experiments are identical to those reported in Table 9.1.
Comparing these two tables, it can be seen that rests are only helpful with short queries, and
the best performance with rests is not as good as the best performance without. Rests have
helped contour, but not enough to make it useful.

Table 9.4 shows the results of experiments where each piece in the data set was represented
several times, by the highest-note sequences from each channel, while the queries were processed
as before. The performance of the channel-based extraction methods is much improved, partic-
ularly for longer queries, while the all-mono method has not worked as well. Overall results are
not quite as good as the best reported in Table 9.1. The fall in performance is probably because,
while use of all-channels eliminates the need to guess which channel contains the melody, the
addition of “noise” channels increases the likelihood of false matching.

The difference between the best local alignment and the best longest common substring
results is only statistically significant for long queries according to the Wilcoxon test. The dif-
ference between the best and worst normalisation methods was found to be statistically signifi-

cant, as was the difference between the two better dynamic programming methods and longest

127

common subsequence. A similar pattern of results was found when the experiment was run
with a query set containing 46 queries, suggesting some real differences between methods. The
difference between the directed modulo-12 and exact interval standardisation methods was not
found to be statistically significant.

A more detailed analysis of the experimental results for 30-note queries using directed
modulo-12 intervals revealed that certain queries were always unsuccessful in retrieving an-
swers other than the piece from which they were extracted. This usually occurred when the
melody was not cleanly extracted, that is, the all-mono method produced a melody with many
accompanying notes in it. These same queries typically caused the other melody extraction

methods to select a non-melody part.

9.2.3 Discussion

We argued that a minimal matching process must involve at least melody extraction, to reduce
each piece to a linear sequence of notes; standardisation, to represent each piece in a form that
is independent of variables such as key that do not affect similarity perception; and a similarity
measure, for scoring the similarity of two pieces of music. Using a large number of polyphonic
pieces in the MIDI format extracted from a public-domain collection of music, we have shown
that this methodology effectively finds pieces that are similar to each other.

In particular, we have found that local alignment is the best dynamic programming technique
for melody matching, and that it is best not to normalise for melody length when using this
technique. The choice of melody extraction technique is important for the success of a melody
matching implementation. We have found that the method that was shown by listeners to be
the most effective, the all-mono technique, was also the most effective when applied to melody

matching. In fact, the ranking of extraction methods is exactly the same for both experiments.

9.3 N-Gram Experiments

In the previous experiment we compared various similarity measurement, melody extraction,
and melody standardisation methods. The results clearly indicated that local alignment was
an effective method for similarity measurement, while all-mono was the best of the melody

extraction methods.

128

10 20 40 80

0 1 L 0 1 L 0 1 L 0 1 L

amdb ¢ 3 23.90 04.65 34.72 36.87 07.87 42.55 38.38 06.40 42.63 32.52 09.46 40.86
4 37.30 19.73 89.78 44.75 29.44 46.51 46.15 24.89 47.84 46.66 24.51 49.47

5 37.93 34.49 40.09 48.10 42.59 48.93 47.47 37.89 49.58 51.50 35.42 50.30

6 36.09 36.86 86.87 47.48 46.38 47.93 49.68 41.19 49.08 50.03 38.21 50.18

7 32.03 33.41 33.52 43.45 45.10 44.61 47.44 44.57 47.95 46.35 39.50 47.45

8 24.09 24.74 24.81 42.61 44.29 44.381 46.21 43.90 46.09 44.60 40.90 45.53
n 3 04.97 08.71 04.91 06.63 13.62 07.04 07.74 13.91 08.69 07.87 15.69 09.18
4 16.40 21.69 19.98 23.41 28.59 24.96 20.52 25.73 20.98 21.27 27.29 23.20

5 32.76 34.17 35.27 36.73 42.28 39.27 34.59 38.49 35.99 33.16 35.37 36.24

6 37.69 387.81 37.53 45.20 45.81 45.81 42.93 45.74 44.09 38.09 37.28 39.22

7 32.55 32.87 32.63 42.35 43.28 42.70 46.08 46.57 46.18 40.00 38.49 41.54

8 24.44 24.54 24.28 42.64 44.44 43.00 44.13 45.03 44.91 40.31 39.54 40.58
u 3 00.04 25.28 00.04 00.04 41.34 00.04 00.05 39.13 00.08 01.03 41.46 01.68
4 00.04 31.23 00.04 00.04 42.95 00.04 00.05 38.23 00.06 01.03 39.06 01.67

5 00.04 22.82 00.04 00.04 43.22 00.04 00.05 38.53 00.06 01.03 36.49 01.67

6 00.04 12.47 00.04 00.04 39.93 00.04 00.05 37.75 00.06 01.03 37.04 01.67

7 00.04 00.14 00.04 00.04 36.63 00.04 00.05 37.40 00.05 00.73 35.08 01.67

8 00.04 00.06 00.04 00.04 31.23 00.04 00.05 36.81 00.05 00.71 35.04 01.67
ecdb ¢ 3 21.81 06.25 26.70 34.56 08.80 36.63 35.12 09.99 37.96 33.04 10.68 34.22
4 30.58 14.94 34.37 38.29 20.36 38.24 38.87 20.24 388.72 38.45 22.51 39.32

5 32.32 26.89 34.38 38.59 29.92 38.36 38.00 25.55 38.06 36.83 29.64 38.22

6 28.72 26.96 28.79 39.61 32.48 38.87 38.11 30.26 38.12 38.09 31.48 37.72

7 23.03 23.28 23.28 37.30 33.63 87.46 39.29 31.02 36.93 39.59 33.83 39.14

8 14.77 14.70 14.70 37.19 35.35 37.42 36.86 32.20 36.72 38.12 35.15 37.67
n 3 04.43 10.49 04.79 05.56 14.25 07.10 05.12 16.12 07.27 04.54 16.56 05.20
4 14.61 19.19 16.54 17.11 20.67 18.85 15.24 18.95 15.94 14.91 18.90 16.78

5 26.75 28.46 28.83 28.45 27.53 27.64 20.68 22.71 21.91 20.62 22.67 23.59

6 28.34 27.44 28.05 32.66 31.99 32.84 27.73 28.46 30.12 27.98 28.72 28.63

7 23.40 23.40 23.40 34.32 33.38 34.49 32.88 30.11 31.68 30.07 31.87 30.32

8 15.03 14.70 15.03 35.23 35.22 35.20 32.98 32.53 32.94 32.72 32.91 32.75
u 3 00.13 16.79 00.14 00.47 29.05 00.83 03.49 32.04 04.62 04.63 36.37 05.53
4 00.15 21.49 00.15 00.48 33.75 00.82 03.67 34.10 04.63 04.58 36.90 05.52

5 00.13 14.57 00.15 00.49 35.12 00.67 03.52 35.70 04.49 04.55 35.01 05.74

6 00.12 03.71 00.12 00.48 35.98 00.50 01.86 34.39 04.66 04.52 30.01 05.58

7 00.12 00.18 00.13 00.19 29.11 00.49 01.50 34.68 04.64 04.51 29.64 05.72

8 00.12 00.13 00.12 00.18 21.29 00.20 01.27 32.54 04.48 04.66 29.32 05.48
tedb ¢ 3 19.85 05.96 24.27 31.43 06.95 32.71 30.09 06.95 31.39 27.86 10.02 30.07
4 27.41 13.46 30.19 32.87 14.42 34.21 33.85 16.28 33.58 34.92 20.03 36.27

5 29.12 22.85 31.24 34.07 23.52 33.59 35.34 23.64 34.61 37.91 24.51 39.24

6 25.71 26.38 27.93 33.85 28.91 33.84 36.61 26.30 34.83 38.59 27.40 38.89

7 22.95 22.65 23.71 33.66 31.32 34.07 35.33 28.49 34.68 37.91 31.72 39.41

8 21.55 21.99 21.99 33.40 31.90 33.81 36.04 30.10 34.61 37.42 33.60 38.74
n 3 09.98 10.94 10.88 09.83 10.67 10.98 09.66 15.22 10.89 08.82 09.95 08.94
4 18.91 15.80 19.01 18.93 19.33 19.64 17.57 21.91 19.13 16.98 19.61 19.07

5 27.87 26.51 28.09 30.94 26.16 31.50 27.74 26.04 28.03 27.48 27.58 28.78

6 27.76 27.03 28.05 32.89 31.30 33.78 33.04 29.84 32.93 33.08 32.50 33.92

7 25.88 23.97 26.80 35.54 34.36 36.19 34.01 30.50 34.68 35.48 35.92 36.76

8 24.90 23.46 24.90 34.64 33.88 34.83 34.35 31.79 34.45 36.04 36.76 36.37
u 3 00.51 17.24 01.34 02.33 27.67 02.39 05.86 30.36 06.07 15.46 33.51 15.76
4 00.11 19.83 01.34 02.18 31.75 02.39 05.75 31.81 06.09 15.10 33.99 16.19

5 00.03 19.69 00.13 02.28 32.75 02.39 05.86 32.77 06.02 15.28 33.47 17.36

6 00.02 11.95 00.05 02.07 32.78 02.49 02.83 33.73 06.12 15.07 33.24 17.13

7 00.02 00.04 00.02 01.75 28.76 02.49 02.79 33.84 06.07 14.99 33.84 17.29

8 00.03 00.03 00.03 01.86 24.43 02.28 02.89 33.67 06.18 15.11 33.29 17.40

Table 9.6: Eleven-point precision averages for n-grams.

used directed modulo 12 melody standardisation.

The automatically generated queries
were processed with the same extraction technique as the melody database. The second heading
row shows the normalisation amount used, with L indicating division by the log of the length and
the others being the k-th root of the length. Query lengths used are 10, 20, 40 and 80. This set

129

In this experiment our aim is to determine whether n-grams will work well for the same
problem, as they are an attractive matching technique. In genomics, for example, they can be
used for an initial, rapid coarse search, allowing a subsequent more careful search of a smaller
set of potential answers. In this experiment, using the same set of melody string extraction
techniques as previously, we show that simple n-gram formulations can work very well indeed,
particularly for short queries. Further, Downie [42] has reported successful experiments with n-
gram matching based on classic information retrieval similarity techniques, in which a “TF-IDF”
formulation was used to rank melody strings using both overall n-gram rareness in the corpus and
the frequency of occurrence of the n-grams in each melody string. Our experiments reported here
show that TF-IDF ranking is poor in comparison to both local alignment and simple coordinate
matching with n-grams.

One of the variables that we explore in this experiment is the n-gram length. Varying n trades
recall against precision—high n provides closer matching but is more likely to miss variations
with omitted or additional notes. We show that, for music, the n-gram length of choice depends
partly on the standardisation method. For methods that retain interval information, matching
5-grams from the query against each channel of stored pieces provides good effectiveness for
all query types. Considerably longer n-grams are required for optimal matching with contour

standardisation.

9.3.1 Method

For this experiment we applied the same methodology as that of our earlier experiment. In
addition to the variables examined previously, we tested the effect of different n-gram lengths.

The three n-gram techniques described in Chapter 8 are tested, namely, sum common (n), in
which the frequency of each n-gram that is common to both query and piece is summed, count
distinct (c, also known as “coordinate matching”), in which the number of distinct n-grams that
are common is counted, and the Ukkonen measure (u), which sums the difference in n-gram
frequencies between the two melodies.

We also tested the TF-IDF technique that is widely used in text retrieval [152] and used by

Downie [42] for music retrieval. These are written as:

t: TF-IDF ranking using Equation 8.6.

L: TF-IDF ranking using Equation 8.7.

130

Table 9.7: Eleven-point precision averages for n-grams.
were applied to the all-channels database.

