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Our Aim

To introduce proof theory, with a focus on its
applications in philosophy, linguistics and

computer science.
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Our Aim for Today

Introduce extensions of sequent systems to
naturally deal with modal logics.

Explore the behaviour of hypersequent systems
for modal logics, including two dimensional

modal logic with more than one modal operator.
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Today's Plan

Basic Modal Logic

Modal Sequent Systems

Display Logic

Labelled Sequents

Tree Hypersequents
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basic modal logic



Possibility andNecessity

Modal logic adds propositional logic the notions of possibility and necessity.

Add to the language of propositional logic the ‘□’ and ‘♢.’

▶ If A is a formula, so are □A and ♢A.
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Example Interpretation

p, q p, ¬q

p, q ¬p, q

♢p, ♢¬p, ♢q, ♢¬q ♢p, ♢¬p, ♢q, ♢¬q

¬♢p, ¬♢¬p, ¬♢q, ¬♢¬q ♢p, ♢¬p, ♢q, ¬♢¬q

♢(p∧ q) ¬♢(p∧ q)

¬♢(p∧ q) ♢(p∧ q)
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Modal Logic: Interpretations

An interpretation for the language is a triple: ⟨W,R, v⟩.

W is a non-empty set of states (or possible worlds).

R is a two-place relation on W, of relative possibility. uRw means that from the
point of view of u, w is possible.

Finally, v assigns a truth value to a propositional parameter at a state.

That is, for each world w and propositional parameter p, we will have either
vw(p) = 1 (if p is “true at w”) or vw(p) = 0 (if p is “false at w”).
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Interpreting the Language

We keep the rules for the classical connectives, with state subscripts on v:
▶ vw(¬A) = 1 if and only if vw(A) = 0.
▶ vw(A∧ B) = 1 if and only if vw(A) = 1 and vw(B) = 1.
▶ vw(A∨ B) = 1 if and only if vw(A) = 1 or vw(B) = 1.
▶ vw(A ⊃ B) = 1 if and only if vw(A) = 0 or vw(B) = 1.

No novelty there.

The innovation is found with □ and ♢:
▶ vw(□A) = 1 if and only if vu(A) = 1 for each u where wRu.
▶ vw(♢A) = 1 if and only if vu(A) = 1 for some u where wRu.
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Modal Validity

Interpretations can be used to define validity, as with classical propositional
logic.

The argument from X to Y is valid (written ‘X ⊢ Y ’ as before) if and only if for
every interpretation ⟨W,R, v⟩ for any state w ∈ W, if vw(B) = 1 for each
B ∈ X then for some C ∈ Y, vw(C) = 1 too.

… or equivalently, there is no state w ∈ W at which every member of X is true
and every member of Y is false.
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Some Basic Validity Facts

⊢A

⊢□A

A ⊢
♢A ⊢

A ⊢ B

□A ⊢□B

A ⊢ B

♢A ⊢ ♢B

X,□A,□B ⊢ Y

X,□(A∧ B) ⊢ Y

X ⊢ ♢A,♢B, Y
X ⊢ ♢(A∨ B), Y

X,□A ⊢ Y

X,¬♢¬A ⊢ Y

X ⊢□A, Y

X ⊢¬♢¬A, Y

None of these are much like good L/R rules for □ or ♢.
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Moving Beyond BasicModal Logic

Restrictions on the accessibility relation lead to properties for □ and ♢.

condition property

reflexivity wRw □A ⊢ A A ⊢ ♢A.

transitivity wRv∧ vRu ⊃ wRu □A ⊢ □□A ♢♢A ⊢ ♢A.
symmetry wRv ⊃ vRw A ⊢ □♢A ♢□A ⊢ A.

directedness (∃v)wRv □⊥ ⊢ ⊢ ♢⊤
...

...

K: all models T : reflexive models S4: reflexive transitive models
S5: reflexive symmetric transitive models.
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Brief aside: Intuitionisticmodels

We can use Kripke models as the model theory for intuitionistic logic, where
the accessibility relation of the models is reflexive and transitive.

▶ vw(A∧ B) = 1 if and only if vw(A) = 1 and vw(B) = 1.
▶ vw(A∨ B) = 1 if and only if vw(A) = 1 or vw(B) = 1.

