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Poiseuille flow is a fundamental flow in fluid mechanics and is driven by a pressure
gradient in a channel. Although the rheology of active particle suspensions has been
investigated extensively, knowledge of the Poiseuille flow of such suspensions is lacking.
In this study, dynamic simulations of a suspension of active particles in Poiseuille flow,
situated between two parallel walls, were conducted by Stokesian dynamics assuming
negligible inertia. Active particles were modelled as spherical squirmers. In the case
of inert spheres in Poiseuille flow, the distribution of spheres between the walls was
layered. In the case of non-bottom-heavy squirmers, on the other hand, the layers collapsed
and the distribution became more uniform. This led to a much larger pressure drop
for the squirmers than for the inert spheres. The effects of volume fraction, swimming
mode, swimming speed and the wall separation on the pressure drop were investigated.
When the squirmers were bottom heavy, they accumulated at the channel centre in
downflow, whereas they accumulated near the walls in upflow, as observed in former
experiments. The difference in squirmer configuration alters the hydrodynamic force on
the wall and hence the pressure drop and effective viscosity. In upflow, pusher squirmers
induced a considerably larger pressure drop, while neutral and puller squirmers could even
generate negative pressure drops, i.e. spontaneous flow could occur. While previous studies
have reported negative viscosity of pusher suspensions, this study shows that the effective
viscosity of bottom-heavy puller suspensions can be negative for Poiseuille upflow, which
is a new finding. The knowledge obtained is important for understanding channel flow of
active suspensions.
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1. Introduction

A suspension of swimming micro-organisms is a prime example of an active fluid, in
which the motions of the cells and those they generate in the ambient fluid are powered
by the metabolic energy of the cells, and are therefore unconstrained by conservation of
energy principles. Such suspensions arise widely, in natural bodies of water (e.g. oceans,
lakes, puddles), in or on larger organisms (e.g. vertebrate intestines, lungs, mouths), in
technological bioreactors (e.g. food processing, brewing, biofuels) and many other fields.
The study of individual and collective behaviour among swimming micro-organisms
has blossomed in recent years among microbiologists, fluid dynamicists and soft-matter
physicists, and numerous fascinating phenomena and mechanisms have come to light. As
fluid dynamicists, we are particularly interested in developing theoretical approaches that
shed light on the physical mechanisms concerned, in a manner that will explain laboratory
or field observations as fully as possible.

Some of the interesting observations that have been made on suspensions of swimming
micro-organisms include some that occur independently of the proximity of external
boundaries and others that depend on such features. The former include instabilities
such as bioconvective and gyrotactic instabilities as well as those driven by the
cells’ self-propulsion (Kessler 1985a; Pedley & Kessler 1992; Hill & Pedley 2005;
Bees 2020; Simha & Ramaswamy 2002; among many others). The latter include
the tendency of individual microswimmers to swim towards a nearby rigid boundary
(Lauga et al. 2006; Berke et al. 2008; Denissenko et al. 2012; Ishimoto & Gaffney
2013), shear-gradient-induced migration (Barry et al. 2015; Vennamneni, Nambiar &
Subramanian 2020) and, in a shear flow near a wall, to swim upstream, i.e. exhibit
rheotaxis (Kaya & Koser 2012; Lauga 2020) all of which can be explained in terms
of hydrodynamics. Suspensions of swimmers in a shear flow can exhibit an increase or
a decrease in their effective shear viscosity, in a channel flow for example, depending
on the cell shape (elongated or nearly spherical) and its mode of swimming (pushing
from behind, like bacteria or sperm, or pulling from in front, like many motile algae)
(Sokolov & Aranson 2009; Subramanian & Koch 2009; Rafai, Jibuti & Peyla 2010; Lépez
et al. 2015). An instructive review was given by Saintillan (2018). However, most of the
analyses of the above phenomena concentrate primarily on the interaction between the
swimming cells and the fluid, which implies that cell-cell interactions are not considered
and the suspensions are taken to be dilute, with small volume fraction. In this paper we are
concerned with concentrated suspensions, of large volume fraction, in a Newtonian fluid
in which inertia is negligible. In the context of passive particles, the study of suspension
rheology has a substantial literature (the reader is recommended to study the review by
Guazzelli & Pouliquen 2018).

The theoretical analysis of passive suspensions began with Einstein (1906), who
calculated the first correction to the molecular viscosity for a dilute suspension of identical
rigid spheres, at small volume fraction ¢, taking account of the fact that an isolated rigid
sphere in a shear flow cannot deform in the same way that the fluid would if the sphere
were not there, leading to

ey = o (1+30) . (L1)

where g is the viscosity of the suspending fluid. Batchelor (1970) initiated rigorous
analysis of the stress system in a suspension of rigid spheres in which the configuration of
particles is random and a particle’s interaction with its neighbours influences the stress that
it experiences. Batchelor considered semi-dilute suspensions, in which pairwise (nearest
neighbour) interactions were fully incorporated. This analysis allowed Batchelor &
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Green (1972a,b) to evaluate the effective viscosity of a suspension in a shear flow to second
order in ¢; after some subsequent correction the effective viscosity, to order ¢2, is

= o (1+ 30 + Ko?), (12)

where the constant K is equal to 6.95 for a pure straining flow. For a unidirectional shearing
flow, we take the approximate value suggested by the following quote from page 3 of
Guazzelli & Pouliquen (2018): ‘Assuming a random microstructure leads to a smaller
coefficient K ~ 5.0 of ¢>. This latter expression seems to agree reasonably with the
experimental data in the semi-dilute regime (up to ¢ ~ 0.10-0.15)’. For more concentrated
suspensions, especially in bounded domains, it is necessary to analyse hydrodynamic
interactions between more than two spheres, which is conceptually and mathematically
much more complicated, mainly because the velocity field of a particle, subject to an
external force, falls off very slowly with distance r from the particle, proportionally to
r~1, and the boundary conditions have to be imposed on complex geometries. It was
therefore necessary to develop appropriate computational methods, of which the method of
Stokesian dynamics is perhaps the most versatile (Brady & Bossis 1988; Brady et al. 1988;
Sierou & Brady 2002). The method was first applied to pressure-driven flow in a channel
by Nott & Brady (1994), the plane channel walls being replaced by rows of equal spheres,
each in contact with its neighbour, which were constrained all to move with the same
velocity, viz. zero. The suspension average velocity is specified as a boundary condition,
which is equivalent to prescribing the volumetric flow rate per unit cross-section, requiring
a particular pressure gradient and hence leading to a particular effective viscosity. Nott
and Brady found that particles tended to migrate toward the centre line of the channel,
by the mechanism of shear-induced particle migration, which had been discovered and
explained by Eckstein, Bailey & Shapiro (1977) and by Leighton & Acrivos (1987). For a
concentrated suspension, the migration leads to a flattening of the mean velocity profile in
the centre of the channel, and consequently to higher shear rate at the wall and hence to
higher effective viscosity.

