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Our Aim

To introduce proof theory, with a focus on its
applications in philosophy, linguistics and

computer science.
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Our Aim for Today

Examine the proof theory of substructural logics.
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Today's Plan

Structural Rules

The Case of Distribution

Different Systems and their Applications

Revisiting Cut Elimination
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structural rules



Weakening

X, Y ⊢ Z
[KL]

X,A, Y ⊢ Z

X ⊢ Y, Z
[KR]

X ⊢ Y,A, Z
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Contraction

X,A,A, Y ⊢ Z
[WL]

X,A, Y ⊢ Z

X ⊢ Y,A,A, Z
[WR]

X ⊢ Y,A, Z
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Permutation

X,A, B, Y ⊢ Z
[CL]

X,B,A, Y ⊢ Z

X ⊢ Y,A, B, Z
[CR]

X ⊢ Y, B,A, Z
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Dropping rules

We can drop some (or all) of these rules to get different logics

Dropping rules also leads to some distinctions
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the case of
distribution



Two kinds of conjunction

Extensional, additive, context-sensitive, lattice-theoretic

X(A) ⊢ Y
[∧L1]

X(A∧ B) ⊢ Y

X(B) ⊢ Y
[∧L2]

X(A∧ B) ⊢ Y

X ⊢ Y(A) X ⊢ Y(B)
[∧R]

X ⊢ Y(A∧ B)

Intensional, multiplicative, context-free, group-theoretic

X(A,B) ⊢ Y
[◦L]

X(A ◦ B) ⊢ Y

X ⊢ Y,A U ⊢ B,V
[◦R]

X,U ⊢ Y,A ◦ B,V
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Two kinds of disjunction

Extensional, additive, context-sensitive, lattice-theoretic

X ⊢ Y(A)
[∨R1]

X ⊢ Y(A∨ B)

X ⊢ Y(B)
[∨R2]

X ⊢ Y(A∨ B)

X(A) ⊢ Y X(B) ⊢ Y
[∨L]

X(A∨ B) ⊢ Y

Intensional, multiplicative, context-free, group-theoretic

X ⊢ Y(A,B)
[+R]

X ⊢ Y(A+ B)

X,A ⊢ Y B,U ⊢ V
[+L]

X,A+ B,U ⊢ Y, V
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Difference

In the presence of weakening and contraction, ∧ and ◦ are equivalent, as are ∨
and +

A∧ B ⊣⊢ A ◦ B A∨ B ⊣⊢ A+ B

They are not equivalent without both of those structural rules

A ⊢A
[KL]

A,B ⊢A
[◦L]

A ◦ B ⊢A

B ⊢ B
[KL]

A,B ⊢ B
[◦L]

A ◦ B ⊢ B
[∧R]

A ◦ B ⊢A∧ B

A ⊢A
[∧1L]

A∧ B ⊢A

B ⊢ B
[∧2L]

A∧ B ⊢ B
[◦R]

A∧ B,A∧ B ⊢A ◦ B
[WL]

A∧ B ⊢A ◦ B
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The issuewith distribution

One of the distribution laws relating extensional conjunction
and disjunction isn’t derivable without weakening

A∧ (B∨ C) ⊢ (A∧ B)∨ C

The intensional version is derivable, although some
distribution laws aren’t derivable without contraction

A ◦ (B+ C) ⊢ (A ◦ B) + C

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 14 of 71



Proof

A ⊢A
[KL]

A,B ⊢A

B ⊢ B
[KL]

A,B ⊢ B
[∧R]

A,B ⊢A∧ B
[∨R1]

A,B ⊢ (A∧ B)∨ C

C ⊢C
[KL]

A,C ⊢C
[∨R2]

A,C ⊢ (A∧ B)∨ C
[∨L]

A,B∨ C ⊢ (A∧ B)∨ C
[∧L1]

A∧ (B∨ C), B∨ C ⊢ (A∧ B)∨ C
[∧L2]

A∧ (B∨ C), A∧ (B∨ C) ⊢ (A∧ B)∨ C
[WL]

A∧ (B∨ C) ⊢ (A∧ B)∨ C
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Proof

A ⊢A

B ⊢ B C ⊢C
[+L]

B+ C ⊢ B,C
[◦R]

A,B+ C ⊢A ◦ B,C
[+R]

A,B+ C ⊢ (A ◦ B) + C
[◦L]

A ◦ (B+ C) ⊢ (A ◦ B) + C
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Why distribution?

