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The incessant swimming motion of microbes in dense suspensions can give rise to
striking collective motions and coherent structures. However, theoretical investigations of
these structures typically utilize either computationally demanding numerical simulations
or simplified continuum models. Here we analytically investigate the collective dynamics
of a dense array of steady, spherical squirmers. We first calculate the forces and torques
acting on two closely separated squirmers, through solving the Stokes equations to second
order in the ratio of mean spacing to squirmer radius. This lubrication analysis is then
used to assess the stability of a dense, vertical, planar array of identical three-dimensional
squirmers. The system of vertically oriented squirmers is unstable if there is no short-
range repulsive force between them, even when there is a strong gravitational torque on
them because they are bottom-heavy. When there is a repulsive force the positions of
the squirmers are stable, but the orientations are unstable unless the bottom-heaviness
parameter Gbh is sufficiently large. The predictions of instability and possible long time
behavior are qualitatively the same for monolayers confined between two parallel rigid
planes as for unconfined monolayers. The predictions compare favorably with published
numerical simulations, and reveal the existence of additional dynamic structures not
previously observed; puller-type squirmers show a greater range of structures than pushers.
The use of pairwise lubrication interactions provides an efficient means of assessing
stability of dense suspensions usually tackled using full numerical simulations.
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I. INTRODUCTION

Motility is a pervasive feature among microorganisms, from the diurnal migration of marine
phytoplankton [1] to the motion of bacteria in the gut [2]. The acquisition of resources [3], evasion
from predators [4], and infection by pathogens [5] all depend sensitively on organismal motility.
Early microscopes dating back to the 18th century [6] enabled glimpses into the dynamic nature
of the microbial world. Since then, the role of cilia and flagella—ubiquitous, highly conserved
propulsive appendages—has received considerable attention [7,8]. Recent advances in imaging
and microfluidic control offer new insights into the mechanics of cellular propulsion [9]. The
spatial distribution of cells in microbial consortia can influence nutrient cycling [10], horizontal
gene transfer [11], and fertilization processes [12]. Developing a quantitative framework for the
collective dynamics of swimming microorganisms is therefore essential to understanding a vast
array of biological processes. It has become clear that collective motions of many microorganisms
can be very different from individual dynamics [13]. Striking examples of bacterial turbulence [14],
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self-organization [15,16] and coherent structures [17] reveal the combined effects of confinement,
hydrodynamic signatures, and steric interactions in determining emergent phenomena.

The squirmer model was first proposed by Lighthill in 1952 [18] and modified by his student
Blake in 1971 [19], but its current wide applicability to a range of organisms was not initiated
until relatively recently [20–25]. Its elegance and simplicity enable modeling of cells in different
environments [26], near air-liquid interfaces [27] or no-slip and repulsive walls [28–30]. The
conceptually simple model replaces an array of flagella with a single, no-slip, deformable surface,
thereby linking discrete ciliary beating with an effective surface slip velocity. The model organism,
Volvox carteri [31], renowned for its exquisite spherical symmetry, exemplifies the squirmer model,
with strong agreement between predictions based on measured flagellar dynamics [32–34] and the
observed motion of freely swimming colonies [35]. Experimental [36] and theoretical evidence [37]
hints at the importance of near-field interactions in determining collective properties of suspensions
of squirmers.

Ishikawa et al. [38] investigated hydrodynamic interactions between two spherical squirmers,
utilizing both lubrication theory and multipole expansions to model closely and widely separated
squirmers respectively. Boundary element simulations of dense suspensions revealed stable col-
lective states and intriguing oscillatory modes [39,40], in which squirmers self organize into a
densely packed lattice. Despite the conceptual simplicity of the squirmer model, it remains unclear
what mechanisms are responsible for these states, and the precise conditions under which they are
stable. In this paper, we analytically solve the Stokes equations between two bottom-heavy, spherical
squirmers, in the limit of close separation. We use these results to predict the collective dynamics of
a dense array of squirmers, and show that both orientational and translational stability are mediated
through gravitational torques exerted on the cells, and a cell-cell repulsive force.

II. INTERACTIONS BETWEEN SPHERICAL SQUIRMERS

A. Interactions due to squirming motion

In order to calculate the forces and torques arising from the short-range interactions between
two spherical swimming microorganisms, we will utilize the squirmer model. The single-squirmer
model will be developed in the reference frame in which the center of the spherical squirmer is at
rest, and the fluid at infinity has velocity given by −Ue. The value U is the swimming speed of the
sphere and e is its orientation vector—the unit vector along the axis of symmetry. The boundary
conditions at the surface of the sphere are given by

ur |r=a =
∑

n

An(t )Pn(cos θ ), uθ |r=a = sin θ
∑

n

Bn(t )Wn(cos θ ), (1)

where θ is the angle measured from the anterior of the squirmer, Pn is the nth Legendre polynomial,
and Wn is defined as

Wn(cos θ ) = 2

n(n + 1)
P′

n(cos θ ). (2)

The ultimate goal will be to consider the hydrodynamic interaction between two adjacent
squirmers whose positions and orientations are arbitrary. Without loss of generality, consider the
problem of two closely separated spherical squirmers, as depicted in Fig. 1. The frame is chosen
such that the orientation of squirmer 1 lies in the x-z plane, i.e., e1 · ey = 0. Any configuration
in a laboratory frame can be mapped to the situation shown in Fig. 1 through a suitable linear
transformation. By linearity of the Stokes equations, the problem involving two squirming spheres
in a fluid that is at rest infinitely far away can be broken down into two distinct problems. The first
has the squirming-sphere boundary condition on sphere 1 and zero velocity boundary condition on
sphere 2. The second problem has zero velocity on sphere 1 and the squirming-sphere boundary
condition on sphere 2. Only the former problem will be studied, since solving this will immediately
yield the solution to the latter.
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FIG. 1. Geometry of the two squirmers. The origin of the coordinate system is located on the surface of
sphere 2 closest to sphere 1. The vector eρ points radially in the x-y plane, and the vector eφ is the azimuthal
direction.

The radii of spheres 1 and 2 are given by a and λa respectively, and the minimum separation
between the spheres is taken to be εa (with ε � 1). The origin of the coordinate system is located at
the surface of sphere 2, on the axis joining the centers of the two spheres. The z axis passes through
the spheres’ centers, so that spheres 1 and 2 lie in the regions z > 0 and z � 0 respectively. The
surfaces of spheres 1 and 2 are determined by z = h1 and z = h2, respectively. Let the two spheres,
1 and 2, have orientation vectors e1 and e2 and squirming sets B(1) = (B(1)

1 (t ), B(1)
2 (t ), . . . ) and

B(2) = (B(2)
1 (t ), B(2)

2 (t ), . . . ), respectively. Squirmers with zero radial velocity on the sphere surface
will be considered (An(t ) = 0 ∀n). Although Fig. 1 depicts a configuration with two spheres, the
following lubrication analysis can also be applied to the interaction between a sphere and a plane
wall by considering the case where λ → ∞. The analysis is essentially the same as that presented
in Ref. [38], which was in turn developed from the framework outlined in Ref. [41], for example
(see Supplemental Material Sec. S1 [42]).

Because of the curvature of the spherical surfaces, the region in which the thickness of the
lubricating fluid layer remains O(εa) occupies a radial distance of O(ε1/2a). It follows that the fluid
velocity u = (u, v,w) and pressure p in the gap between the squirmers are, expanded in powers of ε,

u = u0 + ε1/2u1 + O(ε),

v = v0 + ε1/2v1 + O(ε),

w = ε1/2w0 + εw1 + O(ε3/2),

p = ε−3/2 p0 + ε−1 p1 + O(ε−1/2). (3)

Similarly, the separation between the squirmers, H , nondimensionalized by εa, can be written as
a function of ρ, the (cylindrical) radius nondimensionalized by ε1/2a:

H = 1 + λ + 1

2λ
ρ2 + O(ε). (4)

By expanding and solving the Stokes equations in powers of ε, the leading order pressure
distribution p0(ρ, φ) = q0(ρ)e · eρ can be found (see Supplemental Material Sec. S1 for a detailed
calculation [42]), where

q0(ρ) = Q0(ρ)
∑

n

BnWn(−e · ez ) and Q0(ρ) = 6μ

5a

ρ

H2
. (5)
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FIG. 2. First- and second-order components of the pressure distribution in the lubrication region. (a) Q0(ρ )
and (b) F (ρ ) are shown as functions of ρ. Results are shown for λ = 0.2, 0.5, 1, 2, 5, and ∞ (dotted).