Conjunction and disjunction are standard.

Negation and the conditional receive different truth conditions.
▶ vw(¬A) = 1 if and only if vu(A) = 0 for each u where wRu.
▶ vw(A → B) = 1 if and only if vu(A) = 0 or vu(B) = 1, for each u where

wRu.
Finally, we also require a Heredity Condition: for atoms p, if vw(p) = 1 and
wRu, then vu(p) = 1.
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modal sequent
systems



What could L/R rules for□ and♢ look like?

X,A ⊢ Y
[□L]

X,□A ⊢ Y

??? ⊢ ???

X ⊢□A, Y

□X,A ⊢ ♢Y
[♢L]

□X,♢A ⊢ ♢Y
X ⊢A, Y

[♢R]
X ⊢ ♢A, Y

These rules characterise the modal logic S4.
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Example Derivations

A ⊢A B ⊢ B
[∧R]

A,B ⊢A∧ B
[□L]

□A,B ⊢A∧ B
[□L]

□A,□B ⊢A∧ B
[□R]

□A,□B ⊢□(A∧ B)
[∧L]

□A∧□B ⊢□(A∧ B)

A ⊢A
[□L]

□A ⊢A
[□R]

□A ⊢□A
[□R]

□A ⊢□□A
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What aboutS5?

□X ⊢A,□Y
[□R ′]

□X ⊢□A,□Y

♢X,A ⊢ ♢Y
[♢L ′]

♢X,♢A ⊢ ♢Y

□p ⊢□p
[¬R]

⊢□p,¬□p
[□R ′]

⊢□p,□¬□p

p ⊢ p
[□L]

□p ⊢ p
[Cut]

⊢ p,□¬□p

The sequent ⊢ p,□¬□p has no cut-free proof.
(How could you apply a □ rule?)
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Problemswith these□ and♢ rules

X,A ⊢ Y
[□L]

X,□A ⊢ Y

□X ⊢A,♢Y
[□R]

□X ⊢□A,♢Y
□X ⊢A,□Y

[□R ′]
□X ⊢□A,□Y

□X,A ⊢ ♢Y
[♢L]

□X,♢A ⊢ ♢Y
♢X,A ⊢ ♢Y

[♢L ′]
♢X,♢A ⊢ ♢Y

X ⊢A, Y
[♢R]

X ⊢ ♢A, Y

Entanglement between □ and ♢.
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FromModal to Temporal Logic

▶ vw(□A) = 1 if and only if vu(A) = 1 for each u where wRu.
▶ vw(♢A) = 1 if and only if vu(A) = 1 for some u where wRu.

▶ vw(■A) = 1 if and only if vu(A) = 1 for each u where uRw.
▶ vw(♦A) = 1 if and only if vu(A) = 1 for some u where uRw.

A ⊢□B

♦A ⊢ B

♢A ⊢ B

A ⊢■B
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Going Forward and Back in a Derivation

□A,□B ⊢□A
[∧L]

□A∧□B ⊢□A
[□♦]

♦(□A∧□B) ⊢A

□A,□B ⊢□B
[∧L]

□A∧□B ⊢□B
[□♦]

♦(□A∧□B) ⊢ B
[∧R]

♦(□A∧□B) ⊢A∧ B
[♦□]

□A∧□B ⊢□(A∧ B)
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Generalised Sequents

How do we establish X ⊢ □A, Y?

It should have something to do with some X ′ ⊢ A, Y ′

but the A is evaluated in a different state.

We need to record state shifts in sequents.

display logic • labelled sequents • tree hypersequents
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display logic



Nuel Belnap



Sequents

Sequents are of the form X ⊢ Y, where X and Y are structures

Structures are built up out of formulas and the structural connetives ∗, • (both
unary), and ◦ (binary)

For example, ∗(p ◦ q) ⊢ •(r ◦ ∗s)
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Display equivalences

