An Introduction to Proof Theory
Class 3: Beyond Sequents

Agata Ciabattoni and Shawn Standefer

THE UNIVERSITY OF
MELBOURNE

ANU LSS - DECEMBER 2016 - ANU



Our Aim

To introduce proof theory, with a focus on its
applications in philosophy, linguistics and
computer science.



Our Aim for Today

Introduce extensions of sequent systems to
naturally deal with modal logics.
Explore the behaviour of hypersequent systems
for modal logics, including two dimensional
modal logic with more than one modal operator.



Today's Plan

Basic Modal Logic
Modal Sequent Systems
Display Logic
Labelled Sequents

Tree Hypersequents



BASIC MODAL LOGIC



Possibility and Necessity

Modal logic adds propositional logic the notions of possibility and necessity.

Add to the language of propositional logic the TF and ().’

» If A isaformula, soare (A and QA.
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Example Interpretation

Op, O—p, 0q, 0—q @ @ Op, 0—p, 0q, O—q
—Op, ~0—p, ~0q, ~0—q @ @ Op, O—p, 0q, ~0—q



Example Interpretation

Op, O—p, 0q, 0—q @ @ Op, 0—p, 0q, O—q

Olp AN q) —0(pAq)

—Op, ~0—p, ~0q, ~0—q @ @ Op, O—p, 0q, ~0—q

—0(p/Aq) OlpAq)



Modal Logic: Interpretations

An interpretation for the language is a triple: (W, R, v).
W is a non-empty set of states (or possible worlds).

R is a two-place relation on W, of relative possibility. uURw means that from the
point of view of u, w is possible.

Finally, v assigns a truth value to a propositional parameter at a state.

That is, for each world w and propositional parameter p, we will have either
v (p) = 1 (if p is “true at w”) or vy, (p) = O (if p is “false at w”).



Interpreting the Language

We keep the rules for the classical connectives, with state subscripts on v:

» v, (—A) =Tifand onlyifv,,(A) = 0.

» v,,(AAB)=T1ifand onlyifv,,(A) = 1andv,,(B) = 1.
» vi,(AV B) =1ifand onlyifw,,(A) =1orw,(B) =1.
» v, (A D B) =Tifandonlyifv,,(A) =0o0rv,(B) =1.

No novelty there.



Interpreting the Language

We keep the rules for the classical connectives, with state subscripts on v:
» v, (—A) =Tifand onlyifv,,(A) = 0.
» v,,(AAB)=T1ifand onlyifv,,(A) = 1andv,,(B) = 1.
» vi,(AV B) =1ifandonlyifv,,(A) =1orv,,(B) =
» vi,(A D B) =Tlifandonlyifv,,(A) =0orv,,(B
No novelty there.
The innovation is found with J and ¢:

» vi,(OA) = Tifand onlyif v;;(A) = 1 for each u where wRu.

» v, (OA) = Tifand onlyif v, (A) = 1 for some u where wRu.
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Interpretations can be used to define validity, as with classical propositional
logic.
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Interpretations can be used to define validity, as with classical propositional
logic.

The argument from X to Y is valid (written X I~ Y as before) if and only if for
every interpretation (W, R, v) for any statew € W, if v,,(B) = 1 for each
B € X then for some C € Y, v,,(C) = 1 too.



Modal Validity

Interpretations can be used to define validity, as with classical propositional
logic.

The argument from X to Y is valid (written X I~ Y as before) if and only if for
every interpretation (W, R, v) for any statew € W, if v,,(B) = 1 for each
B € X then for some C € Y, v,,(C) = 1 too.

... or equivalently, there is no state w € W at which every member of X is true
and every member of Y is false.



