An Introduction to Proof Theory

Class 3: Hypersequents for Modal Logics

Agata Ciabattoni and Shawn Standefer

ANU LSS · DECEMBER 2016 · ANU

The Modal Logic s5

The modal logic of equivalence relations.

The Modal Logic s5

The modal logic of equivalence relations.

Equivalently, it is the modal logic of *universal* relations.

The Modal Logic s5

The modal logic of equivalence relations.

Equivalently, it is the modal logic of *universal* relations.

A model is a pair $\langle W, v \rangle$.

$$v_w(\Box A) = 1$$
 iff for every $u, v_u(A) = 1$

$$v_w(\lozenge A) = 1$$
 iff for some u , $v_u(A) = 1$

How can we simplify hypersequents for s5?

$$\frac{\mathcal{H}[X \vdash Y \curvearrowright X', A \vdash Y']}{\mathcal{H}[X, \Box A \vdash Y \curvearrowright X' \vdash Y']} \stackrel{[\Box L]}{=}$$

$$\frac{\mathcal{H}[X \vdash Y A \vdash]}{\mathcal{H}[\Diamond A, X \vdash Y]} {}_{[\Diamond L]}$$

How can we simplify hypersequents for s5?

$$\frac{\mathcal{H}[X \vdash Y \curvearrowright X', A \vdash Y']}{\mathcal{H}[X, \Box A \vdash Y \curvearrowright X' \vdash Y']} \, {}^{[\Box L]}$$

$$\frac{\mathcal{H}[X \vdash Y \overset{}{\frown} \vdash A]}{\mathcal{H}[X \vdash \Box A, Y]} \, {}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \vdash Y A \vdash]}{\mathcal{H}[\Diamond A, X \vdash Y]} {}_{[\Diamond L]}$$

Eliminate the arrows!

flat hypersequents

A flat hypersequent is a non-empty multiset of sequents.

$$X_1 \vdash Y_1 \mid X_2 \vdash Y_2 \mid \cdots \mid X_n \vdash Y_n$$

FLAT HYPERSEQUENTS

$$\frac{\mathcal{H}[X \vdash Y A \vdash]}{\mathcal{H}[\Diamond A, X \vdash Y]} [\Diamond L]$$

$$\frac{\mathcal{H}[X \vdash Y \longrightarrow \vdash A]}{\mathcal{H}[X \vdash \Box A, Y]} \stackrel{\Box R}{=}$$

$$\frac{\mathcal{H}[X \vdash Y \ | \ X', A \vdash Y']}{\mathcal{H}[X, \Box A \vdash Y \ | \ X' \vdash Y']} \ ^{[\Box L]}$$

$$\frac{\mathcal{H}[X \vdash Y \mid \vdash A]}{\mathcal{H}[X \vdash \Box A, Y]} \, {}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \vdash Y \ | \ A \vdash]}{\mathcal{H}[\lozenge A, X \vdash Y]} \, {}_{[\lozenge L]}$$

$$\frac{\mathcal{H}[X \vdash Y \ | \ X' \vdash A, Y']}{\mathcal{H}[X \vdash \lozenge A, Y \ | \ X' \vdash Y']} \stackrel{[\lozenge R]}{\longrightarrow}$$

 $\mathcal{H}[X \vdash Y \mid X' \vdash Y']$ is a hypersequent in which $X \vdash Y$ and $X' \vdash Y'$ are components.

$$\frac{\mathcal{H}[X \vdash Y \ | \ X', A \vdash Y']}{\mathcal{H}[X, \Box A \vdash Y \ | \ X' \vdash Y']} \stackrel{[\Box L]}{=}$$

$$\frac{\mathcal{H}[X \vdash Y \mid \vdash A]}{\mathcal{H}[X \vdash \Box A, Y]} \, {}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \vdash Y \mid A \vdash]}{\mathcal{H}[\lozenge A, X \vdash Y]} \, {}_{[\lozenge L]}$$

$$\frac{\mathcal{H}[X \vdash Y \ | \ X' \vdash A, Y']}{\mathcal{H}[X \vdash \lozenge A, Y \ | \ X' \vdash Y']} \stackrel{[\lozenge R]}{\longrightarrow}$$

 $\mathcal{H}[X \vdash Y \mid X' \vdash Y']$ is a hypersequent in which $X \vdash Y$ and $X' \vdash Y'$ are components.