010

020

040

080

0 L

L

0 L

L

amdb

ecdb

tcdb

W ~J O Ut i W 00~ O Ut i W 00~ O Ut i WO O Ut W

O I O UL i WO O Ut W

21.95 24.00
32.31 31.36
32.05 32.50
30.84 29.46
27.06 26.53
16.77 16.82
03.10 03.36
09.66 11.30
24.14 24.49
30.65 30.88
25.94 25.65
16.79 16.41

22.54 25.17
37.34 36.31
37.07 38.01
34.31 32.44
28.89 28.30
20.76 20.76
03.11 03.13
10.09 10.57
29.21 29.85
28.75 29.76
28.05 27.87
22.00 21.19

20.57 26.32
31.48 33.35
32.83 35.69
29.64 32.70
29.71 29.61
25.86 27.24
05.18 05.30
09.92 13.96
26.21 28.71
28.83 29.19
28.75 28.25
25.67 26.23

28.62
37.67
42.67
43.94
38.24
36.39
03.46
14.00
30.78
37.69
35.27
32.63

39.10
45.55
49.23
49.25
46.04
47.70

03.25

12.60

29.76

36.36

39.90

44.05

36.56
43.06
42.96
40.58
40.64
40.95

05.72

13.13

31.00

37.75
39.97
40.60

34.45
42.04
41.87
41.88
38.95
35.76
03.91
15.50
30.90
38.76
34.93
32.41

40.38
43.71
44.98
47.98
47.04
46.14
03.92
12.69
29.43
35.42
39.91
43.28

39.43
42.24
41.76
41.98
42.23
41.88

06.37

12.57

31.28

36.89

39.81
39.93

24.38 32.44
43.49 44.44
48.21 46.66
47.84 46.34
43.39 43.22
43.68 43.18
02.85 03.27
11.62 14.08
24.15 24.06
35.41 37.62
39.11 39.49
41.84 41.69

43.84 42.75
48.43 45.59
48.39 46.81
50.69 47.27
46.67 46.31
48.13 47.32
03.19 04.36
13.74 14.62
21.85 21.93
29.56 30.04
36.62 37.87
40.93 41.50

35.87 35.93
42.65 41.34
42.51 42.55
42.64 43.51
42.14 43.37
42.05 42.00
05.51 05.41
11.76 13.39
27.46 30.39
37.35 36.77
39.30 38.45
38.82 38.53

21.00
40.80
43.63
42.92
42.35
43.54
03.48
11.51
23.19
30.94
34.12
37.53

42.29
50.04
52.98
52.13
53.30
53.18
04.52
13.66
22.16
31.12
38.36
40.85

34.08
40.73
42.97
43.33
42.57
45.00
05.31
10.10
25.73
35.63
40.51
40.60

30.09
40.75
42.80
43.05
41.62
42.04
03.69
13.33
24.24
31.61
34.90
37.87

45.01
54.24
56.30
52.52
54.22
50.26
05.77
13.46
23.77
32.42
37.97
40.76

37.44
42.55
45.61
45.25
44.79
45.45
04.93
10.06
27.39
35.77
40.94
40.90

standardisation.

The automatically generated queries
The second heading row shows the normalisation
amount used, with L indicating division by the log of the length and the others being the k-th root
of the length. Query lengths used are 10, 20, 40 and 80. This set used directed modulo melody

131

010 020 040 080
0 L 0 L 0 L 0 L

amdb 3 00.00 00.07 00.03 00.15 01.87 00.31 00.10 00.33
4 00.08 00.25 00.21 01.55 00.36 04.09 00.19 04.86
5 00.56 01.25 02.74 04.08 02.80 08.55 05.60 14.02
6 0046 02.83 02.58 08.67 11.32 18.18 13.46 19.40
7 00.69 03.79 06.90 14.77 17.28 21.48 18.27 22.45
8 04.21 04.63 11.09 17.39 21.38 23.31 21.28 25.90
ecdb 00.17 00.19 00.03 00.57 00.41 00.84 00.07 01.59
00.13 00.52 00.21 02.53 00.54 05.15 00.59 10.84
00.93 01.46 00.93 05.79 03.47 12.38 06.42 17.64
00.71 01.72 03.51 10.04 11.16 17.56 12.07 20.02
00.78 02.04 07.62 14.13 14.28 19.70 18.42 23.82

01.23 02.22 10.42 17.19 18.99 23.19 22.30 24.61

0~ O Utk W

tedb 00.09 00.73 00.44 01.80 00.08 02.23 00.10 02.94
00.17 01.00 00.25 03.62 01.08 08.50 01.21 15.97
00.57 01.48 01.09 07.39 04.13 14.05 08.68 18.53
00.69 02.28 03.69 11.93 09.59 20.24 15.21 21.18
01.17 02.48 06.94 14.67 14.34 22.71 18.35 22.88

01.41 03.53 09.84 16.45 18.72 23.76 21.58 24.49

00~ O Ut W

Table 9.8: Eleven-point precision averages for n-grams. The automatically generated queries
were processed with the same extraction technique as the melody database. This set used contour
melody standardisation and coordinate matching.

They are described fully in Chapter 8.

We used the same database of 10,466 MIDI files, and the set of 28 queries used in the previous
experiment. The n-gram counting methods were varied by use of different length normalisation
techniques, including no normalisation, division by the length of the melody, division by the
square root, cube root, and ninth root of the length, and the more typical division by the log
of the length. These length normalisation techniques have very different effects: the ninth-root
method, for example, distinguishes amongst very short pieces but otherwise has little effect,
whereas some of the other methods distinguish amongst pieces of all lengths.

Query lengths of 10, 20, 40 and 80 were tried on all n-gram lengths from 1 to 8. We tested all
standardisation methods, however, we mainly report on experiments with the directed modulo-
12 method of melody standardisation, as the pattern of results was similar to that found in the
dynamic programming experiment. Query melodies used the same extraction method as those

of the database against which they were being compared. We also tried matching query melodies

132

010 020 040 080
0 L 0 L 0 L 0 L

amdb 3 00.00 00.32 00.01 00.56 00.05 00.09 00.07 00.07
4 00.01 00.67 00.84 01.43 00.08 01.93 00.10 00.23
5 00.53 00.93 00.65 02.20 00.96 03.26 00.33 01.84
6 00.46 01.21 02.65 02.83 04.79 05.41 01.16 03.59
7 00.53 01.39 03.84 05.03 05.73 08.04 02.83 04.38
8

00.80 00.97 05.96 06.87 07.97 10.46 03.60 06.34

ecdb 00.04 00.04 00.04 00.25 00.05 00.55 00.05 00.81
00.13 00.20 00.06 01.01 00.19 04.01 00.23 09.03
00.24 00.87 00.79 06.53 02.44 10.86 05.88 19.48
00.51 01.13 03.52 07.57 12.51 16.69 14.33 28.89
00.62 01.48 05.87 08.47 18.38 21.88 23.66 32.43

00.83 01.88 10.11 11.31 21.96 27.32 28.81 32.79

0 O Utk W

tedb 00.00 00.33 00.01 00.74 00.06 00.84 00.04 01.00
00.02 00.42 00.06 02.13 00.13 06.50 00.25 15.50
00.54 00.56 00.84 06.63 01.55 16.17 03.90 21.19
00.59 00.89 02.79 11.17 10.09 22.79 14.25 26.63
00.35 00.96 05.61 13.57 20.01 26.01 20.74 28.30

00.53 01.42 11.60 15.34 23.25 27.72 27.06 30.60

00~ O Ut W

Table 9.9: Eleven-point precision averages for n-grams using the all-channels database. This set
used contour melody standardisation.

against the “all-channel” database, which contains the extracted melody of each channel in each
melody, using the “all-mono” extraction method.

Methods were evaluated by calculating eleven-point precision averages and precision at 10
pieces retrieved, but the results for the measurement techniques are largely consistent and we

only report the former.

9.3.2 Results

Results comparing counting methods, normalisation, and melody extraction technique are shown
in Tables 9.6 to 9.11.

Table 9.6 shows results for directed modulo-12 queries when query and database have the
same melody extraction technique. Table 9.7 shows results for different melody extraction tech-
niques against the all-channels database. Table 9.14 shows the results using the set of 51 queries

against the all-channels database. Results for contour are shown in Tables 9.8 and 9.9. Exact

133

interval standardisation experiments are shown in Tables 9.10 and 9.11 respectively. Entropy-
part results were so poor in all experiments that we have chosen not to report them. N-gram
lengths of one and two were uniformly worse than longer n-gram lengths, so these have also been
omitted from the results tables.

These results illustrate the difficulty of choosing a “best” matching technique. The Ukkonen
(u) method is generally poor, but for long queries gives acceptable performance for one kind of
normalisation. (Due to these results, however, particularly on short queries, we do not consider
it further.) The sum common (n) method may have been penalised because some n-grams, such
as when the same note is repeated several times, are very common, thus favouring long pieces of
music when queries contained these common n-grams. Shorter queries are less likely to contain
repetitions and common n-grams, and perform about as well as long queries. Overall, coordinate
matching (c) has been the most effective method, working well on the all-mono database and
with all-mono and entropy-channel melody extraction against the all-channels database. It
rivals the local alignment method tested in our dynamic programming experiment.

Also of note is that the best normalisation methods seem to be those that only affect the
scores by a small amount, namely log normalisation, dividing by the ninth root of the melody
length (not shown), and no normalisation. This is not true for the Ukkonen measure, however,
which appears to perform best when divided by the melody length, making it an “error rate”
measure. That the Ukkonen measure is less effective than other formulations is a similar result
to that found for genomic databases [140].

The best results were achieved by the entropy-channel method using the count-distinct n-
gram measure and the all-channels database. Other observations are that longer query lengths
again lead to more relevant answers being retrieved when using count-distinct or Ukkonen mea-
sures but not when using the sum-of-frequency measure.

The tables of results also show the effect of varying the n-gram length. Lengths from n =5
to n =T give the best results for coordinate matching with directed modulo-12 standardisation.
N-gram length seems to vary with standardisation method, with contour requiring much longer
n-grams. We report only n = 5 for the remainder of our experiments.

Results for TF-IDF are shown in Tables 9.12 and 9.13. TF-IDF is consistently poor compared
to coordinate matching. TF-IDF formulation 1 (i), works better than sum-common and TF-

IDF formulation 2 (L), statistically significantly for all but short queries. Interestingly, the best

134

010

020

040

080

0 L

0 L

0 L

0 L

amdb

32.64 36.22
41.11 39.80
39.99 40.83
37.65 38.14
32.62 32.94

40.68 44.02
46.25 46.76
47.34 47.45
46.97 47.29
43.36 44.31

42.67 48.25
49.08 48.44
49.43 51.00
49.07 50.63
48.45 47.37

42.96 47.27
46.65 48.94
47.36 48.65
46.60 46.97
46.30 46.57

24.68 24.68 40.95 41.79 44.91 44.80 45.73 45.96

ecdb 25.04 30.25 35.06 35.71
33.20 35.32 38.89 38.12
33.38 37.09 39.56 37.21
29.22 29.70 37.69 38.49
23.02 23.27 37.30 37.56
14.77 14.70 37.19 37.45

34.65 37.13
39.49 39.05
38.61 39.62
36.61 37.83
37.73 36.99
36.43 36.38

33.47 34.38
38.28 38.21
37.20 38.60
37.68 38.51
39.52 38.96
37.89 38.78

0~ O Utk W

tedb 29.75 31.30
34.41 32.91
34.71 34.51
34.88 33.83
34.61 34.91

35.67 34.89

28.98 31.04
34.10 35.78
37.97 39.71
39.63 39.19
37.53 39.47
36.88 38.87

23.03 25.21
28.83 30.74
30.28 31.75
26.76 28.48
23.29 23.10
21.55 22.11

31.24 33.29
32.41 33.62
33.93 34.73
32.67 33.88
33.17 34.79
33.03 34.08

00~ O Ut W

Table 9.10: Eleven-point precision averages for n-grams. The automatically generated queries
were processed with the same extraction technique as the melody database. This set used exact
interval melody standardisation.

results for these tend to be when divided by the song-length. Regardless, coordinate matching
is clearly the best approach.
The difference between the best n-gram and the best local alignment methods are not sta-

tistically significant according to the Wilcoxon test.

