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Non-commutative Springer resolution

Let X = T∗Fln be the cotangent
bundle of the flag variety
X0 = Fln over a field of
characteristic p ≥ 0.

Let Coh0(X) denote the abelian
category of coherent sheaves on
X which are (set-theoretically)
supported on X0.
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Non-commutative Springer resolution

Consider the algebra
A = Ugln( ). Let A -mod0 be
the principal block of the
category of finite dimensional
modules with central character.
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Non-commutative Springer resolution

Let X = T∗Fln be the cotangent
bundle of the flag variety
X0 = Fln over a field of
characteristic p ≥ 0.

Let Coh0(X) denote the abelian
category of coherent sheaves on
X which are (set-theoretically)
supported on X0.

Consider the algebra
A = Ugln( ). Let A -mod0 be
the principal block of the
category of finite dimensional
modules with central character.

Theorem (Bezrukavnikov-Mirkovič)

If p ≫ 0, there is an equivalence of derived categories

Db(Coh0(X)) ∼= Db(A -mod0).
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Non-commutative Springer resolution

Bezrukavnikov calls this a “non-commutative counterpart of the
Springer resolution.”

This is a beautiful equivalence, but it’s quite abstract. I want to give
you a somewhat more concrete way of thinking about it.

Coh0(X)

geometry

A -mod0

representation theory
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Non-commutative Springer resolution

Bezrukavnikov calls this a “non-commutative counterpart of the
Springer resolution.”

This is a beautiful equivalence, but it’s quite abstract. I want to give
you a somewhat more concrete way of thinking about it.

Coh0(X)

geometry

A -mod0

representation theory

R̊ -mod0

combinatorial algebra
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KLRW algebras

Let Γ be a quiver, and v,w : I = V(Γ) → Z≥0 a dimension vector. We
usually draw this quiver as below:

The example relevant to T∗ Fln is:

Note that T∗ Fln is the Nakajima quiver variety for this dimension
vector. There’s a different way of constructing T∗ Fln from this quiver
though: Coulomb branches. To describe these, I need to introduce
KLRW algebras.
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KLRW algebras

Definition

A (planar) KLRW diagram is a generic collection of curves in
R× [0, 1] of the form {(π(t), t) | t ∈ [0, 1]} for π : [0, 1] → R.

1 Each strand is labeled from [1, n] and is black or red. There are vi

black strands and wi red strands with label i.

2 Red strands must be vertical at fixed, distinct x-values (for
example, x = 1/W, 2/W, . . . , 1 for W =

!
wi).

3 We place dots at a finite number of points on black strands,
avoiding crossings.
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KLRW algebras

Definition

A cylindrical KLRW diagram is a generic collection of curves in
R/Z× [0, 1] of the form {(π(t), t) | t ∈ [0, 1]} for π : [0, 1] → R/Z.

1 Each strand is labeled from [1, n] and is black or red. There are vi

black strands and wi red strands with label i.

2 Red strands must be vertical at fixed, distinct x-values (for
example, x = 1/W, 2/W, . . . , 1 for W =

!
wi).

3 We place dots at a finite number of points on black strands,
avoiding crossings.
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KLRW algebras

We can compose KLRW diagrams by stacking, if the labels on the
bottom of one and top of the other match up to isotopy (never moving
red strands).

Definition

The (planar) KLRW algebra R is the formal -span of planar KLRW
diagrams modulo the local relations below.
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KLRW algebras

We can compose KLRW diagrams by stacking, if the labels on the
bottom of one and top of the other match up to isotopy (never moving
red strands).

Definition

The cylindrical KLRW algebra R̊ is the formal -span of cylindrical
KLRW diagrams modulo the local relations below.
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KLRW algebras
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KLRW algebras

Important role is played by idempotents where all strands are vertical.

There’s one of these for each possible order on strands. Can encode
this in a word i in Γ ∪ Γ. Denote by e(i).