There is *subtlety* here—concerning reflexivity.

$$\frac{\mathcal{H}[X \vdash Y \mid X', A \vdash Y']}{\mathcal{H}[X, \Box A \vdash Y \mid X' \vdash Y']} \stackrel{[\Box L]}{}$$

$$\frac{\mathcal{H}[X \vdash Y \mid \vdash A]}{\mathcal{H}[X \vdash \Box A, Y]} \, {}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \vdash Y \mid A \vdash]}{\mathcal{H}[\Diamond A, X \vdash Y]} {}_{[\Diamond L]}$$

$$\frac{\mathcal{H}[X \vdash Y \ | \ X' \vdash A, Y']}{\mathcal{H}[X \vdash \lozenge A, Y \ | \ X' \vdash Y']} \ {}^{[\lozenge R]}$$

 $\mathcal{H}[X \vdash Y \mid X' \vdash Y']$ is a hypersequent in which $X \vdash Y$ and $X' \vdash Y'$ are components.

There is *subtlety* here—concerning reflexivity.

In $\mathcal{H}[X \vdash Y \mid X' \vdash Y']$ the $X \vdash Y$ and $X' \vdash Y'$ can be the same.

Forms of Weakening

$$\frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X,A \vdash Y]}^{\textit{[iKL]}}$$

$$\frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X \vdash A, Y]}^{[\mathit{iKR}]}$$

Forms of Weakening

$$\frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X,A \vdash Y]}_{[iKL]}^{[iKL]} \qquad \qquad \frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X \vdash A,Y]}_{[iKR]}$$

$$\frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X \vdash Y \ | \ X' \vdash Y']} \, {}^{[eK]}$$

Forms of Weakening

$$\frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X,A \vdash Y]}_{[iKL]}^{[iKL]} \qquad \qquad \frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X \vdash A,Y]}_{[iKR]}$$

$$\frac{\mathcal{H}[X \vdash Y]}{\mathcal{H}[X \vdash Y \ | \ X' \vdash Y']} \ ^{[\textit{eK}]}$$

$$\mathcal{H}[X, A \vdash A, Y]$$
 [axK]

Forms of Contraction

$$\frac{\mathcal{H}[X,A,A\vdash Y]}{\mathcal{H}[X,A\vdash Y]}_{[\mathit{iWL}]}$$

$$\frac{\mathcal{H}[X \vdash A, A, Y]}{\mathcal{H}[X \vdash A, Y]}_{[iWR]}$$

Forms of Contraction

$$\frac{\mathcal{H}[X,A,A\vdash Y]}{\mathcal{H}[X,A\vdash Y]}_{[iWL]} \xrightarrow{[iWL]} \frac{\mathcal{H}[X\vdash A,A,Y]}{\mathcal{H}[X\vdash A,Y]}_{[iWR]}$$

$$\frac{\mathcal{H}[X \vdash Y \ | \ X' \vdash Y']}{\mathcal{H}[X, X' \vdash Y, Y']}_{\text{[eWo]}}$$

Forms of Cut

$$\frac{X \vdash A, Y \ | \ \mathcal{H} \qquad X, A \vdash Y \ | \ \mathcal{H}}{X \vdash Y \ | \ \mathcal{H}} \ {}_{[\textit{aCut}]}$$

$$\frac{X \vdash A, Y \mid \mathcal{H} \quad X', A \vdash Y' \mid \mathcal{H}'}{X, X' \vdash Y, Y' \mid \mathcal{H} \mid \mathcal{H}'} \ {}_{[\textit{mCut}]}$$