Similarly, the second-order pressure is found to be of the form

p1(ρ, φ) = fp(ρ) + g(ρ) cos 2φ. (6)

The component proportional to cos 2φ disappears upon integration with respect to φ and so does not
provide a net contribution to the force exerted between the spheres. It therefore suffices to consider

F (ρ) = 3

4

(
λ

λ + 1

)
6H − 1

H2
, (7)

where F (ρ) is defined by

F (ρ)
∑

n

[
BnWn(−e · ez )e · ez + 1

2
BnW

′
n (−e · ez )(e · ex )2

]
= a

μ
fp(ρ). (8)

The functions Q0(ρ) and F (ρ) represent first- and second-order pressure increases due to the
squirming motion of sphere 1. These are shown in Figs. 2(a) and 2(b) respectively.

Using Eqs. (5) and (7), the fluid velocity in the gap between the squirmers, Eq. (3), can be solved
to first order (see Supplemental Material Sec. S1 [42]). These expressions enable the forces and
torques acting on the two spheres to be calculated explicitly:

F sq(1)
x = −4

5
μπa e · ex

λ(λ + 4)

(λ + 1)2

∑
n

BnWn(−e · ez )(ln ε + O(1)),

F sq(1)
z = −9μπa

λ2

(λ + 1)2

∑
n

[
BnWn(−e · ez )e · ez + 1

2
BnW

′
n (−e · ez )(e · ex )2

]
(ln ε + O(1)),

T sq(1)
y = 16λ

5(λ + 1)
μπa2 e · ex

∑
n

BnWn(−e · ez )(ln ε + O(1)),

T sq(2)
y = 4λ2

5(λ + 1)
μπa2 e · ex

∑
n

BnWn(−e · ez )(ln ε + O(1)). (9)

The tangential and normal forces acting on sphere 2, F sq(2)
x = −F sq(1)

x and F sq(2)
z = −F sq(1)

z

respectively, are equal and opposite to the values on sphere 1. By symmetry, the torque T sq
x is

precisely equal to zero. The torque in the z direction can be evaluated; however, it is found that
T sq

z = O(ε) so this need not be pursued. The torque exerted on sphere 2 in the y direction has an
extra factor of λ compared to the results for sphere 1, arising from the discrepancy between their
radii. It is also worth noting that for λ = 1 (equally sized spheres), the torque exerted on sphere 2 is
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one quarter times that exerted on sphere 1. Normal gradients in the fluid velocity are greater at the
surface of the squirmer than they are at the boundary of the no-slip sphere.

B. Interactions due to motion of no-slip spheres

In addition to the effects of squirming, the two spheres will also experience forces and torques due
to their linear and angular velocities, intercellular steric interactions, and gravity. In this section, we
neglect the squirming action of the spheres, and outline all other hydrodynamic forces and torques
acting on them. All vectors will be given primed symbols to indicate that they are viewed in the
reference frame S′ depicted in Fig. 1. Suppose that in this reference frame, the spheres possess
linear and angular velocity vectors V ′

i = (V ′
x,i,V ′

y,i,V ′
z,i ) and ω′

i = (ω′
x,i, ω

′
y,i, ω

′
z,i ) respectively. The

subscript i = 1, 2 denotes either sphere 1 or sphere 2. Let F ′
i and T ′

i be the force and torque acting on
sphere i = 1, 2 in this frame S′. The forces and torques are scaled according to F̄ ′ = F ′/(μπa) and
T̄ ′ = T ′/(μπa2). Translation and rotation of no-slip spheres give rise to the following relationships
[41]:

F̄ ′
1 = A · (V ′

1 − V ′
2) + C · (aω′

1 + aω′
2), (10)

T̄ ′
1 = −C · (V ′

1 − V ′
2) + J · (

8
5 aω′

1 + 2
5 aω′

2

)
, (11)

F̄ ′
2 = −A · (V ′

1 − V ′
2) − C · (aω′

1 + aω′
2), (12)

T̄ ′
2 = −C · (V ′

1 − V ′
2) + J · (

2
5 aω′

1 + 8
5 aω′

2

)
, (13)

where, correct to order O(ln ε), the matrices are given by

A =
⎛
⎝ln ε 0 0

0 ln ε 0
0 0 − 3

2ε
+ 27

20 ln ε

⎞
⎠,

C =
⎛
⎝ 0 − ln ε 0

ln ε 0 0
0 0 0

⎞
⎠, (14)

J =
⎛
⎝ln ε 0 0

0 ln ε 0
0 0 0

⎞
⎠.

As expected, F̄ ′
2 = −F̄ ′

1 and the forces and torques arising due to linear velocities are zero when
V ′

1 − V ′
2 = 0. Note that these results correspond to the case involving two equally sized spheres

(λ = 1). Rotation of the spheres in the z direction does not produce forces or torques that are singular
as ε → 0, and the torque in the z direction remains finite as the spheres become arbitrarily close
together. It follows that the entries in the third row of C and J are all zero to order O(ln ε).

C. Additional interactions

If the squirmers are bottom-heavy, there is an additional external torque acting on each sphere due
to gravity. For species such as Volvox, this mechanism facilitates swimming in an upwards direction
(negative gravitaxis). If the distance between the center of gravity and center of the squirmer is given
by h, in the direction opposite to its swimming direction in an undisturbed fluid, the gravitational
torque on the ith squirmer is given by

T i
grav = − 4

3πa3ρ f h ei × g, (15)
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where ρ f is the density and g is the acceleration due to gravity. The parameter introduced by
Ishikawa et al. [38] is adopted here, comparing the gravitational and viscous torques:

Gbh = 2πρ f gah

μB1
. (16)

The nondimensionalized gravitational torque can then be rewritten as T̄ i
grav = T i

grav/(μπa2) =
− 2

3π
B1Gbh sin ζi, where ζi is the angle of the squirmer from vertical. A repulsive force between

spheres was included in the numerical simulations of Ref. [38]:

F rep = κ1κ2
exp(−κ2ε)

1 − exp(−κ2ε)

r
r
. (17)

This was done to avoid the prohibitively small time step required to prevent squirmers from
overlapping. The parameter ε is again the separation between squirmers, nondimensionalized by the
squirmer radius a. The parameter κ1 represents the strength of the repulsion while κ2 dictates the
range at which this repulsion becomes significant. The values adopted will be the same as those used
previously [38], namely κ1 = 1 and κ2 = 103. Importantly, this repulsive force can be “switched off”
simply by choosing κ1 = 0.