Definition

The (planar) KLRW category is the category whose objects are words
as above, and where Hom(i, j) = e(j)̊Re(i).
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KLRW algebras

Important role is played by idempotents where all strands are vertical.

There’s one of these for each possible order on strands. Can encode
this in a word i in Γ ∪ Γ. Denote by e(i).

For R̊, this word is really cyclic, but can always start with red at x = 0.

Definition

The cylindrical KLRW category is the category whose objects are
words as above, and where Hom(i, j) = e(j)̊Re(i).
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Quiver geometry

Planar KLR algebra (wi = 0) has a natural geometric interpretation.
Let

Nv =
"

i→j

Hom(Cvi ,Cvj) Gv =
#

i

GL(Cvi)

The quotient Yv = Nv/Gv is the moduli space of quiver
representations of dimension v.

Consider a word i = (i1, . . . , in) ∈ In where i ∈ I appears vi times.
We say that a homogeneous complete flag Fk on

$
i∈I Cvi has type i if

dim(Fk ∩ Cvj) = dim(Fk−1 ∩ Cvj) + δj,ik .

Let Xi be the moduli space of quiver representations equipped with a
flag of subrepresentations of type i.
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Quiver geometry

Basic geometric object to consider:

Rv =
"

i,j

HBM
∗ (Xi ×Yv Xj) ∼= Ext∗(

"

i

π∗CXi)

as an algebra under convolution.

Theorem (Varagnolo-Vasserot, Rouquier)

The algebra Rv is generated by the homology classes:

the diagonal in Xi ×Yv Xi

the 1st Chern class of the tautological bundle

push-pull from a partial flag version

modulo the relations from before.
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Generalizations

To generalize KLR algebra, need to give more geometric definition:

Consider a generic cocharacter ξ : C∗ → G; we have a resulting
complete flag {Fw} of some type i given by the sum of vectors of
weight ≤ w for each w.

Let N−
i be the elements of Nv of negative weight under ξ. Let

P−
i ⊂ Gv be the subgroup preserving the flag F•.

Proposition

We have an isomorphism Xi ∼= N−
i /P−

i .

Pushforward Xξ → Y generalizes “spiral induction” of Lusztig and
Yun.
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Generalizations

Can do this for any representation N and group G.

Important twist: can consider the different ξ : C∗ → NormGL(V)(G)
which lift a fixed C∗-action on Y = N/G.

Can similarly define Xξ = N−
ξ /P−

ξ , and consider

R =
"

ξ,ξ′

HBM
∗ (Xξ ×Y Xξ′) ∼= Ext∗(

"

ξ

π∗CXξ
).

Of course, there are infinitely many ξ, but only finitely many N−
ξ up to

conjugacy.

Theorem (Sauter, W.)

The algebra R always has a “KLR-type” presentation.
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Generalizations

To obtain the algebras of ultimate interest to us, we have to add wi

copies of the representation Cvi to Nv (i.e. Hom(Cwi ,Cvi)). This is
sometimes called “framing.”

Moduli spaces of framed quiver representations are closely related to
Nakajima quiver varieties.

We’ll want to choose ϕ : C∗ →
%

GL(Cwi) ⊂ AutG(Nw
v ). This puts

an order on the basis vectors of the Cwi’s, which we can record as a
word in I with wi copies of i.

A choice of ξ corresponds to interleaving this with a word in I
containing vi copies of i.

Ben Webster UW/PI
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Generalizations

Theorem (W.)

For framed quiver representations, the Ext algebra R is the planar
KLRW algebra discussed above.

I was interested in these algebras to construct categorifications of
tensor products and knot invariants, and their connections to quiver
varieties.

I’ll say more about this later, but let me just mention that the
bimodules that correspond to braiding can be gotten by taking Ext
between pushforwards for different ϕ’s.