The effective viscosity of a suspension, even of identical rigid spheres, is found not
to depend only on ¢, but also on the velocity field itself, when the fluid domain is
confined. That is to say that the suspension behaves like a non-Newtonian fluid with
variable rheology. Moreover, when the concentration is high enough it becomes apparent
that collisions with the wall of randomly moving particles mean that a particle pressure
is exerted on the walls of the container (channel) (see Guazzelli & Pouliquen 2018, § 3.1).
In our modelling, contact between close neighbours is avoided by the introduction of a
short-range, repulsive force, thereby preventing the suspension from jamming.

Our interest is also in analysing Poiseuille flow of a suspension in a channel, but made up
of swimming micro-organisms, not inert particles. Swimming cells come in a myriad of
shapes, but in order to build on the current understanding of concentrated suspensions
of passive spheres, we will restrict our attention to spherical models of swimmers,
i.e. squirmers (Lighthill 1952; Blake 1971; Pedley 2016). These keep their spherical shape
and swim by means of an imposed, axisymmetric, tangential velocity distribution on the
surface of the sphere, as set out in § 2.1 below. In our previous paper (Ishikawa, Brumley &
Pedley 2021), the Stokesian dynamics method was used to compute the particle motions
and the rheology, in particular the effective viscosity, of a monolayer of squirmers (cell
centres and velocities confined to a plane) subjected to simple shear flow bounded by two
parallel planes perpendicular to the monolayer, as in plane Couette flow. In that paper, the
results were compared with those obtained on the assumption that the dynamic stresses
in a concentrated suspension would be dominated by the thin lubrication layers between
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the squirmers, and the far-field dynamics would be unimportant. The conclusion was
that lubrication theory was sufficiently accurate at high concentration (measured by the
areal fraction in the plane of the monolayer), thereby providing a useful foundation for
studies in which the collective dynamics is studied through lubrication interactions alone
(Brumley & Pedley 2019). At the same time, recent work demonstrates that lubrication
theory and Stokesian dynamics provide similar results for pairs of squirmers interacting
hydrodynamically (Darveniza et al. 2022). A fortiori, as the volume fraction increases,
so that a given squirmer interacts with more than one other squirmer, the error in using
lubrication theory, and hence Stokesian dynamics, instead of the full boundary element
simulation, will diminish.

In this paper, we follow Nott & Brady (1994) and use fully three-dimensional Stokesian
dynamics for a suspension of squirmers in a bumpy channel (with walls made up of a layer
of rigid spheres stuck together), driven by a pressure gradient. This method is chosen to
maximise computational accuracy, and provide a reference dataset for suspension rheology
in Poiseuille flow. Since it is hard to specify pressure at the ends of a finite channel, we
follow Nott & Brady in using an inverse method, specifying the mean, bulk longitudinal
velocity in the channel, computing the longitudinal component of the wall shear stress and
thereby inferring the pressure gradient and the effective viscosity; details are given in § 2.

It is well known that many micro-swimmers are bottom heavy and therefore experience
a gravitational torque when their swimming direction is not oriented vertically. As in our
earlier, semi-dilute, modelling of unconfined suspensions (Ishikawa & Pedley 2007), we
compute the consequent effect of gravity on the suspension rheology when the mean
flow direction is vertical as well as horizontal. In this paper, the mean mass density of
a squirmer is taken to be the same as that of the fluid, so there is no external body force on
a squirmer and therefore no sedimentation.

An outline of the paper is as follows. The problem is specified mathematically and the
Stokesian dynamics method summarised in § 2. Results for non-bottom-heavy squirmers
in comparison with inert spheres, up to a volume fraction of ¢ = 0.45 (recall that rigid
spheres jam at ¢ = 0.58 ~ 0.65) are given in § 3. The corresponding results for squirmers
that are bottom heavy are given in § 4. It is of interest that bottom heaviness introduces
much more significant non-Newtonian effects for the suspension as a whole, including
normal stress differences and negative effective viscosity, than squirmers that do not
experience an external torque. Finally, conclusions are provided in § 5.

2. Basic equations and numerical method

The methodology employed in this study is similar to our former study on a sheared
suspension of squirmers (Ishikawa et al. 2021). The basic equations of Stokesian dynamics
for simulating a suspension of squirmers were developed by Ishikawa, Locsei & Pedley
(2008) and those for including a wall boundary were developed by Nott & Brady (1994),
so we explain the methodology only briefly here.

2.1. Squirmer

Active particles are modelled as identical steady spherical squirmers (Lighthill 1952;
Blake 1971; Ishikawa, Simmonds & Pedley 2006; Pedley 2016). The squirmer model has
been utilised to analyse ciliated microorganisms, active colloids and droplets (Ishikawa &
Pedley 2023; Ishikawa 2024). Squirmers have radius a and swim by means of a prescribed
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tangential velocity on the surface
up = 3Vysinf(1 + Bcosh), 2.1)

where 6 is the polar angle from the squirmer’s orientation vector p, Vi is the swimming
speed and B is the ratio of the second mode to the first squirming mode, which represents
the stresslet strength. The squirmers may be bottom heavy, so that when the squirmer’s
orientation p is not vertical, the squirmer experiences a gravitational torque 7" given by

T =—puvhp x g. (2.2)

Here, v is the cell volume, 4 is the displacement of the centre of mass from the geometric
centre, g is the gravitational acceleration and p is the average density of the squirmer,
assumed to be the same as that of the fluid.

The squirmer model has been verified by comparison with the experiments on
microalgae Volvox (Ishikawa et al. 2020) and ciliates Paramecium (Ishikawa & Hota
2006) and Tetrahymena (Manabe, Omori & Ishikawa 2020). The spherical squirmer model
used in this study can represent ciliated microorganisms with a round shape. The actual
microbial values of § are approximately 0.28 for Paramecium caudatum (Ishikawa & Hota
2006) and very small for Volvox carteri (Short et al. 2006). Thus, P. caudatum can be
modelled as a puller squirmer, while V. carteri can be modelled as a neutral squirmer.
(It is of course clear that the squirmer model is highly idealised and will not be directly
applicable to the majority of microorganism species, which have a multitude of shapes
such as elongated bacteria or multifaceted diatoms, and may be deformable.)

