Homogeneous spaces

Wednesday, 1 September 2021

Recap

A homogeneous space is a space X on which a Lie Group G act transitively.

Let Xo & X and H be the isotropy group of Xo.

- orbit G x_o= X
- · prop G/H = X

eg. $S^{n-1} \cong {}^{O_n}/O_{n-1}$ $H \cong {}^{SL_2|R}/SO_2$ $G_{YK}(IR^n) \cong {}^{O_n}/O_{K} \times O_{n-K}$ $\mathcal{S} \cong {}^{GL_n|R}/O_n$

Symmetric Spaces

- Def A Riemannian manifold is

 a manifold X
 a topological space
 that locally resembles

 a Riemannian metric g Euclidean space near

 assigns to each each point. point ptX a positive-definite inner product gp: TpX x TpX -> IR

tangent space of X at p isomorphism
- a vector space of smooth manifolds

Def An isometry of (X,g) is a mapping $f: X \rightarrow X$ (diffeomorphism) that preserves the metric.

ie.
$$f: X \longrightarrow X$$

$$P \longmapsto f(P)$$

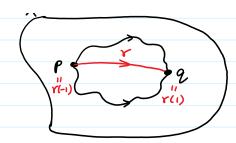
$$df: T_{P}X \longrightarrow T_{P(P)}X$$

$$u \longmapsto df(u)$$

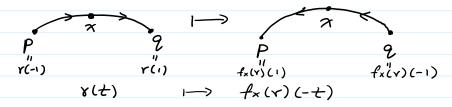
$$g_{p}(u,v)=g_{f(p)}(df(u),df(v))$$

Def the isometry group of X is $I(x) = \{f: X \rightarrow X \mid f \text{ is an isometry } \}$. Twith function composition · This is a lie group.

Def A geodesic on (X,g) is a curve $Y: \overline{L}-1,13 \rightarrow X$ that is length-minimizing.

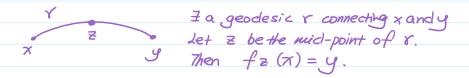


Def (X,g) is a <u>symmetric</u> space if for each $x \in X$, \exists isometry $f_x: X \to X \in I(X)$ that reverses geodesics through X.



Prop A symmetric space (X, g) is homogenous under the isometry group I(X).

Pf Let $\pi, y \in X$. (Assume path connectedness) Find $f \in I(x)$ sit, $f(\pi) = y$.



If we fix a point $x_0 \in X$ and let $H = \{g \in Z(X) \mid g(X_0 = X_0)\}$, then $X \cong Z(X)/H$

EG-O $X=IR^n$ with the euclidean metric $I(x)=E(n) \leftarrow Euclidean$ group

• IR^n is a symmetriz space since: At any point $x \in IR^n$, point reflection $f_x(x+v) = x-v \in E(n)$

· Let xo = origin. Then the isotropy group of xo is On.

So $\mathbb{R}^n \cong E^{(n)}/O_n$.

Let us still consider our $\chi_0 \in X$. Let f_X be the isometry that reverses the geodesics through χ_0 . For easier notation, let G = I(x) be the isometry group of X. Now, let us consider the following automorphism of G: $X: G \to G$

g -> fregefx

← Élie Cartan
complete classification of

 $g \mapsto f_{x} \circ g \circ f_{x}$ $\leftarrow \text{ Elie Cartan}$ complete classification of $f(g) = f_{x} \circ g \circ f_{x} = g \quad \forall g \in G$. Order 2 outomorphism of the isometry Lie group of Riemannian symmetric spaces.

Let $G^{d} = \xi g \in G \mid d(g) = g g$ be the subgroup of G left fix by d. G^{d} may contain multiple connected components. Let us denote the connected component containing the identity (ie identity component) as G^{d} .

Proposition Go CH CG

<u>EG-O</u> Riemannian space IRⁿ with isometry group G= E(n)

det x_0 still be the origin. So $f_x(v) = -v$. $\Rightarrow \chi(g)(v) = f_{x} \circ g \circ f_{x}(v) = f_{x} \circ g(-v)$ = -g(-v)

Here, $G^{\alpha} = O_n$ since:

(=>) $-g(-v) = g(v) \quad \forall v \in \mathbb{R}^n \qquad (\Leftarrow)$ $\Rightarrow -g(v) = g(o) \qquad \qquad | g \in On \text{ is linear}$ $g(o) = o \qquad | => -g(-v) = g(-(-v)) = g(v)$ $g \text{ is an isometry that fixes the origin} \qquad | => g \in On$

So On = {ge Z(n) | 2(g) = g} = G2.

Recall that the isotropy group of 700 is 0n, and the identity component of $G^{d}=0n$ is 80n. So here we included have the isotropy group in between $G^{d}=80n$ and $G^{d}=0n$.

In fact here, G^d happens to equal to the isotropy group. But this doesn't always happen.

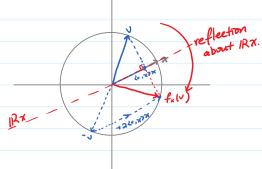
Recall our earlier examples of homogeneous spaces:

- · the sphere S^{n-1} homogeneous under On
- · the upper half-plane It under SL=11R
- · the set of symmetric, positive definite, real matrices 50 under GIn IR
- · the Grassmannian Gra(IR^n) under On

These 4 spaces are all symmetric spaces as well.