But then I learned that there was a quite different lens to view them
through: Coulomb branches.
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Coulomb branches defined

Now affinize everything:
Taylor series C = C[[t]] G = G[[t]] N = N[[t]]

Laurent series C = C((t)) G = G((t)) N = N((t))

Relevant spaces:

Y = N/G = Map(D = SpecC → N/G)

Y = N/G = Map(D∗ = SpecC → N/G)

These can be interpreted as spaces of principal G bundles with a
section of the associated N-bundle on D and D∗.

Thus, the fiber product Y ×Y Y is the space of such bundles on the
“raviolo” gluing two copies of D along D∗.
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Coulomb branches defined

Previous experience tells us it would be fun to consider

A = HBM
∗ (Y ×Y Y).

Using factorization arguments, we can see that A is a commutative
C-algebra of finite type.

Definition

The Coulomb branch is the spectrum M = SpecA.

This definition has some motivation in 3d QFT (it’s the local
operators in a topological twist of a gauge theory), but it’s also
recognizable as an affine version of our construction of KLR algebras,
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The quiver case

In the case of N = Nv and G = Gv from before,

N/G is the moduli of quiver representations over the field C.

N/G is the moduli of such quiver representations with a choice
of lattice Λi ∼= Cvi ⊂ Cvi that gives a subrepresentation.

But our KLR presentation comes from being able to switch
consecutive spaces in a flag, so we want flags, not lattices.

Definition

An affine flag in Cm is a sequence of a lattices Fk ⊂ Cm for k ∈ Z
such that

· · · ⊂ Fk ⊂ Fk ⊂ Fk+1 ⊂ · · · tFk = Fk−m

Objects describing affine flags are periodic (periodic permutations for
Schubert cells, etc.)
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The quiver case

So, we can now let i be a periodic word: a map i : Z → I such that
ik = ik+m for all k for m =

!
vi such that any m consecutive entries

contain vi copies of i.

Any homogeneous affine flag F• ⊂
$

i∈I C
vi has a periodic word as

its type, defined by

dim(Fk ∩ Cvj/Fk−1 ∩ Cvj) = δj,ik .

Let Xi be the moduli space of quiver reps over C, together with a
choice of affine flag of subreps of type i.
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The quiver case

Theorem

The convolution algebra

R̊ =
"

i,j

HBM
∗ (Xi ×Y Xj) ∼= Ext∗(

"

i

π∗CXi)

is the cylindrical KLRW algebra.
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The quiver case

To get the Coulomb branch A, need to integrate out the finite flag
variety back down to a single lattice. This corresponds to having a
thick strand bringing together all with label i for each i at top and
bottom of diagram (but general cKLRW diagram in the middle).

This result generalizes to the KLRW case with addition of red strands.
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The talk thus far

quiver Γ

reps over C w/ flags

reps over C((t)) w/ affine flags

reps over C((t)) w/ lattices

planar KLRW

cylindrical KRLW

Coulomb branches
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Examples of Coulomb branches

Why am I interested in this construction? Mainly because lots of
examples recover interesting varieties, always symplectic:

my favorite: nilcone of gln

more generally, Slodowy slices in type A

symmetric power Symn(C2/Zℓ)

All of these varieties are Nakajima quiver varieties, but for potentially
different quivers and dimension vectors. The quiver variety and
Coulomb branch for a given quiver should be related by “3d mirror
symmetry”/“symplectic duality.”

Ben Webster UW/PI
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Examples of Coulomb branches

The disk D has a C∗ action by rotation (so the parameter t has weight
1). Combining this with the action on N/G via ϕ, we obtain
compatible C∗-actions on Y,Y,Xi.

A! = HBM,C∗
∗ (Y ×Y Y). R̊! =

"

i,j

HBM,C∗
∗ (Xi ×Y Xj)

Relations only change to account for the fact that Fk/Fk−1 and
Fk+m/Fk+m−1 are isomorphic, but have different C∗-weight.

