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A. BEILINSON 

Localization of Representations of Reductive 
Lie Algebras 

In this report I shall sketch, the algebro-geonietrical viewpoint on the 
representations of real reductive groups. One will see that representation 
theory deals with things quite familiar to algebraic geometers: namely 
with the geometry of Schubert-like variétés. As for applications, I shall 
confine myself to the following ones : a classification of irreducible repre-
sentations [1], [13], the Kazhdan-Lusztig character formulas [7], [10} 
and the structure of Jantzen's filtration (the degeneration of series of 
representations). The last two subjects are based on arithmetical con-
siderations (the theory of mixed perversed sheaves [3], [4]). 

All the schemes considered will be over a fixed algebraically closed 
ground field Jc of char 0. 

A* Affine spaces and localization 
Let X be a scheme. 

DEFINITION. An Ox-ring is a sheaf 0t of rings on X, together with a 
ring morphism 0x->ffl such that Si is quasicoherent as a left ^-module. 
For an 6x-vm.g ffl, an ^-module is a sheaf of left ^-modules, quasicoherent 
as a sheaf of ©^-modules. • 

Denote by ^-mod the category of ^-modiües. Put J2:= T(X,M). 
r 

There are natural adjoint functors ^-mod *? JS-mod: r(Jt): = T(X,Jt)Y 
A(N) =ffl®N, and also corresponding derived functors Br and LA. 

22 

DEFINITION. We shall say that X is Zaffine if r and A are (mutually 
inverse) equivalences of categories; and that X is Zaffine in the sense 
of derived categories of amplitude < n if MF is equivalence of derived 
categories of amplitude < n. • 

[699] 
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If for a ring B there exist some (X, ffl) such that B = T(X, &t) and X 
is ^-affine, then one may study JS-modules by local methods as sheaves 
•over X; in this situation we call the sheaf A(N) the localization of an 
jß-module N. 

Here is a criterion for ^-affinity. Any ^-module Ji is generated by 
.global sections and Hi(X, Ji) = 0 for i > 0 . 

The (9x-rings that we shall consider are the rings of differential oper-
ators &x on some smooth X, or slightly more general rings introduced 

, in the next section. Here is a somewhat striking example (see Section C): 
&ny flag space X (e.g. X = PN) is ^-aff ine . 

B . Twisted rings of differential operators 

Let X be a smooth variety. 

DEFINITION. An 0x-ring is called a ring of twisted differential operators 
(tdo for short) if it is locally isomorphic (on X), as an 0x-ring, to 3fx. 
If À is any commutative ft-algebra, then an .A-tdo is a sheaf of A-algebras, 
and also an tf^-ring, locally isomorphic to @x®A. m 

lc 

Bemarh. A-tdo is just a family of tdo's, parametrized by Spec A. 

As the automorphisms of 0^-ring 9X are exactly closed 1-forms on X 
{a 1-form œ corresponds to an automorphism > hco\—\)> one 

dx dx \dx} 
may identify tdo's with i2^cl-torsors (and A-tdo's with A®^x-torsors) . 
I n particular tdo's form a "linear fc-space". If % is a torsor, we denote 
the corresponding tdo by 3fix. The set of isomorphic classes of tdo is 
MX(X, Qlj£l), for a proper X it is the fc-subspace of R2

DB(X) generated by 
algebraic cycles. 

Examples, (a) If J§? is any invertible tf^-sheaf, then the sheaf 3fXi^ °^ 
differential operators on ££ is a tdo. One has $}Xi& = @x

ofS^. 
(b) If <% is tdo, then ®° — a ring with inverted multiplication — is 

also a tdo. If % is an i2Î£cl-torsor, put %Q L = dlog Q — %, where Q is the sheaf 
of volume forms det Qx. One has (®%)° = 3fx

x, as Q has the canonical 
structure of a right ^--module. 

'C. Main construction 
Let G be a connected reductive group over ft, ^ : = Lie G its Lie algebra, 
TJ = U(&) the universal enveloping algebra, and Z the centre of U. Let X 
be the flag manifold of G (the space of its Borei subgroups), and Tx the 
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aheaf of vector fields on X. For x e X let Bx 3 Nx be the corresponding 
Borei subgroup and its radical, H : = Bx/Nx the Oartan group (it does not 
depend on x), and bx 3 nx and h the corresponding Lie algebras. There 
is a Harish-Ohandra map Z c 8(h) which identifies Z with the space 
of W~invariant polynomials on ft* (where the Weyl group W acts fixing 
Q - - t h e half-sum of positive roots), let 0: Spec #(fe)->Spec # be the 
corresponding map. Let J7 := U&8(h) be the extended universal en-

z 
veloping algebra. I t is clear that the centre of V is 8(h). 

