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Frobenius number

Let C1, . . . ,Ck be conjugacy classes in a finite group G

N (G ;C1, . . . ,Ck) := #{(c1, . . . , ck) ∈ C1 × · · · × Ck |c1 · · · ck = 1}.

Since cici+1 = ci+1(c−1i+1cici+1), N (G ;C1, . . . ,Ck) is independent of the
order of the arguments.

Theorem (Frobenius formula)

N (G ;C1, . . . ,Ck) =
|C1| · · · |Ck |
|G |

∑
χ

χ(C1) · · ·χ(CK )

χ(1)k−2

The sum is over all characters of irreducible representations of G .
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k = 1 :

N (G ;C ) = #{c ∈ C |c = 1} =

®
1, C = {1}
0 otherwise

Since 1 = g−1hg =⇒ g = hg =⇒ h = 1, {1} is the conjugacy class
including the identity element.
Recall that if A and B are square matrices, tr(AB) = tr(BA).

χπ(g−1hg) = tr(π(g−1hg)) = tr(π(g)−1π(h)π(g))

= tr(π(g)−1π(g)π(h))

= tr(π(h)) = χπ(h)

So the character χπ(g) only depends on the isomorphism class of
representation π and the conjugacy class of g . Hence,
χπ({1}) = χπ(1) = dimπ and χ(1) = χ(1). By orthogonality relation,

|C |
|G |

∑
χ

χ(C )

χ(1)−1
=
|C |
|G |

∑
χ

χ(C )χ(1) =

®
1, C = {1}
0 otherwise.
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k = 2 : N (G ;C1,C2) = #{(c1, c2) ∈ C1 × C2|c1c2 = 1}, so
c2 = c−11 . If a = g−1bg and such that a ∈ C1 and a−1 ∈ C2, then
b ∈ C1 and b−1 = ga−1g−1 ∈ C2. Therefore,

N (G ;C1,C2) =

®
|C1|, C2 = C−11

0 otherwise.

By orthogonality relation,

|C1||C2|
|G |

∑
χ

χ(C1)χ(C2) =

®
|C1|, C2 = C−11

0 otherwise.
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k = 3: Let (C1,C2,C3) = (A,B,C−1) with A,B,C ∈ C. Then

nCAB := N (G ;A,B,C−1) = #{(a, b, c−1) ∈ A× B × C−1|abc−1 = 1}
= #{(a, b) ∈ A× B|ab ∈ C}

Z(Z[G ]) =< eC =
∑
c∈C

[c]|C ∈ C >

Central elements eA =
∑

a∈A[a] and eB =
∑

b∈B [b] satisfy:

eAeB =
∑

a∈A,b∈B
[ab] =

∑
C

nCABeC .
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Proof of Frobenius formula
To prove

N (G ;C1, . . . ,Ck) =
|C1| · · · |Ck |
|G |

∑
χ

χ(C1) · · ·χ(CK )

χ(1)k−2
,

we consider G−representation isomorphism
C[G ] ∼=

⊕
i∈I EndC(Vi ) ∼=

⊕
i∈I V

⊕ni
i where ni = dimVi , and compute the

trace of multiplication by eC1eC2 · · · eCk
on both sides of it.

On the left handside: We know that C[G ] =< [g ]|g ∈ G >, so
tr(π(1)) = |G |. When g 6= 1 it acts as a permutation of base elements
with no fixed points. Hence tr(π(g)) = 0.

tr(π(g),C[G ]) =

®
|G |, g = 1

0 otherwise

eC1eC2 · · · eCk
=

∑
ci∈Ci

[c1 · · · ck ]

tr(eC1eC2 · · · eCk
: C[G ]→ C[G ]) = |G |N (G ;C1, . . . ,Ck).
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Proof of Frobenius formula (cont.)