D. Generalization to multiple spheres

A larger system containing n spheres will now be examined, and the total force and torque acting
on each sphere will be calculated. Each sphere will interact hydrodynamically with neighbors that
are sufficiently close, experience a gravitational torque due to bottom-heaviness, and be subject to
the short-range repulsive force. The analysis so far has been performed in the frame shown in Fig. 1.
The unit vectors will now be given the primed coordinates to indicate that they are viewed in this
frame. In accordance with the preceding lubrication theory, the squirmer is required to be oriented
in the x′-z′ plane. That is, ei · e′

y = 0. For any ordered pair of spheres i and j in the laboratory frame
S, it is possible to transform to the reference frame S′

i j in which spheres i and j are positioned
as squirmers 1 and 2 respectively in Fig. 1. Suppose that in the laboratory reference frame S, two
squirmers i and j have position vectors ri and r j respectively and that their orientations are given by
ei and e j respectively. Let r = ri − r j . The coordinate system S′

i j is defined in the following way:

e′
z = r̂, (18)

e′
y = ŝ where s = e′

z × ei, (19)

e′
x = e′

y × e′
z. (20)

By construction, this frame satisfies the condition that ei · e′
y = 0. Thus, the lubrication analysis

presented in Sec. II A can be directly applied in this frame. In the calculation of the forces and
torques due to squirming, it is also necessary to know the quantities

ei · e′
z = ei · r̂ and ei · e′

x =
√

1 − (ei · r̂)2. (21)

The lubrication analysis is used in frame S′
i j for the case when sphere i is a squirmer and sphere j

has the zero boundary condition. The complementary problem involving sphere j as a squirmer and
sphere i as a sphere with zero boundary condition is considered separately in frame S′

ji since the
lubrication analysis is only applicable when e j · e′

y = 0. In this fashion, each pair of squirmers will
be considered twice when calculating the total force and torque on the system.

Equations (10)–(13) outline the forces and torques due to translational and rotational velocities of
the two spheres, where everything is measured in the frame S′

i j . However, it is desirable to find these
quantities in the laboratory frame S. This is achieved by utilizing the appropriate transformation
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matrix, Ri j . A complete matrix-vector equation can be assembled as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̄1
...

F̄n

T̄ 1
...

T̄ n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

net

=
(

M1 M2

M3 M4

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V 1
...

V n

aω1
...

aωn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̄sq
1
...

F̄sq
n

T̄ sq
1
...

T̄ sq
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̄1
...

F̄n

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

rep

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

T̄ 1
...

T̄ n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

grav

. (22)

Since the fluid is considered to be at zero Reynolds number, the net force and torque on every
squirmer must be zero. This condition is imposed simply by setting every entry on the left-hand
side of Eq. (22) to zero. The resulting matrix-vector equation can then be solved to find the linear
and angular velocities corresponding to this condition. In particular, a system of the following form
must be solved:

M · x = R, (23)

where x contains the linear and angular velocities of the spheres. There are several important features
of this equation that will now be discussed. First, note that the matrix M depends only on the
positions of the squirmers. It is completely independent of the squirming parameters, the strength
of gravity, the orientations of the squirmers, and the repulsive force. Matrix M can be assembled
once the physical configuration of the suspension is known. The vector R in Eq. (23) depends on
all of the parameters involved in the problem. Second, note that the 6n × 6n matrix M has a rank
which is precisely 6n − 3. In order to understand this, recall that the only hydrodynamic forces
and torques are those arising from the lubrication regions, which depend on the relative motion of
the squirmers but not their absolute velocity. The solutions are therefore defined up to an arbitrary
translating reference frame in three dimensions. Without loss of generality, we choose the frame in
which the mean velocity of the squirmer array is zero. That is,

n∑
i=1

Vi,x =
n∑

i=1

Vi,y =
n∑

i=1

Vi,z = 0. (24)

III. UNIFORM MONOLAYER OF SQUIRMERS IN AN UNBOUNDED FLUID

The present formulation facilitates calculation of the linear and angular velocities of all
squirmers in any configuration where lubrication forces dominate. The consequences of perturbing
a uniform monolayer of squirmers will now be explored. The monolayer is subject to periodic
boundary conditions, so that every squirmer has precisely six nearest neighbors. Since lubrication
interactions can only act between adjacent spherical squirmers, the periodic boundary conditions are
straightforward to implement in our calculations. Only cells whose corresponding squirming sets are
independent of time [Bn(t ) = Bn ∀n; see Eq. (1)] will be studied. Consider the diamond-shaped
configuration shown in Fig. 3(b), in which the equilibrium spacing between any two adjacent
squirmers is given by ε0a. In the equilibrium state, all squirmers have an orientation vector e = ez.
For the time being, the motion of the squirmers is limited to the plane of the monolayer. Moreover,
all translational and orientational perturbations are restricted to this plane, giving rise to what is
essentially a three-dimensional system (2 translational + 1 rotational).

A. Analytical approach

The consequences of perturbing the position and orientation of one squirmer will now be
investigated. At this stage, time evolution of the system will not be studied. The purpose of this
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FIG. 3. (a) Boundary element simulations [38,39] for Gbh = 100 and β = 1 show the development of stable
monolayers of bottom-heavy squirmers, with an equilibrium spacing ε0 = 0.002. (b) Diagram showing the
domain of spherical squirmers. The numbering scheme for a d × d diamond cell is shown. (c) The domain is
subject to periodic boundary conditions, as shown. The direction in which the force of gravity acts is denoted
by the vector g.

section is to analytically address the behavior of the system in the small time limit. This corresponds
to constructing and solving the matrix-vector equation in Eq. (23) once only. Without loss of
generality, the perturbed cell is chosen to be squirmer 1, as depicted in Fig. 3(b). Let the origin
of the coordinate system coincide with the center of this squirmer in its equilibrium position. A
translational perturbation is initiated, of magnitude aδ in the direction φ, such that the position
vector of the squirmer is given by

r = aδ (sin φ ex + cos φ ez ), δ � 1. (25)

The orientation of the squirmer is also perturbed by ζ , so that

e = sin ζex + cos ζez, ζ � 1. (26)

The matrix M and vector R depend on the small parameters δ and ζ . A solution of the following
form is sought:

x = x0 + ζxr
1 + δxt

1 + · · · , (27)

where the superscripts “r” and “t” represent rotation and translation respectively. Other components
of the matrix system can be linearized in the same way:

M = M0 + ζMr
1 + δMt

1 + · · · , (28)

R = R0 + ζRr
1 + δRt

1 + · · · . (29)

These expressions are substituted into the original matrix-vector equation Eq. (23), and various
orders of ζ and δ are equated. The vector R0 corresponds to the equilibrium configuration and is
equal to 0. It follows that the leading-order solution is x0 = 0. As one might expect, a suspension
of evenly spaced squirmers, all pointing in the z direction, do not experience a net force or torque.
With this in mind, it is found that

M0 · xr
1 = Rr

1 and M0 · xt
1 = Rt

1. (30)

Recall that the matrix M depends only on the positions of the individual cells. Thus, in the
equilibrium configuration, M0 depends only on the scaled equilibrium spacing, ε0. For a given
suspension, the value of ε0 will be known. M0 can be constructed and inverted without knowing
anything about the squirming parameters. The vectors Rr

1 and Rt
1 can be subsequently constructed.
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FIG. 4. Plots showing the linearized solutions associated with all squirmers in the 10 × 10 configuration.
The results for the perturbed squirmer and its six nearest neighbors are shown in red and blue respectively. The
green curves correspond to all other squirmers. Results have been computed with ε0 = 0.002 and β = 1.