Certain sequents are stipulated to be equivalent via display equivalences

X ⊢ Y ◦ Z ⇐⇒ X ◦ ∗Y ⊢ Z ⇐⇒ X ⊢ Z ◦ Y

X ⊢ Y ⇐⇒ ∗Y ⊢ ∗X ⇐⇒ X ⊢ ∗ ∗ Y

•X ⊢ Y ⇐⇒ X ⊢ •Y

(These rules ensure that ∗ acts like negation,
◦ is conjunctive on the left and disjunctive on the right,

and • acts like a necessity on the right
and its converse possibility the left.)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 25 of 62



Display equivalences

Certain sequents are stipulated to be equivalent via display equivalences

X ⊢ Y ◦ Z ⇐⇒ X ◦ ∗Y ⊢ Z ⇐⇒ X ⊢ Z ◦ Y

X ⊢ Y ⇐⇒ ∗Y ⊢ ∗X ⇐⇒ X ⊢ ∗ ∗ Y

•X ⊢ Y ⇐⇒ X ⊢ •Y

(These rules ensure that ∗ acts like negation,
◦ is conjunctive on the left and disjunctive on the right,

and • acts like a necessity on the right
and its converse possibility the left.)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 25 of 62



Displaying

By means of the display equivalences, one can display a formula or structure
on one side of the turnstile in isolation

This permits the left and right rules to deal with only the displayed formulas
and structures

A ◦ B ⊢ X
[∧L]

A∧ B ⊢ X

X ⊢A Y ⊢ B
[∧R]

X ◦ Y ⊢A∧ B
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Generality

The connectives rules are formulated so that
each connective is paired with a structural connective

Different logical behaviour is obtained
by imposing different rules on the structural connectives

A single form of conjunction rule can be used for, say, classical conjunction
and relevant fusion, the difference coming out in the structural rules in force
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Modal Rules

To give rules for modal operators, you use the modal structure.

A ⊢ Y
[□L]

□A ⊢ •Y
X ⊢ •B

[□R]
X ⊢□B
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Example Display Logic Derivation

A ⊢A
[□L]

□A ⊢ •A
[K]

□A ◦□B ⊢ •A
[display]

•(□A ◦□B) ⊢A

B ⊢ B
[□L]

□B ⊢ •B
[K]

□A ◦□B ⊢ •B
[display]

•(□A ◦□B) ⊢ B
[∧R]

•(□A ◦□B) ◦ •(□A ◦□B) ⊢A∧ B
[W]

•(□A ◦□B) ⊢A∧ B
[display]

□A ◦□B ⊢ •(A∧ B)
[∧L]

□A∧□B ⊢ •(A∧ B)
[□R]

□A∧□B ⊢□(A∧ B)
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Structural Rules

X ⊢ •Y
[refl]

X ⊢ Y

X ⊢ •Y
[trans]

X ⊢ ••Y

X ⊢ •∗Y
[sym]

X ⊢ ∗•Y

Many more structural rules
are possible.

A ⊢A
[□L]

□A ⊢ •A
[refl]

□A ⊢A
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Cut

Because formulas can always be displayed,
a simple form of Cut can be used for a range of logics

X ⊢A A ⊢ Y
[Cut]

X ⊢ Y
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Eliminating Cut

The Elimination Theorem is proved via a general argument
that depends on eight conditions on the rules.

If these conditions are satisfied, then it follows that Cut is admissible

This argument is due to Haskell Curry and Nuel Belnap.
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The Structure of the Curry–Belnap Cut Elimination Proof

▶ It’s a Cut elimination argument (it doesn’t appeal to a Mix rule).
▶ It’s an induction on grade (complexity of the Cut formula), as usual.
▶ To eliminate a Cut on a formula A, trace the parametric occurrences of a

formula in the premises of the cut inference upward to where they first
appear. Replace the cut at those instances (either with cuts on
subformulas, or by weakening, or the cuts evaprate into identities) and
then replay the substitution downward.
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The Crucial Step

X ⊢A

...
· · ·A,A · · ·
· · ·A · · ·

· · ·A · · ·

...
· · ·A,A · · ·
· · ·A · · ·

· · ·A · · ·
· · ·A · · ·
A ⊢ Y

[Cut]
X ⊢ Y
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The Eight Conditions

▶ c1: Preservation of formulas.
▶ c2: Shape-alikeness of parameters.
▶ c3: Non-proliferation of parameters.
▶ c4: Position-alikeness of parameters.
▶ c5: Display of principal constituents.
▶ c6: Closure under substitution for consequent parameters.
▶ c7: Closure under substitution for antecedent parameters.
▶ c8: Eliminability of matching principal constituents.
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Cut Elimination: The□ Case

A cut on a principal □A may be simplified into a cut on A.