2.2. Problem settings

We consider Poiseuille flow of an infinite suspension of squirmers between two parallel
walls, as shown in figure 1(a). Poiseuille flow is driven by the pressure gradient in the
x-direction: the y-axis is taken perpendicular to the wall, and the z-axis is taken as the
spanwise direction. The unit domain is a rectangular parallelepiped with side lengths L,
Ly and L,, and three-dimensional periodic boundary conditions are applied to reflect the
infinite suspension. The parallel walls consist of a two-dimensional hexagonal lattice of
fixed rigid spheres with the same radius as the squirmers, i.e. wall spheres. The inner
distance between the walls is H (= L, — 2a). The methodology to express a wall boundary
by wall spheres was employed by Nott & Brady (1994), in which Poiseuille flow of an
infinite suspension of rigid spheres was simulated by Stokesian dynamics. Although there
will be a small quantitative effect of having bumpy walls, the qualitative behaviour of the
system is expected to remain unchanged, because the lubrication forces between a wall and
a squirmer and that between a sphere and a squirmer are essentially the same equation, just
with different coefficients (Kim & Karrila 2005; Ishikawa et al. 2006; Ishikawa 2019).

In this setting, the velocities of the wall spheres and the forces on the interior squirmers
are prescribed, leaving the velocities of the squirmers and the forces on the wall spheres to
be determined. The interior squirmers are force free and subjected to a torque, as described
by (2.2). If we set a fixed average suspension velocity (u) then a pressure gradient will be
set up so as to satisfy the global conservation of momentum (Nott & Brady 1994). We
specify that the wall spheres are stationary, so the force required to hold these spheres
stationary will balance the pressure gradient needed to maintain the non-zero average (u).
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Figure 1. Poiseuille flow of a suspension of non-bottom-heavy neutral squirmers (8 = 0). (a) Problem setting
of the simulation. Poiseuille flow of an infinitely periodic suspension of squirmers with ¢ = 0.1, which is
driven by a pressure gradient in the x-direction: the y-axis is taken perpendicular to the wall, and the z-axis is
taken as the spanwise direction. The unit domain is a rectangular parallelepiped with side lengths L,, L, and
L.. Two parallel walls consist of two-dimensional hexagonal lattices of rigid spheres, and the inner distance
between the walls is H. Green spheres represent squirmers: the red region represents the anterior part and the
white line indicates the equator. (b) Sample image of squirmer distribution with ¢ = 0.45 (see supplementary
movie 1 available at https://doi.org/10.1017/jfm.2024.1205). The yellow arrow indicates the flow direction.

(c) Time-dependent longitudinal force acting on the wall spheres, F),, for four different volume fractions of
squirmers. The pressure drop can be calculated as —dP/dx = (N,,/L,L,L;)F),, where N,, is the number of wall

spheres in the unit domain. (d) Time series of the parameter, N, s+ 4 /Nj, for various volume fractions, where Ny is
the number of squirmers in the unit domain, and N, -+ is the number of squirmers in half the simulation domain
where the y-coordinate is positive. For a uniform distribution, N;' Y /Ns = 0.5.

The average x-direction force acting on the wall spheres F,, is given as
|
Fo— ()
o= ;FW s (2.3)
=

where N,, is the number of wall spheres in the unit domain, and F g) | 1s the x-direction
force acting on wall sphere i. Considering the global conservation of momentum, the
pressure drop in the x-direction can be directly derived from F), as

P N, -
—— =" F,. (2.4)
dx — LiLL,
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In § 4, gravity is introduced for bottom-heavy squirmers. Although the x-axis is taken
in the flow direction in § 3, it is taken to be vertically upward in § 4. The gravitational
direction is thus —x, and flow in the positive x-direction is called upflow, while flow in the
negative x-direction is called downflow in § 4.

2.3. Stokesian dynamics

Assuming that squirmers and the channel height are sufficiently small, we neglect inertia.
The hydrodynamic interactions among squirmers and wall spheres at negligible inertia are
calculated by Stokesian dynamics (Brady & Bossis 1988; Brady ef al. 1988; Nott & Brady
1994; Ishikawa et al. 2008). An infinite extent of the suspension is computed by the Ewald
summation technique (Beenakker 1986). By exploiting the Stokesian dynamics method,
the force F, torque T and stresslet .S of squirmers and wall spheres are given by

F; Us — (u)
F, Uy — (u)
Ts _ ar ar near -Qs - <w>
| =[F - m R ol )
S, —(E)
SW _<E>
_VSPO+ Q; F?ear
Fhear
0 w
) ar Tnear
+ A" - Rl 0 + | phear | 2.5)
3 w
——V:8Gpp— 1) Sg
10 gnear
0 w

where R is the resistance matrix, U and £ are the translational and rotational velocities
of a squirmer, (#) and (@) are the translational and rotational velocities of the bulk
suspension and (E) is the rate of strain tensor of the bulk suspension. The index s or w
represents a squirmer or a wall sphere, respectively. Here, Qy is the irreducible quadrupole
providing additional accuracy, which is approximated by its mean-field value (Brady et al.
1988). The brackets () and [ ] indicate a vector and a matrix, respectively. Index far or
near indicates far- or near-field interaction, and 2B indicates interaction between two inert
spheres. Wall spheres are fixed in space, so we have U,, = §2,, = 0. The bulk rotational
velocity (@) and shear rate (E) are set to zero as the flow is driven by the pressure gradient
in the suspension. The near-field forces and stresslets in the last term on the right side are
obtained computationally using a boundary element method (Ishikawa et al. 2006).
The governing equation for the squirmer motion can be derived from (2.5) as

F, _ ar far near Us — (u) F,
(Ts>_|:nf _RZB_‘_RZB :|FUss< Qs >+<TC)’ (26)
where
F. _ ar ar near _(u>
(Tc>_[nf _R£B+R2B ]FUSW( 0 )
—Vip + Qg
o - [Frnear
+ [nf - RQB]FUS” 0 + (TS ) 2.7)

3
—I—OVsﬂ Gpp—1
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Index FUss or FUsw indicates force—velocity interaction with a squirmer or a wall sphere,
FUSss indicates force—velocity-stresslet interaction with a squirmer, respectively. This
equation is solved for Uy and £ under given F and T conditions.

Once the velocities of squirmers are obtained, the force exerted on a wall sphere can be
calculated by

F, _ far ar near _<u>
(TW> o [H B RZB + 28 :|FUWW< 0 )
far _ pfar near Us — (u)
+ [R R’;B + RZB ]FUWS ( Qs )
—Vip + Qs

0 Fnear
- ( TW) SENCX)

+ [Rf o — szcg 3
— EVSﬂ Gpp—1 "

]FUSWS

Index FUws or FUww indicates force—velocity interaction with a squirmer or a wall sphere,
FUSws indicates force—velocity-stresslet interaction with a squirmer, respectively.