9.3.3 Discussion

That counting distinct n-grams has performed well in these experiments suggests that it is
possible to successfully produce a useful n-gram-based index for melody retrieval. It also makes
clear that term frequency is unimportant in melody retrieval. Previously published work [42]
suggests that the TF-IDF technique developed in information retrieval works well for melody
retrieval. Our results indicate, however, that it would not perform as well as does ignoring term
frequency. Another technique often discussed [144] uses the log of the term frequency instead of

the term frequency itself, to reduce the weighting of terms that are repeated. We predict that

010

020

040

080

0 L

0 L

0 L

0 L

amdb

ecdb

tedb

0~ O Utk W

00~ O Ut W

25.41 25.75
30.43 30.70
33.19 32.18
30.53 30.98
26.59 26.87
16.12 16.66

25.94 27.54
38.89 37.98
40.44 40.27
33.33 34.06
28.62 29.46
20.16 20.55

20.33 26.50
29.55 33.50
35.02 33.22
30.16 32.04
28.89 27.84
26.74 26.91

34.13 37.13
38.65 43.12
41.45 41.11
41.61 42.18
38.03 38.25
33.81 34.14

42.29 40.70
45.17 47.38
48.88 49.16
46.39 47.12
46.43 47.33
46.63 46.96

38.97 39.31
43.23 45.07
43.23 45.17
41.57 43.07
41.55 43.13
40.59 43.73

31.93 37.96
45.42 48.47
47.06 47.27
45.76 46.76
43.93 43.84
41.59 43.38

42.59 44.29
49.00 47.88
45.77 47.84
47.91 47.89
48.02 47.88
48.79 49.67

38.39 36.42
42.28 44.71
43.01 44.02
42.72 43.64
44.29 43.13
40.73 43.26

27.06 37.10
43.79 45.31
44.56 45.23
43.03 41.76
41.25 42.64
41.76 41.80

42.39 44.32
49.07 54.50
51.90 56.84
53.91 54.37
52.91 54.42
52.84 51.29

36.05 38.55
41.70 43.05
44.24 45.23
42.87 44.79
42.64 44.53
43.41 44.90

135

Table 9.11: Eleven-point precision averages for n-grams using the all-channels database. This
set used exact interval melody standardisation.

this also would perform less well than ignoring the term frequency.

9.4 Summary

The success of the matching requires effective extraction, standardisation, and similarity tech-
niques. We selected a variety of such techniques for experimental evaluation, many of which
had been previously proposed for this task. Combining simple melody extraction (taking the
highest note starting at any time), relative pitch intervals, and local alignment gave excellent
effectiveness: for even short queries, the top 10 answers contained most of the relevant answers
for most queries.

Some options, however, were highly unsuccessful, finding virtually no answers at all. For
example, melody contour standardisation—used in some “query by humming” systems—does
not work with queries of reasonable length, and longest common subsequence is a poor similarity

function. First attempts at manual queries to a music retrieval system are likely to consist of

136

010 020 040 080
L i L i L i L i

amdb 0 34.01 39.10 40.21 43.94 38.39 47.26 37.96 47.01

1 35.80 39.75 42.94 45.92 44.27 48.37 40.20 47.91
9 3540 40.19 41.74 43.66 40.61 46.69 40.01 47.58
L 3540 40.06 41.68 43.67 40.86 46.52 40.14 47.53
ecdb 0 27.96 28.25 30.43 38.61 25.17 39.85 26.28 39.22
1 29.17 30.47 29.87 38.26 28.32 38.20 30.92 38.03
9 29.63 29.80 29.95 37.55 28.73 39.09 27.40 40.09
L 29.69 30.16 30.18 37.87 28.85 40.49 27.91 41.34
tedb 0 2842 30.86 32.11 35.45 30.49 34.66 29.19 34.60
1 2720 29.20 27.85 31.28 27.89 32.97 30.06 33.61
9 28.46 30.92 32.72 34.80 30.71 34.89 30.22 34.82
L 28.41 30.45 32.86 34.57 30.93 35.02 30.48 34.66

Table 9.12: Eleven point precision averages for two variants (i and L) of TF-IDF for n-gram
melody matching with n = 5, using the set of 28 automatically extracted melody queries. Same
extraction method as database.

a phrase, and thus will usually be less than 10 notes, and therefore good performance for short
queries is vital. Rests appeared to be unhelpful in matching.

Our experiments have revealed that the best approach to using n-grams for ranking melodies
is one that ignores term frequency completely and uses n-grams of length five with a melody
standardisation method that retains interval information. There should be either no length nor-
malisation or very little, such as log normalisation. When used in this manner, the technique
rivals local alignment in its ability to produce relevant answers to melodic queries. Local align-
ment itself works well with the frequently applied weights of 1 for matches, —1 for mismatches,
and —2 for indels with no normalisation for song-length.

We expect that manual queries (in contrast to our queries derived from variant transcrip-
tions) would most resemble those produced by entropy-channel and top-channel methods, which
contain fewer extra notes from other parts of the composition. It follows that for manual queries
the use of all channels from each composition may be valuable. The experiments reported in
Chapter 10 support this hypothesis.

Some questions remain unanswered and we investigate some of them in experiments in Chap-
ter 10. However, our results clearly answer the key question for music databases: use of the

three-stage framework allows effective retrieval of music by theme. The combination of interval-

010 020 040 080
L i L i L i L i
amdb 0 24.83 27.48 31.75 33.18 27.24 36.29 25.45 36.79
1 23.45 30.05 25.72 29.77 23.05 33.58 21.43 33.76
9 25.74 27.70 32.25 32.57 28.28 35.48 26.92 36.46
L 25.38 27.97 31.84 32.80 28.43 35.33 27.08 36.89
ecdb 0 29.25 32.56 30.14 43.07 24.93 42.10 25.75 44.83
1 27.61 29.50 23.62 35.82 22.49 38.53 27.27 46.97
9 30.68 33.18 31.15 41.39 25.39 42.28 26.58 45.48
L 30.22 33.10 31.76 41.76 25.44 42.00 27.33 45.69
tcdb 0 27.63 29.30 32.04 41.44 33.30 40.76 28.25 41.27
1 25.46 28.04 26.25 33.76 26.24 35.92 28.96 37.76
9 29.61 30.30 34.10 39.28 32.13 39.97 29.99 41.01
L 28.74 30.46 34.78 39.40 32.54 40.37 30.49 41.07

137

Table 9.13: Eleven point precision averages for two variants of TF-IDF for n-gram melody
matching with n=5. This uses the set of 28 automatically extracted melody queries and the
all-channels database.

based standardisation and either n-gram counting or local alignment matching algorithms works
well. In addition, the experimental methodology we have used allows fruitful comparison be-

tween music retrieval methods.

138

010

020

040

080

L

L

L

L

08.86
13.48
13.10
12.60
12.47
10.17
03.94
06.57
12.37
14.28
13.21
10.11

amdb ¢

=]
0 ~J O Ut i WO O Ut W

ecdb ¢ 11.44

18.02

18.92
16.41
14.75
01.20
08.42
14.00
15.32
14.81
15.00

0~ O U i W 00 O Ut W

tedb ¢ 09.27

15.11
13.68
01.36
05.74
13.80
13.99
15.48
14.57

0~ O Ut W 0O Ot Ww

12.32
14.69
14.02
13.81
12.80
10.27
03.97
06.61
12.43
14.13
13.52
10.11

16.48
19.45

19.38 19.90

19.87
16.71
14.98
01.40
09.36
15.53
15.67
15.13
15.11

14.99

16.07 17.35
17.27 18.48
17.17 17.94

15.68
13.89
01.64
07.18
14.10
13.99
16.59
14.83

12.24
19.07
21.66
21.53
19.98
18.16
04.01
06.48
13.14
17.55
19.96
17.99

23.51
36.50
37.77
36.76
37.09
35.84
01.21
04.90

15.57

24.29
30.01
33.67

21.80
31.50
34.14
32.88
32.90
32.73
01.17
05.01
14.60
22.94
25.84
30.01

16.95
21.37
22.71
20.88
20.23
17.66
04.06
06.60
13.54
17.96
19.29
18.09

29.49
35.25
37.63
36.79
36.02
35.68
01.39
05.33
17.29
24.83
30.12
33.59

26.89
30.93
32.48
33.37
32.79
32.84
01.47
06.11
14.90
22.93
26.35
29.82

11.87
21.18
23.75
23.83
22.36
21.39
03.91
06.36
13.39
17.19
19.83
21.71

32.28
42.84
44.12
44.43
44.03
43.53

01.03

05.16

20.57

29.08

34.17

38.01

26.14
36.74
37.60
39.70
38.90
37.04

01.31

06.40

16.98

23.44

27.96

28.20

17.71
25.11
23.53
23.03
21.81
21.18
04.04
06.79
13.72
18.13
20.47
22.21

39.50
43.82
41.87
43.49
42.65
41.25
01.20
06.11
23.41
30.25
34.17
36.59

32.98
35.72
36.53
36.62
36.86
35.90
01.62
08.12
16.33
24.03
27.64
28.31

11.97
22.68
26.63
29.03
28.12
27.55
03.44
06.07
12.91
18.63
22.31
23.40

33.52
44.80
47.27

19.93
24.02
28.05
28.36
27.65
26.92
03.73
06.51
13.59
18.59
22.72
24.56

39.64
45.80
49.27

50.68 49.33
49.49 48.81

48.96
00.64
04.26
17.00
24.18
33.13
38.48

29.76
40.01
41.20
42.59
42.27
41.85
00.83
04.64
12.34
17.76
25.28
29.25

48.64
00.92
05.68
19.24
26.05
33.50
39.27

35.73
40.98
41.82
42.18
41.91
41.42
01.01
06.26
13.06
19.77
26.58
30.83

Table 9.14: Eleven-point precision averages for n-grams. The set of 51 automatically generated
queries were applied to the all-channels database. The second heading row shows the normali-
sation amount used, with L indicating division by the log of the length and the others being the
k-th root of the length. Query lengths used are 10, 20, 40 and 80. This set used directed modulo

melody standardisation.

Chapter 10

Experiments with Manual Queries

and Judgements

In Chapter 4 we described the process of collecting manual queries and relevance judgements.
In this chapter we focus on the application of these queries and judgements to the evaluation of
our similarity measurement techniques. Our purpose is two-fold: to determine whether the same
similarity measurement techniques are successful with manual queries; and to determine whether
the method of evaluation makes a significant difference in performance of MIR techniques.

We report two experiments in this chapter. The first makes use of a manual query set to test
the best of our similarity measurement techniques as determined with automatic queries and
judgements. The second experiment makes use of a set of manual relevance judgements, collected
in the manner described in Chapter 4. These manual relevance judgements are compared to the
ones created by locating versions of pieces of music. Both sets are used to evaluate similarity
measures and we discuss the differences found in the evaluations. The experiments reported in

this chapter are extensions of those that have appeared elsewhere [134, ?].

10.1 Manual Query Experiment

Our main aim in these experiments was to explore whether melody matching techniques for
automatic queries were valid for manual queries. We gathered a set of manual queries by asking
a musician to listen to the MIDI files of pieces that had been selected previously as the basis for

automatic queries, and to play a melodic query representing the piece. This allowed us to use

139

140

0 9 L 0 9 L 0 9 L

acdb 05.00 10.45 08.82 10.24 20.81 20.46 12.86 24.23 26.78
08.78 13.33 13.52 24.46 28.94 27.18 25.55 32.14 32.11
09.59 15.04 14.97 27.76 30.23 27.84 33.36 34.63 35.77
11.41 10.77 10.77 25.07 28.98 26.78 34.75 34.17 33.77
06.47 06.29 06.29 28.42 28.04 26.92 31.70 32.51 31.35

04.08 04.36 04.36 26.53 27.79 26.74 31.55 33.76 32.63

0 ~J O Ut b W

amdb 02.37 05.43 05.19 02.65 06.09 06.15 02.87 05.28 06.10
04.49 07.03 06.99 07.04 10.27 10.34 05.97 08.04 08.60
05.16 08.63 08.49 12.39 14.11 14.05 10.83 13.11 12.70
04.44 06.36 06.06 10.75 11.76 11.66 11.17 12.56 12.57
03.43 04.98 04.98 10.79 10.90 10.90 10.46 10.52 10.52

04.21 04.86 04.86 09.96 10.24 10.24 10.58 10.15 10.15

0 O Ut W

ecdb 02.70 05.42 05.32 05.30 09.35 09.34 05.25 08.54 08.70
05.08 07.57 07.55 12.10 14.37 13.80 11.71 13.63 13.50
06.00 08.62 08.58 13.46 15.07 15.18 16.73 17.34 17.27
04.97 06.17 06.17 12.74 12.75 12.80 15.03 15.61 15.39
03.99 04.84 04.84 10.98 11.35 11.35 13.61 13.83 13.90

02.60 02.84 02.84 09.97 10.50 10.50 13.26 13.96 13.51

o 3 O Ot W

acdb a 10.57 12.92 04.76 35.46 28.92 20.78 36.81 35.02 28.90

amdb a 05.87 08.45 06.45 13.16 13.46 12.65 11.59 14.28 12.84

ecdb a 06.09 08.06 05.70 15.56 14.76 12.36 14.33 14.65 13.42

tedb a 08.85 09.36 02.47 15.64 14.03 10.31 17.55 17.17 14.43

Table 10.1: Eleven-point precision averages for different n-gram lengths (shown in column 2)
using a set of 30 manually-produced melody queries and the “count distinct” measure. Also
shown is local alignment (where column 2 contains “a”). The best two results for each query
length are highlighted.

the same relevance judgements as before. Using these queries we re-evaluated the extraction,
standardisation, and matching techniques.