By definition, Rr
1 must be independent of δ and thus φ. From the form of Rr

1, it follows that the
elements of the solution xr

1 must be of the form

xr,i
1 = aiGbh + bi. (31)

The matrix M0 cannot be inverted without assuming a particular value of ε0. Therefore, the
coefficients in the above equation must be numerically fitted. The form of the solution arising
through small perturbations in the position of the squirmer will now be examined. By definition,
Rt

1 is independent of ζ and thus Gbh. Terms in Rt
1 involve either sin(φ − φ0) or cos(φ − φ0) for

some φ0. Since M0 is independent of φ, a solution of the following form is sought:

xt,i
1 = ci sin(φ − di ) + ei. (32)

1. No repulsive force

Consider the situation in which the repulsive force between adjacent squirmers is absent. This is
achieved by setting the value of κ1 in Eq. (17) to be equal to zero. For a given ε0 and set of squirming
parameters, the leading-order solution in the form of Eq. (27) is readily found:

Vx = V r
x ζ + V t

x δ, Vz = V r
z ζ + V t

z δ, 
 = 
rζ + 
tδ. (33)

The term 
r represents the restoring effect that gravity has on the orientation of the squirmer,
and is found to be directly proportional to Gbh for the perturbed squirmer. When δ = 0 (i.e., no
translational perturbation), the orientation will be restored if Gbh > 0 (since 
r < 0). For larger δ, a
correspondingly larger value of Gbh is required to ensure that small perturbations to the orientation
decay. In fact, the critical value of Gbh is given by

Gcritical
bh = k × δ

ζ
, (34)

for some k > 0. The ratio of the first two squirming modes, defined in Eq. (1), is given by

β = B2

B1
. (35)

The parameter B2 is proportional to the stresslet of the squirmer, so β < 0 and β > 0 represent
pushers and pullers respectively. Perturbing one squirmer in the configuration will, in general,
affect all squirmers in the monolayer. Figure 4 summarizes the results for β = 1. The central
squirmer (red) is given either a rotational or a translational perturbation, as shown in Fig. 4(a).
The subsequent linear and angular velocities of all squirmers are then shown [Figs. 4(b)–4(d) and
4(e)–4(g) respectively]. We emphasize that the functions presented here are not the actual velocities
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FIG. 5. Direction of the tangential velocity at the surface of the squirmer, associated with the first two
modes. Results are shown for (a) B1 > 0 and (b) B2 > 0. The boundary condition is a superposition of these
modes, given by uθ |r=a = B1 sin θ + B2 sin θ cos θ . (c),(d) Plots showing the linearized solutions associated
with the perturbed squirmer, for several different values of β. Results have been computed for a 10 × 10
diamond configuration with an equilibrium spacing of ε0 = 0.002. Results are shown for β = 0, ±1, and ±5.
Positive and negative values of β are shown in green and red respectively and the blue curves correspond to
β = 0.

of the squirmers, but the coefficients of ζ and δ in the linear expansions of Eq. (33); stability
requires these to be negative. In each case, the blue curves represent the solutions for squirmers
adjacent to the perturbed cell, and green represents the remaining cells in the monolayer. In the
case of a rotational perturbation, the central squirmer will experience V r

x > 0 [Fig. 4(b)], indicating
translational instability. The orientational perturbation will decay for that squirmer, but destabilizes
the surrounding cells [Fig. 4(d)]. Translational perturbations in the x and z directions [φ = π/2 and
φ = 0 respectively; see Fig. 4(a)] will decay and grow respectively [see Figs. 4(e) and 4(f)], but at
the same time, will destabilize the orientation of the central squirmer [Fig. 4(g)]. Taken together,
these results demonstrate that any perturbations to the uniformly spaced planar array will be linearly
unstable, with rotational perturbations causing translational instability, and vice versa. Rotating the
cell clockwise or anticlockwise will cause it to move right or left, respectively. Similarly, translating
the squirmer right or left will cause it to move clockwise or anticlockwise, respectively.

For the case β = −1, the results (not shown) are extremely similar to those presented in Fig. 4.
However, the sign of the red curves in panels (e) and (f) is reversed. In order to understand these
results, it is helpful to reconsider the mechanisms through which the squirming occurs. Figures 5(a)
and 5(b) shows the direction of the tangential velocity for the first two modes of squirming. For
B2 > 0, the second squirming mode serves to draw fluid from the poles of the squirmer (θ = 0, π )
to the equator (θ = π/2). When the position of the squirmer is perturbed in the x direction, this
mode restores the position of the squirmer. Conversely, for perturbations in the z direction, this
active drawing of fluid away from the poles results in further destabilization from the equilibrium
position. The results are reversed for B2 < 0 (and therefore β < 0).

The functions V r
x , V r

z , 
r , and 
t associated with the perturbed squirmer do not vary with β.
Any changes in the value of β are manifested only in V t

x and V t
z , the linear velocities associated with

translational perturbations. Consider the plots in Figs. 5(c) and 5(d), which show these quantities
for several different values of β. The linear velocity of the squirmer after a translational perturbation
is directly proportional to β (see red curves). It is emphasized again that the angular velocity of the
perturbed squirmer is independent of β. These observations, however, are not in general true for the
rest of the squirmers in the configuration.

Recall that there exists a critical value of Gbh, above which perturbations to the orientation of
the squirmer will decay, regardless of the direction, φ, of the translational perturbation. This critical
value was shown to depend only on 
r and 
t [see Eq. (34)]. It has just been found that these
two functions associated with the perturbed squirmer are independent of the value of β used. It thus
follows that Gcritical

bh does not depend on the ratio β = B2/B1 of the squirming velocities. Importantly,
the results obtained in this section are applicable only in the small time limit. The linear and angular
velocities have been analyzed for particular squirmer configurations, but the time dependence of the
problem has not yet been considered.
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FIG. 6. Linearized solutions with repulsive force present and β = 1. Plots showing the linearized solutions
associated with all squirmers in the 10 × 10 configuration. The results for the perturbed squirmer and its six
nearest neighbors are shown in red and blue respectively. The green curves correspond to all other squirmers.
Results have been computed with ε0 = 0.002, ζ = 0.01, δ = ε0/100, κ1 = 1, κ2 = 103, β = 1, Gbh = 0.

2. Repulsive force present

In the previous section it was found that perturbations in the position of the squirmer could be
either unstable or stable, depending upon the direction of the perturbation, φ, and the squirming
parameters. The previous analysis will now be repeated, but with the repulsive force given by
Eq. (17) included. The velocities in the x and z directions can again be found, as well as the
angular velocities for all of the squirmers. Figure 6 shows the linearized solutions for a 10 × 10
configuration of squirmers. The reconstructed solutions Vx, Vz, and 
 for particular values of ζ and
δ have been plotted, to demonstrate the significance of the repulsive force. It is evident that the
position of the central squirmer will be stable subject to small perturbations in either the x or z
direction, even for Gbh = 0. However, the functions 
r and 
t have not changed upon inclusion of
the repulsive force. Consequently, the critical value of Gbh required to eliminate small perturbations
in ζ remains the same. That is, Gcritical

bh is independent of both the value of β and the presence of the
repulsive force.

B. Numerical approach

In Sec. III A, the analytical form of the linear and angular velocities associated with squirmers in
a large uniform suspension were studied. In particular, the case where one squirmer was subject to
small translational and angular perturbations was considered. However, these results were not able
to address the long-term behavior of the suspension following a perturbation from the equilibrium. A
numerical study into the dynamics of the monolayer will now be undertaken, using the formulation
presented in Sec. II D. The configuration is the same as the one presented in Fig. 3(b) and is again
subject to periodic boundary conditions, as depicted in Fig. 3(c).

To begin with, the consequences of perturbing one squirmer in the uniform monolayer will be
explored. For small perturbations, this system was studied analytically in Sec. III A. It was found
that the position of the squirmer was stable, provided the repulsive force between adjacent squirmers
was included. It was also found that there exists a critical value of Gbh, above which perturbations
to the orientation of the squirmer will decay, regardless of the direction, φ, of the translational
perturbation. Recall that this value was independent of the presence of the repulsive force. The
functional form of this critical value is given in Eq. (34), and was derived under the assumption that
the neighboring squirmers were all left unperturbed. The results in Fig. 7 show the consequences
of perturbing one squirmer in an 8 × 8 system. The equilibrium spacing is again considered to be
ε0 = 2 × 10−3 and the perturbation is given by ζ = 1/100 and δ = ε0/1000 with φ = 3π/2. From
the analysis in Sec. III A, it is known that for these parameters, to ensure 
 < 0 for the perturbed
squirmer requires Gbh > 1.84. The value Gbh = 20 is used, which is well beyond this critical value.