Some Basic Validity Facts

FA
FOA



Some Basic Validity Facts

FA Al
FOA OAF



Some Basic Validity Facts

A AR
FOA OAF
ALB

OA DB



Some Basic Validity Facts

A AR
FOA OAF
ALB AFB

OA DB OAF OB



Some Basic Validity Facts

A _AR

FOA OAF

AlB AlFB

DA OB OAF OB
X,0A,0BFY

X,0(AAB)FY



Some Basic Validity Facts

FA

FOA

AFB
OA DB

X,0A,0BFY

Al

OAF

AFB
OAF OB

XF OA, OB, Y

X,0(AAB)FY

XFO(AVB),Y



Some Basic Validity Facts

FA

FOA

AFB
OA DB

X,0A,0BFY

Al

OAF

AFB
OAF OB

XF OA, OB, Y

X,O(AAB)FY

X,0AFY
X,—~0—AFY

XFO(AVB),Y



Some Basic Validity Facts

FA

FOA

AFB
OA DB

X,0A,0BFY

Al

OAF

AFB
OAF OB

XF OA, OB, Y

X,O(AAB)FY

X,0AFY
X,—~0—AFY

XFO(AVB),Y

XFOA,Y
XF—0—A,Y



Some Basic Validity Facts

FA

FOA

AFB
UOA DB

X,0A,0BFY

Al

OAF

AFB
OAF OB

XF OA, OB, Y

X,O(AAB)FY

X,0AFY
X,—~0—AFY

XFO(AVB),Y

XFOA,Y
XF—0—A,Y

None of these are much like good L/R rules for O or ¢.



Moving Beyond Basic Modal Logic

Restrictions on the accessibility relation lead to properties for (J and ¢.

CONDITION PROPERTY

reflexivity  WRw OAFA AFQA.
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Moving Beyond Basic Modal Logic

Restrictions on the accessibility relation lead to properties for (J and ¢.

CONDITION PROPERTY
reflexivity  WRw OAFA AFQA.
transitivity - wRv AvRu D wRu DA FOOA  OOA F QA.
symmetry  WRv D VRw AFOOA OUALRA.
directedness (3Iv)wRv OLF FOT

K: all models  T: reflexive models  S4: reflexive transitive models
S5: reflexive symmetric transitive models.



Brief aside: Intuitionistic models

We can use Kripke models as the model theory for intuitionistic logic, where
the accessibility relation of the models is reflexive and transitive.

» v,,(AAB)=Tifand onlyifv,,(A) = 1andv,,(B) = 1.
» vi,(AV B) =1ifand onlyifv,,(A) =Torv,(B) =1.

Conjunction and disjunction are standard.



Brief aside: Intuitionistic models

We can use Kripke models as the model theory for intuitionistic logic, where
the accessibility relation of the models is reflexive and transitive.
» v,,(AAB)=Tifand onlyifv,,(A) = 1and v, (B) =
» vi,(AV B) =1ifand onlyifv,,(A) =Torv,(B) =1.
Conjunction and disjunction are standard.
Negation and the conditional receive different truth conditions.
» viy(—A) = lifand onlyif v;,(A) = O for each u where wRu.

» vy(A — B) = 1ifand onlyifv,(A) = 0orvy(B) = 1, for each u where
wRu.

Finally, we also require a Heredity Condition: for atoms p, if v, (p) = 1 and
wRu, then v (p) = 1.



MODAL SEQUENT
SYSTEMS



What could L/R rules for (J and ¢ look like?
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What could L/R rules for (Jand ¢ look like?
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What could L/R rules for [(J and ¢ look like?

X,AFY OXF A, OY
— [01] —— [OR]
X,0AFY OXFOA, OY
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What could L/R rules for [(J and ¢ look like?

X,AFY OXF A, QY
— [01] ———[0OR]
X,0AFY OXFOA, OY
OX, Ak QY XFAY

——— [OL] ———  [OR]
OX, QA F OY XFOA,Y

These rules characterise the modal logic S4.



Example Derivations

AFA BHB AFA
—— [/\R] ()
A,BFAAB OAFA
— 01 ——  [OR]
DA,BI—A/\B[DL OA FOA
OA,0OBFAAB - OA FOOA

OA,O0B+DO(AAB)
OANDOBFOA AB)

[/\L]



What about §5?

OXFADY OXAFOY
I —— — [QOL']
OX - DA, OV OX, OA - OY



What about S5?

OXF-A,0Y OX,AE QY

——————— [OR] —— L]
OXFOA,OY 0X, OAF OY
OpkDOp
——— [7R]
=0Op,—Up pEp
————— [OR]] (0o1]
FOp, O-Cp Opkp

Fp,U-0p



What about S5?

OXF-A,0Y OX,AE QY

———————[OR] — 0L
OX+0OA, Oy OX, OA - OY
OpkDOp
——— [7R]
=0Op,—Up pEp
——— [Or"] (0L]
FOp, O-Cp Opkp

Fp,U-0p

The sequent - p, O0—CIp has no cut-free proof.
(How could you apply a (] rule?)