Example Derivation

$$\frac{A \vdash A}{\Box A \vdash |\vdash A} \stackrel{[\Box L]}{\Box B} \qquad \frac{B \vdash B}{\Box B \vdash |\vdash B} \stackrel{[\Box L]}{\Box A, \Box B \vdash |\vdash B} \stackrel{[K]}{\Box A, \Box B \vdash |\vdash B} \stackrel{[K]}{\Box A, \Box B \vdash |\vdash A \land B} \\
\frac{\Box A, \Box B \vdash \Box (A \land B)}{\Box A, \Box B \vdash \Box (A \land B)} \stackrel{[\Box R]}{[\land R]}$$

More Example Derivations

$$\frac{\frac{A \vdash A}{\neg A, A \vdash} {}^{[\neg L]}}{\frac{\Box \neg A \vdash | A \vdash}{\vdash \neg \Box \neg A \mid A \vdash} {}^{[\neg R]}}$$

Modifying the Hypersequent Rules for \$5

$$\frac{\mathcal{H}[X, \Box A \vdash Y \mid X', A \vdash Y']}{\mathcal{H}[X, \Box A \vdash Y \mid X' \vdash Y']} \ ^{[\Box L]}$$

$$\frac{\mathcal{H}[X \vdash Y \mid A \vdash]}{\mathcal{H}[X, \Diamond A \vdash Y]} {}_{[\Diamond L]}$$

$$\frac{\mathcal{H}[X \vdash \Box A, Y \mid \vdash A]}{\mathcal{H}[X \vdash \Box A, Y]} \stackrel{[\Box R]}{=}$$

$$\frac{\mathcal{H}[X \vdash \Diamond A, Y \mid X' \vdash A, Y']}{\mathcal{H}[X \vdash \Diamond A, Y \mid X' \vdash Y']} {}_{[\Diamond R]}$$

Height Preserving Admissibility

With these modified rules, internal and external weakening, and internal and external contraction, are height-preserving admissible.

Height Preserving Admissibility

With these modified rules, internal and external weakening, and internal and external contraction, are height-preserving admissible.

The von Plato-Negri cut elimination argument works straightforwardly for this system. (See Poggiolesi 2008.)

(*m*)*Cut* Elimination: the \square Case

$$\frac{\frac{\delta_{l}}{X \vdash Y \mid \vdash A \mid \mathcal{H}}}{\frac{X \vdash \square A, Y \mid \mathcal{H}}{X, X' \vdash Y, Y' \mid X'' \vdash Y'' \mid X'', A \vdash Y'' \mid \mathcal{H}'}} \frac{\sum_{l \vdash \square A, Y \mid \mathcal{H}} S_{l}}{X', \square A \vdash Y' \mid X'' \vdash Y'' \mid \mathcal{H}'} \frac{S_{l}}{X', \square A \vdash Y' \mid X'' \vdash Y'' \mid \mathcal{H}'} S_{l}}{X', \square A \vdash Y' \mid \mathcal{H}' \mid \mathcal{H}'} S_{l}} S_{l}$$

(*m*)*Cut* Elimination: the \square Case

$$\frac{\frac{\delta_{l}}{X \vdash Y \mid \vdash A \mid \mathcal{H}}}{\frac{X \vdash \square A, Y \mid \mathcal{H}}{X, X' \vdash Y, Y' \mid X'' \vdash Y'' \mid X'', A \vdash Y'' \mid \mathcal{H}'}} \frac{\sum_{l \subseteq R} \frac{\delta_{l}}{X', \square A \vdash Y' \mid X'' \vdash Y'' \mid \mathcal{H}'}}{X', \square A \vdash Y' \mid X'' \vdash Y'' \mid \mathcal{H}'} \frac{\sum_{l \subseteq L} [\square L]}{[mCut]}$$

simplifies to

$$\frac{\frac{\delta_{l}}{X \vdash Y \mid \vdash A \mid \mathcal{H}} \frac{\delta_{r}}{X' \vdash Y' \mid X'', A \vdash Y'' \mid \mathcal{H}'}}{\frac{X \vdash Y \mid X' \vdash Y' \mid X'' \vdash Y'' \mid \mathcal{H} \mid \mathcal{H}'}{X, X' \vdash Y, Y' \mid X'' \vdash Y'' \mid \mathcal{H} \mid \mathcal{H}'}}_{[eW]}} [\textit{\tiny mCut}$$