 S^{n-1} is a symmetric space since for any $x \in S^{n-1}$, Here exists an isometry f_x being the reflection in the line IR_x , ie. $f_x(u) = -u + 2 < u$, x > x

For instance in S':



$$7ix \quad \gamma_o = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Then
$$f_{X}\begin{pmatrix} U_{1} \\ V_{2} \\ \vdots \\ V_{n} \end{pmatrix} = \begin{pmatrix} -U_{1} \\ -U_{2} \\ \vdots \\ \vdots \\ -U_{n} \end{pmatrix} + \begin{pmatrix} 2V_{1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} U_{1} \\ -V_{2} \\ \vdots \\ -U_{n} \end{pmatrix}$$

So
$$f \times with respect to the standard basis is
$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
Consider $A : On \rightarrow On$

$$g \mapsto f \times g f \times .$$$$

$$G^{d} = O_{n-1} \times O_1$$
 since:

$$\begin{bmatrix} 1 & 0 \\ 0 & -I_{n-1} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -I_{n-1} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$\Leftrightarrow$$
 B=C=O and A=±1, D∈On-1,
to ensure g∈On

Note that
$$G^{\infty}$$
 contains 4 connected components: $O_{n-1} \times O_1 = SO_{n-1} \times \xi + 1$ $\cup SO_{n-1} \times \xi - 1$ $\cup (O_{n-1} \setminus SO_{n-1}) \times \xi + 1$ $\cup (O_{n-1} \setminus SO_{n-1}) \times \xi - 1$. The identity component G^{∞} is $\xi SO_{n-1} \cup \xi + 1$ $\cong SO_{n-1}$.

Indeed we have
$$SO_2 \subseteq O_{n-1} \subseteq O_{n-1} \times O_1$$
 ie. $G_0^{\times} \subseteq H \subseteq G_0^{\times}$

Complex structures on 182n

Def A complex structure on \mathbb{R}^{2n} is a linear transformation $J: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ such that $J^2 = -1$. Let In be the space of complex structures on 122 that preserves the inner product. ie. if $J \in \mathcal{E}_n$, then $(J\vec{u}, J\vec{v}) = (\vec{u}, \vec{v}) \ \forall u, u \in \mathbb{R}^{2n}$ ie Sin = {J < O2n | J2 = -1} Lemma Let I GIR2n, J & Sn. Then (記 J記)=0 Proof $(\vec{u}, \vec{J}\vec{v}) = (\vec{J}\vec{u}, \vec{J}^2\vec{v})$ = (Ju, -u) = - (Ja, a) =- (27, 327) : 2 (w, Jw) = 0 **⇒** (マ, Jマ) = 0 Prop Let JEEn. Then Forthonormal basis Evi3 of 1R2n such that JUZK-1 = UZK, JUZK = - UZK-1 ie. I orthonormal Evil s.t. $J = P \int_{00}^{00} P^{-1}$ where $P = \begin{bmatrix} 1 & 1 \\ V_1 & V_2 & \dots & V_{2n} \\ 1 & 1 & 1 \end{bmatrix}$ Proof Pick Vi GIR2n s.t. Vi +0 and //Vill=1. let v2 = Jv? $V = span(\vec{v}_1, \vec{v}_2)$ is a subspace of IR^{2n} . We can $split(R^{2n} as R^{2n} = V \oplus V^{\perp}$ Then pick Us and U4=JV3 from U1. { U?, V2, ..., V2n-1, Vn } is an orthonormal basis Since $(\vec{V}_{2k-1}, \vec{V}_{2k}) = (\vec{V}_{2k-1}, \vec{J}_{V_{2k-1}}) = 0$ (from previous lemma) With respect to this basis, we obtach I as

As a consequence, any two J's are conjugate in Oan, since:

Let
$$J_1$$
, $J_2 \in \mathcal{S}$.
Then $J_1 = PAP^{-1}$ where $A = \begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix}$, $P,Q \in O_{2n}$.
 $J_2 = QAQ^{-1}$
 $= > J_1 = PQ^{1}J_2QP^{-1}$
 $= (PQ^{-1})J_2(PQ^{-1})^{-1}$

So & is hampgenous under conjugation action by Ozn.

Proof:

It is sufficient to show Un = { g < Ozn | g · J = g J · g - I = J · }

Consider the embedding $\phi: Gln(C) \hookrightarrow Gl2n(IR)$ mapping each complex entry a-b a+ib to b a 2x2 block

- ϕ is a homomorphism since (a+ib)(c+id) = (ac-bol) + (ad+bc)i $\begin{bmatrix} a b \end{bmatrix} \begin{bmatrix} c d \end{bmatrix} = \begin{bmatrix} ac-bol aol bc \end{bmatrix}$ $b \ a \ d \ c \end{bmatrix} \begin{bmatrix} a b \end{bmatrix} \begin{bmatrix} a b \end{bmatrix} = \phi(A) \phi(B)$
- ϕ is injective since $\text{Her } \phi = I$.

Gln(C) =
$$\{A \in Glan(IR) \mid AJ_0A^{-1} = J_0\}$$

Since: $\gamma_{AJ_0} = J_0A$

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} c & -a \\ d & -b \end{bmatrix} = \begin{bmatrix} -b & -d \\ a & c \end{bmatrix}$$

Def the isotropic Grassmannian
$$G_{rn}^{iso}(\mathbb{C}^{2n})$$

= $\{ n\text{-dimensional complex subspace } W \leq \mathbb{C}^{2n} \}$
 $\{ W = W^{\perp} \} \}$
 $\{ (w, w') = 0 \ \forall w \in W \text{ where } (,) \}$

is the $(\text{-bilitear extension of the} \}$

inner product of $(\mathbb{R}^{2n}, \mathbb{R}^{2n}, \mathbb{R}^{2n}) \in (\mathbb{C}, \mathbb{C}^{2n}) \ \forall c \in \mathbb{C}$.

$$\frac{p_{nop}}{p_{nop}} \mathcal{S}_{n} \cong G_{r_{n}}^{iso}(\mathcal{L}^{2n})$$

$$J \longmapsto w = i - eigenspace of J$$