Our experiment was to produce comparable results for a set of 30 manual queries, created by
a volunteer who listened to each selected piece in turn and created a melody query by playing
on a synthesiser keyboard connected via MIDI to a sequencing program. There was overlap
in the pieces represented in the manual set of queries and the two automatic sets used in the

experiments reported in Chapter 9. Where this occurred, the same MIDI file was used as the

141

basis of the query.

The databases that were used for searching were the same as those tested in Chapter 9,
that is, the collection of 10,466 MIDI files, and each set of extracted melodies using the four
extraction algorithms discussed earlier, plus the all-channels version of the database. We re-
stricted our experiment to modulo-12 melody standardisation, which was shown to work well in
the experiments reported earlier. We also tested three levels of normalisation.

The manual queries ranged from 15 to 88 notes. The mean length was 31.9 and the median
28. We ran the queries in two ways: truncating the queries to 10, 20, or 30 notes, or using the
full manual query. In the case of truncated queries, some are shorter than the nominated length,
in which case the entire query was used. Thus, all queries used in the length 10 query set are
indeed of length 10; all but 5 queries were truncated to length 20, the others being in the range
15-19; and approximately half of the queries in the length 30 set were truncated. We chose to
include queries of length 30 as this length falls midway between the mean and median for the

untruncated manual queries in the set.

10.1.1 Results

Tables 10.1, 10.2, and 10.3 show the results for manual queries. The results when using full
manual queries, as opposed to queries truncated to 10, 20, or 30 notes, are shown in Table 10.3.
Coordinate matching appears to be superior to all other methods when applied to full manual
queries and those that have been truncated to 10 notes. Local alignment worked best for queries
truncated to 20 or 30 notes, however, this result is not statistically significant. It is also clear
from these results that all-channels is the best choice for the database, and n-gram lengths from
five to eight are significantly better than shorter ones for most query lengths and normalisations.

For full queries, all-channels is, again, far better than the other database versions. While
the count-distinct method appears to have outperformed local alignment, the difference is not
statistically significant. N-gram lengths from five to seven gave the best results, with n-grams
of length five being statistically significantly better than length four and shorter.

Unlike the automatic queries used in Chapter 9, applying longest common substring to
manual queries gave poor results. Table 10.2 shows the results for longest common substring
and the thresholded-substring variation, which only gives a score for substrings of length k or

greater. As with the other methods, using the all-channels database worked the best.

142

The top-channel and entropy-part melody extraction methods were more effective for manual
queries than for automatic ones, with top-channel occasionally producing better results than

entropy-channel when used with the substring measurements.

10.1.2 Analysis

On close analysis of the best n-gram and dynamic programming techniques for modulo-12 inter-
vals, we observed that all relevant answers retrieved within the top twenty by the local alignment
technique were also retrieved by n-gram coordinate matching. The relevant answers retrieved by
coordinate matching but not by the dynamic programming approach tended to have significant
sections of the query matching widely spaced sections of the answer. Upon examination of these
answers, the reason seems to be that the query melody partially matches different variations
of the same theme within the answer melody. The coordinate matching n-gram method al-
lows these partial matches to be accumulated, without including repeated fragments. We have
already seen that, when repetition is included, the precision of answers is reduced.

Another interesting observation was that the number of distinct n-grams of length five for
the all-mono approach was 50% greater than that for all-channels. Entropy-channel had approx-
imately 60% of the n-grams of all-channels. This suggests that there is little penalty and much
to gain from using the all-channels approach for melody indexing.

A clear result of this experiment is that some techniques do not work as well for manual
queries as they do for automatic ones. This is especially true of the longest common substring
technique. This result makes sense when we consider how the automatic queries were created:
by automatically extracting the melody from a MIDI file in the collection. There are likely to
be several exact matches in the relevance set as a result. For manual queries, however, minor
differences between the query and the data in the collection are found. As discovered in our
analysis, this typically involves the query containing melodic variations that occur at different
parts of the target piece. Local alignment results were similarly affected, but not to the same
extent. The all-mono database also has more success with automatic queries than with manual
ones.

It can be seen that the best n-gram length is five. We hypothesised that part of the success
of the 5-gram coordinate matching technique is that it screens out melodies with short matches.

If this were so, then a technique that only allowed matches of a minimum length of five should

143

0 9 L 0 9 L 0 9 L

acdb 11.48 13.13 04.74 25.76 24.66 18.35 30.48 29.65 21.74
11.48 13.75 07.69 25.76 25.00 19.74 30.48 31.82 24.53
11.39 14.87 11.66 25.76 26.41 21.64 30.48 31.74 25.54
11.19 14.33 13.72 25.71 27.03 25.62 30.61 30.84 29.31
09.61 14.87 14.80 26.51 26.91 2543 33.16 31.00 30.18
11.49 10.77 10.77 26.92 28.53 26.46 30.73 32.66 31.14
06.47 06.29 06.29 28.31 28.00 26.95 30.88 32.42 30.74

04.08 04.36 04.36 27.77 27.89 26.84 30.11 33.72 32.67

0 ~J O Ut i W N

amdb 06.16 08.16 06.05 11.54 12.26 11.99 11.72 12.70 11.90
06.16 08.52 07.52 11.54 12.57 12.26 11.72 12.04 12.22
06.11 09.15 08.41 11.51 12.83 12.37 11.72 12.55 12.00
06.80 09.44 09.35 12.08 12.97 12,51 12.06 12.45 12.46
05.95 09.12 08.97 13.00 12.06 12.89 11.41 12.09 12.15
06.20 06.86 06.36 10.79 11.26 11.26 11.92 12.01 12.01
03.43 04.98 04.98 11.10 11.01 11.01 10.88 10.52 10.62

04.21 04.86 04.86 10.59 10.14 10.14 10.13 10.26 10.26

0 O Ut W N

ecdb 06.16 08.08 05.72 11.99 13.04 11.72 13.92 13.88 12.94
06.16 08.77 07.25 11.99 13.07 12.55 13.92 14.03 13.27
05.86 08.84 08.36 12.02 13.02 13.30 13.92 14.01 13.91
06.00 08.87 08.78 11.74 12.76 13.04 14.49 14.31 13.96
06.30 08.75 08.75 12.59 12.73 12.99 13.91 14.91 14.06
04.85 06.18 06.18 11.99 12.88 12.87 15.00 14.55 14.40
03.99 04.84 04.84 11.17 11.66 11.66 13.73 13.86 13.79

02.60 02.84 02.84 10.17 10.30 10.30 12.93 13.26 13.26

W~ O Ut i W N

tedb 07.92 09.07 02.74 13.15 13.59 10.09 16.65 15.38 13.41
07.92 09.26 06.23 13.15 13.42 10.43 16.65 14.92 14.27
09.44 10.49 07.14 13.23 13.08 12.05 16.64 15.83 14.54
07.65 09.56 08.91 13.42 14.03 1291 16.10 14.64 15.46
08.40 09.60 09.45 14.30 12.58 12.76 15.03 14.80 14.70
06.84 07.79 07.79 14.98 14.71 13.70 16.15 16.85 15.74
03.02 03.63 03.63 11.50 13.07 11.95 14.26 15.71 14.60

01.40 01.74 01.74 13.02 13.55 12.44 14.43 15.56 14.45

0 O Ut i W N

Table 10.2: Eleven-point precision averages for longest common substring and thresholded sub-
string measurements using a set of 30 manually-produced melody queries truncated to lengths
10, 20 and 30, and standardised using directed modulo 12 standardisation. Column 2 shows the
minimum substring length for which a score is given. A minimum of one is equivalent to the
conventional longest common substring technique.

144

acdb amdb ecdb tcdb

3 13.17 27.79 28.15 02.91 04.93 05.83 05.37 09.33 10.34 07.77 13.51 15.53
4 31.05 34.03 34.40 07.80 13.57 13.28 11.86 14.69 15.07 16.01 17.88 16.66
5 39.31 41.02 37.99 11.96 15.41 15.42 17.13 18.55 17.90 19.02 20.73 19.44
6 37.44 36.35 36.04 10.29 11.71 11.61 15.58 16.08 15.66 18.76 18.92 18.88
7 35.65 35.86 35.97 08.90 09.15 09.24 13.98 13.79 14.00 16.43 17.61 17.72
8 38.238 34.50 34.21 09.06 09.31 09.28 13.94 13.93 13.96 16.53 18.71 18.59

a 0 34.98 32.56 29.61 09.30 09.84 08.77 15.86 14.92 13.61 19.89 19.85 17.25

Table 10.3: FEleven-point precision averages for local alignment using a set of 30 complete
manually-produced melody queries. The headings I, 9 and 0 refer to the type of normalisa-
tion applied to the similarity scores. Coordinate matching is shown for n-gram lengths from
three to eight.

perform well. This does not appear to be true for substring matches, but may well work for
local alignment. Combining the minimum length for contributing matches with a low penalty

for larger gaps may be beneficial. We are currently exploring these possibilities.

10.2 Manual Relevance Experiment

From the start of our investigation of MIR in 1997, we have focused on identification of which
techniques would be most effective for melody extraction, melody similarity matching, and so
on. The approach we have used has been based on techniques found in the field of IR research.
In this experiment we compare the manual and automatic queries with our two sets of relevance
judgements.

The automatic and manual queries concern the same pieces of music, so we can measure
our matching techniques using each possible combination of automatic and manual queries and
judgements, calculating the eleven-point precision averages for each run using a pool of 1000
answers.

We examined the local alignment technique against each possible melody extraction tech-
nique. Queries were truncated to lengths 10, 20, and 30. As with the previous experiment, in
some cases the manual query was shorter than the designated query length, in which case the
entire query was used.

We also did a length-matched version of the experiment, in which the automatic queries were

truncated to the length of the full manual query.

145

10.2.1 Results

Table 10.4 shows the eleven-point precision averages as a percentage for the various combinations
of manual and automatic queries and judgements, for two different styles of local alignment. For
each combination of query and judgement sets and query length, the best result is shown in bold;
for example, it can be seen for both manual queries and automatic queries that the agreement
between the two sets of judgements is excellent — both sets of judgements identify the same
best method in each case.

It can also be seen that, when manual queries are used, the all-channels (ac) database
outperforms the others by a large measure. The difference between all-channels and the all-
mono (am) database are even more pronounced when manual judgements are used instead of
automatic judgements. When the manual judgements are used, entropy-channel (ec) automatic
query results are favoured, and entropy-part (ep) also shows significant improvement.

Table 10.5 shows the results for length-matched queries. The results are consistent with
Table 10.4. Interestingly, the manual queries that were truncated to 30 notes were measured to
be more effective on average than full manual queries. Automatic queries, however, benefited
slightly from being truncated to the same length as the corresponding manual query.