Hypersequent Validity

$$X_1 \vdash Y_1 \mid \cdots \mid X_n \vdash Y_n$$

holds in \mathfrak{M} iff there are no worlds w_i where each element of X_i is true at w_i and each element of Y_i is false at w_i .

Hypersequent Validity

$$X_1 \vdash Y_1 \mid \cdots \mid X_n \vdash Y_n$$

holds in \mathfrak{M} iff there are no worlds w_i where each element of X_i is true at w_i and each element of Y_i is false at w_i .

Equivalent formula:

$$\neg(\Diamond(\bigwedge X_1 \wedge \neg \bigvee Y_1) \wedge \dots \wedge \Diamond(\bigwedge X_n \wedge \neg \bigvee Y_n))$$

Hypersequent Validity

$$X_1 \vdash Y_1 \mid \cdots \mid X_n \vdash Y_n$$

holds in \mathfrak{M} iff there are no worlds w_i where each element of X_i is true at w_i and each element of Y_i is false at w_i .

Equivalent formula:

$$\neg(\lozenge(\bigwedge X_1 \wedge \neg \bigvee Y_1) \wedge \dots \wedge \lozenge(\bigwedge X_n \wedge \neg \bigvee Y_n))$$

$$\square(\bigwedge X_1\supset\bigvee Y_1)\vee\dots\vee\square(\bigwedge X_n\supset\bigvee Y_n)$$

Features of this Proof System

Soundness and Completeness
Separation
Decision Procedure
Easy Extension

TWO DIMENSIONAL MODAL LOGIC

The Modal Logic s5@

The modal logic of *universal* relations with a distinguished world w_{\emptyset} .

The Modal Logic s5@

The modal logic of *universal* relations with a distinguished world w_{\emptyset} .

A model is a triple $\langle W, v, w_{@} \rangle$.

$$v_w(\Box A) = 1$$
 iff for every $u, v_u(A) = 1$

$$v_w(\Diamond A) = 1$$
 iff for some $u, v_u(A) = 1$

$$v_w(@A) = 1$$
 iff $v_{w_@}(A) = 1$

Hypersequents with @

$$X_1 \vdash Y_1 \mid \cdots \mid X_n \vdash Y_n$$

$$X_1 \vdash_{@} Y_1 \mid \cdots \mid X_n \vdash Y_n$$

Multisets of sequents where one (at most) is tagged with the label '@'.

Hypersequents with @

$$X_1 \vdash Y_1 \mid \cdots \mid X_n \vdash Y_n$$

$$X_1 \vdash_{@} Y_1 \mid \cdots \mid X_n \vdash Y_n$$

Multisets of sequents where one (at most) is tagged with the label '@'.

When you take the union of two hypersequents with @, the @-sequents in the parent hypersequents are merged.

$$(X_1 \vdash_{@} Y_1 \mid X_2 \vdash Y_2) \mid (X'_1 \vdash_{@} Y'_1 \mid X'_2 \vdash Y'_2) = X_1, X'_1 \vdash_{@} Y_1, Y'_1 \mid X_2 \vdash Y_2 \mid X'_2 \vdash Y'_2$$

Rules for the @ operator

$$\frac{\mathcal{H}[\mathsf{X} \vdash \mathsf{Y} \mid \mathsf{X}', \mathsf{A} \vdash_{@} \mathsf{Y}']}{\mathcal{H}[\mathsf{X}, @\mathsf{A} \vdash \mathsf{Y} \mid \mathsf{X}' \vdash_{@} \mathsf{Y}']} \, {}^{[@\mathsf{L}]}$$

$$\frac{\mathcal{H}[X \vdash Y \mid X' \vdash_{@} A, Y']}{\mathcal{H}[X \vdash @A, Y \mid X' \vdash_{@} Y']} \text{\tiny [@R]}$$

@-Hypersequent Notation

 $\mathcal{H}[X \vdash Y \mid X' \vdash Y']$ — a hypersequent with components $X \vdash Y$ and $X' \vdash Y'$, which may or may not be identical.