On the right handside, since eC is central, πi (eC ) commutes with every
linear operator. Therefore by Schur’s lemma, it acts on any irreducible
representation Vi of G as scalar multiplication:

∀i ∈ I πi (eC ) = νπi (C ) · Id .

|C |χπi (C ) =
∑
g∈C

χπi (g) = tr(πi (eC ),Vi )

= tr(νπi (C ) · Id ,Vi )

= νπi (C )dimVi

Hence, νπi (C ) = |C |
dimVi

χπi (C ) =
χπi

(C)

χπi
(1) |C |.
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Proof of Frobenius formula (cont.)
Now assume I = {1, . . . ,m} and as a warm-up consider the space⊕m

i=1 Vi , the eCj
acts as multiplication of

Because the Schur’s lemma assures that HomG (Vi ,Vj) = 0.

eC1 · · · eCk
= A1A2 · · ·Ak = A :

m⊕
i=1

Vi →
m⊕
i=1

Vi

Therefore, its trace equals

m∑
i=1

χπi (C1)χπi (C2) · · ·χπi (Ck)

χπi (1)k
|C1||C2| · · · |Ck |.
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Proof of Frobenius formula (cont.)

Now consider the original space
⊕

i∈I EndC(Vi ) ∼=
⊕

i∈I V
⊕ni
i . The

dimension of V⊕nii is n2i = χπi (1)2. So by abuse of notation A, each
diagonal block in A is (ni × ni )× (ni × ni ) and its trace is

χπi (C1)χπi (C2) · · ·χπi (Ck)

χπi (1)k
|C1||C2| · · · |Ck | × χπi (1)2.

Therefore,

|G |N (G ;C1, . . . ,Ck) =
m∑
i=1

χπi (C1)χπi (C2) · · ·χπi (Ck)

χπi (1)k−2
|C1||C2| · · · |Ck |.�
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Riemann surfaces

Consider the complex plain C. It is a very simple example of Riemann
surfaces. As a more interesting example we can mention 2-sphere
S2 = {(x1, x2, x3) ∈ R3|x21 + x22 + x23 = 1}, also called Riemann sphere.

Figure: Riemann sphere.

Riemann surface

A Riemann surface is an orientable compact 2-dimensional topological
manifold.
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Riemann surfaces of higher genus

Figure: Torus is a Riemann surface of genus 1.

Figure: A Riemann surface of genus 2.
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Covering space

Let Y be a topological space. A covering of Y is a space X together with
a continuous surjective map p : X → Y such that the following holds:

∀y ∈ Y ∃(y ∈)U ⊂ Y p−1(U) =
⊔
i∈I

Vi , p|Vi
: Vi

bijective−−−−−−−→
cont. inverse

U.

p is called a covering map.

Figure: R and R2 as covering spaces of S1 and torus.
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Fundamental group
Let Y be the Riemann sphere with k points P1, . . . ,Pk removed.
By homotopy of a path we mean deforming it continuously and keeping its
end points fixed.

Homotopy of paths

A homotopy of paths in Y is a family γt : [0, 1]→ Y , 0 ≤ t ≤ 1 such
that

The endpoints γt(0) and γt(1) are independent of s.

The associated map F : [0, 1]2 → Y defined by F (s, t) = γt(s) is
continuous.

Figure: Paths homotopy.
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Homotopy relation is an equivalence relation and we denote the class of γ
by [γ]. Now consider the composition α · γ defined by

α · γ(s) =

®
α(2s), 0 ≤ s ≤ 1

2

γ(2s − 1) 1
2 ≤ s ≤ 1.

Figure: Paths composition.
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Fundamental group

In particular, conisder loops with base point y0. The set of all homotopy
classes [γ] forms a group with respect to composition [α] · [γ] = [α · γ].
This group, denoted by π1(Y , y0), is called the fundamental group of Y at
point y0.

In this group the identity element is the constant loop and the inverse
element [γ]−1 is the same loop passed in the inverse direction.