Problems with these [ and { rules

XARY OXEAOY OXFADY
XDAD—Y OXF DA, OY OX - OA,OY
OX, A OY OX, A OY XFA,Y

— QL] — QL] ——  [OR]
OX, OA F QY OX, OA F QY XFOA,Y

Entanglement between (] and .
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Problems with these [ and { rules

CXARY L OXEAQY o DXEADY
X,0AFY OX FDOA, <>Y OX FOA,OY
OX, A F OY OX, A F QY XFA,Y
T 102 —  [OL'] ——— ORI
UX, OAE QY OX, OA QY XFOAY

Entanglement between (] and .

OL and OR are weak
— all the work is done by
the left O rules and right O rules.

Hard/impossible to generalise.



From Modal to Temporal Logic

» v,w(OA) = Tifand onlyif v, (A) = 1 for each u where wRu.

» v,y (QA) = Tifand only if v, (A) = 1 for some u where wRu.

v

vyy(BA) = 1ifand onlyif vi;(A) = 1 for each u where uRw.

v

vy (#A) = 1ifand onlyif vi;(A) = 1 for some u where uRw.



From Modal to Temporal Logic

» v,w(OA) = Tifand onlyif v, (A) = 1 for each u where wRu.

» v,y (QA) = Tifand only if v, (A) = 1 for some u where wRu.

v

vyy(BA) = 1ifand onlyif vi;(A) = 1 for each u where uRw.

v

vy (#A) = 1ifand onlyif vi;(A) = 1 for some u where uRw.

AFUOB OA B
¢A B AFNEB



Going Forward and Back in a Derivation

OA,CBFDA OA,CBFOB
OAAOBFOA OAAOBFOB
[Oe (4]

¢(OANDB) A ¢(OAADB)-B
[/AR]

¢(OANDOB)FAAB
OAAOBFO(A AB)

o0
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Generalised Sequents

How do we establish X - [(JA, Y?

It should have something to do with some X’ = A Y’
but the A is evaluated in a different state.

We need to record state shifts in sequents.
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DISPLAY LOGIC



Q.
]
=
QL
-]
©
S
2




Sequents

Sequents are of the form X - Y, where X and Y are structures

Structures are built up out of formulas and the structural connetives *, e (both
unary), and o (binary)

For example, x(p o q) - (1 0 xs)



Display equivalences

Certain sequents are stipulated to be equivalent via display equivalences

XFYoZ & XoxYFZLEE XEFZoY
XFY&E= «YF«X &= XFxxY
oXFHY & Xk oY



Display equivalences

Certain sequents are stipulated to be equivalent via display equivalences

XFYoZ & XoxYFHZL & X LZoY
XEFY&E&E «YE« X XExxY
XY & XF oY

(These rules ensure that x acts like negation,
o is conjunctive on the left and disjunctive on the right,
and e acts like a necessity on the right
and its converse possibility the left.)



Displaying

By means of the display equivalences, one can display a formula or structure
on one side of the turnstile in isolation

This permits the left and right rules to deal with only the displayed formulas
and structures

AoBFX XFA YHB
- AL " IAR]
AABEFX XoYFAAB



Generality

The connectives rules are formulated so that
each connective is paired with a structural connective

Different logical behaviour is obtained
by imposing different rules on the structural connectives

A single form of conjunction rule can be used for, say, classical conjunction
and relevant fusion, the difference coming out in the structural rules in force



Modal Rules

To give rules for modal operators, you use the modal structure.

AEY X eB
—— 01 (OR]
LA eY XF0OB




Example Display Logic Derivation

AFA BFB
— [01] — [0L]
OAF eA « (B eB :
DAODBI—OA[ l OAo[BF eB

display] [display]

1y
o(JA0B)FA o(JAoB)FB
[AR]

o(JAoB)oe(JAcB)FAAB
o(JAcOB)FAAB .
DA o OBl e(AAB)
DA ADCBF (A AB)
DA AOBFO(A AB)

[display]

[AL]

[CIR]



Structural Rules

XY AFA
LA eA
OAFA

()9



Structural Rules

UAFeJA -
OA FOOA



Structural Rules



Structural Rules

Many more structural rules
are possible.



Cut

Because formulas can always be displayed,
a simple form of Cut can be used for a range of logics

XFA AFRY
XY

[Cut]



Eliminating Cut

The Elimination Theorem is proved via a general argument
that depends on eight conditions on the rules.