 $\mathcal{H}[X \vdash Y]$ — a hypersequent with a component $X \vdash Y$, which may or may not be tagged with '@'.

 $\mathcal{H}[X \vdash_! Y]$ — a hypersequent with a component $X \vdash Y$, which is *not* tagged with '@.'

 $\mathcal{H}[X \vdash_{@} Y]$ — a hypersequent with a component $X \vdash_{@} Y$, if X or Y are non-empty.

Modal Rules

$$\frac{\mathcal{H}[X \vdash Y \mid X', A \vdash Y']}{\mathcal{H}[X, \Box A \vdash Y \mid X' \vdash Y']} \stackrel{[\Box L]}{}$$

$$\frac{\mathcal{H}[X \vdash Y \mid \vdash_! A]}{\mathcal{H}[X \vdash \Box A, Y]} \, {}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \vdash Y \mid A \vdash_{!}]}{\mathcal{H}[\lozenge A, X \vdash Y]} \,_{[\lozenge L]}$$

$$\frac{\mathcal{H}[X \vdash Y \mid X' \vdash A, Y']}{\mathcal{H}[X \vdash \lozenge A, Y \mid X' \vdash Y']} \ ^{[\lozenge R]}$$

Here, can't tag the $A \vdash$ component of $[\lozenge L]$ and the $\vdash A$ component of $[\square R]$ with @.

(If we tag it, the premise is not general enough.) We have $\vdash_{@} p \supset @p$, but not $\vdash_{@} \Box(p \supset @p)$.

The proviso on $X \vdash_{@} Y \dots$

... means that the inference step

$$\frac{A \vdash_{@}}{@A \vdash} [@L]$$

is indeed an instance of [@L] as it is specified.

$$\frac{\mathcal{H}[\mathsf{X} \vdash \mathsf{Y} \mid \mathsf{X}', \mathsf{A} \vdash_{@} \mathsf{Y}']}{\mathcal{H}[\mathsf{X}, @\mathsf{A} \vdash \mathsf{Y} \mid \mathsf{X}' \vdash_{@} \mathsf{Y}']} \, {}^{[@L]}$$

Example Derivations

$$\frac{p \vdash_{@} p \mid \vdash}{p \vdash_{@} \mid \vdash @p} \stackrel{[@R]}{}_{[\Box R]}$$

$$\frac{p \vdash_{@} \Box @p}{\vdash_{@} p \supset \Box @p} \stackrel{[\Box R]}{}_{[\Box R]}$$

Example Derivations

$$\frac{p \vdash_{@} p \mid \vdash}{p \vdash_{@} \mid \vdash @p} [@R]$$

$$\frac{p \vdash_{@} \square@p}{p \vdash_{@} \square@p} [\supset R]$$

$$\frac{\frac{\mathsf{p}\vdash_{@}\mathsf{p}\mid\vdash}{\mathsf{p}\vdash_{@}\mathsf{p}\mid\vdash}_{[@R]}}{\frac{\mathsf{p}\vdash_{@}\mathsf{p}\boxtimes_{@}\mathsf{p}}{\vdash_{@}\mathsf{p}\supset\square@\mathsf{p}}_{[\supset R]}}}$$

$$\frac{\mathsf{p}\vdash_{@}\mathsf{p}\supset\square@\mathsf{p}}{\vdash_{@}\mathsf{p}\supset\square@\mathsf{p}}_{[@R]}$$

$$\frac{\mathsf{p}\vdash_{@}\mathsf{p}\supset\square@\mathsf{p}}{\vdash_{@}(\mathsf{p}\supset\square@\mathsf{p})}_{[\square R]}$$