Ben Webster UW/PI

Noncommutative resolutions and Coulomb branches

T-i =E...
-

T
+

...
-

Y
1 -

1

-
-

1! X!1..-
1
-

---
,

1
-



KLR algebras and geometry Coulomb branches Intermission Representation theory Coherent sheaves

Examples of Coulomb branches

The parameters HBM,C∗
∗ (Y) ∼= C[g, !]G give a maximal commutative

subalgebra S of A!.

These result in well-known quantizations of these varieties; we get
more familiar algebras if we consider the specialization A1 setting
! = 1.

my favorite: U(sln) with S the Gelfand-Tsetlin subalgebra

more generally, W-algebras in type A

spherical Cherednik algebras for Sn or G(ℓ, 1, n), with S the
subalgebra generated by the Dunkl-Opdam operators.
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Examples of Coulomb branches

Definition

We call an A1-module M Gelfand-Tsetlin if the subalgebra S acts
locally finitely on M, i.e. dim(S · m) < ∞ for all m ∈ M.

Theorem

The category of Gelfand-Tsetlin A1-modules with “integral weights”
is equivalent to the category of weakly graded (gradeable after
passing to associated graded) R-modules.

So, passing to GT A1-modules undoes the affinization!

Ben Webster UW/PI
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Examples of Coulomb branches

A few words on the proof:

a GT module satisfies M =
$

γ∈MaxSpec(S) Wγ(M) for

Wγ(M) = {m ∈ M | mN
γ m = 0 for all N ≫ 0}.

Note that we can think of γ ∈ MaxSpec(S) as a conjugacy class
of cocharacters C∗ → NGL(V)(G). ( integrality!)

The category is thus controlled by natural transformations
Wγ → Wγ′ .

We have an isomorphism (by localization in equivariant
homology)

Hom(Wγ ,Wγ′) ∼= HBM
∗ (Xγ′ ×Y Xγ)

This gives the desired R-action.

Ben Webster UW/PI
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Twisting functors

For any ϕ,ϕ′, there is a bimodule relating the two different
quantizations where we wrap the red lines around the cylinder the
appropriate number of times.

Derived tensor product with this bimodule gives “twisting functors.”

This is a special case of a construction for all symplectic resolutions.
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Twisting functors

Theorem

Twisting functors give a (finite) braid group action on the categories
of modules over different quantizations.

This can be upgraded to an action of tangles; the resulting link
homology Dq(K) recovers my old work on categorified
Reshetikhin-Turaev (in particular, Khovanov-Rozansky in type A).

In type A, can even upgrade this to an action of the foam category.

This seems to be a version of Witten’s prediction of a knot homology
constructed with A-branes on a space of Hecke modifications.

Ben Webster UW/PI
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Twisting functors

Applications:

Gives Koszul duality between categories O for Coulomb
branches and quiver varieties/hyperkähler quotients attached to a
given (G,N).

First classification of GT modules for gln, and character
formulae for them (Kamnitzer-Tingley-W.-Weekes-Yacobi,
Silverthorne-W.).

analogous classification for modules over Cherednik algebras of
G(ℓ, p, n). (LePage-W.)

Categorified knot invariants have two Koszul dual constructions;
Coulomb side construction seems to be “A-branes on Hecke
modifications” proposed by Witten.
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Noncommutative symplectic resolutions

I’m supposed to be telling you about non-commutative resolutions.

BFN construct (usual) resolutions of singularities: Springer resolution
and Hilbert scheme. This works for (G,N) an affine type A quiver
gauge theory, but not in most other cases.

Definition

A noncommutative symplectic resolution of a symplectic singularity
M = SpecA is a ring R such that A = eRe for some idempotent, and
the functor M ,→ eM : R -mod → A -mod “looks like” pushforward
by a crepant resolution of singularities.

For a symplectic singularity, symplectic resolution=crepant
resolution.

Ben Webster UW/PI
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Noncommutative symplectic resolutions

Theorem

Whenever a BFN resolution exists, the ring R̊ is a non-commutative
symplectic resolution of A and Db(̊R -mod) ∼= Db(Coh(M̃)) for M
any symplectic resolution of the Coulomb branch SpecA.