If these conditions are satisfied, then it follows that Cut is admissible

This argument is due to Haskell Curry and Nuel Belnap.



The Structure of the Curry—Belnap Cut Elimination Proof

» It’s a Cut elimination argument (it doesn’t appeal to a Mix rule).
» It's an induction on grade (complexity of the Cut formula), as usual.

» To eliminate a Cut on a formula A, trace the parametric occurrences of a
formula in the premises of the cut inference upward to where they first
appear. Replace the cut at those instances (either with cuts on
subformulas, or by weakening, or the cuts evaprate into identities) and
then replay the substitution downward.



The Crucial Step

: CAA
CAVAL A C A
A A
A
XFA AI—Y[Cuﬂ

XY



The Crucial Step
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The Crucial Step




The Eight Conditions

c1: Preservation of formulas.

c2: Shape-alikeness of parameters.

c3: Non-proliferation of parameters.

c4: Position-alikeness of parameters.

cs: Display of principal constituents.

c6: Closure under substitution for consequent parameters.
c7: Closure under substitution for antecedent parameters.

c8: Eliminability of matching principal constituents.



Cut Elimination: The [ Case

A cut on a principal [JA may be simplified into a cut on A.

X oA AFY
OR

[LJR] [aL]
XEFOA OA I eY
[Cut]
X oY



Cut Elimination: The [l Case

A cut on a principal [JA may be simplified into a cut on A.

XEFeA
X oA ALY XEA Ty
R L] b

[Cut]

[LJR] [
XEFOA LA F oY XY
[Cut]

[display]
X+ oY XEey T¥



Virtues and Vices of Display Logic

DISPLAY

Cut-free
Explicit
Systematic
Separation
Subformula
Nonredundant —
Gentzen-plus —

++++ +




Virtues and Vices of Display Logic

DISPLAY
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Explicit
Systematic
Separation
Subformula
Nonredundant —
Gentzen-plus —

++++ +




LABELLED SEQUENTS



Recall this derivation...

AFA BFB
— [01] — [0L]
OAF eA « (B eB :
DAODBI—OA[ l OAo[BF eB

display] [display]

1y
o(JAGB)FA o(JA0IB)FB
[/A\R]

o(JAoB)oe(lJAcOB)FAAB
o(JAcOB)FAAB .
DA o OBl e(AAB)
DA ADCBF (A AB)
DA AOBFO(A AB)

[display]

[AL]

[CIR]



Here is another way to represent it

viAFVIA v:BFv:B
[OL) oL
va,w:DAI—v:A[K] va,w:DBI—v:B[K]
wRv,w:OA;w:OBFvV:A va,w:DA,W:DBI—v:B[AR]

wRv,w : OA,w:OB,wRv,w:OA,w:0OBFv:AAB -
wRv,w:OA;w:OBFAAB
wRv,w:OAAOBFv:AAB
w:OAADOBEFw:OA AB)

[A\L]

[OIR]



Labelled Sequent Rules: Boolean Connectives

X:AFXx:A

(Plus weakening and contraction.)

x: A, x:B,XFY XFx:AY XEx:B,Y
[/\L] [/AR]
x:AABXFY XEx:AABY
x:AXEFY x:B,XFY XFEx:A,x:B,Y
VL) [VR]
x:AVBXFY XFx:AVBY
XFEx:AY x: A XEFY
[—L] [7R]

x:—A,XFY XFx:—A,Y



Labelled Sequent Rules: Modal Operators

x:AXFY xRy, XFy:AY
(oL (OR]
yRx,y 1 LA, XEY XFx:OAY
xRy,y: A, XFY XEx:AY
(0Ll [OR]
x: OA,XFY yRx, XFy: OA,Y

In OJR and (L, the label y must not be present in X, Y or be identical to x.



Labelled Sequents

In these rules (except for weakenings) relational statements (xRy) are
introduced only on the left of the sequent.

We may without loss of deductive power, restrict our attention to sequents in
X I+ Y which relational statements appear only in X and notin Y.



Frame conditions

The ‘cash value’ of a labelled sequent X - Y on a Kripke model is found by
replacing x : A by vi(A) = 1; X by its conjunction; Y by its disjunction; the -
by a conditional; and universally quantifying over all world labels.