(m)Cut Elimination is unscathed

$$\frac{\frac{\delta_{l}}{X \vdash Y \mid X' \vdash_{@} A, Y' \mid \mathcal{H}}}{X \vdash @A, Y \mid X' \vdash_{@} Y' \mid \mathcal{H}} \underset{[@R]}{\overset{[@R]}{\underbrace{X'' \vdash Y'' \mid X''', A \vdash_{@} Y''' \mid \mathcal{H}'}}} \frac{\chi'' \vdash_{W} Y'' \mid \chi''', A \vdash_{W} Y''' \mid \mathcal{H}'}{\chi'', @A \vdash Y'' \mid \chi''' \vdash_{W} Y''' \mid \mathcal{H}'} \underset{[@Cut]}{\overset{[@L]}{\underbrace{A \vdash_{W} \vdash_{W} \vdash_{W} Y', Y''' \mid \mathcal{H} \mid \mathcal{H}'}}}}$$

(m)Cut Elimination is unscathed

$$\frac{\frac{\delta_{l}}{X \vdash Y \mid X' \vdash_{@} A, Y' \mid \mathcal{H}}}{X \vdash @A, Y \mid X' \vdash_{@} Y' \mid \mathcal{H}} \stackrel{[@R]}{=} \frac{\frac{\delta_{r}}{X'' \vdash Y'' \mid X''', A \vdash_{@} Y''' \mid \mathcal{H}'}}{X'', @A \vdash Y'' \mid X''' \vdash_{@} Y''' \mid \mathcal{H}'} \stackrel{[@L]}{=} X, X'' \vdash Y, Y'' \mid X', X''' \vdash_{@} Y', Y''' \mid \mathcal{H} \mid \mathcal{H}'}$$

simplifies to

$$\frac{\frac{\delta_{l}}{X \vdash Y \mid X' \vdash_{@} A, Y' \mid \mathcal{H}} \frac{\delta_{r}}{X'' \vdash Y'' \mid X''', A \vdash_{@} Y''' \mid \mathcal{H}'}}{\frac{X \vdash Y \mid X'' \vdash Y'' \mid X', X''' \vdash_{@} Y', Y''' \mid \mathcal{H} \mid \mathcal{H}'}{X, X'' \vdash Y, Y'' \mid X', X''' \vdash_{@} Y', Y''' \mid \mathcal{H} \mid \mathcal{H}'}} ^{[\textit{mCut}]}$$

Two Dimensional Modal Logic: Relativising the Actual

A 2D model is a pair $\langle W, \nu \rangle$.

$$v_{w,w'}(\Box A) = 1$$
 iff for every $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(\Diamond A) = 1$$
 iff for some $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(@A) = 1$$
 iff $v_{w',w'}(A) = 1$

Two Dimensional Modal Logic: Relativising the Actual

A 2D model is a pair $\langle W, \nu \rangle$.

$$v_{w,w'}(\Box A) = 1$$
 iff for every $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(\Diamond A) = 1$$
 iff for some $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(@A) = 1$$
 iff $v_{w',w'}(A) = 1$

$$v_{w,w'}(FA) = 1$$
 iff for every $u, v_{w,u}(A) = 1$

	w_1	$ w_2 $	w_3	• • •	w_n	
$\overline{w_1}$						
w_2 w_3						
w_3						
:						
w_{n}						
÷						

	w_1	$ w_2 $	w_3	• • •	w_n	
$\overline{w_1}$	$\Box A$					
$\begin{bmatrix} w_2 \\ w_3 \end{bmatrix}$						
w_3						
:						
w_{n}						
i						

	w_1	$ w_2 $	w_3	• • •	w_n	
$\overline{w_1}$	$\Box A$					
		A	Α		Α	
w_2						
w_3						
:						
w_{n}						
÷						

	w_1	$ w_2 $	w_3	• • •	w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		A	
$\overline{w_2}$						
w_3						
:						
141						
$w_{\rm n}$						
:						