It seems like truth-functional conjunction and disjunction,
∧ and ∨, should obey the distribution laws
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different systems
and their

applications



Applications

We will look at three substructural systems and their applications

▶ Relevance
▶ Resource-sensitivity, paradox
▶ Grammar, modality
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Relevance

Classically, both p→ (q→ p) and q→ (p→ p) are valid,
but how does q imply p→ p?

These are two paradoxes of material implication,
usually written with ⊃, rather than→

In relevant logic, valid conditionals indicate
a connection of relevance or entailment
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Paraconsistency

Classically, A,¬A ⊢ B, for any B whatsoever,

You might doubt that contradictions entail everything

How, after all, is an arbitrary B relevant to A?

A logic is paraconsistent iff contradictions don’t entail every formula
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A couple of proofs

A ⊢A
[→ R]

⊢A→ A
[KL]

B ⊢A→ A
[→ R]

⊢ B→ (A→ A)

A ⊢A
[KL]

A,B ⊢A
[→ R]

A ⊢ B→ A
[→ R]

⊢A→ (B→ A)

A ⊢A
[¬L]

¬A,A ⊢
[KR]

¬A,A ⊢ B
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Weakening

Rejecting the weakening rules is the way to obtain a relevant logic,
and it is one way to obtain a paraconsistent logic

The arrow fragment with permutation (C)
and contraction (W) is the logic R,

of Anderson and Belnap.
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Provable

What is provable in the arrow fragment
of the logic with contraction and permutation?

▶ A→ (A→ B) ⊢ A→ B

▶ A→ (B→ C) ⊢ B→ (A→ C)

▶ A→ B ⊢ (C→ A)→ (C→ B)

▶ A→ B ⊢ (B→ C)→ (A→ C)
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Unprovable

What is unprovable in the arrow fragment
of the logic with contraction and permutation?

▶ ⊢ B→ (A→ A)

▶ A ⊢ B→ A

▶ ⊢ A→ (A→ A)

▶ (A→ B)→ A ⊢ A
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Adding connectives

Relevant logics usually take the additive rules
to govern conjunction and disjunction

Meyer showed that one gets R minus distribution
by taking the additive connective rules with mulitple conclusion sequents

This system is cut-free and decidable, but it does not have distribution

Full R, with distribution, is undecidable, as shown by Urquhart
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Conjunction and comma

Classically, the following are equivalent

▶ A,B,C ⊢ D

▶ ⊢ (A∧ B∧ C)→ D

▶ ⊢ (A∧ B)→ (C→ D)

▶ ⊢ A→ (B→ (C→ D))

We can’t have all four equivalent
while excluding the paradoxes of material implication

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 27 of 71



Substructural sequents

We want A∧ B ⊢ A

If A,B ⊢ C is derivable, then by [→R], A ⊢ B→ C is too

So A,B to the left of the turnstile can’t be equivalent to A∧ B

Solution: A,B ⊢ C is equivalent to A ◦ B ⊢ C
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Distribution again

If we adopt the additive rules for conjunction and disjunction
and we also reject weakening,

then there will be a problem proving distribution

This has lead to the introduction
of a new structural connective—the semicolon
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More structure

The parts of a sequent can be built up with comma and semicolon

The two structural connectives can obey different structural rules

In particular, have comma obey weakening,
but have semicolon appear in the rules for ◦ and for→.