A Riemann surface is called simply connected whenever its fundamental
group is trivial.
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Example of a simply connected surface

Riemann sphere is simply connected. S2 \ {p} is also simply connected
because assume we omit north pole N. There is a continuous bijective

map ”stereographic projection” f : S2 \ {N}
∼=−→ C with continuous inverse.

Figure: Stereographic projection.

f# : π1(S2 \ {N})
∼=−→ π1(C)

Since every loop in the complex plane is contractible to a point,
π1(S2 \ {N}) = 0.
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Surfaces with non-trivial fundamental group

A loop γ in C \ {P} around the removed point can not be contracted into
base point continuously. Therefore [γ] is a non-unit element of
fundamental group. Moreover, it is a generator, i.e.;
π1(C \ {P}) =< [γ] >.

π1(C \ {P}) ∼= Z.

Recall Y = S2 \ {P1, . . . ,Pk},

π1(Y ) =< y1, . . . , yk |y1 · · · yk = 1 > .

Each generator is the class of loops around each removed point.
Remark: π1(Y ) ∼=< y1, . . . , yk−1 > .
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Fundamental group; a topological invariant

Theorem

Suppose that p : X → Y is a continuous map. Then it induces a
homomrphism p# : π1(X , x0)→ π1(Y , y0) such that p#([γ]) = [p ◦ γ].

Now consider the lift of paths and base point to the covering space.
Given any two homotopic paths in Y , are their pre-images homotopic?
This is true for covering spaces.

Lemma

Let (X , x0) be a covering space of Y . Let α and β be paths in X with the
same initial points. If pα ' pβ then α ' β.

Theorem

Let (X , x0) be a covering space of (Y , y0) such that p(x0) = y0. Then
p# : π1(X , x0)→ π1(Y , y0) is injective.
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Let F = p−1(y0).

Monodromy group

For every γ ∈ π1(Y , y0), it induces a bijection g : F → F . Indeed:

γ is a closed oriented curve in Y ; therefore p−1(γ) consists of |I |
oriented curves in X .

γ leads from y0 to y0; therefore each of the lifted curves in p−1(γ)
leads from a point of F to a point of F , i.e.; a mapping g : F → F .

This mapping g is invertible since γ is invertible in π1(Y , y0).

The correspondence γ 7→ g gives a group homomorphism from π1(Y , y0)
to Bijections(F ). The image G of this homomorphism is called the
monodromy group of the covering.
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Definition

Let (X1, x1) and (X2, x2) be covering spaces of Y . A homomorphism of
(X1, x1) and (X2, x2) is a continuous map φ : X1 → X2 such that
p2 ◦ φ = p1.

There is a bijective correspondence between Covering spaces of Y up to
isomorphism and Subgroups of π1(Y , y0). Let us fix x0 ∈ F .
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From a covering to a subgroup

Theorem

Let (X , x0) be a covering space of (Y , y0). Then the subgroups
p#π1(X , x0) for x0 ∈ p−1(y0) are conjugate subgroups of π1(Y , y0).

In fact, each one of these subgroups are stabilizer of different base points
(i.e.; includes paths composed of loop lifts, going from x0 and returning to
it) and

∀x0, x1 ∈ F , α ∈ H, γ ∈ K ∃β β · x0 = x1 =⇒ α = β−1γβ.

Moreover, the right cosets of H are in bijection with F :
Hα = Hβ ⇐⇒ αβ−1 ∈ H ⇐⇒
both α and β send x0 to the same element x ∈ F .
Therefore, [π1(Y , y0) : H] = |F |.
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Normal covering

A covering is called normal if the corresponding subgroup H C π1(Y , y0) is
normal.