	$ w_1 $	w_2	w_3	 w_n	
$\overline{w_1}$	$\Box A$				
	A	Α	A	 A	
	F@B				
$\overline{w_2}$					
w_3					
÷					
$w_{\rm n}$					
÷					

	$ w_1 $	w_2	w_3	 w_n	
$\overline{w_1}$	$\Box A$				
	A	Α	Α	 A	
	F@B				
1412	@B				
w_2					
w_3	@B				
:	:				
$w_{\rm n}$	@B				
:	:				

	$ w_1 $	w_2	w_3	 $ w_n $	
w_1	$\Box A$				
	A	Α	A	 A	
	F@B				
	@B				
w_2	@B				
w_3	@B				
÷	:				
w_n	@B				
:	:				

	w_1	$ w_2 $	w_3	 w_n	
$\overline{w_1}$	$\Box A$				
	A	A	Α	 A	
	F@B				
	@B, B				
w_2	@B				
w_3	@B				
:	:				
$w_{\rm n}$	@B				
:	:				

	w_1	w_2	w ₃		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	Α		A	
	F@B					
	@B, B					
w_2	@B	В				
w_3	@B		В			
:	:			٠.		
w_{n}	@B				В	
:	:					٠.

	w_1	$ w_2 $	w_3		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_2 w_3			В			
:				٠.		
$w_{\mathfrak{n}}$					В	
÷						٠

	w_1	$ w_2 $	w_3	• • •	w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_2 w_3			В			
:				٠.		
$w_{\mathfrak{n}}$					В	
÷						٠.

	w_1	$ w_2 $	w_3		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_3			В			
÷				٠.		
w_{n}					В	
÷						·

	w_1	$ w_2 $	w_3		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
$\begin{bmatrix} w_2 \\ w_3 \end{bmatrix}$		В				
w_3			В			
:				٠.		
$w_{\mathfrak{n}}$					В	
÷						٠

	w_1	$ w_2 $	w_3		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_3			В			
:				٠٠.		
$w_{\rm n}$					В	
÷						·

Different Alternatives

$$\Box p \vdash \mid \vdash p$$

$$[K]p \vdash \parallel \vdash_{@} p$$

An example derivation...

In fact, we will have the following sort of derivation:

$$\frac{p \vdash_{@} p}{\frac{[K]p \vdash \| \vdash_{@} p}{[K]p \vdash | \vdash [K]p}}$$

$$\frac{[K]p \vdash | \vdash [K]p}{\frac{[K]p \vdash \square[K]p}{\vdash [K]p}}$$

$$\frac{[\supset R]}{[\supset R]}$$

2D Hypersequents

2D Hypersequent Notation

$$\mathcal{H}[X \vdash Y \mid X' \vdash Y']$$

$$\mathcal{H}[X \vdash Y \parallel X' \vdash Y']$$

2D Hypersequent Rules

$$\frac{\mathcal{H}[X \vdash Y \parallel X', A \vdash_{@} Y']}{\mathcal{H}[X, [K]A \vdash Y \parallel X' \vdash_{@} Y']} [APK L]$$

$$\frac{\mathcal{H}[\vdash_{@} A \parallel X \vdash Y]}{\mathcal{H}[X \vdash [K]A, Y]} [APK R]$$

Example Derivation

$$\frac{\frac{p \vdash_{@} p}{p \vdash_{@} @p} {}_{[@R]}}{\frac{\vdash_{@} p \supset @p}{\vdash_{[K]R]}}{}_{[[K]R]}}$$

$$\frac{\vdash_{[K]}(p \supset @p)}{\vdash_{[K]}(p \supset @p)} {}_{[\Box R]}$$

Cut Elimination is standard

$$\frac{\frac{\delta_{1}}{\mathcal{H}[\vdash_{@}A \parallel X \vdash Y \parallel X' \vdash_{@}Y']}}{\frac{\mathcal{H}[X \vdash [K]A, Y \parallel X' \vdash_{@}Y']}{\mathcal{H}[X \vdash Y \parallel X' \vdash_{@}Y']}} \underbrace{\frac{\delta_{2}}{\mathcal{H}[X \vdash Y \parallel X', A \vdash_{@}Y']}}_{[APK L]} \underbrace{\frac{\beta_{2}}{\mathcal{H}[X \vdash Y \parallel X' \vdash_{@}Y']}}_{[ACut]} \underbrace{\frac{\beta_{2}}{\mathcal{H}[X \vdash Y \parallel X' \vdash_{@}Y']}}_{[aCut]}$$