From the previous analytical work, it is known that the value of Gbh used here guarantees 
 < 0
for the first time step. However, the only way the long time behavior can be assessed is through these
numerical simulations. For t � 1, the system without intercellular repulsive force (κ1 = 0) appears
to be stable, with the orientation of the perturbed squirmer beginning to be restored [Fig. 7(b)].
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FIG. 7. One single squirmer is perturbed in an otherwise uniform monolayer. (a) Figure showing the
trajectories of all 64 squirmers over the course of the simulation. For the purposes of plotting, the positions
have been scaled so that the radius of each squirmer is 0, even though the simulation was conducted with a = 1.
(b) Plots showing the orientation ζ and (c) corresponding standard deviation of all squirmers as a function of
time. Parameters used are ε0 = 2 × 10−3, β = 1, κ1 = 0, φ = 3π/2, δ = ε0/1000, ζ = 1/100, and Gbh = 20.
Simulations were repeated with repulsive force present (κ1 = 1) for [(d),(e)] Gbh = 20 and [(f),(g)] Gbh = 50.
Under these conditions, the lattice is translationally stable, but the squirmers still require sufficiently large value
of Gbh for orientational stability.

However, as time progresses, the other squirmers in the system begin to move [Fig. 7(a)]. Indeed,
the system becomes unstable, with the orientation of all squirmers growing in magnitude. These
findings are not in conflict with the linear stability analysis presented in Sec. III A. Perturbing one
single squirmer initiates motion of all squirmers (see Fig. 4), and the system may be unstable at
large times even if the orientation of the perturbed squirmer is initially restored. The perturbations
that develop in the surrounding squirmers will act to destabilize the central squirmer.

It was found earlier that in the absence of the repulsive force, for β > 0, each squirmer is stable
and unstable to translational perturbations in the x and z directions respectively, with the converse
true for β < 0. Figure 7 demonstrates this phenomenon clearly, with the squirmers drifting towards
one another in the z direction. The repulsive force outlined in Sec. III A is now reinstated. This
prevents the squirmers from coming too close together, since translational perturbations are quickly
eliminated. Consider the plots in Figs. 7(d)–7(g), which show the orientation of 64 steady squirmers
over the interval t ∈ [0, 50], for two different values of Gbh. Even with the orientation of only one
single squirmer perturbed, the whole system eventually becomes unstable for Gbh = 20. However,
the system is stable for large t when Gbh = 50.

Since the repulsive force quickly restores the positions of the squirmers to their equilibrium
values, where δ → 0, the value of Gbh = 20 is expected to be well above the critical value derived
earlier. Nevertheless, instability is observed among the orientations of the squirmers. In the early
stages of the simulation, the orientations of the neighbors become perturbed, causing the original
perturbed squirmer to become further destabilized. This results in an increase in the corresponding
value of Gbh required to eliminate all angular perturbations. Since the restoring force quickly returns
the squirmers to their equilibrium positions, the critical value of Gbh required for angular stability
does not depend strongly on the translational perturbations initially given to the squirmers. The
stability of the orientation of the squirmers is dictated by the angular velocities associated with
small perturbations to the orientations rather than positions. The interactions between 
r for various
squirmers are key in determining the critical value of Gbh required for stability. In addition to the
fact that perturbations to the orientations grow when Gbh < Gcritical

bh , another interesting feature
of Fig. 7(d) is the splitting of these orientations in a dichotomous fashion. As time progresses,
the squirmers rotate away from vertical in a coordinated manner. It will be shown later that this
phenomenon also occurs in other configurations in which instabilities develop.
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FIG. 8. Orientation of every squirmer in an 8 × 8 diamond, as a function of time. In each simulation, every
squirmer is initially given a random perturbation to its position and orientation, with amplitude δ = ε0/100 and
ζ = 1/100 respectively. Results have been computed for Gbh = 35, 40, 45, and 50 over the interval t ∈ [0, 100].
Also shown is the standard deviation of ζ as a function of time. Additional parameters used are given by
ε0 = 2 × 10−3, κ1 = 1, κ2 = 103, and β = 1.

We investigated the effects of perturbing the position and orientation of all squirmers in the
uniform monolayer. The squirmers were given a random perturbation to both their orientation and
position, with amplitudes ζ = 1/100 and δ = ε0/100 respectively. The stabilizing effect that gravity
has on the suspension is evident (see Fig. 8). For Gbh = 35 and 40 the system is unstable, while for
Gbh = 50 the system is stable for large t . Although not shown here, the results for Gbh = 0 yield
std(ζ ) → π/

√
3 for large t , corresponding to a uniform distribution in which there is no preferred

orientation.

IV. MONOLAYER OF SQUIRMERS BETWEEN VERTICAL RIGID WALLS

In the preceding sections, the positions of the squirmers were restricted to lie in the x-z plane.
This condition can be relaxed in order to permit out-of-plane motion. Under these conditions, the
monolayer is unstable, with perturbations in the y direction growing (see Supplemental Material
Sec. S2 for detailed analysis [42]). However, a uniform monolayer of squirmers in an otherwise
unbounded fluid is, in any case, an unrealistic situation. One method of maintaining a monolayer of
spherical squirmers is to use a Hele-Shaw cell which is sufficiently narrow. To this point, the forces
and torques on the squirmers arising due to sphere-sphere interactions and the effects of gravity
have been considered. It is straightforward to extend to the case where the uniform monolayer of
steady, spherical squirmers is situated between two plane parallel walls. The two planes are defined
by y = ±a(1 + εwall

0 ) so that the minimum clearance between the squirmers and the wall in the
equilibrium configuration is εwall

0 a. Gravity is still considered to act in the negative z direction.
As the lubrication analysis presented earlier applies to two spheres, each of arbitrary radius, the

forces and torques acting on a squirmer interacting with the planes can easily be found by taking the
limit λ → ∞. The forces acting on the squirmers due to their translational and rotational motion
must also be considered. For this, the results presented in Ref. [41] are applied. A short-range
repulsive force between the spheres and the walls is also incorporated into the model, as in Eq. (17),
with the parameters κwall

1 and κwall
2 . Equation (22) is modified by the inclusion of extra terms to

account for the walls [see Supplemental Material Eq. (S46)].
To explore the influence that squirming strength and bottom-heaviness have on the monolayer

stability, we performed 702 simulations across a range of values for Gbh and β = B2/B1 [see
Figs. 5(a) and 5(b) for schematics]. This enables us to explicitly investigate the differences between
pushers (β < 0) and pullers (β > 0). In each simulation, the squirmers’ orientations were subject
to random initial conditions, and the long time dynamics were observed. The effect of the repulsive
force is to stabilize the positions of the squirmers, retaining the lattice-like structure. Several
qualitatively different dynamics emerge, depending on the parameter combination (β, Gbh).
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FIG. 9. Lubrication simulations of a squirmer monolayer situated between two plane parallel walls. (a) The
mean angle from vertical, M, and (b) average variance for each squirmer, S, are shown across a broad range
of Gbh and β values. (c)–(h) Representative results from different regions of parameter space highlight the
qualitatively different long term dynamics. Parameters used include ε0 = εwall

0 = 2 × 10−3, κ1 = κwall
1 = 1,

κ2 = κwall
2 = 103. The parameter combinations in (c)–(h) are depicted as circles in (a).