X(A;B) ⊢C
[◦L]

X(A ◦ B) ⊢C

X;A ⊢ B
[→R]

X ⊢A→ B
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Consequences

The system with the extra structure is cut-free

And, with the extra structure one can prove distribution for ∧ and ∨
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Distribution again

A ⊢A
[KL]

A,B ⊢A

B ⊢ B
[KL]

A,B ⊢ B
[∧R]

A,B ⊢A∧ B
[∨R1]

A,B ⊢ (A∧ B)∨ C

C ⊢C
[KL]

A,C ⊢C
[∨R2]

A,C ⊢ (A∧ B)∨ C
[∨L]

A,B∨ C ⊢ (A∧ B)∨ C
[∧L1]

A∧ (B∨ C), B∨ C ⊢ (A∧ B)∨ C
[∧L2]

A∧ (B∨ C), A∧ (B∨ C) ⊢ (A∧ B)∨ C
[WL]

A∧ (B∨ C) ⊢ (A∧ B)∨ C
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Consequences

With the extra structure one can prove distribution for ∧ and ∨

We can prove A,B ⊢ A, but cannot move to A ⊢ B→ A via [→R]

That move would require A;B ⊢ A, which we cannot prove
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Consequences

A downside is that proof search complexity increases

The full (positive) system is undecidable

But, this idea of adding additional structure to a sequent
is one we will see again
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Formore on relevant logic

See Dunn and Restall’s “Relevance logic”
https://consequently.org/papers/rle.pdf

See also Anderson and Belnap’s Entailment

For a different take on relevant logic, see Tennant’s “Core Logic” papers,
e.g. “Cut for Core Logic”
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Resource-sensitivity

If contraction rules are in the system,
then one copy of a formula is as good as two

If logic is concerned with propositions,
then contraction may be motivated

If one considers the logic of actions,
then contraction is less appealing
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Actions

One can view formulas as resources,
in which case how many you have matters

For example, let D stand for ‘Shawn pays a dollar’
and F for ‘Shawn gets a flat white’.

The sequent D,D,D,D ⊢ F may be derivable in our theory of the cafe
while D,D,D ⊢ F won’t be.

Dropping contraction permits the logic to be sensitive to these distinctions
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Paradox

The naive set comprehension scheme is t ∈ {y : A(y)}↔ A(t)

In terms of sequent rules, the biconditional is captured by

A(t), X ⊢ Y
[∈ L]

t ∈ {x : A(x)}, X ⊢ Y

X ⊢ Y,A(t)
[∈ R]

X ⊢ Y, t ∈ {x : A(x)}

As is well-known, in classical and intuitionistic logic, it leads to paradox
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Russell's paradox

Let R = {x : x ̸∈ x}

R ∈ R ⊢ R ∈ R
[¬R]

⊢ R ∈ R, R ̸∈ R
[∈ R]

⊢ R ∈ R, R ∈ R
[WR]

⊢ R ∈ R

R ∈ R ⊢ R ∈ R
[¬L]

R ̸∈ R, R ∈ R ⊢
[∈ L]

R ∈ R, R ∈ R ⊢
[WL]

R ∈ R ⊢
[Cut]

⊢
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Curry's paradox

Let C = {x : x ∈ x→ p}

C ∈ C ⊢C ∈ C p ⊢ p
[→ L]

C ∈ C→ p,C ∈ C ⊢ p
[∈ L]

C ∈ C,C ∈ C ⊢ p
[WL]

C ∈ C ⊢ p
[→ R]

⊢C ∈ C→ p
[∈ R]

⊢C ∈ C

C ∈ C ⊢C ∈ C p ⊢ p
[→ L]

C ∈ C→ p,C ∈ C ⊢ p
[∈ L]

C ∈ C,C ∈ C ⊢ p
[WL]

C ∈ C ⊢ p
[Cut]

⊢ p
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Paradox and contraction

As observed by Haskell Curry,
contraction is essentially involved in Curry’s paradox

Dropping contraction, in all its forms,
permits one to have the naive set comprehension rules,

and biconditionals, non-trivially

The same goes for the full set of Tarski biconditionals: T⟨A⟩↔ A
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Linear logic