$$\frac{\delta_{1}}{\mathcal{H}[\vdash_{@}A\parallel X\vdash Y\parallel X'\vdash_{@}Y']} \frac{\delta_{2}}{\mathcal{H}[X\vdash Y\parallel X', A\vdash_{@}Y']} \frac{\mathcal{H}[X\vdash Y\parallel X'\vdash_{@}Y']}{\mathcal{H}[X\vdash Y\parallel X'\vdash_{@}Y']} [_{eW]}$$

Proof Search for invalid sequents generates models

As in the classical case, we can use proof search on invalid sequents to generate models

Rather than a single position, [X : Y], one uses a *modal position* made up of a multiset of positions, with one or more component positions designated as actual.

$$\begin{split} & [X_1^1:Y_1^1]_{@} \quad | \quad [X_2^1:Y_2^1] \quad | \quad \cdots \quad | \quad [X_{m_1}^1:Y_{m_1}^1] \quad \| \\ & [X_1^2:Y_1^2]_{@} \quad | \quad [X_2^2:Y_2^2] \quad | \quad \cdots \quad | \quad [X_{m_2}^2:Y_{m_2}^2] \quad \| \\ & \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \\ & [X_1^n:Y_1^n]_{@} \quad | \quad [X_2^n:Y_2^n] \quad | \quad \cdots \quad | \quad [X_{m_n}^n:Y_{m_n}^n] \end{split}$$

What we've done

We've seen how the hypersequent calculus is not only a general technique for giving a sequent style proof theory for a range of propositional modal logics, but it can also be *tailored* to give simple proof systems for specific modal logics, with separable rules, and structural features neatly matched to the frame conditions for those logics.

Tomorrow

Hypersequents for non-classical logics

Hypersequents for Modal Logic

FRANCESCA POGGIOLESI

"A Cut-Free Simple Sequent Calculus for Modal Logic S5." Bulletin of Symbolic Logic 1:1, 3–15, 2008.

FRANCESCA POGGIOLESI

Gentzen Calculi for Modal Propositional Logic Springer, 2011.

Hypersequents for Modal Logic

"Proofnets for s5: sequents and circuits for modal logic."

Logic Colloquium 2005, ed. C. Dimitracopoulos, L. Newelski, D. Normann and J. R. Steel, Cambridge University Press, 2008.

http://consequently.org/writing/s5nets

**KAJA BEDNARSKA AND ANDRZEJ INDRZEJCZAK

"Hypersequent Calculi for \$5: the methods of cut elimination."

Logic and Logical Philosophy, 24 277–311, 2015.

GREG RESTALL

"A Cut-Free Sequent System for Two Dimensional Modal Logic, and why it matters."

Annals of Pure and Applied Logic, 163:11, 1611-1623, 2012. http://consequently.org/writing/cfss2dml

Two-Dimensional Modal Logic

"Reference, Contingency, and the Two-Dimensional Framework." *Philosophical Studies*, 118(1):83–131, 2004.

MARTIN DAVIES AND LLOYD HUMBERSTONE

"Two Notions of Necessity."

Philosophical Studies, 38(1):1–30, 1980.

LLOYD HUMBERSTONE

"Two-Dimensional Adventures."

Philosohical Studies, 118(1):257-277, 2004.

THANK YOU!

http://blogs.unimelb.edu.au/logic/

@standefer on Twitter

Based on NASSLLI 2016 slides by Greg Restall and Shawn Standefer.

https://consequently.org/class/2016/PTPLA-NASSLLI/