2.4. Numerical method

We set a fixed average suspension velocity as (u) = (u, 0, 0). In the case of downflow in
§ 4, however, the fixed average suspension velocity is set as (—u, 0, 0). We also specify
that the wall spheres are stationary, so the force required to hold these spheres stationary
will balance the pressure gradient needed to maintain (u).

The unit domain is a rectangular parallelepiped with side lengths L, = 11.3a, L, =
15.1a and L, = 5.66a, although the channel height, L,, is changed in figure 5.
Three-dimensional periodic boundary conditions are applied to represent the infinite
suspension, and these are computed by the Ewald summation technique (Beenakker 1986).
In the unit domain, the wall consists of 16 wall spheres placed in a two-dimensional
hexagonal lattice. The volume fraction of squirmers, ¢, is varied in the range 0.1 to 0.45,
which corresponds to the number of squirmers in the unit domain varying from 20 to
90. Initially, squirmers are placed randomly in position and orientation. Because of the
difficulty of using random numbers for placement under high ¢ conditions, we used a
random arrangement that initially allowed particles to overlap and then eliminated the
overlap by generating repulsion between particles as the initial configuration. The dynamic
motions afterwards are calculated by the fourth-order Adams—Bashforth time-marching

scheme with a time step of 5 x 10™%a/ V.

A non-hydrodynamic interparticle short-range repulsive force, F,, is added to the
system in order to avoid the prohibitively small time step needed to overcome the problem
of overlapping particles. We will follow Ishikawa et al. (2008), and use the following
function:

a exp(—age) r

Frp=a (2.9)

1 - < 9

1 —exp(—aze) r
where o1 is a dimensional coefficient, oo is a dimensionless coefficient and ¢ is the
minimum separation between particle surfaces, non-dimensionalised by their radius. Here,
r is the vector connecting the centres of two spheres, and » = |r|. The coefficients used in
this study are oy = o = 100, so that the minimum & obtained with these parameters is of

the order of 1073.
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There are two important dimensionless parameters in addition to 8 and ¢: Gy, and Sq.
The value of Gy, is proportional to the ratio of the time to swim a body length to the time
to rotate to face upwards, and is defined as

_ 4mpgah

= . 2.10
bh 3V, (2.10)

The parameter Gy, is varied from O to 100. The parameter Sg is the swimming speed,
scaled with a background velocity, i.e.

Sqg = & (2.11)
u
Here, Sq is equal to 1 except in figure 4(f). The squirming parameter § is varied in the
range —3 to 3.

Time-averaged quantities are evaluated in the range 20 < #(u/a) < 150, as shown in
figures 1(c) and 1(d). All data points are the average of three independent simulations
with different initial conditions. Error bars in the figures represent the standard deviation
of the time variation, averaged over the three cases. The ratio of the force acting on the
wall spheres in the presence of squirmers, to that in the absence of squirmers, i.e. F,,/F), o,
is equivalent to the pressure drop relative to that without squirmers. It is also equivalent to

the effective viscosity relative to the fluid viscosity as

Fy
Meff = HO="- (2.12)
FW,O

Thus, we will plot F,,/F,, o and discuss the effect of squirmers on the pressure drop and
effective viscosity.

3. Results for non-bottom-heavy squirmers

To begin with, we examined how long it takes for the Poiseuille flow to reach a steady state.
Figures 1(a) and 1(b) show the distribution of non-bottom-heavy neutral squirmers (8 =
Gy, = 0) at 130 time units with volume fractions of ¢ = 0.1 and ¢ = 0.45, respectively
(cf. supplementary movie 1). The yellow arrow in the figure indicates the flow direction.
We see that many squirmers in figure 1(a) (¢ = 0.1) orient upstream and show rheotaxis.
The time change of the force acting on the wall spheres, F),, is shown in figure 1(c). The
forces fluctuate considerably throughout the computation, but after approximately 20 time
units, there is no significant change in the average value for approximately 50 time units

for any volume fraction. Figure 1(d) shows the time change of N;r Y /Ns, where Nj is the
number of squirmers in the unit domain, and N;r Y is the number of squirmers in half
the simulation domain where the y-coordinate is positive. For a uniform distribution, we

would have N;ry /Ns = 0.5. The results indicate, especially for the low volume fraction,
that a group of squirmers travels back and forth between the parallel walls. There are
two important swimming tendencies for neutral squirmers: (a) a solitary neutral squirmer
tends to swim away from a wall (Ishikawa 2019), and (b) neutral squirmers tend to swim
in the same direction as surrounding squirmers (Ishikawa et al. 2008). The first tendency
generates reflections of squirmers between two walls and the second tendency induces the
group swimming of squirmers. In the present study, both tendencies occur simultaneously,
resulting in the large-scale wall-to-wall clustering motion. Similar large-scale wall-to-wall
clustering motion was also reported for weak pullers with 8 = 0.5 (Oyama, Molina &
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Yamamoto 2016). The time scale it takes to travel to the opposite wall is approximately 20
time units. Considering these results, we decided to average the force acting on the wall

spheres, F,,, from 20 to 150 time units.

3.1. Comparison with inert sphere suspensions

In this section, we compare the behaviour of non-bottom-heavy neutral squirmers (8 =
Gy, = 0) with that of inert spheres. Figure 2(a) shows the velocity distribution of inert
spheres in the Poiseuille flow. The broken line in the figure indicates the parabolic velocity
profile of a Newtonian fluid, situated between two flat plates which are separated by
distance H. In the present study, the wall is not flat but consists of spheres, so a small
amount of fluid flows in the wall region where |y| > H/2. Thus, the velocity distribution
becomes a little slower than the analytical solution assuming the wall is at y = +H /2. In
the dilute limit of ¢ = 0.005, the velocity distribution of inert spheres is almost parabolic,
indicating the reliability of the present methodology. In the concentrated suspension with
¢ = 0.45, the velocity distribution across the channel exhibits deviations away from a
smooth profile (see figure 2a). This is because inert spheres in the concentrated suspension
form layers, as shown in figure 2(b), and the particle distribution is not uniform (see
supplementary movie 2). The distribution of particles can be biased in the y-direction
at any instant in time, but the bias is removed when averaging over 20-150 time units.
Hence, the probability density distribution is averaged to be symmetric in the y > 0 and
y < 0 regions. We see that seven layers exist within the distance H = 13.1a between the
walls.