Frame conditions

The ‘cash value’ of a labelled sequent X - Y on a Kripke model is found by
replacing x : A by vi(A) = 1; X by its conjunction; Y by its disjunction; the -
by a conditional; and universally quantifying over all world labels.

xRy, x : A Fy:B,x: Cisvalid on a model if and only if

(vx, y)((xRy Ave(A) =1) O ((vy(B) =1) Vv (C) =1))



Translation

A systematic translation maps modal display derivations
into labelled modal derivations.

The translation simplifies the proof structure,
erasing display equivalences, which are
mapped to identical labelled sequents (modulo relabelling).

For details, see Poggiolesi and Restall
“Interpreting and Applying Proof Theory for Modal Logic” (2012).
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TREE
HYPERSEQUENTS



Inspecting the translation

Display equivalent sequents correspond to nearly identical labelled sequents.

A eB

eA B
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Inspecting the translation

Display equivalent sequents correspond to nearly identical labelled sequents.

AFeB = VVRwv:AFw:B

eAFB = WwWRvw:AFv:B



Inspecting the translation

Display equivalent sequents correspond to nearly identical labelled sequents.

AFeB = VVRwv:AFw:B

eAFB = WwWRvw:AFv:B
All we care about is that one world accesses the other. We have

AF—""FB



The Recipe

Replace the labelled sequent R, X I Y by a directed graph of sequents:
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The Recipe

Replace the labelled sequent R, X I Y by a directed graph of sequents:
» There is one node for every label.
» Every node is a sequent.

» For every instance of x : A in antecedent position, put A in the
antecedent of the sequent at the node corresponding to x.

» For every instance of x : A in consequent position, put A in the
consequent of the sequent at the node corresponding to x.



The Recipe

Replace the labelled sequent R, X I Y by a directed graph of sequents:

>

>

>

There is one node for every label.
Every node is a sequent.

For every instance of x : A in antecedent position, put A in the
antecedent of the sequent at the node corresponding to x.

For every instance of x : A in consequent position, put A in the
consequent of the sequent at the node corresponding to x.

If R contains Rxy, then place an arc from x to y.



Three ways of presenting the one fact
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Three ways of presenting the one fact

» Display Sequent: @ x (A o xeB) F (D o E)
» Labelled Sequent: vVRw, uRv,u: B,w:D,w:EFv:A

> Delabelled Sequent: B — > D,EF — > F A



An example delabelling

v:AFvVv:A v:BFv:B
[aL [OL]

WRv,w:OAFvV:A . WwRv,w:OAFvV:A

[ [K]
wRv,w:OA,w:OBFvV:A wRv,w : OA,;w: B I—v:A[AR]

wRy,w:OA,w:OBFv:AAB R
w:OAw:0OBFw:OA AB)
AR
w:OAAOBFw:O(AAB)




An example delabelling

AFA v:BFv:B
[aL [OL]

WRv,w:OAFvV:A . WwRv,w:OAFvV:A

[ [K]
wRv,w:OA,w:OBFvV:A wRv,w : OA,;w: B I—v:A[AR]

wRy,w:OA,w:OBFv:AAB R
w:OAw:0OBFw:OA AB)
AR
w:OAAOBFw:O(AAB)




An example delabelling

AFA . .
oL v:BFvV:B o1

UAF—7FA wRv,w:OAFV:A

[K] [K]
wRv,w:OA,w:[OBFv:A va,w:DA,w:DBl—v:A[AR]

wRv,w:OA;w:OBFVv:AAB Or
w:OA,w:0OBFw:OA AB)
w:OAAOBFw:OAAB)

[AR]




An example delabelling

AFA . .
(oL v:BFv:B o1

OAF—FA « WRv,wiOAFv:A
UOAOBF " FA wRv,w:OA,w:OBFv:A AR
wRv,w:OA,w:[OBFv:AAB
w:OA,w:0OBFw:OA AB)

w:OAAOBFw:OAAB)

[OR]

[AR]



An example delabelling

AFA
(oL BFB o

UAF—"T"FA « WwRv,w:OAFvV:A -
OAOBF " FA wRv,w:OA;,w:OBFvV:A AR
wRv,w:OA,w:[OBFv:AAB
w:OA,w:0OBFw:OA AB)

w:OAAOBFw:OAAB)

[OR]

[AR]



An example delabelling

AFA BFB
[OL) (L]
OAF—7"FA OBF—""FB
[K] [K]
OAOBF " FA wRv,w:OA;,w:OBFvV:A AR

wRv,w:OA,w:[OBFv:AAB
w:OA,w:0OBFw:OA AB)
w:OAAOBFw:O(AAB)