We tested the results for statistical significance by applying the Wilcoxon test. The best
method for each query length was significantly better to a 99% confidence level when compared
to most of the other methods with the same query length in the same table. In the case of
manual queries of length 20 and 30, the all-channel (ac) method was significantly better than
all the other methods listed. For short automatic queries with manual relevance judgements the
results were less clear. In general, the manual judgements allowed greater discrimination for
manual queries and the automatic judgements discriminated better between automatic query
tests.

We observed similar effects for coordinate matching, when the different combinations of au-
tomatic and manual queries and judgements were tested. The results were completely consistent
with those for local alignment, so we have chosen to not include them.

Overall, the two sets of judgements showed good agreement in their ranking of matching and
melody extraction techniques. We observe decidedly different results from the two query sets.
For example, with the automatic queries, the all-channels (ac) database was no better than the

others, in which a specific part is used to represent each piece in the database. However, for

146

the manual queries, there is a marked difference in the success of the two approaches, with the

all-channels approach being far better.

10.2.2 Discussion

The results of this experiment show that the two sets of relevance judgements give fairly good
agreement when applied to the task of evaluating melody ranking techniques. There are slight
differences, for example the automatic relevance favours all-mono and using the manual set of
relevance judgements improves the measured effectiveness of entropy-part. The most marked
difference occurs between manual and automatic queries, with the all-channels database shown
to be far more effective for manual queries.

Automatic and manual queries differ in their nature. The automatic melodies that were
used as a basis for automatic queries were created by applying a melody extraction technique
to the entire piece. In contrast, the manual queries consisted of a sequence of notes considered
to be a sufficiently large portion of the melody for it to be uniquely identified, as judged by a
volunteer musician. Truncating the automatic queries to match the length of each manual query
was the best that could be achieved in regard to making an unbiased comparison of the effects
the two types of query have on a music matching technique. The results of the experiments that
truncated both the automatic and manual queries to specific lengths agree with those where
each automatic query is truncated to the same length as the corresponding full manual query.
However, the results show that more is not always better for melody queries, as some gave worse

results when longer queries were used.

10.3 Summary

We have proposed a methodology for matching pieces of music according to whether they are
likely to be perceived as similar by a listener. We applied the sets of manual and automatic
queries and judgements we have collected to the music matching techniques that we have im-
plemented. When manual queries are used, we have found that retaining the melody from each
channel, what we call the all-channels technique, is far better than any other approach. The
fact that n-grams work so well means that we should be able to build indexes that are effective

at rapidly producing useful answers to queries. If indexes are built based on the directed-modulo

10 20 30
0 9 L 0 9 L 0 9 L

auto mndb acdb 10.57 12.92 04.76 35.46 28.92 20.78 36.81 35.02 28.90
amdb 05.87 08.45 06.45 13.16 13.46 12.65 11.59 14.28 12.84

ecdb 06.09 08.06 05.70 15.56 14.76 12.36 14.33 14.65 13.42

epdb 04.86 04.99 04.08 08.08 08.47 07.66 07.96 07.98 07.52

tedb 08.85 09.36 02.47 15.64 14.03 10.31 17.55 17.17 14.43

amdb acdb 14.49 11.81 06.71 22.62 22.47 20.85 28.04 27.32 20.21
amdb 28.43 28.91 25.21 36.22 37.58 36.93 37.96 37.32 36.42

ecdb acdb 22.36 18.62 12.08 36.78 36.33 28.93 43.22 40.77 35.91
ecdb 21.05 20.39 16.02 33.15 33.07 30.04 35.59 33.62 32.53

epdb acdb 05.46 05.88 04.28 18.95 17.93 10.37 18.72 18.51 12.29
epdb 13.06 13.01 11.21 20.47 19.98 18.98 19.83 21.50 19.18

tcdb acdb 20.89 19.74 14.40 34.55 32.41 25.51 35.88 34.29 28.03
tcdb 21.41 20.79 16.40 32.22 31.10 25.73 32.79 32.94 29.70

man mndb acdb 14.81 15.49 06.31 45.63 35.83 27.70 50.26 50.13 39.30
amdb 05.63 06.61 05.04 10.13 11.65 10.26 09.13 11.45 10.25

ecdb 13.21 15.44 08.48 27.31 27.46 20.50 28.60 29.37 26.80

epdb 07.64 07.75 05.49 14.79 14.01 10.90 15.14 15.51 14.05

tedb 11.58 12.30 02.87 15.05 19.09 13.33 22.30 23.23 18.99

amdb acdb 07.18 07.26 04.65 12.33 11.74 10.36 16.30 15.34 09.55
amdb 25.65 25.75 23.04 34.16 32.49 29.22 37.35 36.76 35.45

ecdb acdb 22.42 18.04 15.53 41.42 38.92 28.47 46.89 45.00 39.77
ecdb 25.16 24.57 20.71 37.28 39.22 33.38 41.40 38.53 39.63

epdb acdb 09.36 09.31 08.74 28.11 25.54 16.25 30.10 31.69 23.04
epdb 17.80 17.29 18.03 31.97 28.86 28.11 31.38 33.89 30.72

tcdb acdb 19.27 19.34 13.97 33.87 33.35 24.92 34.29 35.07 28.47
tedb 17.80 18.13 18.26 32.53 31.60 26.69 35.77 33.72 29.65

147

Table 10.4: Eleven-point precision averages for queries of lengths 10 to 30, comparing auto-
matic and manual relevance judgements and queries. The first column indicates which relevance
Judgements were used (automatic or manual). The second column shows which type of query was
used: manual (mn), all-mono (am), entropy-channel (ec), top-channel (¢c), and entropy-part
(ep). Column three shows the database used, including the all-channels (ac) database, and those
based on each of the melody extraction techniques.

148

auto man

mndb acdb 34.98 32.56 29.61 47.07 43.96 39.03
amdb 09.30 09.84 08.77 |07.67 07.54 06.09
ecdb 15.86 14.92 13.61 29.84 29.86 26.38
epdb 09.35 09.35 07.00 16.95 16.61 13.97
tedb 19.89 19.85 17.25 23.58 22.84 23.85

amdb acdb 30.47 31.06 24.95 21.74 20.51 19.89
amdb 39.88 40.09 38.30 38.20 37.96 33.68

ecdb acdb 44.62 44.26 36.28 47.85 46.55 40.99
ecdb 33.97 33.86 33.21 38.33 39.50 39.92

epdb acdb 18.81 18.81 13.24 29.57 29.20 21.15
epdb 21.57 20.52 20.91 32.12 29.69 30.04

tedb acdb 36.31 34.91 30.35 37.52 38.14 29.46
tedb 32.76 33.88 29.29 33.78 35.06 29.51

Table 10.5: Eleven-point precision averages for automatic and manual queries of matched lengths,
comparing automatic and manual relevance judgements and queries. The first column shows
which type of query was used: manual (mn), all-mono (am), entropy-channel (ec), top-channel
(tc), and entropy-part (ep). Column two shows the database used, including the all-channels
(ac) database, and those based on each of the melody extraction techniques.

standardisation, we recommend indexing n-grams length of five.

That the choice of query set for evaluating melody matching methods affects the outcome
highlights the fact that it is important to have appropriate tools for evaluation. Purely using
statistical reasoning and known-item searches (described in Section 4.2) may lead to misleading
results. We have developed software for acquiring human relevance judgements for music similar-
ity. The manual relevance judgements acquired with our software are a valuable addition to the
music collection, manual queries, automatic queries, and automatic relevance judgements that
we have already collected. Together these resources provide a trustworthy tool for measuring
the effectiveness of MIR systems. Our illustrative experiments show how these tools can be used
in practice, discriminating between different similarity measures, melody extraction techniques
and definitions of relevance.

Now that MIR technology is beginning to mature and to be available outside the research

benchtop, it is essential that MIR systems to be evaluated in a consistent and rigorous manner.

149

We believe that the tools we have developed can provide an essential resource for the MIR
community, and we plan to make our data sets and software available to the music retrieval

community for standardised evaluation of systems.

Chapter 11

Future Work and Conclusions

Before our research commenced in 1997 there was little published work on MIR. Some query-
by-humming systems had been built [54, 71, 93] but there had been little evaluation of their
effectiveness. Kageyama et al. [71] used known-item searches to evaluate several techniques, but
most work either used statistical measures of likely effectiveness [11, 54, 93] or only addressed
efficiency issues [21]. Similarly, the approaches to melody extraction, where applicable, were
partially documented and largely unsubstantiated [11, 54]. Our main contribution has been to
apply a more rigorous methodology to the evaluation of the components of MIR systems, to
develop and test some new MIR techniques, and to produce tools to assist in the evaluation of
other similar systems. In this chapter we examine potential extensions to our work and review

the contributions of this thesis.

11.1 Future Work

There were several aspects to our research work—melody extraction, melodic similarity mea-
surement, and methodology for evaluating effectiveness of MIR techniques—but there is much
that remains to be done in this area of research. In this section, we discuss each of the main
areas of our research in turn in terms of questions that still need to be answered, and suggest

research questions that could be explored by experts in the discipline of music psychology.

150

151

Music Psychology

In Chapter 2 we surveyed music psychology research to identify features that affect music simi-
larity perception and melody perception. The facts gleaned from the survey were developed into
two hierarchies of melodic similarity—one for long-term memory and the other for short-term
memory. Information on perceived melody was somewhat more scant. Frances [51] stated that
the musical part with the highest pitch is usually perceived as the melody except when it is
repetitive, but to our knowledge there has been no previous experimental work to confirm this.
Our own experiment on melody extraction techniques did so in part, but did not isolate from the
experiment other factors such as rhythm and loudness that would be necessary in the context
of music perception research.

In terms of perceived melodic similarity, it was clear from our survey that the results for long-
term memory are quite different to those for short-term memory. Other factors that influence
perception include the duration of the melodies played to listeners [47] and the musical ability
of the listener [51]. When constructing the hierarchies we found that there were some types of
melodic transformation that had not been tested empirically, preventing one of the hierarchies
from being a simple linear list. For example, we don’t know how similar melodies with the same
contour and relative interval sizes compare to those with the same contour and note names but
not necessarily the same relative interval sizes. Also, most work in music psychology on melodic
similarity deals only with pitch. More work on how rhythm affects perception of similarity would
be useful.

Research into music memory has shown that pitch sequences are more important than rhythm
sequences for allowing listeners to identify melodies. Another interesting question that remains
to be answered is how difficult is it for listeners to identify a melody with the rhythm changed.
In our experience this seems to be quite difficult. Whether such a melody consisting of the same
intervals as a given piece of music would be judged as less similar than another that has the
same contour and rhythm would be of interest, as this would influence the choice of ranking

techniques for a MIR system.

Improving Melody Extraction

In Chapter 5, we presented four algorithms for extracting melodies. It was found that the

simplest of these was the most reliable, as judged by a group of volunteers listening to a small

152

collection of pieces of music. The algorithm that was judged the most successful (all-mono)
selects the highest pitch note commencing at every instant. In our later experiments on similarity,
it was found that keeping a melodic part from each separate channel for matching was a successful
approach to melody matching. This alleviates the need for selecting which instrument has the
melody and thus should improve the precision of melodies that are extracted. However, with
better melody extraction algorithms the situation could be reversed.

It was found in our experiments that entropy and pitch are valuable for identifying the
melody of a piece. This confirms the perception concepts put forward by Frances [51]. In the
selection process it may be useful to combine the two aspects. For example, if a channel melody
has an entropy that is out of the accepted range for a melody, implying that it is too monotonous
or too random, then it will not be selected. The highest average pitch is sometimes a successful
metric for selecting the melody from a set of channel melodies, but some channels contain a
part that is very short and therefore could not be the melody of the piece. A comparison of
channel melody duration with the duration of the piece of music may eliminate some of these
distractors.

In the case of part-splitting, our initial approach used two types of information: the overlap of
parts and proximity of pitch. This approach performed poorly compared to the other techniques,
but had some inbuilt limitations: the order of note events that occurred at the same instant
affected the allocation to parts. We hope to develop a new technique that removes this problem
and in addition considers all the main factors: average pitch, entropy and part duration. A
duration check can be helpful in removing from the selection process parts that have few notes
in them or widely spaced ones.