In the case of a squirmer suspension, the velocity distribution is very different from
that of the inert sphere suspension (figure 2¢). Compared with inert spheres, squirmers
are slower, and this trend is more pronounced at lower volume fractions. This result may
seem counterintuitive. However, this is due to the fact that the squirmers are swimming
in the upstream direction, i.e. they exhibit rheotaxis. Figure 3(c) shows the orientation of
squirmers, where e, is the x-component of the orientation vector and e, = —1 indicates
that the squirmer faces upstream. We see e, ~ —0.6 when ¢ = 0.1, indicating that the
majority of neutral squirmers are facing upstream. Since these squirmers swim upstream,
the velocity distribution becomes much slower than the analytical solution. As the
volume fraction increases, the tendency to direct upstream is weakened by hydrodynamic
interactions, resulting in a diminished velocity reduction in figure 2(c).

Another striking difference is that squirmers do not form sustained layers as in the case
for inert spheres: compare figure 2(d) with 2(). The distribution of squirmers is close to
homogeneous except near the walls because the squirmers continuously change position
as they swim. Figure 3(a) shows the time change of the y-position for 20 squirmers in the
dilute suspension with ¢ = 0.1. Two squirmers remain near the wall, but many squirmers
swim near the centre of the channel, facing upstream. Some of these tendencies have been
reported in former studies on a single squirmer swimming in a channel (Zottl & Stark
2012; Qi et al. 2020). Thus, the tendency to remain close to the wall or to migrate to the
channel centre, facing upstream, is considered a phenomenon that also appears for solitary
squirmers. These tendencies are not observed when the volume fraction is as high as 0.45,
as shown in figure 3(b). The reasons for this are that the squirmers cannot accumulate
further due to the already high volume fraction, and the strong near-field hydrodynamic
interactions disrupt the orientational order.

In order to examine the effects of interactions between squirmers, the orientational
correlation of nearby squirmers (e; - €j),<2.5, is calculated, where e; and e; are the
orientation vectors of squirmer i and j that are within a distance of 2.5a. The results
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Figure 2. Comparison between suspensions of inert spheres (a,b) and squirmers (c,d). (a) Velocity distribution
of inert spheres. The broken line indicates the parabolic velocity profile of a Newtonian fluid, situated
between two flat plates which are separated by distance H. (b) Probability density distribution of inert spheres,
normalised by the average density. (¢) Velocity distribution of squirmers. (d) Probability density distribution
of squirmers, normalised by the average density.

are presented in figure 3(d), which indicates that the correlation decreases as the volume
fraction increases. The decreased correlation is related to the decrease in orientational
order in figure 3(c). The pair distribution function of squirmers is plotted in figure 3(e).
Values greater than 1 indicate that the probability density in the presence of particles is
higher than in a uniform arrangement. As the volume fraction increases, the peak of the
pair distribution function appears at smaller values of r and the peak value increases.
Consequently, the squirmers interact in the near field more strongly as the volume fraction
increases, resulting in a reduction in orientational order.

Considering the global conservation of momentum, the pressure drop in the x-direction
can be derived from the force acting on the wall spheres, F),, using (2.4). Let F), o be
the force acting on the wall spheres in the absence of suspended particles, i.e. ¢ =0,
so that the ratio F,,/F,, o indicates the pressure drop relative to that without particles.
The ratio is also equivalent to the effective viscosity relative to the solvent viscosity.
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Figure 3. Effects of the volume fraction of squirmers ¢ (for 8 = 0, G, = 0). (@) Time change of y-position,
ry, for 20 squirmers in a suspension with ¢ = 0.1. (b) Time change of r, for 20 out of 90 squirmers in a
suspension with ¢ = 0.45. (¢) Orientation of squirmers, where ey is the x-component of the orientation vector.
(d) Orientational correlation of nearby squirmers (e; - ej)r<2.54, Where e; and e; are the orientation vectors of
squirmers i and j that are within a distance of 2.5a. (e) Pair distribution function of squirmers. (f) Ratio of the
force acting on the wall spheres to that without particles, which is equivalent to the pressure drop relative to
that without particles, as well as the effective viscosity relative to the fluid viscosity. The results of squirmer
suspensions and inert sphere suspensions are plotted. The analytical solution for the effective viscosity of a
dilute suspension of inert spheres is shown by the broken line (see (1.1)). The effective viscosity obtained
in Ishikawa et al. (2021) for a monolayer suspension of squirmers with 8 = 1 in simple shear flow is also
plotted for comparison, in which the volume fraction was calculated from the thickness and areal fraction of
the monolayer.
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Thus, investigating the ratio F,,/F,,o is important in order to understand the rheological
properties of suspensions in Poiseuille flow. Figure 3(f) shows the ratio of the force acting
on the wall spheres to that without particles for squirmer suspensions and inert sphere
suspensions. The analytical solution for the effective viscosity of a dilute suspension of
inert spheres is shown by the broken line. The effective viscosity obtained in our former
study (Ishikawa et al. 2021) for squirmers with 8 = 1 in simple shear flow, instead of
Poiseuille flow, is also plotted for comparison. The sheared suspension is a monolayer in
a thin film with a thickness of about 2a, which is different from two-dimensional and full
three-dimensional suspensions. We see that the effective viscosity of squirmer suspensions
is considerably larger than that of inert sphere suspensions. This could be due to stronger
momentum exchange in the case of squirmers, since they do not form layers and there are
stronger interactions between particles. The differences between Ishikawa et al. (2021) and
the present study are the inclusion of the no-slip walls, the extension of the configuration
from a monolayer to three dimensions and consideration of Poiseuille flow as opposed
to shear flow. At lower volume fractions, the effective viscosity of the Poiseuille flow is
greater than that of Ishikawa et al. (2021), which could be due to the closer interactions
that appear in the present setting. In contrast, at higher volume fractions, the effective
viscosity of Ishikawa et al. (2021) increases more rapidly than that of the Poiseuille
flow. This is because the maximum volume fraction attainable in a thin film monolayer
in Ishikawa et al. (2021) is approximately 0.58, calculated as 27/(3+/3 x 2.1) using the
film thickness of 2.1a, whereas in our study it is approximately 0.74. The difference in
the maximum volume fraction is due to the different degrees of freedom in the suspension
configuration. Even at the same volume fraction, the clearance between spheres is narrower
in the monolayer suspension than in the three-dimensional suspension, leading to stronger
lubrication forces and higher viscosity.

