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Feedback loops between mathematics and microbiology 
Douglas R. BrumleyA,*  

ABSTRACT 

The combination of mathematical modelling and quantitative video-microscopy provides exciting 
opportunities for elucidating the mechanisms behind key processes in microbial ecology, ranging 
from cell navigation and nutrient cycling to biofilm establishment and symbioses. Central to this 
approach is the iterative process, whereby experiments and modelling inform one another in a 
virtuous cycle: vast quantities of experimental data help to test and refine mathematical models, 
the predictions from which feed back to the experimental design itself. This paper discusses 
recent technologies, emerging applications, and examples where calibrated mathematical models 
enable calculation of quantities that are otherwise extremely difficult to measure.  
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Microorganism behaviour and interactions unfold at the microscale and are inherently 
dynamic. Ecological processes depend on spatial structure of the environment, as well as 
the arrangement and behaviour of microbes. For example, the capacity for microbes 
to actively navigate heterogeneous environments using chemotaxis can dramatically 
influence their nutrient acquisition and establishment of symbioses;1 ubiquitous fluid 
flows in the environment (e.g. ocean, groundwater, gut, mucus) influence the motility 
of microbes and reshape the environment;2 and Brownian motion can affect encounter 
rates between microorganisms.3 While functional complexity of microbes is well docu
mented, it can be very difficult to examine spatiotemporal processes using traditional 
tools in microbiology. The combination of visualisation in controlled environments and 
mathematical modelling is uniquely positioned to resolve dynamic features of microbial 
lifestyles, and the ways in which these scale up to ecosystem-level processes. 

The growing use of microfluidics and video-microscopy has facilitated the direct 
imaging of microbial behaviour in a range of realistic controlled microenvironments. 
Typically fabricated from flexible, optically transparent elastomers such as polydimethyl
siloxane (PDMS), microfluidic devices can be used to create precisely controlled physi
cochemical conditions.4 Steady gradients or transient pulses of oxygen, amino acids, and 
sugars can be used to interrogate the chemotactic ability of microorganisms.5,6 

Microscale fluid flows can be generated with exquisite precision using ultraslow syringe 
pumps, with flow fields exactly solvable using known dimensions. Various other addi
tional stimuli – including light illumination patterns, electric and magnetic fields7 – can 
readily be overlayed. Taken together, this enables the user to accurately recreate physical 
and chemical features of realistic microenvironments – for example from the ocean or soil 
– in a device small enough to fit on a microscope slide (Fig. 1). 

Mathematical modelling has been applied extensively over many decades to model 
phenomena in microbial ecology. These approaches can involve directly simulating the 
motion of individual cells (agent-based models); abstracting organisms or chemicals as 
continuous fields which vary in space and time (continuum models); modelling sensory 
pathways or physical processes using reduced-order dynamical systems; and using statis
tical models to process and interpret sequencing data. For example, understanding of 
pattern formation in growing domains,8 limits to chemoreception,9 and motility patterns 
of swimming microorganisms10 stemmed from mathematical models. More broadly 
across microbiology, mathematical modelling has been used to investigate metabolism 
in microbial communities and the transmission of infection in disease epidemiology. The 
success of mathematical models hinges on accurately identifying the essential features of 
the biological system that shape the ecological processes, and detailed parameterisation 
of the model. 
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The feedback loop between experiments and mathe
matical modelling is essential for understanding various 
processes in microbial ecology. Previous works have high
lighted the utility of microfluidic devices for visualising 
dynamic processes.4 However, these technologies realise 
their full potential when combined with mathematical model
ling, particularly through iteration between experiments and 
theory. Because experimental environments (e.g. chemical 
gradients, flow, light, fields) can be independently and con
tinuously varied, the predictions of mathematical models can 
be thoroughly scrutinised. Where differences occur, models 
can be updated, and further experiments conducted (Fig. 1). 

What are the key elements that facilitate this itera
tive loop? Video-microscopy of microbes in carefully con
trolled arenas enables collection of vast quantities of data, 
for example in the form of high-speed movies, time-lapse 
photographs, or fluorescence intensity. Image processing 
algorithms – often conducted in MATLAB, Python, ImageJ – 
result in digitised trajectories, for example, the position of all 
motile bacteria at all time-steps11 or the growth dynamics 
and lineages of cells throughout a biofilm.12 From these data, 
cell concentration profiles, swimming speeds, turning angles, 
and attachment events13 can be quantified with great preci
sion. Although visualisation is a key step, this methodology is 
not merely ‘observational’. The extracted information can be 
either used to parameterise mathematical models or directly 
compare with the predictions of simulations or modelling 
efforts. 

Many aspects of microorganisms’ environment and life
style can be modelled explicitly using known governing 
equations and physical principles. The Navier–Stokes equa
tions can be used to precisely calculate how fluid flows and 
local shear transport and rotate microbes;14 the transport and 
spread of dissolved organic matter can be solved using the 
advection-diffusion equation; and buoyancy forces, gravita
tional torques and magnetic fields can be readily included.15 

Explicit calculation of the hydrodynamic flow fields around 
swimming microorganisms16 allows one to determine how 
organisms physically interact with one another17 as well as in 
dense suspensions.18 Mathematical modelling can also 
shed light on complex biochemical pathways and whole 

cell dynamics. These range from low-dimensional models, 
where a full sensory pathway can be abstracted as a dynami
cal system with few parameters,19 through to systems biology 
approaches that involve high-dimensionality modelling of 
many processes in a cell.20 Despite their apparent simplicity, 
minimal models have elucidated how different bacteria navi
gate chemical profiles using for example logarithmic sens
ing21 or fold change detection,22 and how the discrete 
molecular nature of chemical attractants places limits on 
gradient detection.23 These models, which enable prediction 
of microbial dynamics in arbitrary settings with great accu
racy (~1% fitting error)24 despite few parameters, were 
developed and validated with the large quantities of data 
obtained through microfluidics and microbial tracking. 