X ⊢ •A
[□R]

X ⊢□A

A ⊢ Y
[□L]

□A ⊢ •Y
[Cut]

X ⊢ •Y

X ⊢ •A
[display]

•X ⊢A A ⊢ Y
[Cut]

•X ⊢ Y
[display]

X ⊢ •Y
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Virtues and Vices of Display Logic

display

Cut-free +
Explicit +

Systematic +
Separation +

Subformula +
Nonredundant −

Gentzen-plus −
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labelled sequents



Recall this derivation…

A ⊢A
[□L]

□A ⊢ •A
[K]

□A ◦□B ⊢ •A
[display]

•(□A ◦□B) ⊢A

B ⊢ B
[□L]

□B ⊢ •B
[K]

□A ◦□B ⊢ •B
[display]

•(□A ◦□B) ⊢ B
[∧R]

•(□A ◦□B) ◦ •(□A ◦□B) ⊢A∧ B
[W]

•(□A ◦□B) ⊢A∧ B
[display]

□A ◦□B ⊢ •(A∧ B)
[∧L]

□A∧□B ⊢ •(A∧ B)
[□R]

□A∧□B ⊢□(A∧ B)
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Here is another way to represent it

v : A ⊢ v : A
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A

v : B ⊢ v : B
[□L]

wRv,w : □B ⊢ v : B
[K]

wRv,w : □A,w : □B ⊢ v : B
[∧R]

wRv,w : □A,w : □B,wRv,w : □A,w : □B ⊢ v : A∧ B
[W]

wRv,w : □A,w : □B ⊢A∧ B
[∧L]

wRv,w : □A∧□B ⊢ v : A∧ B
[□R]

w : □A∧□B ⊢w : □(A∧ B)
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Labelled Sequent Rules: Boolean Connectives

x : A ⊢ x : A

(Plus weakening and contraction.)

x : A, x : B,X ⊢ Y
[∧L]

x : A∧ B,X ⊢ Y

X ⊢ x : A, Y X ⊢ x : B, Y
[∧R]

X ⊢ x : A∧ B, Y

x : A,X ⊢ Y x : B,X ⊢ Y
[∨L]

x : A∨ B,X ⊢ Y

X ⊢ x : A, x : B, Y
[∨R]

X ⊢ x : A∨ B, Y

X ⊢ x : A, Y
[¬L]

x : ¬A,X ⊢ Y

x : A,X ⊢ Y
[¬R]

X ⊢ x : ¬A, Y
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Labelled Sequent Rules: Modal Operators

x : A,X ⊢ Y
[□L]

yRx, y : □A,X ⊢ Y

xRy, X ⊢ y : A, Y
[□R]

X ⊢ x : □A, Y

xRy, y : A,X ⊢ Y
[♢L]

x : ♢A,X ⊢ Y

X ⊢ x : A, Y
[♢R]

yRx, X ⊢ y : ♢A, Y

In □R and ♢L, the label y must not be present in X, Y or be identical to x.
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Labelled Sequents

In these rules (except for weakenings) relational statements (xRy) are
introduced only on the left of the sequent.

We may without loss of deductive power, restrict our attention to sequents in
X ⊢ Y which relational statements appear only in X and not in Y.
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Frame conditions

The ‘cash value’ of a labelled sequent X ⊢ Y on a Kripke model is found by
replacing x : A by vx(A) = 1; X by its conjunction; Y by its disjunction; the ⊢
by a conditional; and universally quantifying over all world labels.

xRy, x : A ⊢ y : B, x : C is valid on a model if and only if

(∀x, y)((xRy∧ vx(A) = 1) ⊃ ((vy(B) = 1)∨ vx(C) = 1))
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Translation

A systematic translation maps modal display derivations
into labelled modal derivations.

The translation simplifies the proof structure,
erasing display equivalences, which are

mapped to identical labelled sequents (modulo relabelling).