“Noncommutative Springer resolution” in type A is a special
case; this gives such resolutions for all parabolic Slodowy slices
in type A.

In the case of Hilbert scheme (or more generally, affine type A)
need to account for extra C∗ acting by scaling on the loop
(symplectic C∗ on C2). Need to use “weighted” version of R̊.
Recovers BFG resolution based on Cherednik algebra.
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A detour into characteristic p

For different people, this next part will have different motivations:

You might want to understand coherent sheaves on a resolution
of SpecA.

You might be the kind of person who says “what if had
characteristic p”?

You might have gone to some recent talks of Aganagić and
gotten confused once cigars came up.

Interestingly, either way, you should do the same thing.

Ben Webster UW/PI
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A detour into characteristic p

Over Fp, you can try to analyze finite dimensional modules over A1 by
diagonalizing S again. Again, let’s restrict to integral maximal ideals.

Problem?

If we wrap a strand around the cylinder p times, the shift of the dot is
trivial.

Theorem

Let = Fp. For generic ϕ (and p big enough), the category of finite
dimensional A1-modules with “integral weights” is equivalent to the
category of finite dimensional weakly graded R̊-modules.

So, still affinized, but resolved now.

Ben Webster UW/PI
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A detour into characteristic p

Similar arguments to last time:

geometric proof: localization to µp-fixed points on Y.

algebraic proof: same calculations as last time, but now we have
natural transformations Wi,0 → Wj,0 as endomorphisms given by
any diagram on the cylinder with i where all strands have
winding number divisible by p.

Ben Webster UW/PI
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A detour into characteristic p

Why does this have anything to do with coherent sheaves?

Fancy char p stuff: there’s a quantum Frobenius map A0 → Z(A1).
This is actually the sections of a map of sheaves OM̃ → QM̃ of
structure sheaf to a localization of A1 on any resolution M̃.

Applying results of Bezrukavnikov and Kaledin, we can construct a
very special vector bundle T on M̃ by “diagonalizing the action of
S ⊂ A1.”

A lift of this vector bundle also exists in char 0, so can forget about
characteristic p story.

Ben Webster UW/PI
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Tilting bundles via quantization

A tilting generator is a vector bundle T such that Ext>0(T, T) = 0,
and 〈T〉 = DbCoh(M̃).

Theorem

Assume that G is a torus, or (G,N) corresponds to an affine type A
quiver gauge theory. The vector bundle T is a tilting generator for M̃
and End(T ) = R̊.

The fact that R̊ is a non-commutative resolution is a corollary.

Ben Webster UW/PI
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Tilting bundles via quantization

While all commutative and non-commutative resolutions are derived
equivalent, these equivalences are not unique. Instead, they generate
an action of the affine braid group on this category; these descend
from twisting functors in char p:

Theorem

The twisting affine braid group action on Db(̊R -mod) is generated by
cylindrical versions of R-matrix bimodules.

Ben Webster UW/PI

Noncommutative resolutions and Coulomb branches



KLR algebras and geometry Coulomb branches Intermission Representation theory Coherent sheaves

Tilting bundles via quantization

In fact, this extends to an action of affine tangles, by affine versions of
the cup and cap bimodules, and in type A to affine foams. This gives a
link homology Dcoh(K).

Theorem

The following link homologies are all the same:

Dcoh(K), constructed from the affine tangle action above.

Dq(K), constructed from the tangle action on quantum coherent
sheaves.

the invariant constructed in my older knot homology work
(which matches Khovanov-Rozansky in type A).

Aganagić’s physical construction.

Ben Webster UW/PI

Noncommutative resolutions and Coulomb branches



KLR algebras and geometry Coulomb branches Intermission Representation theory Coherent sheaves

Thanks

Thanks for listening.

Ben Webster UW/PI

Noncommutative resolutions and Coulomb branches