In this case the monodromy group is isomorphic to the quotient group
π1(Y , y0)/H.
A covering is called universal if H = {id} i.e.; if the covering space is
simply connected.
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Let Σg be a Riemann surface of genus g , then

π1(Σg ) =< α1, β1, . . . , αg , βg |α1β1α
−1
1 β−11 · · ·αgβgα

−1
g β−1g = 1 > .
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From a subgroup to a covering

Given a topological space Y and a conjugacy class of subgroups of
π1(Y , y0), is there a covering space (X , x0) such that p#π1(X , x0) belongs
to that conjugacy class?

Theorem

Let Y be a topological space which has a universal covering space. Then
for any conjugacy class of subgroups of π1(Y , y0) there exists a covering
space (X , x0) such that p#π1(X , x0) belongs to the given conjugacy class.

Sketch of proof

Let (X̃ , x̃0) be the universal covering. Since π1(Y , y0) acts transitively and
freely on F , π1(Y , y0) ∼= Mon(X̃ , x̃0). Let H be a nontrivial subgroup of
π1(Y , y0) belonging to the given class. It gives a subgroup K of

Mon(X̃ , x̃0). Let X = X̃/K , then X̃
r−→ X

q−→ Y commutes with p.
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Faithful action of a group on a set

Action of a group G on a set A is faithful when the corresponding
permutative representation homomorphism φ : G → Bijections(A) defined
for all g ∈ G by φ(g) = σg : A→ A ; σg (a) = ga, is injective.

Let G be a finite group and ρ : π1(Y )→ G a group homomorphism. ρ is
specified by its value on generators of the fundamental group.

1 = ρ(1) = ρ(y1 · · · yk) = ρ(y1) · · · ρ(yk)

Hence N (G ;C1, . . . ,Ck) simply counts the number of homomorphisms ρ
with ρ(yi ) ∈ Ci for each i .
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Topological interpretation of Frobenius formula

If G acts faithfully on fibre F , then each such homomorphism corresponds
to a normal covering X of Y with monodromy group G such that the
permutation induced by p−1(γ), the lift of loop around Pi , belongs to the
conjugacy class Ci .
In other words,

N (G ;C1, . . . ,Ck) = #{p : X → Y : ρ(yi ) ∈ Ci}

This interpretation also illustrates the independence of N (G ;C1, . . . ,Ck)
from the order of its arguments.
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There is a natural question. Can we generalize this to covering spaces
of Riemann surfaces of arbitrary genus g ≥ 0?
We know that

π1(Σg \ {P1, . . . ,Pk}) = < α1, β1, . . . , αg , βg , γ1, . . . , γk |
α1β1α

−1
1 β−11 · · ·αgβgα

−1
g β−1g γ1 · · · γk = 1 >

Define

Ng (G ;C1, . . . ,Ck) =#{(a1, . . . , ag , b1, . . . , bg , c1, . . . , ck) ∈
G 2g × C1 × · · · × Ck : [a1, b1] · · · [ag , bg ]c1 · · · ck = 1}.

such that [a, b] = aba−1b−1. Then

Ng (G ;C1, . . . ,Ck) = #{p : X → Σg \ {P1, . . . ,Pk}|
X is a normal covering with monodromy group G

such that monodromy of γi lies in Ci}.
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Theorem (generalized Frobenius formula)

With all the notations mentioned above, we have for all g ≥ 0

Ng (G ;C1, . . . ,Ck) = |G |2g−1|C1| · · · |Ck |
∑
χ

χ(C1) · · ·χ(Ck)

χ(1)k+2g−2 .

Sketch of proof

Let C be the set of all conjugacy classes in G and a and a′ be in the same
conjugacy class A. Then there are |G |/|A| elements b ∈ G with
bab−1 = a′. Hence

Ng (G ;C1, . . . ,Ck) =
∑

A1,...,Ag∈C

|G |
A1
· · · |G |

Ag
×

N (G ;A1,A
−1
1 . . . ,Ag ,A

−1
g ,C1, . . . ,Ck)

Now we apply Frobenius theorem and othogonality relation to derive the
generalized formula.
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Thank You!
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