For details, see Poggiolesi and Restall
“Interpreting and Applying Proof Theory for Modal Logic” (2012).
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Virtues and Vices

display labelled

Cut-free + +
Explicit + +

Systematic + +
Separation + +

Subformula + +−
Nonredundant − +−

Gentzen-plus − +−
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tree
hypersequents



Inspecting the translation

Display equivalent sequents correspond to nearly identical labelled sequents.

A ⊢ •B

⇒ vRw, v : A ⊢ w : B

•A ⊢ B

⇒ wRv,w : A ⊢ v : B

All we care about is that one world accesses the other. We have

A ⊢ ⊢ B
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The Recipe

Replace the labelled sequent R, X ⊢ Y by a directed graph of sequents:

▶ There is one node for every label.
▶ Every node is a sequent.
▶ For every instance of x : A in antecedent position, put A in the

antecedent of the sequent at the node corresponding to x.
▶ For every instance of x : A in consequent position, put A in the

consequent of the sequent at the node corresponding to x.
▶ If R contains Rxy, then place an arc from x to y.
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▶ For every instance of x : A in consequent position, put A in the

consequent of the sequent at the node corresponding to x.
▶ If R contains Rxy, then place an arc from x to y.

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 50 of 62



Threeways of presenting the one fact

▶ Display Sequent: • ∗ (A ◦ ∗•B) ⊢ ∗(D ◦ E)

▶ Labelled Sequent: vRw,uRv, u : B,w : D,w : E ⊢ v : A

▶ Delabelled Sequent: B ⊢ D,E ⊢ ⊢ A
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An example delabelling

v : A ⊢ v : A
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A

v : B ⊢ v : B
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A
[∧R]

wRv,w : □A,w : □B ⊢ v : A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A

v : B ⊢ v : B
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A
[∧R]

wRv,w : □A,w : □B ⊢ v : A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

wRv,w : □A,w : □B ⊢ v : A

v : B ⊢ v : B
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A
[∧R]

wRv,w : □A,w : □B ⊢ v : A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

□A,□B ⊢ ⊢ A

v : B ⊢ v : B
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A
[∧R]

wRv,w : □A,w : □B ⊢ v : A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

□A,□B ⊢ ⊢ A

B ⊢ B
[□L]

wRv,w : □A ⊢ v : A
[K]

wRv,w : □A,w : □B ⊢ v : A
[∧R]

wRv,w : □A,w : □B ⊢ v : A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

□A,□B ⊢ ⊢ A

B ⊢ B
[□L]

□B ⊢ ⊢ B
[K]

wRv,w : □A,w : □B ⊢ v : A
[∧R]

wRv,w : □A,w : □B ⊢ v : A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

□A,□B ⊢ ⊢ A

B ⊢ B
[□L]

□B ⊢ ⊢ B
[K]

□A,□B ⊢ ⊢ B
[∧R]

wRv,w : □A,w : □B ⊢ v : A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

□A,□B ⊢ ⊢ A

B ⊢ B
[□L]

□B ⊢ ⊢ B
[K]

□A,□B ⊢ ⊢ B
[∧R]

□A,□B ⊢ ⊢ A∧ B
[□R]

w : □A,w : □B ⊢ w : □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

□A,□B ⊢ ⊢ A

B ⊢ B
[□L]

□B ⊢ ⊢ B
[K]

□A,□B ⊢ ⊢ B
[∧R]

□A,□B ⊢ ⊢ A∧ B
[□R]

□A,□B ⊢ □(A∧ B)
[∧R]

w : □A∧□B ⊢ w : □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



An example delabelling

A ⊢ A
[□L]

□A ⊢ ⊢ A
[K]

□A,□B ⊢ ⊢ A

B ⊢ B
[□L]

□B ⊢ ⊢ B
[K]

□A,□B ⊢ ⊢ B
[∧R]

□A,□B ⊢ ⊢ A∧ B
[□R]

□A,□B ⊢ □(A∧ B)
[∧R]

□A∧□B ⊢ □(A∧ B)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 52 of 62



Another example delabelling

x : A ⊢ x : A
[¬L]

x : ¬A, x : A ⊢
[□L]

Ryx, y : □¬A, x : A ⊢
[¬R]