In order to quantify the dynamics for various parameter choices (β, Gbh), we analyze the time-
dependent angle {θi(t )} for all squirmers i = 1, . . . , N in a given simulation. First, we define M =
〈|θi(t )|〉t,i, averaged over time and all squirmers in the monolayer. The parameter M = 0 if and
only if all squirmers converge to a vertical orientation at large t . However, in the case of M �= 0,
this parameter is unable to distinguish between steady states [e.g., Fig. 9(e)] and chaotic results
(Fig. 9(h)). We therefore define a second parameter, S, calculated by taking the variance of each
time-dependent signal θi(t ), and subsequently averaging over the squirmer population:

S = 〈〈
θi(t )2〉

t − 〈
θi(t )

〉2
t

〉
i. (36)

The parameter S will be zero if every squirmer converges to a constant orientation, regardless of
its value. This parameter therefore provides great utility in distinguishing between equilibrium
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FIG. 10. (a) Depiction of coherent structures (Ishikawa et al. [39]) which have formed within a monolayer
of spherical squirmers. Results have been computed using β = 5 and Gbh = 100. (b) Schematic diagram
showing this equilibrium configuration in which all squirmers are oriented at an angle of ζ = ±ζ0 from vertical.
In this configuration, three different equilibrium spacings ε0a, k1ε0a, and k2ε0a are permitted.

structures and other results. For each of the 702 simulations, the parameters M and S were
calculated, the results of which are summarized in Figs. 9(a) and 9(b) respectively.

Across the range of parameters studied, five different characteristic behaviors were observed
for t � 1. The simplest case is that in which all squirmers eventually orient vertically, θi → 0
[Case II in Fig. 9; see for example Fig. 9(d)], and is identified as when both M = 0 and S = 0.
This is precisely the equilibrium structure initially observed by Ishikawa et al. [39,40] for β = 1,
Gbh = 100, and investigated analytically in Sec. III A. From the random initial conditions studied
here, the system can converge to this vertical state for either pushers (β < 0) or pullers (β > 0),
provided Gbh is sufficiently large. For pushers (β < 0), only one other type of behavior is possible,
in which all squirmers converge to a nonzero equilibrium orientation [Case I in Fig. 9; see for
example Fig. 9(c)]. These dynamics occur when the second-order squirming mode is large enough
to destabilize the vertically oriented monolayer.

For pullers (β > 0), a richer set of dynamics is possible. For a given value of Gbh, increasing
β beyond a critical value results in an abrupt transition from M = 0 to M > 0. The system adopts
a bistable state, in which squirmers possess a finite and constant tilt angle [Case III in Fig. 9; see
Fig. 9(e)], qualitatively similar to Case I. Increasing β further results in oscillations about these
values [Case IV; see also Figs. 9(f) and 9(g)]. For sufficiently large β, the entire system becomes
unstable (Case V). Figure 9(h) illustrates these unstable dynamics, with the orientation of one
squirmer shown in red.

V. INVESTIGATION OF TILTED STRUCTURES AND OSCILLATORY STATES

The numerical simulations of Sec. IV revealed the existence of stable states in which all
squirmers adopt a nonzero mean orientation from vertical, either constant in value or oscillating
in time. By symmetry, the configuration in which all squirmers in the lattice are vertically oriented
is a steady state, and the linear and angular velocities of all squirmers in the periodic lattice will be
zero. However, the conditions under which the “tilted equilibrium” can occur are not immediately
clear. Ishikawa et al. also discovered stable coherent structures in which the squirmers do not orient
themselves in a vertical direction, even in the presence of strong bottom-heaviness (see Fig. 10).
The only difference between Figs. 3(a) and 10(a) is that the value of β has been increased from
1 to 5. This corresponds to a shift in parameters equivalent to moving from Case II to Case IV in
Fig. 9. The structure in which all squirmers possess some orientation of magnitude ζ0 from vertical,
as shown in Fig. 10(b), will now be studied. It will be the goal of this section to understand the
nature of this equilibrium state.
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FIG. 11. Equilibrium spacing in ensemble of uniformly tilted squirmers. Plots showing the values of k1

(smooth) and k2 (dashed) as functions of ζ0 for (a) Gbh = 20 and (b) Gbh = 100. Results have been computed
with ε0 = 2/1000, κ1 = 1, and κ2 = 103 for various β.

Until now, the equilibrium spacing between adjacent cells has been considered to be uniform
throughout. Three different values are now permitted, namely ε0a, k1ε0a, and k2ε0a. In the case
where k1 = k2 = 1, it is found that the net force on the squirmers is zero provided ζ0 = 0 or B1 = 0.
The former case has already been studied in detail, while the latter case involves squirmers that
would not be able to swim in an unbounded fluid (swimming speed = 2B1/3). If the columns
in Fig. 10(b) are evenly spaced, with k1 = k2 �= 1, then the same conditions are required. The
equilibrium configuration depicted in Fig. 10(a) cannot be achieved with k1 = k2 unless B1 = 0.
Such a configuration would, by symmetry, be independent of the interparticle repulsive force.

Consider now the case where k1 �= k2. In this scenario, it is immediately obvious that the net
force experienced by each squirmer as a consequence of the repulsive force presented in Eq. (17)
will be nonzero, and so the existence of an equilibrium configuration will depend on the presence
of this force. Nevertheless, the analysis is continued in an attempt to account for the results in
Fig. 9 and the boundary element simulations of Ishikawa et al. [39] [Fig. 10(a)]. By specifying
the values of ε0, κ1, and κ2, it is possible to calculate the values of k1 and k2 for any β, Gbh, and
equilibrium orientation ζ0. For a given experiment, β and Gbh will be known a priori and so the
spacings k1ε0a and k2ε0a will be functions of the equilibrium orientation ζ0. Figures 11(a) and
11(b) show the values of ki associated with Gbh = 20 and Gbh = 100 respectively. The curve in
Fig. 11(b) corresponding to β = 5 incorporates exactly the same parameters as in Fig. 10(a). In
order to determine the equilibrium orientation ζ0, an additional piece of information is required.
It would be possible, for instance, to demand that the mean equilibrium spacing between adjacent
cells is equal to ε0. That is, (k1 + k2)/2 = 1. The corresponding values are given by k1 = 1.07134,
k2 = 0.92866, and ζ0 = 1.12638. This value of ζ0 is very similar to that observed in Fig. 10(a). The
advantage of choosing values of ki as close to 1 as possible is that it minimizes the effects associated
with the repulsive force. For given values of β and Gbh it is possible to find the equilibrium spacings
k1 and k2, and orientation ζ0. For the simulations presented in Fig. 9, we calculated the displacement
of all squirmers from their equilibrium position in the monolayer (see Fig. S3). For monolayers
which converge to the vertically-oriented stable state (Case II in Fig. 9), all squirmers are evenly
spaced. However, for parameter configurations giving rise to stable, nonzero squirmer orientations
(Cases I and III in Fig. 9), squirmers exhibit unequal—but constant—spacing, in agreement with
the findings of this section.

The ability of squirmers to assume a tilted equilibrium, even when subjected to a gravitational
torque, can be understood in terms of the orientation of the neighboring squirmers. Each squirmer
in this tilted equilibrium possesses two nearest neighbors which are aligned in the same direction
(squirmers in the same column) and four nearest neighbors which are aligned in the opposite
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direction (squirmers in adjacent columns). This asymmetry, in conjunction with the capacity for
uneven spacing (k1 �= k2), enables the nontrivial state to occur, in which cell-cell interactions
(hydrodynamic and steric) balance the external gravitational torque. We also note that these states
do not develop unless there is fore-aft asymmetry in the squirmers’ velocity boundary condition
[that is, β �= 0; see Fig. 9(a)], further highlighting the importance of asymmetric interactions with
neighbors. Although this section reveals the existence of a tilted equilibrium configuration, it does
not assess the stability of the monolayer in that case. Depending on the parameter configuration
(β, Gbh), the monolayer may be bistable (Case III), oscillatory (Case IV), or completely unstable
(Case V).

VI. DISCUSSION AND CONCLUSIONS

While fully resolved boundary element simulations of a monolayer of interacting spherical
squirmers revealed stable hexagonal lattice configurations [39], the model complexity prevented a
simple understanding of the mechanisms behind this stability. Moreover, the computational intensity
precluded a broad exploration of parameter space relevant to a range of biological and synthetic
microswimmers. Here we have developed a semianalytical framework to predict the dynamics of
dense suspensions of spherical squirmers. We began by solving the Stokes equations to second
order between closely separated squirmers. This followed similar steps to Ref. [38], but to higher
order, as required to calculate the normal force. These analytical expressions were then utilized
in a “lubrication simulation” to assess the global dynamics of a dense monolayer of squirmers.
This revealed that pairwise lubrication interactions, in conjunction with a short-range repulsive
force, were sufficient to account for the stable states observed in previous studies. This framework
therefore provides a computationally inexpensive means of investigating the dynamics of dense
suspensions of swimming microorganisms.