Multiplicative, additive linear logic (MALL)
is obtained by taking permutation

as the only structural rule and using both
the additive and multiplicative sets of rules
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Provable

Some sequents provable in MALL

▶ A→ (B→ C) ⊢ B→ (A→ C)

▶ A ◦ (B∨ C) ⊣⊢ (A ◦ B)∨ (A ◦ C)
▶ A+ (B∧ C) ⊣⊢ (A+ B)∧ (A+ C)

▶ (A+ B)∨ (A+ C) ⊢ A+ (B∨ C)

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 43 of 71



Unprovable

Some sequents unprovable in MALL

▶ A→ (A→ B) ⊢ A→ B

▶ A ◦ (B+ C) ⊢ (A ◦ B) + (A ◦ C)
▶ A∨ (B∧ C) ⊢ (A∨ B)∧ (A∨ C)

▶ (A∧ B)→ C ⊢ A→ (B→ C)

▶ A ◦ B ⊢ A
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Exponentials

One can expand the vocabulary to regain some of the structural rules

Girard did this with the exponentials of linear logic

Introduce two new unary connectives, ! and ?
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Rules

If X is A1, . . . , An, !X is !A1, . . . , !An

X(A) ⊢ Y
[!L]

X(!A) ⊢ Y

!X ⊢A, ?Y
[!R]

!X ⊢ !A, ?Y

X ⊢ Y
[K!L]

!A,X ⊢ Y

X(!A, !A) ⊢ Y
[W!L]

X(!A) ⊢ Y

X ⊢ Y(A)
[?R]

X ⊢ Y(?A)

!X,A ⊢ ?Y
[?L]

!X, ?A ⊢ ?Y

X ⊢ Y
[K?R]

X ⊢ Y, ?A

X ⊢ Y(?A, ?A)
[W?R]

X ⊢ Y(?A)
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Idea

The exponentials let one ignore the resource sensitivity

!A says that A may be used as a premiss as many times as you want

Similarly, ?A says A may be used as a conclusion as much as one wants
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Provable

Some sequents provable in MALL with exponentials

▶ !A ⊢ A

▶ A ⊢ !B→ A

▶ !A→ (!A→ B) ⊢ !A→ B

▶ !(A→ B) ⊢ !A→ B
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Embedding

One can define an embedding t of classical logic LK into linear logic with
exponentials LLE so that the following are equivalent

▶ t(X) ⊢ t(Y) is derivable in LLE

▶ X ⊢ Y is derivable in LK

Linear logic with exponentials is an interesting system and,
like the full logic R, it is undecidable.
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Free choice

“You can have coffee or tea” seems to imply
“you can have coffee” and “you can have tea”

This is the phenomenon of free choice permission

In “Free choice permission as resource-sensitive reasoning,”
Barker argues that the way to understand free choice

is by using the connectives of linear logic

Permission is treated as a kind of resource,
and it falls out naturally that the first entails each of the others,

although it doesn’t give both together.
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Formore

For more on linear logic, see Davoren’s
“A Lazy Logician’s Guide to Linear Logic”

https://blogs.unimelb.edu.au/logic/files/2015/11/
Davoren-LLGLL-2cedcbe.pdf

See also Restall’s Introduction to Substructural Logics
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Grammar

Take two English noun phrase, birds and spiders, and an English verb, eat

The order in which these are combined matters

Compare: Birds eat spiders, and Spiders eat birds
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Modality

Sometimes entailment —→— is taken to have
some kind of necessitating, modal force

Just because p happens to be the case,
it is not correct to infer that

q is entailed by the fact that p entails q

In that case, we don’t want A ⊢ (A→ B)→ B

A ⊢A B ⊢ B
[→ L]

A→ B,A ⊢ B
[CL]

A,A→ B ⊢ B
[→ R]

A ⊢ (A→ B)→ B
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Permutation

In both these applications, the order of the premises matter

Both of these applications motivate dropping the Permutation rules

Dropping Permutation lets us draw more distinctions
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More arrows