3.2. Effects of swimming mode, swimming speed and wall distance

The squirming mode, B, changes the behaviour of squirmers in Poiseuille flow. Figure 4(a)
shows the orientation of non-bottom-heavy pusher squirmers with 8 = —1. We see that
the tendency to face upstream is weaker than for neutral squirmers, though the tendency of
puller squirmers was almost the same as neutral squirmers (data not shown). To examine
the effects of interactions between squirmers, the orientational correlation of nearby
squirmers and the pair distribution function of squirmers are plotted in figures 4(b) and
4(c), respectively. The orientational correlation is observed to diminish when 8 = —3 and
¢ = 0.45, as a consequence of strong hydrodynamic interactions. Given that the influence
of B on the pair distribution function of squirmers is relatively minor, it can be concluded
that the squirming mode does not affect the positions of nearby squirmers, but rather the
orientation of nearby squirmers.

The ratio of the force acting on the wall spheres to that without particles, i.e. the
effective viscosity, for suspensions of puller squirmers (8 = 1), neutral squirmers (8 = 0),
pusher squirmers (8 = —1) and inert spheres is shown in figure 4(d). The effective
viscosities of the squirmer suspensions are approximately twice as high as those of
the inert sphere suspensions, but the difference due to the swimming mode B is less
pronounced. Figure 4(e) shows the effect of varying B on the effective viscosity of a
concentrated suspension, with ¢ = 0.45. We see that pusher squirmer suspensions tend to
be slightly more viscous than puller squirmer suspensions. This difference may be due to
the fact that, compared with a puller squirmer, a pusher squirmer does not exhibit the same
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Figure 4. Effects of the squirming mode, f, and the dimensionless number, Sq, expressing the swimming
speed relative to the background flow speed. Results are plotted for Gy, = 0. (a) Orientation of pusher
squirmers with 8 = —1, where e, is the x-component of the orientation vector. (b) Orientational correlation of
nearby squirmers (e; - €j),<2.54, Where e; and e; are the orientation vectors of squirmers i and j that are within
a distance of 2.5a and the self-contribution (i = j) is excluded. (c¢) Pair distribution function of squirmers.
(d) Ratio of the force acting on the wall spheres to that without particles, i.e. the effective viscosity, for
suspensions of puller squirmers (8 = 1), neutral squirmers (8 = 0), pusher squirmers (8 = —1) and inert
spheres. (e) Effect of B on the effective viscosity (¢ = 0.45). (f) Effect of Sg on the effective viscosity
(¢ = 0.45).
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extent of upstream alignment, therefore resulting in more collisions between particles,
which promote momentum transfer.

The swimming speed normalised by the background velocity u# is represented by
Sq. Figure 4(f) shows the effect of Sq on the effective viscosity with ¢ = 0.45. The
effective viscosity increases as Sq is increased, because the momentum transport in the
suspension is enhanced by swimming. The results for large Sq are not plotted because the
repulsive force used in this study could not prevent the squirmers from overlapping and
the computation could not be continued stably. It is not clear why the effective viscosity
with Sg = 3 is smaller than that with S¢ = 1 for strong pushers (with g = —3). Further
investigation is needed in the future, as past studies have reported different behaviour of
squirmers at various values of Sg (see Qi et al. 2020).

Figure 5 shows the effects of varying the wall separation distance, H, under the
conditions of ¢ = 0.3 and 8 = Gy, = 0. Here, H = 13.1a is the original distance, and the
modified distance is varied from 7.1a to 19.2a. The velocity distribution is flattened more
in a narrower channel and is closer to parabolic in a wider channel (figure 5a). The spatial
variation in the mean squirmer orientation changes as shown in figure 5(b), with a narrower
channel showing a more pronounced tendency to face upstream. These results indicate
that the tendency for a squirmer to orient upstream appears as a result of interactions with
the wall spheres. In the case of the wider channel with H = 19.2q, there is a tendency
for squirmers to face upstream near the wall, but this effect weakens with distance from
the wall. This result also suggests that, in addition to the background flow and the cell
swimming, interactions with a wall play an important role in the emergence of rheotaxis. In
a narrower channel, squirmers are directed more upstream, so the velocity distribution
is flatter, with lower velocities around the centre. The probability density distribution of
squirmers, normalised by the average density, is shown in figure 5(c) (compare figure 2d)
The normalised probability density near the wall is higher in a wider channel because, for
the same volume fraction, a wider channel has a greater number of squirmers in it, which
tend to gather near the walls. These results clearly illustrate that the number of squirmers
that accumulate near the wall depends on the wall separation distance (domain size). The
number of accumulated squirmers increases in proportion to H, so the number of wall
layers of squirmers also increases with H.

The effective viscosity is shown in figure 5(d), in which F, o was obtained as the force
acting on the wall spheres in the absence of suspended particles for given H. Although
the viscosity of the inert sphere suspension is barely affected by the wall separation, the
viscosity of the squirmer suspension tended to increase with increasing separation. This
is because the greater the channel width, the more squirmers gather near the wall and the
greater the force acting on the wall.

4. Bottom-heavy squirmers in upflow or downflow

In this section, gravity is introduced for bottom-heavy squirmers, and the x-axis is taken to
be vertically upward. The gravitational direction is thus —x, so that flow in the positive and
negative x-directions are referred to as upflow and downflow respectively. The parameter,
Gpp, defined by (2.10), represents the strength of bottom heaviness.

4.1. Neutral squirmers

We begin by investigating the neutral squirmer suspension. Figure 6 shows the distribution
of bottom-heavy neutral squirmers in upflow and downflow with ¢ = 0.3 and 8 = O (see
supplementary movies 3 and 4). The yellow arrows in the figure indicate the flow direction,
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Figure 5. Effects of varying the distance between walls (for ¢ = 0.3, 8 = 0, Gp;, = 0). Here, H = 13.1a is
the original distance, and the modified distance is varied from 7.1a to 19.2a. (a) Velocity distribution of
squirmers. The broken line indicates the parabolic velocity profile for a Newtonian fluid. (b) Orientation
of squirmers, where e, is the x-component of the orientation vector. (c) Probability density distribution of
squirmers normalised by the average density. (d) Ratio of the force acting on the wall spheres to that without
particles, i.e. the effective viscosity, with various wall separations. The results for inert spheres are also shown
for reference.