îTow we pass to the construction. The group G acts on X and one 
has the corresponding Lie algebra map a: &->Tx. Define an 0x-ring 
structure on Ux:= ®X®TJ by demanding that [ A , / ] = a (A)/ for A 

k 
e& cz U,f E0X and that the multiplication on TJ c TJX should coincide 
with the usual one. Consider the induced Lie algebra structure on &x 
: = 0x<g>0 c TJX, and put 3SX = ker(a: &x-+2x) - {£ e ^ A - V ^ e -^£(0) 
e &J> ^ x ^ t^x? ^ x l = {£ G ^x: Va? e X £(x) enx). These are ideals in 
&x. Put $ : = UXIUX' Jfx. One has obvious maps TJ->T(X, §), and 
8(h)-+T(X, ê) (as 0x(g)7& = ^xl^x^ Ux)- I t : i s e a s y t o s e e t h a t #(Ä) is 
mapped onto the centre of à), and both these maps coincide on Z. So 
they define the map V->T(X, §). 

LEMMA, (a) This map is an isomorphism: U — T(X, B). 
(b) é is an S(h)-tdo on X. • 

To apply this to the study of ^-modules we need to verify the affinity 
of the picture. For simplicity we confine ourselves to ^-finite ^-modules, 
i.e., ^-modules annihilated by some ideal of finite codimension in Z. 
Let %eh* be a character, and mx c 8(h) the corresponding maximal 

ideal. Put 8(h)x : = ljm8(h)lmn
y, @)x\=-D\mx3}, ®x := @®S(h)x. I t is 

.. / \ 8(h) 

clear that 3)x is a tdo (and 0X is an #(7&)z-tdo), and one has T(X, 2X) 

~: Ux = VlmJJ,r(X, 9X) =:ÛX = Û®8(f)x. 

Bemarlc. If # is integral, i.e., originates in the character of H, then 
3>x is a sheaf of differential operators on a corresponding invertible sheaf 
on X. In particular @0 = 0 ^ . 

Now suppose # to be regular. Then @: Spec 8(h)->Spec if is étale 
/ \ 

at # and so 8(h)x = Ze(x ) , U = Z70(x) : = V®Z@{x), TJX *= V\m@{x) TJ. This 
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means that D^D^^-modules are just ^-modules with a (generalized)» 
central character &(%). Denote by rx, Ax the corresponding functors 
Dz-mod <± D©^ —mod. 

Eecall that % e h* is dominant if for any simple positive coroot I one 
has %(l) # 0 , — 1 , . . . 

THEOEEM [1], [2]. Let %be a regular weight. If % is dominant then X i& 
Sfx- and âfx-affine. If % = w%^ where Xo is dominant, then X is 2ix- and 
éx-affine in the sense of the derived categories, of amplitude < the length 
of w.m 

So ^-modules with a regular central character 0 are just ^-modules 
for dominant % such that ©(%) = 0. 

Bemarh. Let Jf be a ï70-module and xeX. One knows that the spec-
trum of the natural action of h on M.(nx, M) is contained in 0~1(6): put 
S. = ® H.x. The definitionimphesthatjff.(^, Jf^ =TorA(ifea.,£zl;cJf)•--

ze0-1(o) 
the fibre at x of LAXM in the sense of &x -modules. So the theorem is 
a generalization (to arbitrary ^-modules) of the highest-weight and 
Borel-Weil-Bott theory of finite-dimensional representations. 

D. Functorial properties of ^-modules 

Here we recall some basic functors on ^-modules (following Bernstein,, 
Kashiwara,...) and show what these functors mean for representations. 

Dl . Translation. Let JSP be an invertible 6^-sheaf and % any torsor; then 
0^-mod is canonically equivalent to 03b? ( = ^^dl08r,s?)-mod : one trans-
forms the ®z-module M to ££®Jt with a canonical D^-^-action. So for 

&x 
any regular dominant %19 %2 e A* such that %x — %i is integral one has a 

< A > canonical equivalence between the categories D^^-mod; this is the 
Bernstein-Gelfand translation principle. 

D2. Action of correspondences. Let / : Y->X be a morphism of smooth 
variétés, and S(X) = Sfa be a tdo on X; then one has a tdo 0 ( r ) : = Df^W 
on Y. Define exact functors / ' : @(@{xym.oa)->@(@{r)-moà) and /*: 
Sr(^(F)-mod)->^(Sr

(^-mod) between derived categories as follows. First, 
for any 0(X)-module Ji there is a natural 0(F) action on/ + (Ji) : = ®Y®Jf — 

o X 
the inverse image of Ji in the sense of ©-modules. Let Lf+: ^(0(:x)-mod) 
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->9i (^(jrj-mod) be a derived functor of / + ; put f : = Lf+ [dim T —dim X], 
'To define /* one uses (^(I^—/'(^^Jj-bimodule structure on f*(®(X)): 

put/*(^) - Bf.[jf ® f+(®{X))). 