Sometimes a melody moves from instrument to instrument. This is a common feature in
jazz, where each instrument takes the lead in turn. It also appears in classical and popular
music, for example, in a duet. An approach to melody extraction to better handle this situation
may be a sliding window technique that determines what is likely to be part of the melody on

a local basis.

Using Other Music Features

Most of our experiments thus far have restricted melodic standardisation to pitch only. On a

database of 10,466 MIDI files, pitch interval sequences were enough to retrieve answers well.

153

For larger databases more detail may be required to rank answers. It may also be important to
ensure that the best answers to a query are in the top five to ten answers retrieved, due to the
time it takes a user to listen to answers and determine if they are relevant. A way of reducing the
number of irrelevant answers would be to include rhythm information. We experimented with
the inclusion of rests, which helps to indicate breaks between phrases, and distinctive staccato
rhythms, such as that found in the Addams Family theme-song. In our experiments the use of
rests was unsuccessful, but varying the minimum duration of a rest may yield better results.
Storing further rhythm information such as the duration of notes should help to remove answers
that, upon listening, bear little resemblance to the query melody despite a similar pattern of
pitches.

We have limited our research to the problem of answering melody queries. This is not the
only type of query that may be posed of a MIR system. There are many unanswered questions

regarding the handling of queries on tonality, harmonic progression, and other musical features.

Improvements to Similarity Measurement

We have concentrated on two specific techniques to measuring similarity: the use of n-grams
and dynamic programming. These techniques are combined with melody extraction and stan-
dardisation methods. We restricted the scope of our experiments to measuring similarity using
standardisation techniques based on note transitions. While some of the techniques were shown
to be effective, a single note error results in two adjacent symbols being incorrect, whereas a
single incorrect symbol in a string causes a change in pitch relative to the start of the match—
unless it differs by an octave —which can result in a somewhat better rank than is warranted.
An approach that would be worth exploring is the modification of the local alignment matching
process so that mismatches up to k£ in length are checked to see if they retain the key of the
earlier part of the melody fragment being matched. The weights applied in the matching process
then allow discrimination between two types of mismatches.

One of the difficulties in the field of MIR is that there are no standard collections universally
available at present. Another is that similarity measurement techniques that can be used on
one collection cannot be easily adapted to another. For example, the dynamic programming
approach used by Mongeau and Sankoff made use of sets of musical variations that were in

a single key, and so allowed a melody standardisation method that was relative to the key of

154

the piece. Their dynamic programming approach was specifically designed to work with this
standardisation method, an approach that becomes impossible when a wide range of music, some
of which has complex key changes, is used for evaluation. In this case it becomes impossible to
compare the methods for effectiveness. Therefore a problem that needs to still be addressed is

the evaluation of these existing techniques in a uniform framework.

Improving the Experimental Framework

We have developed an effective experimental framework for testing melody retrieval methods,
however it is hoped that in future there will be more comprehensive sets of data. In particular,
it would be valuable to gather better quality relevance judgements for a larger set of queries, to
allow greater discrimination between ranking techniques than was possible with the sets used
for our experiments. As better techniques are found, the size of these sets will be crucial to
obtaining statistically meaningful results. Also important for future MIR work will be a means
of comparing not only the retrieval effectiveness but other measures such as space and time
efficiency so that implementers can evaluate the trade-offs between different approaches.

For more realistic evaluation of MIR techniques it would be useful to obtain real queries.
There are collections of these in archives which, it is hoped, can be made available to the research
community for analysis and application to evaluation. It would help answer such questions as
how long and how precise melody queries are, and thus inform MIR researchers of how to best

proceed with the development of new techniques.

Other Areas

In this work we have mainly concentrated on solving the problem of finding matches to melody
queries. We have concentrated on the techniques required to select the parts of music that are
most useful for matching, and to carry out the matching process. We have not explored efficiency
issues to any great depth. We have only briefly touched on the problems of presenting answers
to users. As discovered in the process of collecting music relevance judgements, there are real
issues with the method of presenting answers in a way that allows users to efficiently and easily
determine if the answers are relevant.

This thesis has used note-based musical information as its data set. The techniques that

are successful for this type of data are useful for indexing MIDI files, and other note-based

155

data such as the collections of music in abc, Humdrum, and DARMS formats. However, the
majority of music is not available in a digital note-based format at all. Some music is available
as sheet music, a form that can be converted to notes using Optical Music Recognition (OMR)
techniques [5, 22]. However most music is only available as recordings, for which a different
approach is required. In addition, some contemporary music is less note-oriented and would
not be well-serviced by a note-based approach. Therefore the ideal MIR system would need to

incorporate other non-note-based techniques.

11.2 Summary and Conclusions

Within the MIR research field we have chosen to concentrate on answering questions related to
the problem of posing melody fragment queries to music databases. We hope that the influence of
our contribution extends beyond this domain, as our work in evaluation of retrieval effectiveness
is applicable across a broader spectrum of retrieval problems. In this section we discuss our

conclusions and the contribution of this thesis.

Methodology

Our approach to the MIR problem began with a survey of music perception research presented
in Chapter 2, from which we discovered that important factors for determining the melody of a
polyphonic piece of music are the pitch and variety. Loudness is only one of several features that
are important for determining the melody of a piece. For grouping of notes into musical parts,
the most important principle is pitch proximity. In addition we learned that contour was the
melodic feature that people remember best. Two hierarchies of similarity were synthesised from
various pieces of music perception research. One is based on short-term memory and the other
on long-term memory. It is likely that the long-term memory hierarchy will be more applicable
for answering user queries to a MIR system.

In addition to a grounding in music perception, the methodologies of the field of information
retrieval were an important basis for this research. This became the approach of our experimental
work. As outlined in Chapter 4 our approach to the music matching problem has consisted of
three stages: melody extraction, melody standardisation, and similarity measurement. The

emphasis of our work has been on evaluation of techniques, rather than the building of systems.

156

We commenced with melody extraction algorithms based on music perception concepts. To
evaluate the techniques we used human judgements. Our methodology for the music similarity
measurement experiments followed the IR tradition of using a set of relevance judgements to
evaluate the effectiveness of ranking techniques. There were no such relevance sets available
prior to our work. We created our first query and relevance set by locating pieces of music
for which there were more than one version in the collection of music. Versions were located
by examining filenames and listening. Queries were created by applying the melody extraction
techniques to query pieces, and truncating to specific lengths. This query and relevance set was
used as a first approach to measuring the success of ranking techniques.

The next stage involved using this relevance set and the top answers of the most successful
ranking techniques (as judged by measuring recall-precision averages for the query and relevance
set) to obtain human judgements of similarity.

Experiments with the various sets revealed that the type of melody query used for evaluat-
ing ranking techniques makes a significant difference. Automatically generated melody queries
provided more exact matching with pieces in the collection, favouring techniques that are prob-
ably less effective for real user queries. The two relevance sets had minor differences in their
effects on evaluation of ranking techniques. The experiments lead us to conclude that the kind
of query and relevance sets used for evaluation should resemble as closely as possible those that

the algorithm is being designed for.

Extraction

Prior to our research there had been no published work on testing algorithms that extract
melodies from pieces of music, but only research on splitting polyphonic music into its parts and
some partially documented information on how a particular system extracted melodies [54]. In
Chapter 5 we discussed four simple melody extraction algorithms that we had developed. They
incorporated the concepts of relative pitch, variety — measured using first-order predictive
entropy — and pitch proximity. Using listeners to evaluate the melodies that were generated by
the four algorithms, we found that the most successful algorithm was also the simplest one, which
we called all-mono. The all-mono technique places all notes into one channel and selects the
highest-pitch note that starts at each instant. Thus it was found through experimental evidence

that the best technique used pitch alone to determine the melody, providing some confirmation

157

of Frances’s theory [51].

Standardisation

There are many possible ways of representing a melody for matching. Several researchers have
discussed different methods of representing melodies in the context of uniqueness within a col-
lection [11, 40, 93] or in terms of the accuracy of sung queries [83]. In work concurrent with
our own, Downie [41] has formally presented a set of classifications of melody representations
based on pitch alone. Another detailed discussion is found in Selfridge-Field’s 1998 article [120]
that addresses many of the problems associated with melodic representation. In particular, the
author discusses capturing information about key as well as pitch. In Chapter 6 we listed and
discussed the many approaches that have been used for melody matching, plus several other pos-
sibilities that could be useful. We discussed these in terms of their advantages and disadvantages

for melody matching.

Data

There have been analyses of collections of music published in the past, for example, Dowling’s
tally of interval frequencies in a collection of 80 Appalachian songs [36]. In Chapter 7 our focus
was slightly different to that of the musicologist or psychologist. Our aim was to learn more
about the distribution of notes and intervals in melodies to allow a more informed approach to
music matching. We used the n-gram as the basic melodic term to analyse. We graphed the
frequency distribution of n-gram occurrences in several collections of MIDI files. We used both
contour representation and exact interval representation for this process.

Through our analysis, we discovered a distribution that bears broad similarity to that found
in n-gram distributions of textual data, with one minor difference: there is one term that
is always far more frequent than all others in the music collection, and that is the one that
represents a sequence of repeated notes. This effect was exaggerated in this study as “melodies”
from accompanying parts were included in the analysis. We determined the expected number of
exact answers that would be retrieved given contour n-gram queries of different lengths. From
this we concluded that contour queries would need to contain at least 12 notes to retrieve less
than 10 answers from a set of 2697 tracks. If inexact matches are allowed—as is essential for

MIR—then queries need to be much longer.

158

Similarity

In Chapters 8 and 9 we presented the techniques that we explored for measuring the similar-
ity of melodies. We developed several variations on dynamic programming, and tried a few
formulations that use n-grams as their basis.

Using eleven-point precision averages and our set of “automatic” queries and relevance judge-
ments to evaluate experimental results, we discovered that local alignment and longest common
substring were the most successful dynamic programming techniques for matching melodies.
These were best left un-normalised for song length. The best choice for the database to match
against in these cases was either the all-mono database, with the same method used for the
query, or the all-channels database with the entropy-channel method used for queries.

For n-grams we discovered that the best technique, when measured in the same way as for the
dynamic programming experiments, was to use what is commonly known as coordinate matching,
that is, counting how many n-grams both the query and piece have in common, ignoring any
duplicates. For this technique, either no normalisation or a small amount of normalisation for
length were best. Again the two best databases and melody extraction techniques were entropy-
channel melody extraction combined with the all-channels database, and the all-mono technique
used for both the melody and the database. The best n-gram lengths were in the range five to
seven.

We used a set of manual queries and human relevance judgements for further experiments.
These were described in Chapter 10. We discovered that the type of query set significantly
affects the success of different ranking techniques. In particular, the all-mono database was
not as successful for manual queries compared to the all-channels database. Longest common
substring did not appear to work as well either. Manual relevance judgements had more subtle
effects on the evaluation of techniques, such as improving the measured effectiveness of melody

extraction techniques that split pieces into parts before selecting the melody.

Implications

There have been many approaches suggested for MIR systems with few of them evaluated for
both effectiveness and efficiency. Our work has tested the effectiveness of a small selection of
techniques. Based on our experience we conclude that a practical approach to MIR for note-

based information such as MIDI would extract melodies from each channel or defined musical

159

part in the collection. The technique for melody extraction would select the highest pitch note
occurring at each instant. A melody standardisation approach would be used to represent the
melodies of the collection and the query that is presented to the system. Using a sequence of
intervals or pitch distances is an effective choice for standardisation. The search mechanism that
satisfies both retrieval effectiveness and efficiency concerns is the use of an n-gram index that
uses n-grams of length five. The ideal index structure for this hasn’t been determined. However,
a look-up array for the first two to four characters in the n-gram and overflow binary trees for
searching for the remainder of each n-gram is a simple practical structure that can be used.
The size of the structure can be further reduced with compression. The n-gram index would be
used to look up the pieces that contain the same n-grams as the query. To rank the pieces for
presentation to the user a count of the n-grams that each piece has in common with the query
disregarding duplicates would be the most effective similarity measurement.