[OR]

[AR]



An example delabelling

AFA BFB
0L o1
OAF—FA i OBF—"FB :
OA,00BF " FA OA,00BF " FB .
[/\R]

wRv,w:OA,w:[OBFv:AAB

w:OAw:OBFw:OAAB)

w:OAAOBFw:OAAB)

K]

[OR]

[AR]



An example delabelling

AFA BFB
[arn (0L
OAF—7"FA i OBF—"FB
OA,0BF " FA OA,00BF kB
OA0BF " FAAB
w:OAw:0OBFw:OA AB)

w:OAADBFw:OAAB)

(K]

[AR]

(OR]

[AR]



An example delabelling

AFA BHB

[arn (0L

OAF—FA « OBF—FB

OAOBF " FA OA,OBF"FB
DA,EIBI——"I—A/\B[D

DOA,OB - O(A AB)
w:OAADBFw:OAAB)

(K]

[AR]

R]

[AR]



An example delabelling

AFA BHB
[arn (0L
OAF—FA « OBF—FB
OAOBF " FA OA,OBF"FB
OA,0BF 7 FAAB
[OIR]

OA,OB - O(A AB)
DA ADBFO(AAB)

(K]

[AR]

[AR]



Another example delabelling

xX:AFEXTA - AFA -
x:—Ax:AF —A,A
[OL)] (oL
Ryx,y :O—A,x: A k- DﬁAI—A*AI—[R]
[™R] -
Ryx,x : Ay :—--A F-O-A 7 AF
[sym] [sym]
Rxy,x: A Fy:—-0O"A F-O-A —— A
[OR] [OR]

x:AFx:O-0-A A FO-0O-A



Another example delabelling

X:AFEXx:A - AFA -
x: A XA —AAF
(0L] [01]
Ryx,y:-A,x : A+ DﬁAI—’_*’AI—[R]
[™R] -
Ryx,x : Ay :—--A F-O-A 7 AF
[sym] [sym]
Rxy,x: A Fy:—-0O"A F-O-A —— A

[OR] [OIR]
x:AFx:O-0-A A+ DO-0-A



Another example delabelling

xX:AFEXx:A - AFA -
x: A XA F —AAF
(0L] [01]
Ryx,y:-A,x : A+ DﬁAI—’_*’AI—[R]
[™R] -
Ryx,x : Ay :—--A F-O-A 7 AF
[sym] [sym]
Rxy,x: A Fy:—-0O"A F-O-A —— A

[OR] [OIR]
x:AFx:O-0-A A+ DO-0-A



Another example delabelling

xX:AFEXx:A - AFA -
x: A XA —AAF

(0L] [01]

Ryx,y:-A;x : A+ DﬁAI—’_"AI—[R]
[™R] -

Ryx,x : Ay :—--A F-O-A 7 AF
[sym] [sym]

Rxy,x: A Fy:—-0O"A F-O-A —— A
[OR] [OR]

x:AFx:0-0-A AFO-O-A



Another example delabelling

xX:AFEXx:A - AFA -
x: A XA —AAF
(0L] [01]
Ryx,y:-A,x : A+ DﬁAI—’_"AI—[R]
[™R] -
Ryx,x : Ay :--A F-O-A7AF
[sym] [sym]
Rxy,x: A Fy:—-0O"A F-O-A —— A

[OR] [OIR]
x:AFx:O-0-A A+ DO-0-A



Another example delabelling

xX:AFEXTA - AFA -
x:mAX AR —AAF
0L 0]
Ryx,y:-A,x : A+ DﬁAI—’_"AI—[R]
[™R] -
Ryx,x : Ay :—--A F-O-A 7 AF
[sym] [sym]
Rxy,x: A Fy:—-0O"A F-O-A —— A
[OR] [OR]

x:AFx:0-0-A AFO-O-A



Another example delabelling

xX:AFEXx:A - AFA -
x: A XA —AAF
(0L] [01]
Ryx,y:-A,x : A+ DﬁAI—’_*’AI—[R]
[™R] -
Ryx,x : Ay :—--A F-O-A 7 AF
[sym] [sym]
Rxy,x: A Fy:—-0O"A F-O-A —— A

[OR] [OIR]
x:AFx:O-0-A A+ O-0-A



Tree Hypersequent Rules: Modal Operators

HXEY X ARY] HIXEFY ™ FA]
[OL] [CIR]
HIX,OAEFY > X' Y] HIX = OA,Y]
HIXFY AF] HIXEYX'FAY]
[OL] [OR]

HIOA, X Y] HIXF OA,Y X' F Y]



Forms of Cut

HIXEAY] HIXAERY]

[Cut®]
HIXFY]



Forms of Cut

HIXEAY]  HIX,AFY]
HIXFY]

[Cut?]