Initial studies of the monolayer restricted the motion of the spheres to lie in a plane, even though
the fluid was unbounded and three-dimensional. Further analysis of this monolayer confirms the
intuitive result that it is unstable to small out-of-plane perturbations (see Supplemental Material
Fig. S1 for further information [42]). The inclusion of nearby plane parallel walls, as in the case
of a rigid Hele-Shaw cell, maintains the structure of the monolayer (see Supplemental Material
Fig. S2 [42]), with orientational perturbations again eliminated for sufficiently large values of Gbh.
For every value of β and Gbh studied, suspensions of pushers (β < 0) were stable for large t , with all
squirmers converging either to vertical, or to a finite tilt angle. Conversely, pullers (β > 0) exhibited
a range of qualitatively different states (see Fig. 9), with orientations being completely unstable for
sufficiently large β.

In the present framework, we have neglected any density difference between the squirmers and
the fluid, which would lead to sedimentation [36]. The inclusion of a Stokeslet term would modify
the flow through the monolayer, and therefore potentially influence the stability calculations. This
is the subject of future work.

The equilibrium spacing between adjacent squirmers, ε = 0.002, was chosen to match the
stable value emerging from full boundary element simulations [39]. Under these conditions, the
logarithmic singularities [see Eq. (9)] dominate the expressions for the hydrodynamic forces and
torques. This paper focusses on the collective dynamics of monolayers of spherical squirmers,
but the framework could be readily extended to model fully three-dimensional concentrated
suspensions. Although the present analysis could in principle also be applied to polydisperse
suspensions, it is likely that substantial variations in the separation ε would limit applicability of the
lubrication approximations. The colonial alga Volvox carteri is a very good realization of Lighthill’s
spherical squirmer [18] (with β < 0; see Ref. [35]), but there are significant experimental challenges
in preparing a monodisperse suspension of Volvox. Experimental investigation of the present system
is therefore most likely to be achieved for large suspensions of identical synthetic microswimmers
[16] situated in a vertical Hele-Shaw cell.

053102-17



D. R. BRUMLEY AND T. J. PEDLEY

ACKNOWLEDGMENTS

The authors thank T. Ishikawa, R.E. Goldstein, and M. Polin for useful discussions, and the
University of Melbourne’s High Performance Computer Spartan. This work was supported by a
Gates Cambridge Scholarship, a Human Frontier Science Program Cross-Disciplinary Fellowship,
and a Discovery Early Career Researcher Award DE180100911 (D.R.B.).

[1] S. M. Bollens, G. Rollwagen-Bollens, J. A. Quenette, and A. B. Bochdansky, Cascading migrations and
implications for vertical fluxes in pelagic ecosystems, J. Plankton Res. 33, 349 (2011).

[2] H. C. Berg, E. coli in Motion (Springer, New York, 2008).
[3] N. Blackburn, T. Fenchel, and J. Mitchell, Microscale nutrient patches in planktonic habitats shown by

chemotactic bacteria, Science 282, 2254 (1998).
[4] T. Kiørboe, H. Jiang, R. J. Gonçalves, L. T. Nielsen, and N. Wadhwa, Flow disturbances generated by

feeding and swimming zooplankton, Proc. Natl Acad. Sci. USA 111, 11738 (2014).
[5] C. Josenhans and S. Suerbaum, The role of motility as a virulence factor in bacteria, Int. J. Med. Microbiol.

291, 605 (2002).
[6] A. van Leeuwenhoek, IV. Part of a letter from Mr Antony van Leeuwenhoek, concerning the worms in

Sheeps livers, Gnats, and animalcula in the excrements of Frogs, Phil. Trans. R. Soc. 22, 509 (1700).
[7] M. A. Sleigh, The Biology of Cilia and Flagella (Pergamon, Oxford, 1962).
[8] C. Brennen and H. Winet, Fluid mechanics of propulsion by cilia and flagella, Annu. Rev. Fluid Mech. 9,

339 (1977).
[9] K. Son, D. R. Brumley, and R. Stocker, Live from under the lens: Exploring microbial motility with

dynamic imaging and microfluidics, Nat. Rev. Micro. 13, 761 (2015).
[10] S. Smriga, V. I. Fernandez, J. G. Mitchell, and R. Stocker, Chemotaxis toward phytoplankton drives

organic matter partitioning among marine bacteria, Proc. Natl Acad. Sci. USA 113, 1576 (2016).
[11] K. Moor, M. Diard, M. E. Sellin, B. Felmy, S. Y. Wotzka, A. Toska, E. Bakkeren, M. Arnoldini, F.

Bansept, A. D. Co, T. Völler, A. Minola, B. Fernandez-Rodriguez, G. Agatic, S. Barbieri, L. Piccoli, C.
Casiraghi, D. Corti, A. Lanzavecchia, R. R. Regoes, C. Loverdo, R. Stocker, D. R. Brumley, W.-D. Hardt,
and E. Slack, High-avidity IgA protects the intestine by enchaining growing bacteria, Nature (London)
544, 498 (2017).

[12] P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, Human spermatozoa migration in
microchannels reveals boundary-following navigation, Proc. Natl Acad. Sci. USA 109, 8007 (2012).

[13] J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers—single particle motion and
collective behavior: A review, Rep. Prog. Phys. 78, 056601 (2015).

[14] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär, and R. E. Goldstein, Fluid Dynamics of
Bacterial Turbulence, Phys. Rev. Lett. 110, 228102 (2013).

[15] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and R. E. Goldstein, Confinement Stabilizes a
Bacterial Suspension into a Spiral Vortex, Phys. Rev. Lett. 110, 268102 (2013).

[16] S. Thutupalli, D. Geyer, R. Singh, R. Adhikari, and H. A. Stone, Flow-induced phase separation of active
particles is controlled by boundary conditions, Proc. Natl Acad. Sci. USA 115, 5403 (2018).

[17] D. Saintillan and M. J. Shelley, Emergence of coherent structures and large-scale flows in motile
suspensions, J. R. Soc. Interface 9, 571 (2012).

[18] M. J. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very
small Reynolds numbers, Commun. Pure Appl. Math 5, 109 (1952).

[19] J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46, 199 (1971).
[20] T. J. Pedley, Spherical squirmers: Models for swimming micro-organisms, IMA J. Appl. Math 81, 488

(2016).
[21] W. Gilpin, V. N. Prakash, and M. Prakash, Vortex arrays and ciliary tangles underlie the feeding-

swimming trade-off in starfish larvae, Nat. Phys. 13, 380 (2017).