and the black arrows indicate the gravitational direction. We see that bottom-heavy
squirmers with Gy, = 100 accumulate near walls in upflow (figure 6a) but accumulate
near the centre in downflow (figure 6¢). This is because the upflow generates vorticity
that rotates the squirmers towards the wall, while the downflow generates vorticity that
tends to rotate the squirmers toward the centre of the channel. Similar tendencies were
also observed previously in experiments in cylindrical tubes by Kessler (1985a,b). He
observed that swimming microalgae concentrated at the centre of the tube in downflow
and sheeted on the wall in upflow. The probability density distribution of squirmers,
normalised by the average density, is also shown at the top of figure 6. The probability
density clearly shows the squirmer accumulation near the walls in upflow and near the
centre in downflow. On the other hand, in the case of the non-bottom-heavy squirmers in
upflow, as shown in figure 6(b), strong accumulation is not observed as in the case of the
bottom-heavy squirmer. These results clearly illustrate that the strong accumulation is
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Figure 6. Distribution of bottom-heavy neutral squirmers in upflow and downflow (¢ = 0.3, 8 = 0). The
yellow arrows indicate the flow direction, and the black arrows indicate the gravitational direction. The
probability density distribution of squirmers, normalised by the average density, is also shown at the
top of the image. (a) Bottom-heavy squirmers with Gp, = 100 in upflow (see supplementary movie 3).
(b) Non-bottom-heavy squirmers in upflow. (¢) Bottom-heavy squirmers with Gp; = 100 in downflow (see
supplementary movie 4).

induced by the bottom heaviness, and the accumulation region varies depending on the
flow direction.

The velocity distributions of squirmers with Gy, = 0 and Gy, = 100 are shown in
figure 7(a). The velocity with Gp, = 100 is much larger than the parabolic velocity profile
for a Newtonian fluid, because squirmers with G, = 100 tend to orient vertically upward
as shown in figure 7b). The velocity with Gy, = 0 is smaller than the parabolic velocity
profile, because squirmers with Gy, = 0 tend to orient vertically downward (figure 7b).
When Gy, = 100, the gravitational torque acting on the squirmers is sufficiently strong
that the orientation of the squirmers is almost vertically upwards. On the other hand, for
Gy, = 10, the gravitational torque is not strong enough, so squirmer orientations deviate
from the vertical upward direction, and the average value of e, is approximately 0.6 for the
upflow. Although the upward orientation is less pronounced under Gp, = 10 conditions,
the accumulation on walls in upflow and towards the centre in downflow still appears as in
the Gy, = 100 case (cf. figure 7c¢,d).

The effective viscosity in upflow and downflow, for various values of Gpy,, is shown in
figure 7(e) (with 8 = 0 and ¢ = 0.3). When Gy, > 30, the effective viscosity in upflow
can be negative; it decreases considerably up to Gpp = 30, and it is almost constant
in the range 30 < Gp, < 100. The effective viscosity in downflow, on the other hand,
remains positive regardless of the value of Gy, It again decreases slightly up to Gy, = 30,
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Figure 7. Effects of the bottom heaviness of squirmers, Gy, in upflow and downflow (for 8 = 0 and ¢ = 0.3).
(a) Velocity distribution of squirmers with Gp;, = 0 and Gp;, = 100. Broken lines indicate the parabolic velocity
profile for a Newtonian fluid. (b) Orientation of squirmers with various Gy, where e, is the x-component of
the orientation vector. (c,d) Probability density distribution of squirmers with Gp, = 10, normalised by the
average density, in (c¢) upflow and (d) downflow. (e,f) Ratio of the force acting on the wall spheres to that
without particles, i.e. the effective viscosity, in upflow and downflow. (e) Effect of varying bottom heaviness,
Gpp, and (f) volume fraction, ¢.
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and it is almost constant in the range 30 < Gp, < 100. Under high Gy, conditions, the
orientation of squirmers in upflow and downflow is almost the same (cf. figure 7). The
main difference between the upflow and downflow appears in the distribution of squirmers:
in upflow, squirmers accumulate near the wall, while in downflow they accumulate near
the channel centre (cf. figure 6a,c). Thus, the difference in effective viscosity is mainly
caused by the distribution of squirmers, and the squirmers near the wall are responsible
for the large decrease in the effective viscosity. Moreover, the distribution of squirmers
with Gpj;, = 10 is similar to that with G, = 100 (cf. figure 7¢,d). However, the orientation
of the squirmers in the upflow is less directed vertically upward (cf. figure 7b), resulting
in a small change in the effective viscosity. These results clearly illustrate that the large
change in the effective viscosity requires a near-wall accumulation of squirmers as well as
their strong orientational order. The mechanism of viscosity change observed in figure 7(e)
will be further discussed in the next section.

Figure 7(f) shows the effect of varying the volume fraction, ¢, on the effective viscosity.
The effective viscosity increases (decreases) in downflow (upflow) up to ¢ = 0.2, and it
becomes almost constant in the range 0.2 < ¢ < 0.3. In the present channel, when the
volume fraction exceeds 0.2, the squirmers cover the wall, so that increasing the volume
fraction further does not change the number of squirmers in contact with the wall, and thus
does not have an appreciable effect on the effective viscosity.

4.2. Effects of swimming mode

This section examines bottom-heavy squirmer suspensions with different swimming
modes B. Figures 8(a) and (b) show upflow of a suspension of bottom-heavy squirmers
with 8 = 3 (see supplementary movie 5) and 8 = —3 (see supplementary movie 6) under
the conditions of ¢ = 0.3 and Gy, = 100. We see that pusher squirmers accumulate near
the wall, as do neutral squirmers (not shown), but puller squirmers swim away from the
wall and accumulate in the centre of the channel. These tendencies are also evident in the
probability density distribution of squirmers (figure 8d). This is because the torque away
from the wall caused by the hydrodynamic interaction between the puller squirmer and the
wall is greater than the torque toward the wall caused by the vorticity of the background
flow. In a wider channel, there would be an intermediate layer between the centreline
and the wall, where the wallward flux and the centreward flux would balance and cells
would accumulate, although this was not clear at the channel width used in this study. The
velocity distributions of squirmers with § = 3, 0 and —3 are shown in figure 8(c). We see
that the pusher squirmers with 8 = —3 accumulating near the wall move upwards very
slowly. Since the flow rate throughout the channel is prescribed, a faster velocity appears
in the centre of the channel to satisfy the equation of continuity. In the case of the puller
squirmer, no stagnant velocity is observed near the wall, and the overall velocity is faster
than the parabolic velocity profile. This is because the puller squirmers swim upwards
without strong lubrication interactions with the wall.

Figure 9 shows the results for downflow with various squirming modes 8 (¢ =
0.3, Gpr, = 100). The probability density distribution indicates that squirmers of all modes
accumulate in the centre of the channel due to background vorticity. The velocity of
squirmers is faster than the parabolic velocity profile, because the squirmers of all modes
swim upward without strong lubrication effects next to the wall. Taken together, these
results reveal that the influence of the swimming mode, B, is less apparent in downflow
than in upflow.