The method of presenting answers to the user has not been addressed in detail as yet.
However, our experience with collecting relevance judgements suggests that the positions within
the piece that match the query should be clearly shown in the display, allowing the user to listen
to the segment of interest in the least time-consuming way.

On a more theoretical note, our work has suggested further questions that need to be ad-
dressed in the parent discipline of music psychology, in addition to the future work required in
MIR research. Also, we found that the type of queries used for evaluating MIR techniques sig-
nificantly affect the outcome of the experiments. As such it is important that sets of real queries
are made available so that evaluation of techniques can be done as appropriately as possible.

In summary, we have achieved the aim of this thesis which was to find methods that success-
fully produce answers to melody fragment queries. We have developed an approach to evaluating
MIR systems, an evaluation of four melody extraction algorithms, the evaluation of many vari-
ables that affect two main approaches to melody matching, two techniques that are successful
at matching melodies, and a set of tools that can be used to evaluate MIR systems. These

advances are a major step towards practical music information retrieval.

Bibliography

[1]

A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms. Oxford University
Press, New York, New York USA, 1997.

R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Communications

of the ACM, 35(10):74-82, 1992.

R. A. Baeza-Yates and C. H. Perleberg. Fast and practical approximate string matching.
In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proceedings of the
3rd Annual Symposium on Combinatorial Pattern Matching, number 664, pages 185-192,
Tucson, AZ, 1992. Springer-Verlag, Berlin.

D. Bainbridge. MELDEX: A web-based melodic locator service. Computing in Musicology,
11:223-229, 1998.

D. Bainbridge. Towards a digital library of popular music. In Proc. ACM Digital Libraries.
ACM, 1999.

I. V. Bakhmutova, V. D. Gusev, and T. N. Titkova. A search and classification of im-
perfect repetitions in song melodies. Acta et Commentationes Universitatis Tartuensis:

Quantitative Linguistics and Automatic Text Analysis, 827:20-32, 1988. in Russian.

I. V. Bakhmutova, V. D. Gusev, and T. N. Titkova. The search for adaptations in song
melodies. Computer Music Journal, 21(1):58-67, 1997.

Barlow and Morganstern. A dictionary of Musical Themes. 1948.

J. C. Bartlett and W. J. Dowling. Recognition of transposed melodies: A key-distance ef-
fect in developmental perspective. Journal of Ezperimental Psychology: Human Perception

and Performance, 6(3):501-515, 1980.

160

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

161

D. Beeferman. QPD: Query by pitch dynamics indexing tonal music by content. 1998.

S. Blackburn and D. D. Roure. A tool for content-based navigation of music. In Proc.

ACM International Multimedia Conference. ACM, Sept. 1998.

S. Blackburn and D. D. Roure. Musical part classification in content based systems. In

Open Hypermedia Systems Workshop, volume 6, pages 66—76, 2000.

D. C. Blair. STAIRS redux: Thoughts on the STAIRS evaluation, ten years after. Journal
of the American Society for Information Science, 47:4-22, 1996.

J. Borchers. Worldbeat: Designing a baton-based interface for an interactive music exhibit.

In Proc. CHI 97, pages 131-138, New York, 1997. ACM, ACM Press.

J. Borchers and M. Muhlhauser. Design patterns for interactive musical systems. IEEE

Multimedia, 5(3):36-46, 1998.

D. Byrd, J. S. Downie, T. Crawford, W. B. Croft, and C. Nevill-Manning, editors. Inter-
national Symposium on Music Information Retrieval, volume 1, Plymouth, Massachusetts,

Oct. 2000.

H. Charnasse and B. Stepien. Automatic transcription of german lute tablatures: an

artificial intelligence application. In Marsden and Pople [88], pages 143-170.

A. L. P. Chen, M. Chang, J. Chen, J.-L. Hsu, C.-H. Hsu, and S. Y. S. Hua. Query by
music segments: An efficient approach for song retrieval. In Proc. IEEE International

Conference on Multimedia and Ezpo, pages 873-876. IEEE, 2000.
B. Chen. Query by singing. Master’s thesis, National Tsing Hua University, 1998.

J. C. C. Chen and A. L. P. Chen. Query by rhythm an approach for song retrieval in
music databases. In Proceedings of IEEE International Workshop on Research issues in

Data Engineering, pages 139-146. IEEE, 1998.

T.-C. Chou, A. L. P. Chen, and C.-C. Liu. Music databases: Indexing techniques and
implementation. In Proceedings IEEE International Workshop in Multimedia DBMS, 1996.

162

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

G. S. Choudhury, T. DiLauro, M. Droetboom, I. Fujinaga, B. Harrington, and K. MacMil-
lan. Optical music recognition system within a large-scale digitization project. In Byrd

et al. [16].

M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz. PROMS: A web-based tool for

searching in polyphonic music. In Byrd et al. [16].

C. Cleverdon and J. Mills. The cranfield tests on index language devices. In Aslib Pro-
ceedings, volume 19, pages 173-192, 1967.

D. Cope. Signatures and earmarks: Computer recognition of patterns in music. Computing

i Musicology, 11:129-138, 1998.

F. Crane and J. Fiehler. Numerical methods of comparing musical styles. In Lincoln [82],

chapter 15, pages 209-222.

T. Crawford, C. S. Iliopoulos, and R. Raman. String matching techniques for musical

similarity and melodic recognition. Computing in Musicology, 11, 1998.

M. Crochemore. Off-line serial exact string searching. In Apostolico and Galil [1], chapter 1,

pages 1-53.

M. Crochemore, C. S. Iliopoulos, and H. Yu. Algorithms for computing evolutionary chains
in molecular and musical sequences. In C. S. Iliopoulos, editor, Proceedings of the ninth
Australian Workshop on Combinatorial Algorithms AWOCA’98, pages 172-184, School of

Computing, Curtin University of Technology, Perth, Western Australia, 1998.

C. Cronin. Concepts of melodic similarity in music-copyright infringement suits. Comput-

ing in Musicology, 11:187-209, 1998.

D. Deutsch. Grouping mechanisms in music. In The Psychology of Music [32], chapter 4,
pages 99-134.

D. Deutsch, editor. The Psychology of Music. Academic Press, Inc., 1982.

M. Dillon and M. Hunter. Automated identification of melodic variants in folk music.

Computers and the Humanities, 16:107-117, 1982.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

163

M. J. Dovey. An algorithm for locating polyphonic phrases within a polyphonic musical
piece. In Proceedings of the AISB Symposium on Musical Creativity, Edinburgh, Apr.
1999. AISB.

M. J. Dovey. Heuristic models of relevance ranking in searching polyphonic music. In
Diderot Mathematical Forum: Conference on Computational and Mathematical Methods

in Music, Vienna, Dec. 1999. European Mathematical Society.

W. J. Dowling. Scale and contour: Two components of a theory of memory for melodies.

Psychological Review, 85(4):341-354, 1978.

W. J. Dowling. Melodic information processing and its development. In Deutsch [32],

chapter 13, pages 413-429.

W. J. Dowling and D. S. Fujitani. Contour, interval and pitch recognition in memory for

melodies. The Journal for the acoustical society of America, 49(2):524-531, 1971.

J. S. Downie. The Musifind musical information retrieval project, phase II: User assess-
ment survey. In Proceedings of the annual conference of the Canadian Association for

Information Science, Montreal, pages 144-166. CAIS, 1994.

J. S. Downie. The Musifind music information retrieval project, phase III: evaluation of
indexing options. In Canadian Association for Information Science proceedings of the 23rd

Annual Conference, Connectedness: Information, Systems, People, Organisations, pages

135-46. CAIS, 1995.

J. S. Downie. Informetrics and music information retrieval: an informetric examination of
a folksong database. In Proceedings of the Canadian Association for Information Science,

1998 Annual Conference, Ottawa, Ontario, 1998. CAIS.

J. S. Downie. Evaluating a Simple Approach to Musical Information Retrieval: Conceiving

Melodic N-grams as Text. PhD thesis, University of Western Ontario, 1999.

J. S. Downie. Access to music information: The state of the art. Bulletin of the American

Society for Information Science, 26(5), June/July 2000.

164

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. S. Downie. Evaluation of a simple and effective music information retrieval method. In
Proc. ACM-SIGIR International Conference on Research and Development in Information

Retrieval, pages 73-80, Athens, Greece, July 2000. ACM, ACM.

B. M. Eaglestone. Extending the relational database model for computer music research.

In Marsden and Pople [88], pages 41-66.

W. Ebeling and T. Poschel. Entropy, transinformation and word distribution of
information-carrying sequences. International Journal of Bifurcation and Chaos, 5(1):51-

61, 1995.

J. Edworthy. Interval and contour in melody processing. Music Perception, 2(3):375-388,
1985.

D. P. W. Ellis. A computer implementation of psychoacoustic grouping rules. Technical

Report 224, MIT, 1994.

J. Foote. Visualizing music and audio using self-similarity. In Proc. ACM International

Multimedia Conference, pages 77-80, Orlando Florida, USA, Oct. 1999.

J. Foote. ARTHUR: Retrieving orchestral music by long-term structure. In Byrd et al.
[16].

R. Franceés. La Perception de la Musique. L. Erlbaum, Hillsdale, New Jersey, 1958.

Translated by W. J. Dowling (1988).

C. Francu and C. G. Nevill-Manning. Distance metrics and indexing strategies for a digital
library of popular music. In IEEE International Conference on Multimedia and Ezpo (II),
pages 889-892, 2000.

A. J. Gabura. Music style analysis by computer. In Lincoln [82], chapter 16, pages 223-276.

A. Ghias, J. Logan, D. Chamberlin, and B. Smith. Query by humming — musical informa-
tion retrieval in an audio database. In Proc. ACM International Multimedia Conference,

1995.

R. Giancarlo and R. Grossi. Suffiz Tree Data Structures for Matrices, chapter 10, pages
293-340. In Apostolico and Galil [1], 1997.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

165

M. Good. Representing music using XML. In Byrd et al. [16].

M. Goossens, S. Rahtz, and F. Mittelbach. The BTgXGraphics Companion. Addison-
Wesley, 1997.

C. Grande. The notation interchange file format: A windows-compliant approach. In

Selfridge-Field [119], chapter 31, pages 491-512.
D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge, USA, 1997.

D. Halperin. Musical chronology by seriation. Computers and the Humanities, 28:13-18,
1994.

S. Handel. Listening: An introduction to the perception of auditory events. MIT Press,

1989.

M. Hawley. The personal orchestra, or audio data compression by 10,000:1. Computing
Systems, 3(2):289-329, 1990.

S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast, efficient data structure for

string keys. 2001. in submission.

D. S. Hirschberg. Serial computations of Levenshtein distances. In A. Apostolico and
Z. Galil, editors, Pattern Matching Algorithms, chapter 4, pages 123-141. Oxford Univer-
sity Press, 1997.

J.-L. Hsu, C.-C. Liu, and A. L. P. Chen. Efficient repeating pattern finding in music
databases. In Proceedings of the 1998 ACM 7th international conference on Information
and knowledge management, pages 281-288. ACM, ACM Press, 1998.

B. Hudson. Toward a comprehensive French chanson catalog. In Lincoln [82], chapter 17,

pages 277-287.
D. Huron. Humdrum reference manual.

D. Huron. Design principles in computer-based music representation. In Marsden and

Pople [88], pages 5-39.

166

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

D. Huron and M. Royal. What is melodic accent? converging evidence from musical

practice. Music Perception, 13(4):489-516, 1996.

K. S. Jones. Reflections on trec. Information Processing and Management, 31(3):291-314,
1995.

T. Kageyama, K. Mochizuki, and Y. Takashima. Melody retrieval with humming. In Proc.

International Computer Music Conference, 1993.

T. Kageyama and Y. Takashima. A melody retrieval method with hummed melody. Trans-
actions of the Institute of Electronics, Information and Communication Engineers, J77-

D-I1(8):1543-1551, 8 1994. in Japanese.

L. Knopoff and W. Hutchinson. Entropy as a measure of style: the influence of sample

length. Journal of Music Theory, 27:75-97, 1983.