053102-18

https://doi.org/10.1093/plankt/fbq152
https://doi.org/10.1093/plankt/fbq152
https://doi.org/10.1093/plankt/fbq152
https://doi.org/10.1093/plankt/fbq152
https://doi.org/10.1126/science.282.5397.2254
https://doi.org/10.1126/science.282.5397.2254
https://doi.org/10.1126/science.282.5397.2254
https://doi.org/10.1126/science.282.5397.2254
https://doi.org/10.1073/pnas.1405260111
https://doi.org/10.1073/pnas.1405260111
https://doi.org/10.1073/pnas.1405260111
https://doi.org/10.1073/pnas.1405260111
https://doi.org/10.1078/1438-4221-00173
https://doi.org/10.1078/1438-4221-00173
https://doi.org/10.1078/1438-4221-00173
https://doi.org/10.1078/1438-4221-00173
https://doi.org/10.1098/rstl.1700.0013
https://doi.org/10.1098/rstl.1700.0013
https://doi.org/10.1098/rstl.1700.0013
https://doi.org/10.1098/rstl.1700.0013
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1038/nrmicro3567
https://doi.org/10.1038/nrmicro3567
https://doi.org/10.1038/nrmicro3567
https://doi.org/10.1038/nrmicro3567
https://doi.org/10.1073/pnas.1512307113
https://doi.org/10.1073/pnas.1512307113
https://doi.org/10.1073/pnas.1512307113
https://doi.org/10.1073/pnas.1512307113
https://doi.org/10.1038/nature22058
https://doi.org/10.1038/nature22058
https://doi.org/10.1038/nature22058
https://doi.org/10.1038/nature22058
https://doi.org/10.1073/pnas.1202934109
https://doi.org/10.1073/pnas.1202934109
https://doi.org/10.1073/pnas.1202934109
https://doi.org/10.1073/pnas.1202934109
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1073/pnas.1718807115
https://doi.org/10.1073/pnas.1718807115
https://doi.org/10.1073/pnas.1718807115
https://doi.org/10.1073/pnas.1718807115
https://doi.org/10.1098/rsif.2011.0355
https://doi.org/10.1098/rsif.2011.0355
https://doi.org/10.1098/rsif.2011.0355
https://doi.org/10.1098/rsif.2011.0355
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1038/nphys3981
https://doi.org/10.1038/nphys3981
https://doi.org/10.1038/nphys3981
https://doi.org/10.1038/nphys3981


STABILITY OF ARRAYS OF BOTTOM-HEAVY SPHERICAL …

[22] O. H. Shapiro, V. I. Fernandez, M. Garren, J. S. Guasto, F. P. Debaillon-Vesque, E. Kramarsky-Winter,
A. Vardi, and R. Stocker, Vortical ciliary flows actively enhance mass transport in reef corals, Proc. Natl.
Acad. Sci. USA 111, 13391 (2014).

[23] V. Magar and T. J. Pedley, Average nutrient uptake by a self-propelled unsteady squirmer, J. Fluid Mech.
539, 93 (2005).

[24] S. Michelin and E. Lauga, Optimal feeding is optimal swimming for all Péclet numbers, Phys. Fluids 23,
101901 (2011).

[25] Z. Lin, J-L Thiffeault, and S. Childress, Stirring by squirmers, J. Fluid Mech. 669, 167 (2011).
[26] R. Matas-Navarro, R. Golestanian, T. B. Liverpool, and S. M. Fielding, Hydrodynamic suppression of

phase separation in active suspensions, Phys. Rev. E 90, 032304 (2014).
[27] S. Wang and A. M. Ardekani, Swimming of a model ciliate near an air-liquid interface, Phys. Rev. E 87,

063010 (2013).
[28] G.-J. Li and A. M. Ardekani, Hydrodynamic interaction of microswimmers near a wall, Phys. Rev. E 90,

013010 (2014).
[29] I. Llopis and I. Pagonabarraga, Hydrodynamic interactions in squirmer motion: Swimming with a

neighbour and close to a wall, J. Non-Newtonian Fluid Mech. 165, 946 (2010).
[30] J. S. Lintuvuori, A. T. Br’own, K. Stratford, and D. Marenduzzo, Hydrodynamic oscillations and variable

swimming speed in squirmers close to repulsive walls, Soft Matter 12, 7959 (2016).
[31] R. E. Goldstein, Green algae as model organisms for biological fluid dynamics, Annu. Rev. Fluid Mech.

47, 343 (2015).
[32] T. J. Pedley, D. R. Brumley, and R. E. Goldstein, Squirmers with swirl: A model for Volvox swimming,

J. Fluid Mech. 798, 165 (2016).
[33] D. R. Brumley, K. Y. Wan, M. Polin, and R. E. Goldstein, Flagellar synchronization through direct

hydrodynamic interactions, eLife 3, e02750 (2014).
[34] D. R. Brumley, M. Polin, T. J. Pedley, and R. E. Goldstein, Metachronal waves in the flagellar beating of

Volvox and their hydrodynamic origin, J. R. Soc. Interface 12, 20141358 (2015).
[35] K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, Direct Measurement of the Flow Field

Around Swimming Microorganisms, Phys. Rev. Lett. 105, 168101 (2010).
[36] K. Drescher, K. C. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley, and R. E. Goldstein, Dancing Volvox:

Hydrodynamic Bound States of Swimming Algae, Phys. Rev. Lett. 102, 168101 (2009).
[37] J.-B. Delfau, J. Molina, and M. Sano, Collective behavior of strongly confined suspensions of squirmers,

Europhys. Lett. 114, 24001 (2016).
[38] T. Ishikawa, M. P. Simmonds, and T. J. Pedley, Hydrodynamic interaction of two swimming model micro-

organisms, J. Fluid Mech. 568, 119 (2006).
[39] T. Ishikawa and T. J. Pedley, Coherent Structures in Monolayers of Swimming Particles, Phys. Rev. Lett.

100, 088103 (2008).
[40] T. Ishikawa, J. T. Locsei, and T. J. Pedley, Development of coherent structures in concentrated suspensions

of swimming model micro-organisms, J. Fluid Mech. 615, 401 (2008).
[41] S. Kim and S. J. Karrila, Microhydrodynamics - Principles and Selected Applications (Dover, Mineola,

NY, 2005).
[42] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.053102 for the

full derivation of the lubrication forces and torques, as well as results of additional numerical simulations.

053102-19

https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1063/1.3642645
https://doi.org/10.1063/1.3642645
https://doi.org/10.1063/1.3642645
https://doi.org/10.1063/1.3642645
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1017/S002211201000563X
https://doi.org/10.1103/PhysRevE.90.032304
https://doi.org/10.1103/PhysRevE.90.032304
https://doi.org/10.1103/PhysRevE.90.032304
https://doi.org/10.1103/PhysRevE.90.032304
https://doi.org/10.1103/PhysRevE.87.063010
https://doi.org/10.1103/PhysRevE.87.063010
https://doi.org/10.1103/PhysRevE.87.063010
https://doi.org/10.1103/PhysRevE.87.063010
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1016/j.jnnfm.2010.01.023
https://doi.org/10.1016/j.jnnfm.2010.01.023
https://doi.org/10.1016/j.jnnfm.2010.01.023
https://doi.org/10.1016/j.jnnfm.2010.01.023
https://doi.org/10.1039/C6SM01353H
https://doi.org/10.1039/C6SM01353H
https://doi.org/10.1039/C6SM01353H
https://doi.org/10.1039/C6SM01353H
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1017/jfm.2016.306
https://doi.org/10.1017/jfm.2016.306
https://doi.org/10.1017/jfm.2016.306
https://doi.org/10.1017/jfm.2016.306
https://doi.org/10.7554/eLife.02750
https://doi.org/10.7554/eLife.02750
https://doi.org/10.7554/eLife.02750
https://doi.org/10.7554/eLife.02750
https://doi.org/10.1098/rsif.2014.1358
https://doi.org/10.1098/rsif.2014.1358
https://doi.org/10.1098/rsif.2014.1358
https://doi.org/10.1098/rsif.2014.1358
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1103/PhysRevLett.102.168101
https://doi.org/10.1209/0295-5075/114/24001
https://doi.org/10.1209/0295-5075/114/24001
https://doi.org/10.1209/0295-5075/114/24001
https://doi.org/10.1209/0295-5075/114/24001
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1103/PhysRevLett.100.088103
https://doi.org/10.1103/PhysRevLett.100.088103
https://doi.org/10.1103/PhysRevLett.100.088103
https://doi.org/10.1103/PhysRevLett.100.088103
https://doi.org/10.1017/S0022112008003807
https://doi.org/10.1017/S0022112008003807
https://doi.org/10.1017/S0022112008003807
https://doi.org/10.1017/S0022112008003807
http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.053102