Ryx, x : A ⊢ y : ¬□¬A
[sym]

Rxy, x : A ⊢ y : ¬□¬A
[□R]

x : A ⊢ x : □¬□¬A

A ⊢ A
[¬L]

¬A,A ⊢
[□L]

□¬A ⊢ A ⊢
[¬R]

⊢ ¬□¬A A ⊢
[sym]

⊢ ¬□¬A A ⊢
[□R]

A ⊢ □¬□¬A
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TreeHypersequent Rules: Modal Operators

H[X ⊢ Y X ′, A ⊢ Y ′]
[□L]

H[X,□A ⊢ Y X ′ ⊢ Y ′]

H[X ⊢ Y ⊢ A]
[□R]

H[X ⊢ □A, Y]

H[X ⊢ Y A ⊢ ]
[♢L]

H[♢A,X ⊢ Y]

H[X ⊢ Y X ′ ⊢ A, Y ′]
[♢R]

H[X ⊢ ♢A, Y X ′ ⊢ Y ′]
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Forms of Cut

H[X ⊢ A, Y] H[X,A ⊢ Y]
[Cuta]

H[X ⊢ Y]

H[X ⊢ A, Y] H ′[X,A ⊢ Y]
[Cutm]

(H⊕H ′)[X ⊢ Y]
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Forms ofWeakening

H[X ⊢ Y]
[iKL]

H[X,A ⊢ Y]

H[X ⊢ Y]
[iKR]

H[X ⊢ A, Y]

H[X ⊢ Y]
[eKL]

H[X ′ ⊢ Y ′ X ⊢ Y]

H[X ⊢ Y]
[eKR]

H[X ⊢ Y X ′ ⊢ Y ′]

H[X,A ⊢ A, Y] [axK]
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Forms of Contraction

H[X,A,A ⊢ Y]
[iWL]

H[X,A ⊢ Y]

H[X ⊢ A,A, Y]
[iWR]

H[X ⊢ A, Y]

H[X ′′ ⊢ Y ′′ X ⊢ Y X ′ ⊢ Y ′]
[eWo]

H[X ′ ⊢ Y ′ X ′, X ′′ ⊢ X ′, Y ′′]

H[X ′′ ⊢ Y ′′ X ⊢ Y X ′ ⊢ Y ′]
[eWi]

H[X ⊢ Y X ′, X ′′ ⊢ X ′, Y ′′]
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Cut Elimination

A cut elimination theorem for tree hypersequent systems is relatively
straightforward.

One option is a contraction-free style argument (by Negri and von Plato),
following the construction for Labelled Sequent systems.

Another is the Curry–Belnap argument.
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Virtues and Vices

display labelled delabelled

Cut-free + + +
Explicit + + +

Systematic + + +
Separation + + +

Subformula + +− +
Nonredundant − +− +

Gentzen-plus − +− +
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Display Logic, Labelled Sequents andHypersequents

nuel d. belnap, jr.
“Display Logic.”
Journal of Philosophical Logic, 11:375–417, 1982.

heinrich wansing
Displaying Modal Logic
Kluwer Academic Publishers, 1998.

sara negri
“Proof Analysis in Modal Logic.”
Journal of Philosophical Logic, 34:507–544, 2005.

arnon avron
“Using Hypersequents in Proof Systems for Non-Classical Logics.”
Annals of Mathematics and Artificial intelligence, 4:225–248, 1991.
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Delabelled Sequents

francesca poggiolesi
Gentzen Calculi for Modal Propositional Logic
Springer, 2011.

francesca poggiolesi and greg restall
“Interpreting and Applying Proof Theory for Modal Logic.”
New Waves in Philosophical Logic, ed. Greg Restall and Gillian Russell,
Palgrave MacMillan, 2012.
http://consequently.org/writing/interp-apply-ptml
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thank you!
http://blogs.unimelb.edu.au/logic/

@standefer on Twitter

Based on NASSLLI 2016 slides by Greg Restall and Shawn Standefer.

https://consequently.org/class/2016/PTPLA-NASSLLI/

http://blogs.unimelb.edu.au/logic/
http://twitter.com/standefer
https://consequently.org/class/2016/PTPLA-NASSLLI/
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