HIXEAY] HIX,ARFY]
[Cut™]

(HeH)XEY]



Forms of Weakening

HIX Y] HIX Y]
——— [iKL] — |
HIX,AFY] HIXFAY]

1KR]



Forms of Weakening

HIXFY] HIXFY]
— [iKL] ——— [iKR]
HIX,AFY] HIXFA,Y]

HIXFY] HIX Y]

[eKL] [eKR]

HIX'FY 7> XFY] HIXEY X' EY]



Forms of Weakening

HIX Y] HIX F Y]
— [iKL] —— [iKR]
HIX, A F Y] HIXF A,Y]
HIX Y] HIX Y]
[eKL] [eKR]
HIX' FY = XFY] HIXFY>X' Y]

HIX,AFAY] [axK]



HIX,A A EY]

HIX,AFY]

Forms of Contraction

[iWL]



Forms of Contraction

HIX, A, A Y] HIX - A, A,Y]
— [IWI] ——F  [iWR]
HIX, A F Y] HIXF A,Y]

H[X”FYHK\XI_Y/\X/ l_Yl]
H[XI F Y/ > X/,X// F X/,Y//]

[eWo]



Forms of Contraction

HIX, A, A Y] HIX - A, A,Y]
— [IWI] ——F  [iWR]
HIX, A F Y] HIXF A,Y]

H[xl/ l_ Y// A/\X I_ Y/\X/ l_ Yl]
H[XI F Y/ > X/,X// F X/,Y//]

[eWo]

H[X” l_Y/,/\Xl_YK\X, l_Y/]
HIXFY <X X" X, Y]

[eW1]



Cut Elimination

A cut elimination theorem for tree hypersequent systems is relatively
straightforward.

One option is a contraction-free style argument (by Negri and von Plato),
following the construction for Labelled Sequent systems.

Another is the Curry-Belnap argument.



Virtues and Vices

DISPLAY LABELLED DELABELLED
Cut-free + + +
Explicit + + +
Systematic + + +
Separation + + +
Subformula + +— +
Nonredundant — +— +
Gentzen-plus — +-— +




Virtues and Vices

DISPLAY LABELLED DELABELLED
Cut-free + + +
Explicit + + +
Systematic + + +
Separation + + +
Subformula + +— +
Nonredundant — +— +
Gentzen-plus — +-— +




Display Logic, Labelled Sequents and Hypersequents

[} NUEL D. BELNAP, JR.
“Display Logic.”
Journal of Philosophical Logic, 11:375-417, 1982..

¥ HEINRICH WANSING
Displaying Modal Logic
Kluwer Academic Publishers, 1998.

[ SARA NEGRI
“Proof Analysis in Modal Logic.”
Journal of Philosophical Logic, 34:507-544, 2005.

[] ARNON AVRON
“Using Hypersequents in Proof Systems for Non-Classical Logics.”
Annals of Mathematics and Artificial intelligence, 4:225-248, 1991.



E]

]

Delabelled Sequents

FRANCESCA POGGIOLESI
Gentzen Calculi for Modal Propositional Logic
Springer, 2011.

FRANCESCA POGGIOLESI AND GREG RESTALL

“Interpreting and Applying Proof Theory for Modal Logic.”

New Waves in Philosophical Logic, ed. Greg Restall and Gillian Russell,
Palgrave MacMillan, 2012.
http://consequently.org/writing/interp-apply-ptml


http://consequently.org/writing/interp-apply-ptml

THANK YOU!

http://blogs.unimelb.edu.au/logic/
@standefer on Twitter
Based on NASSLLI 2016 slides by Greg Restall and Shawn Standefer.

https://consequently.org/class/2016/PTPLA-NASSLLI/


http://blogs.unimelb.edu.au/logic/
http://twitter.com/standefer
https://consequently.org/class/2016/PTPLA-NASSLLI/
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