Reference: Zagier, Applications of the representation theory of finite groups 2004 Last week D representation (VITI) of group G: a-vector space V $\pi: G \longrightarrow GL(v)$ g 1-> π(g) bijective linear transformation π(g) = ∪→∪ ν⊷π(q) υ □ dim Ti = dim (V) V and V are isomorphiz (V=V) if there exists a G-equivariant isomorphism from U to U' $(\Rightarrow A: \cup \rightarrow \cup^{1} s.t. A(\pi(g)) = \pi'(g)A(v)$ * If U is a representation of G + Len, • V⊗cA → Hom c(AIU) ~ UO···· @ V are representations set of homomorphisms from A to V quotient of EU@w/veV,weW3 by c(u,w) = (cu,w) = (u,cw) for ce (ie with basis (U @ A) = basis (U) x basis (A) • V = Home (U, C) is a representation Hanc (U, A) ~ U^{*} ⊕ … ⊕ U^{*} is also a representation □ V@GV as the quotient of V@GV' by gv @v'= U@gv' Homa (U,U) = set of G-equivariant livear transformations from uto U. "commutative with g" ENDT representations] U is irreducible if it contains no proper sub-space which is invariant uncler the action of G. * Any representation of G is a direct sum of (irreducible) irreducible ones. what does Hamg (U,U') look (ike? V~V' Hen C V4V' Hen Eo3 Schur's Lemma Let V and V' be two imeducible representations of G. () Then the C-vector space Homg (V,V') is o-dimensional if V4V' and I-dimensional if V2V'. (2) The space Homg (U, U) is cononically isomorphic to C. Tza most notural isomorphism Proof Assume V×V' \bigcirc To show: $Hom_{G}(U, U') = \{0\}$ Let $\phi \in Hom_{G}(U, U')$ \$ is G-equivariant Then, to show: $\phi = 0$,

To show:
$$Im(\phi) = 0$$
,
Let $w \in Im(\phi)$
Then $w = \phi(w)$ for some $u \in U$.
 $gw = g\phi(u) = \phi(gu) \in Im(\phi)$
 $\therefore Im(\phi) \leq u'$ is G-invariant
Since u' is irreducible, $Im(\phi)$ is trivial
 $\therefore Im(\phi) = \epsilon_0 \leq \sigma_0 \leq Im(\phi) = u'$
Let $v \in ker(\phi)$.
Then $\phi(gv) = g \cdot \phi(v)$ since ϕ is G-equivariant
 $= g \cdot 0$
 $= 0$
So $gv \in ker(\phi)$
So $ker(\phi)$ is G-invariant
Since v is irreducible,

$$\begin{array}{ll} & Im(\phi) = 0\\ & \phi = 0\\ & \phi = 0\\ & Hom_{\varphi}(v, v') = 0 \end{array}$$

(2) Assume V = U'Let V = U'.

To show = $Ham_{e}(u, v) \simeq C$

Define a linear transformation ψ : Hom_G (U, U) $\rightarrow \subset$ $\phi \mapsto \phi$'s eigenvalue

75 show: 4 is • well-defined • bijective

Let $\phi \in Hom_{G}(u, u)$. Let λ be an eigenvalue of ϕ . (λ exists because C)

Let $v \in \operatorname{Ker}(\phi - \lambda)$

$$f = 0$$

$$f_{S} \quad g_{1} \in f(q, h) \leq S \quad G = invariant$$

$$f(q) \quad f(q, h) \neq S \quad g_{1} = inve \quad g_{1} = inperpase \neq S \quad g_{1}$$

$$f_{S} \quad f(q, h) \neq S \quad g_{1} = inve \quad g_{1} = inperpase \neq S \quad g_{2}$$