A. Kornstadt. A web based melodic search tool. Computing in Musicology, 11:231-236,
1998.

N. Kosugi, Y. Nishihara, S. Kon’ya, M. Yamamuro, and K. Kushima. Music retrieval by
humming - using similarity retrieval over high dimensional feature vector space. In Proc.
IEEFE Pacific Rim Conference on Communications, Computers and Signal Processing,

Victoria, Canada, Aug. 1999.

N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamuro, and K. Kushima. A practical query-
by-humming system for a large music database. In Proc. ACM International Multimedia

Conference, Los Angeles, USA, Nov. 1999.

C. L. Krumhansl and R. N. Shepard. Quantification of the hierarchy of tonal functions
within a diatonic context. Journal of Experimental Psychology: Human Perception and

Performance, 5(4):579-594, 1979.

K. Lemstrom and P. Laine. Musical information retrieval using musical parameters. In

Proc. International Computer Music Conference, pages 341-348, Ann Arbour, 1998.

K. Lemstrom, P. Laine, and S. Perttu. Using relative interval slope in music information
retrieval. In Proc. International Computer Music Conference, pages 317-320, Beijing,

China, Oct. 1999.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

167

K. Lemstrom and J. Tarhio. Detecting monophonic patterns within polyphonic sources.
In J. Mariani and D. Harman, editors, Proc. Conference on Content-Based Multimedia

Information Access, volume 6 of RIAQ, Paris, France, Apr. 2000.

D. J. Levitin and P. R. Cook. Memory for musical tempo: Additional evidence that
auditory memory is absolute. Perception and Psychophysics, 58(6):927-935, 1996.

H. Lincoln, editor. The Computer and Music. Cornell University Press, Ithaca, New York,
1970.

A. T. Lindsay. Using contour as a mid-level representation of melody. Master’s thesis,

MIT, Massachusetts, 1996.

C.-C. Liu, J.-L. Hsu, and A. L. P. Chen. Efficient theme and non-trivial repeating pat-
tern discovering in music databases. In Proc. IEEE International Conference on Data

Engineering, pages 14-21, Sydney, Australia, 1999. IEEE, TEEE Computer Society Press.

L. Logrippo and B. Stepien. Cluster analysis for the computer-assisted statistical analysis

of melodies. Computers and the Humanities, 20:19-33, 1986.

C. D. Manning and H. Schutze. Foundations of statistical natural language processing.

MIT Press, Cambridge, Massachusetts, 1999.

A. Marsden. Modelling the perception of musical voices: a case study in rule-based systems.

In Marsden and Pople [88], pages 239-263.

A. Marsden and A. Pople, editors. Computer Representations and Models in Music. Aca-
demic Press, London, England, 1992.

K. D. Martin. A blackboard system for automatic transcription of simple polyphonic

music. Technical Report 385, MIT, 1996.
K. McMillen. ZIPI: Origins and motivations. Computer Music Journal, 18(4):47-51, 1994.

R. J. McNab. Interactive applications of music transcription. Master’s thesis, Department

of Computer Science, University of Waikato, New Zealand, 1996.

R. J. McNab, L. A. Smith, D. Bainbridge, and I. H. Witten. The New Zealand Digital
Library MELody inDEX. Digital Libraries Magazine, May 1997.

168

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson, and S. J. Cunningham. To-
wards the digital music library: Tune retrieval from acoustic input. In Proc. ACM Digital

Libraries, 1996.

M. Melucci and N. Orio. Musical information retrieval using melodic surface. In Proc.

ACM Digital Libraries. ACM, 1999.

M. Melucci and N. Orio. The use of melodic segmentation for content-based retrieval of
musical data. In Proc. International Computer Music Conference, Beijing, China, 1999.

International Computer Music Association.

C. B. Monahan, R. A. Kendall, and E. C. Carterette. The effect of melodic and temporal
contour on recognition memory for pitch change. Perception and Psychophysics, 41(6):576—

600, 1987.

M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and the

Humanities, 24:161-175, 1990.

C. Nevill-Manning and I. H. Witten. Protein is incompressible. In Proc. IEEE Data
Compression Conference, pages 257-266, Snowbird, Utah, Mar. 1999. IEEE.

D. O’'Maidin. A geometrical algorithm for melodic difference. Computing in Musicology,

11:65-72, 1998.
Parsons. The Directory of Tunes. Spencer Brown and Co., Cambridge, England, 1975.

J. Pickens. A comparison of language modeling and probabilistic text information retrieval

approaches to monophonic music retrieval. In Byrd et al. [16].

E. Pollastri. Melody-retrieval based on pitch-tracking and string-matching methods. In

Proc. Colloquium on Musical Informatics, Gorizia, 1998.

D.-J. Povel and P. Essens. Perception of temporal patterns. Music Perception, 2(4):411-
440, 1985.

J. Rameau. Treatise on Harmony. Dover Publications, New York, USA, 1971. Originally
published in 1722. Translated by Philip Gossett.

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

169

M. F. Reynolds. Selle v. gibb and the forensic analysis of plagiarism. In College Music
Symposium, volume 32, pages 55—78. College Music Society, 1992.

S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson

model for probabilistic weighted retrieval. In SIGIR 9/, pages 232-241. ACM, 1994.

P. Rolland, G. Raskinis, and J. Ganascia. Musical content-based retrieval: an overview
of the melodiscov approach. In Proc. ACM International Multimedia Conference, pages

81-84, Orlando, Florida, USA, Oct. 1999.

D. C. D. Roure and S. G. Blackburn. Content based navigation of music using melodic

pitch contours. Multimedia Systems Journal, 8(3):190-200, 2000.

R. Rousseau. A fractal approach to word occurrences in texts: the zipf-mandelbrot law

for multi-word phrases. 1998.

R. Rousseau. George Kingsley Zipf: life, ideas and recent developments of his theories. In
Bejing International Seminar of Quantitative Fvaluation of Research and Development
in Universities, and Fifth All-China Annual Meeting for Scientometrics and Informatics,

Beijing, Dec. 1998. preprint.

W. B. Rubenstein. A database design for musical information. In U. Dayal and I. Traiger,
editors, Proc. ACM-SIGMOD International Conference on the Management of Data, pages
479-490, San Francisco, CA, May 1987. ACM, ACM Press.

P. Salosaari and K. Jarvelin. MUSIR: A retrieval model for music. Technical Report 1,
University of Tampere, 1998.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
New York, 1983.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613-620, 1975.

D. Sankoff and J. B. Kruskal, editors. Time Warps: String Edits, and Macromolecules:

the Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

170

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

H. Schaffrath. The retrieval of monophonic melodies and their variants: Concepts and

strategies for computer-aided analysis. In Marsden and Pople [88], pages 95-110.
E. D. Scheirer. Music Listening Systems. PhD thesis, MIT, Massachusetts, June 2000.

R. Sedgewick. Algorithms in C. Addison-Wesley, Reading, Massachussetts, second edition,
1990.

E. Selfridge-Field, editor. Beyond MIDI: the Handbook of Musical Codes. MIT Press,
1997.

E. Selfridge-Field. Conceptual and representational issues in melodic comparison. Com-

puting in Musicology, 11:3-64, 1998.
Y. Shi. Correlations of pitches in music. Fractals, 4(4):547-553, 1996.

T. Sonoda and Y. Muraoka. A www-based melody-retrieval system - an indexing method

for a large melody database. In Proc. International Computer Music Conference, 2000.

J. Spitzer. ‘oh susanna’: Oral transmission and tune transformation. Journal of the

American Musicological Society, 47(1):90-136, 1994.

D. A. Stech. A computer-assisted approach to micro-analysis of melodic lines. Computers

and the Humanities, 15:211-221, 1981.
J. Stinson. The scribe database. Computing in Musicology, 8:65, 1992.
J. Sundberg. Perception of singing. In Deutsch [32], chapter 3.

J. Tague-Sutcliffe, J. S. Downie, and S. Dunne. Name that tune! an introduction to
musical information retrieval. In Proceedings of the annual conference of the Canadian

Association for Information Science, Montreal, pages 203—211. CAIS, 1993.

H. G. Tekman. Interactions of perceived intensity, duration and pitch in pure tone se-

quences. Music Perception, 14(3):281-294, 1997.

H. G. Tekman. Effects of melodic accents on perception of intensity. Music Perception,

15(4):391-401, 1998.

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

171

J. M. Thomassen. Melodic accent: experiments and a tentative model. The Journal for

the acoustical society of America, 71(6):1596-1605, June 1982.

Y.-H. Tseng. Content-based retrieval for music collections. In Proc. ACM-SIGIR Interna-
tional Conference on Research and Development in Information Retrieval, pages 176-182.

ACM SIGIR, ACM Press, 1999.

A. L. Uitdenbogerd and J. Zobel. Manipulation of music for melody matching. In B. Smith
and W. Effelsberg, editors, Proc. ACM International Multimedia Conference, pages 235—
240, Bristol, UK, Sept. 1998. ACM, ACM Press.

A. L. Uitdenbogerd and J. Zobel. Melodic matching techniques for large music databases.
In D. Bulterman, K. Jeffay, and H. J. Zhang, editors, Proc. ACM International Multimedia
Conference, pages 57-66, Orlando Florida, USA, Nov. 1999. ACM, ACM Press.

A. L. Uitdenbogerd and J. Zobel. Music ranking techniques evaluated. In International
Symposium on Music Information Retrieval, Plymouth, Massachussetts, USA, Oct. 2000.

poster.

E. Ukkonen. Approximate string-matching with g-grams and maximal matches. Theoret-

ical Computer Science, 92:191-211, 1992.

R. van Egmond and D.-J. Povel. Perceived similarity of exact and inexact transpositions.

Acta Psychologica, 92:283-295, 1996.

T. von Schroeter, S. Doraisamy, and S. M. Riiger. From raw polyphonic audio to locating

recurring themes. In Byrd et al. [16]. poster submission.

M. Welsh, N. Borisov, J. Hill, R. von Behren, and A. Woo. Querying large collections of

music for similarity, Nov. 1999.

W. J. Wilbur and D. J. Lipman. Rapid similarity searches of nucleic acid and protein data
banks. Proc. National Academy of Sciences USA, 80:726-730, Feb. 1983.

H. Williams. Indexing and retrieval for genomic databases. PhD thesis, RMIT, Melbourne,
Victoria, Australia, 1998.

172

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

H. Williams and J. Zobel. Indexing and retrieval for genomic databases. IEEE Transactions

on Knowledge and Data Engineering. (to appear).

H. Williams and J. Zobel. Indexing nucleotide databases for fast query evaluation. In
Proc. Int. Conf. on Advances in Database Technology (EDBT), pages 275-288, Avignon,
France, Mar. 1996.

I. H. Witten and T. C. Bell. Source models for natural language text. International

Journal on Man Machine Studies, 32:545-579, 1990.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indezxing
Documents and Images. Morgan Kaufmann, San Francisco, California, second edition,

1999.

D. Wolfram. Applications of informetrics to information retrieval research. Informing

Science, 3(2):77-82, 2000.

S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM,

35(10):83-91, Oct. 1992.

C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V. S. Subrahmanian, and R. Zicari. Ad-
vanced Database Systems. Data Management Systems. Morgan Kaufmann, San Francisco,

1997.

R. H. Zaripov. The construction of frequency vocabularies of musical intonations for

analysis and simulation of melodies. Problems of Cybernetics, 41:207-252, 1984. in Russian.
G. K. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley, 1949.

J. Zobel. How reliable are the results of large-scale information retrieval experiments? In
R. Wilkinson, B. Croft, K. van Rijsbergen, A. Moffat, and J. Zobel, editors, Proc. ACM-
SIGIR International Conference on Research and Development in Information Retrieval,

pages 307-314, Melbourne, Australia, July 1998.

J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software—Practice

and Ezperience, 25(3):331-345, 1995.

J. Zobel and A. Moffat. Exploring the similarity space. SIGIR Forum, 32(1):18-34, 1998.

173

[153] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for text
indexing. ACM Transactions on Database Systems, 23(4):453-490, 1998.