The usual arrow rules are the following

X,A ⊢ B

X ⊢A→ B

X ⊢A Y(B) ⊢C

Y(A→ B,X) ⊢C

We can add another arrow

A,X ⊢ B

X ⊢ B← A

X ⊢A Y(B) ⊢C

Y(X,B← A) ⊢C
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Distinctions

In the presence of Permutation, this distinction collapses

A→ B ⊣⊢ B← A

Without Permutation, the distinction stands

We can also add a second negation following the same pattern
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Lambek calculus

The Lambek calculus is a proof system for categorial grammar

We take the rules for ◦, together with the rules for→ and←
We do not use any structural rules
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Lambek calculus

This gives a basic categorial grammar

The atomic letters are treated as different lexical items,
possibly typed, from a given lexicon
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Derivable

The following are derivable

▶ A→ B ⊢ (C→ A)→ (C→ B)

▶ B← A ⊢ (B← C)← (A← C)

▶ A→ (B→ C) ⊢ (A ◦ B)→ C

▶ (C← B)← A ⊢ C← (A ◦ B)
▶ A ⊢ B← (A→ B)
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Underivable

The following are underivable

▶ A→ B ⊢ (B→ C)→ (A→ C)

▶ A ◦ B ⊢ B ◦A
▶ C← B,B ⊢ C

▶ A,A→ B ⊢ B
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Formore

For more on Lambek Calculus, see Morrill’s Categorial Grammar,
van Benthem’s Language in Action,

or Moot and Retoré’s Logic of Categorial Grammar

For more on modal restrictions on permutation,
see Anderson and Belnap’s Entailment
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revisiting cut
elimination



Cut revisited

Here is the form of Cut appropriate to (single conclusion) substructural logic

X ⊢A Y(A) ⊢ B
[Cut]

Y(X) ⊢ B

Looking at the proof of Cut Elimination yesterday,
it turns out that we used lots of Weakening,

Contraction, and Permutation

In the substructural setting, we have to be a bit more careful

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 63 of 71



Mix

X ⊢A Y[A] ⊢ B
[Mix]

Y[X] ⊢ B

Y[X] is obtained by replacing all copies of A in Y with X

Mix eliminates all the copies of A in Y

Mix helped us get around the problem with Contraction,
but it would sometimes eliminate too many copies,

which required weakening some back in
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DroppingWeakening

Without Weakening, we cannot show Mix admissible

Rather than Mix, show that Multicut is admissible

X ⊢A Y[A] ⊢ B
[Multicut]

Y[X] ⊢ B

In Multicut: Y[A] is Y with some n ≥ 1 occurrences of A selected
and Y[X] is obtained by replacing those occurrences of A in Y[A] with X

The proof strategy proceeds much as with Mix

Agata Ciabattoni and Shawn Standefer An Introduction to Proof Theory 65 of 71



Dropping Contraction

If one drops contraction, then one does not need
to show Mix admissible, going directly for Cut

Rather than use a double induction, one can instead use
a simpler, single induction proof

This is because without Contraction, the elimination procedure
does not double up any proof branches

So one can simply use the number of nodes
above a Cut as the Cut complexity
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Dropping Permutation

Without Permutation, we have to be careful
about how exactly each rule is stated and how Cut is stated

We cannot use Mix without Permutation,
so we had better drop Contraction as well

The proof of Cut Elimination can proceed directly,
using a single induction on Cut complexity
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Substructural Logics
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Routledge 2000

francesco paoli
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Springer 2002
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Relevant Logics
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Linear Logic and the Lambek Calculus
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Proofs and Types
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“The Mathematics of Sentence Structure,” American Mathematical Monthly,
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thank you!
http://blogs.unimelb.edu.au/logic/

@standefer on Twitter

Based on NASSLLI 2016 slides by Greg Restall and Shawn Standefer.

https://consequently.org/class/2016/PTPLA-NASSLLI/

http://blogs.unimelb.edu.au/logic/
http://twitter.com/standefer
https://consequently.org/class/2016/PTPLA-NASSLLI/
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