$$f_{S} \quad f_{S} \quad f_{S}$$

$$\int_{C_{1}} C_{1}(x_{1})(x_{2})(x_{2}) = C_{1}(x_{2}) = C_{1}(x_{2})$$

$$(1)(x_{2})(x_{2} - (x_{2}))(x_{2}) = C_{2}(x_{2})$$

$$(x_{2})(x_{2})(x_{2}) = C_{2}(x_{2})(x_{2})$$

$$(x_{2})(x_{2})(x_{2})(x_{2}) = C_{2}(x_{2})(x_{2})(x_{2})$$

$$(x_{2})(x_{2})(x_{2})(x_{2})(x_{2})(x_{2})(x_{2})(x_{2})(x_{2})(x_{2})$$

$$(x_{2})$$

Recall, Hom_c (V, A)
$$\mathcal{L}$$
 $V^{\otimes} \cdots \otimes V^{*}$ and
 $V \otimes_{\mathcal{L}} A \mathcal{L} V \otimes \cdots \otimes V$
Since V and V' are representations of G, then
Hom_c (V', V) \mathcal{L} $V^{*} \otimes_{\mathcal{L}} V$
are also representations of G, with
 $\cdot G$ -action on $Hom_{\mathcal{L}}(V,V)$: $(g\phi)(v') = g(\phi(g^{-}v'))$
 $\cdot G$ -action on $V^{*} \otimes_{\mathcal{L}} V$: $g(+ \otimes v) = (g \cdot \phi) \otimes (g \cdot v) = (+ \cdot g^{-}) \otimes (g v)$
Apply (*) to Hom_c (V, V) \mathcal{L} $V^{*} \otimes_{\mathcal{L}} V$
 $dim \left[(Hom_{\mathcal{L}}(V, V))^{G} \right] = |G|^{-1} \int_{\mathcal{L}_{\mathcal{L}}} tr(G, V \otimes_{\mathcal{L}} V)$
Note that for any $V \otimes_{\mathcal{L}} V$,
 $tr(G, V \otimes W) = tr(G, V)$ $tr(G, v)$
 $tr(G, V \otimes W) = tr(G^{-1}, V)$
 $= |G|^{-1} \int_{\mathcal{L}_{\mathcal{L}}} tr(G^{-1}, V) + tr(G, v)$
 $tr(G^{-1}, V) = tr(G^{-1}, V)$
 $= |G|^{-1} \int_{\mathcal{L}_{\mathcal{L}}} tr(G^{-1}, V) + tr(G, v)$
 $= |G|^{-1} \int_{\mathcal{L}_{\mathcal{L}}} tr(G^{-1}, V) + tr(G, v)$
 $= |G|^{-1} \int_{\mathcal{L}_{\mathcal{L}}} tr(G^{-1}, V) = tr(G, v)$
 $= |G|^{-1} \int_{\mathcal{L}_{\mathcal{L}}} tr(G^{-1}, V)$
 $= |G|^{-1} \int_{\mathcal{L}_$

 $STP^{:} (Hom_{c}(v',v))^{G} = Hom_{G}(v',v)$ 70 show: Hang $(U', V) \subseteq Hang (U', U)$ To show : $Hom_{\mathcal{C}}(u', v) \leq Hom_{\mathcal{C}}(v', v)$ Let $\phi \in Hom_{\mathcal{L}}(u', v)^{\mathcal{G}}$. So $(g\phi)(u') = \phi(u')$ To show? $g[\phi(u')] = \phi(gu')$ Let $f \in Hom_{G}(u', v)$ So g[f(u')] = f(gv')To show: (gf)(u') = f(u') $(g_{\mathcal{P}})(\upsilon') = g\left(\mathcal{P}(g^{-1}\upsilon')\right)$ $definition = g\left(g^{-1}\left(\mathcal{P}(\upsilon')\right)\right)$ $G^{-equivariant} = \left(g^{-1}\left(\mathcal{P}(\upsilon')\right)\right)$ $g[\phi(u')] = g[(g^{-1}\phi)(v')]$ $G-invariant = g[g^{-1}(\phi(gv'))]$ $definition = (0.071) \oplus (0.01)$ $= (gg^{-1})\varphi(u')$ $= (gg^{-1}) \phi (gv')$ $= \phi(qu')$ $= \varphi(v)$ So now we have shown that First Or the gonality relation Let (U,T) and (U', T') be two irreducible representations of G. Then $\frac{1}{1GI} \stackrel{\sum}{=} \chi_{\pi}(g) \stackrel{\overline{\chi}_{\pi}(g)}{=} \begin{cases} 1 & \text{if } \pi - \pi' \\ 0 & \text{otherwise.} \end{cases}$