To close the feedback loop, model predictions must be 
able to inform refinements of experimental design. In the 
simplest case, this can be using mathematical models to 
identify the key regions of parameter space to be studied 
experimentally, for example, determining the domain size, 
imaging timescales or nutrient concentrations at which 
specific phenomena are likely to occur. Pioneering work of 
Berg and Purcell,9 later extended by others, calculated the 
strength of a chemical gradient necessary to elicit a chemo
tactic response. Experiments can also be designed to test the 
robustness of the model – for example, would a model for 
chemotaxis still work if the gradients were increased by a 
factor of 10 or 100? Challenging models through a suite of 
different experiments removes the likelihood of coincidental 
agreement between experiments and modelling. 

Mathematical models can reveal specific phenomena that 
might not otherwise be seen in experimental systems. 
Knowledge of how fluid gradients reorient cells suggested 
that swimming microbes exhibit different behaviours as fluid 
shear is varied; advection–diffusion modelling suggests that 
external flow can dramatically influence quorum sensing of 
microbial communities;25 and theoretical work on confined 
active suspensions26 hinted that confining boundaries could 
stabilise bacterial suspensions into vortical flow patterns. 

Mathematical modelling enables one to calculate 
important parameters and quantities that cannot cur
rently be measured directly. Marine nutrient cycling and 
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Fig. 1. Feedback loop between microfluidic experiments and mathematical models. High-speed imaging of 
microbes in precisely controlled microenvironments provides data that can be analysed using image processing 
algorithms. The digitised trajectories provide vast quantities of single-cell data, for example, spatial distribution of 
cells, individual swimming properties over time and single-cell growth rates across the population. These data inform 
mathematical models, enabling robust model testing, parameter estimates, and the calculation of quantities that are 
extremely difficult to measure experimentally. These model outputs facilitate refinement of experimental design.    
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biogeochemistry is underpinned by the concerted action of 
microbial populations, and determining precisely how micro
bial behaviour (e.g. motility, navigation) influences nutrient 
uptake, represents a key challenge. Resource acquisition is 
readily measured using bulk techniques, for example by exam
ining cell growth rates and dry mass measurements. At the 
single-cell level, Nanoscale secondary ion mass spectrometry 
(NanoSIMS) and other quantitative imaging tools27 provide 
highly quantitative measurements for nutrient uptake, but can 
be prohibitively expensive and time-consuming. However, in 
microfluidic arenas where the nutrient landscape can be 
spatially controlled and the bacterial positions readily mea
sured,24 it is straightforward to calculate single-cell nutrient 
exposure across the entire bacterial population. Quantities 
such as the energetic cost of swimming, which can be extre
mely challenging to measure biochemically, can be readily 
calculated using fluid dynamical models which consider the 
shape, swimming speed, and hydrodynamic drag on a cell 
body.28 This enables quantitative predictions about optimal 
strategies for microorganisms in various realistic environ
ments. For example, the competition between non-motile 
and chemotactic bacteria is shown to depend sensitively on 
the local ocean productivity.29 

Perhaps the most powerful aspect of mathematical model
ling is the capacity to investigate the implications of varying 
key physical parameters and examining how sensitive results 
are to changes in microbial behaviour. For example, how 
does the nutrient uptake change as chemotactic sensitivity 
is modified, and is there an optimal value? How does IgA- 
mediated agglutination of pathogens vary as antibody sticki
ness and cell growth rates change? Mechanistic models can 
either examine key metrics for given parameters, or allow 
these parameters to vary over time, known as in silico evolu
tionary experiments. 

Future directions. We have discussed the iteration 
between experiments and modelling, communicated through 
data and model outputs. The greatest advances thus far 
have been in relation to single microbial species or simple 
communities. Community analysis is typically performed at a 
very high level, e.g. through metagenomics, but is not well 
suited to exploring spatial and temporal effects, and physical 
processes involved in the microbial lifestyles. An important 
area for future exploration will be examining interaction 
between multiple species and assessing the role of spatial 
heterogeneity and resource diversity in natural communities. 

Another clear future area of research is the application of 
machine learning (ML) and artificial intelligence (AI). In the 
shorter time, this is likely to assist with the extraction of 
data from experimental results (e.g. image segmentation, cell 
identification), which can be fed to mathematical models as 
outlined earlier. However, in the longer term, AI will likely 
assist in the modelling phase itself, proposing and testing 
reduced order models, or guiding human intuition.30 

Through exposure to large datasets, AI may be able to 
‘learn’ how microorganisms behave, either as individuals 
(e.g. chemotaxis, motility patterns, growth rates), or commu
nities (e.g. symbiosis partnerships, community dynamics). 
This offers the tantalising possibility of extrapolating beha
viour from small numbers of different species – for example, 
chemotaxis towards specific compounds, symbiosis between 

pairs of organisms – to complex communities with multiple 
metabolic interactions. Despite these possibilities, ML and 
AI find it difficult to provide reasoning for their predictions. 
So, there will be a trade-off between accurate prediction of 
dynamics and revealing underlying mechanisms or physical 
principles (at least in the short term). Taken together, the 
combination of quantitative video-microscopy, mathemati
cal modelling, and machine learning, is promising for pro
viding quantitative understanding of how complex microbial 
communities behave. 
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