The effective viscosity for suspensions of bottom-heavy squirmers with various 8 in
upflow and downflow is shown in figure 10. In the case of downflow, no significant change
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Figure 8. Upflow of a suspension of bottom-heavy squirmers with various squirming modes B (¢ =
0.3, Gpp = 100). Sample images of the squirmer distribution are shown with (a) § = 3 (see supplementary
movie 5) and (b) B = —3 (see supplementary movie 6). The yellow arrows indicate the flow direction, and
the black arrow indicates the gravitational direction. (¢) Cross-channel velocity distribution of squirmers with
B =3, 0 and —3. The broken lines indicate the parabolic velocity profile for a Newtonian fluid. (d) Probability
density distribution of squirmers with 8 = 3, 0 and —3, normalised by the average density.

in the effective viscosity is observed. This is because squirmers accumulate in the centre of
the channel and do not interact strongly with the walls. In the case of upflow, on the other
hand, a significant change in the effective viscosity is observed, with a small increase in
viscosity for the pusher squirmers and a large decrease in viscosity for the puller squirmers.

The mechanism of viscosity enhancement or reduction can be understood by the
force induced on the wall by the squirming velocity, as shown in figure 11. In the
figure, the Poiseuille flow is upward and an upward force is exerted by the flow. The
gravitational direction is downwards, and bottom-heavy squirmers are directed toward the
wall due to the balance of a hydrodynamic torque caused by the background vorticity
and a gravitational torque induced by the bottom heaviness. When puller squirmers
are distributed vertically along the wall, the squirming velocity boundary condition is
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0.3, Gp, = 100). (a) Cross-channel velocity distribution of squirmers with § = 3, 0 and —3. The broken lines
indicate the parabolic velocity profile for a Newtonian fluid. (b) Probability density distribution of squirmers
with 8 = 3, 0 and —3, normalised by the average density.
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Figure 10. Ratio of the force acting on the wall spheres to that without particles, i.e. the effective viscosity,
for suspensions of bottom-heavy squirmers with various § in upflow and downflow (¢ = 0.3, G, = 100 or 0).
The effective viscosity of puller and neutral squirmers becomes negative in upflow.

downward, and squirmers exert a downward force on the wall (figure 11a). To understand
the forces, an explanation of the lubrication forces between an inert sphere and a flat wall
would help. When the inert sphere adjacent to the wall is moved downwards, the wall
is subjected to a downward force and the sphere to an upward force. Lubrication theory
(Ishikawa et al. 2006) demonstrated that the downward squirming velocity generates forces
with a magnitude and direction similar to those experienced by the inert sphere moving
downwards. This is because the velocity boundary conditions of the two cases are similar.
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Wall

Puller

Figure 11. Schematic diagrams illustrating the wall-squirmer interactions. The flow is upward, and the
gravitational direction is downwards, so that bottom-heavy squirmers are directed towards the wall. A squirmer
of interest is shown in green, and the surrounding squirmers are shown in grey. Green arrows on the squirmer
surface indicate the squirming velocity boundary conditions. (a) A puller squirmer generates downward force
to the wall. (b) A neutral squirmer generates downward force to the wall. (¢) A pusher squirmer generates
upward force to the wall.

When the pusher squirmers are distributed vertically along the wall, on the other hand,
the squirming velocity boundary condition is upward, and squirmers exert an upward force
on the wall (figure 11c¢). Since the puller squirmers exert forces in the opposite direction
to those exerted by the Poiseuille flow on the wall, the total force acting on the wall is
weaker and the effective viscosity diminishes. The pusher squirmers exert forces in the
same direction as the Poiseuille flow, so the total force acting on the wall is stronger and
the effective viscosity is increased. Thus, the effective viscosity induced by squirmers can
be understood in terms of the near-field interactions between the squirmer and the wall.
For B between —3 and 0, the viscosity in upflow decreases linearly with respect to 8. This
is because the second mode squirming velocity is proportional to g8, and the force acting
on the wall is also approximately proportional to 8. For 8 between 0 and 3, the viscosity
in upflow is almost constant and does not change significantly. This is because the puller
squirmers do not accumulate at the wall in contrast with other squirmer types (figure 8a),
and cannot exert a large force on the wall. The puller squirmers quickly swim away from
the wall, but as long as they remain close to the wall, they are torque free, with the torque
due to the background vorticity and the lubrication torque balanced. Since the torque due
to the vorticity does not change with changing values of g, the lubrication torque will
also have approximately the same value and the lubrication force acting on the wall will
not change significantly with 8. As a result, the viscosity in the upflow becomes almost
constant in the range 0 < 8 < 3. In upflow, neutral and puller squirmers can generate
a negative pressure drop, which implies that, if the pressure drop were held fixed or
increased, the volume flow rate would rise continually. In other words, for an experiment
with prescribed pressure drop, there would be a large-scale instability, leading to a runaway
downflow rate. However, in our computations it is the flow rate that is prescribed and the
corresponding smaller (or negative) pressure drop that would arise.
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5. Conclusion

In this study, Poiseuille flow between two parallel walls of a concentrated suspension
of squirmers is investigated. Although the distribution of inert spheres in Poiseuille
flow is layered, that of non-bottom-heavy squirmers becomes much more uniform. This
leads to a much larger pressure drop and effective viscosity for the squirmers than for
the inert spheres. The effective viscosity increases with increasing the volume fraction,
swimming speed and wall separation, but the effect of swimming mode is not significant
for non-bottom-heavy squirmers. Accumulation of neutral squirmers on the wall surface is
observed, and the extent of accumulation depends on the distance between the walls. The
influence of the distance between the walls needs to be further explored in future studies.

When the squirmers are bottom heavy and gravity is acting on them, they tend to
accumulate at the channel centre in downflow, and near the walls in upflow. This is
because the upflow creates vorticity that rotates the squirmers towards the wall, while the
downflow creates vorticity that rotates the squirmers toward the centre. These tendencies
were observed experimentally by Kessler (1985a,b). In downflow, no significant change in
the effective viscosity is observed, because squirmers accumulate in the centre and do not
interact strongly with the walls. In upflow, on the other hand, pusher squirmers induce
considerably larger effective viscosity, while neutral and puller squirmers could even
generate negative effective viscosity, i.e. negative pressure drop. While previous studies
have reported a negative viscosity of pusher suspensions (Lépez ef al. 2015; Saintillan
2018), this study shows that the effective viscosity of bottom-heavy puller suspensions can
be negative for Poiseuille upflow, which is a new finding.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jtm.2024.1205.
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