Bxamples. (a) If / is a closed imbedding, then f* and f induce equiv-
alence between 0(F)-mod and the category of ^^-modules supported 
on Y. 

(b) If / is smooth, then /*(*#) is the relative de Bham complex with 
coefficients in Ji, shifted by the relative dimension of /. 

Bemarlc. These functors may be unified by considering correspondences. 
JsTamely, consider the diagram 

Z 
n^/\^x 

/ \ 
Y X 

where Z is also smooth, and two torsors, %x on X and %r on Y, with 
& fixed isomorphism ri£(tfr) = ^x(Zx)-L e t z*: 3(2p''mo^)^2(3x

x^moà) 
b e vtx%ütjf 

Now let us return to representations. Let X be as in Section 0 and 
•w eW. We have the Bruhat-Hecke correspondence Nw = {(x, xf) e X x X 
such that (bx, bx.) are in relative position w}. 

THEOEEM [2]. Let % be dominant regular. Then (NW)*LAx = LAw^x).m 
So the action of the Bruhat-Hecke correspondences on ^-modules 

{the intertwining functors of [2]) corresponds to the action of W on Ü. 
These correspondences play a very important role in the Kazhdan-Lusztig 
theory (of Section H). 
DS. Duality. Let 3) be a tdo. One says that S-module is coherent if it is 
locally finitely generated; let ^-modc be the category of coherent modules. 
Consider 3 as (3s, ®)-bimodule; it defines a natural functor *: 3(3-
modc)°->®(^°-modc) by the formula *Jl : = B Horn (Jt, 3 [dim X]); one 
has ** = id. Coherent modules correspond to finitely generated repre-
sentations, and * corresponds to the functor *i(f : = i2Hom(M, Ue [dimX]). 

Example. One says that a ^-module is smooth if it is coherent as 
a sheaf of ©^-modules, or, equivalently, if after a (local) isomorphism 
3 ~ @x it becomes a sheaf of sections of a bundle with integrable connec-
tion. For smooth Jt we have *Jt = TLom^Jf, Qx) with an obvious 
®°-module structure. 
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E. Holonomic modules and the Harish-Chandra modules 

The holonomic ^-modules are those that are smooth along a certain 
stratification. Let me introduce one important construction before giving 
the exact definition. Consider the affine locally closed imbedding i : ï c - > X, 
where Y is smooth, and a smooth ^y^-module Ji. Then i*Jt is a coherent 
3^x)-module. Put i{ Jt : = *i**Jt\ we have $ixJt =ili*Jt = M and 
there is a unique morphism <p: i{Ji->i^Ji such that il(<p) ==id^. Denote 
Im 99 by ix*Jt. If M is irreducible, then ix*Ji is the unique irreducible 
submodule of i*Jl (and the unique irreducible quotient of ixJt). In this» 
situation the modules i*Ji, ixJt are called standard modules and iwJt is 
called the irreducible module corresponding to (Y,Ji). 

By definition a ^-module M is holonomic if it has a finite length 
and all of his Jordan-Holder components are of the type constructed 
above. One says that holonomic Ji (on compact X in the twisted case) 
has regular singularities (ES's for short) if all "its components originate 
in bundles with regular singularities at infinity. The basic property of 
holonomic modules is that the corresponding derived category of com-
plexes with holonomic cohomology is stable under the functors of the 
type/1 , /*; if Ji is holonomic, then *Jl is also holonomic. The same applies 
for holonomic ES's. 

Now return to ^-modules. The representation theorists claim that the 
representations that happen in nature are (<$, J5T)-modules for a certain 
(algebraic) subgroup K c. G (cf. [13]). 

Eoughly speaking, a (&, K)-module M is ^-module s.t. the action of 
Lie K may be integrated to an algebraic representation of K. Indeed, 
one simply fixes the algebraic action of K on N with obvious compati-
bility conditions. I t is easy to see that (0 , JT)-modules correspond to 
(3, jKT)-modules on X, i.e., to ^-modules with such an action of K t ha t 
Lie K acts via the imbedding Lie K<=>3. 

To get an interesting theory one needs sufficiently large subgroups K. 
Say that K is admissible if Lie K is transverse to some Borei subalgebra 
or, equivalently, if K acts on X with finitely many orbits. Fix an admissible 
K. I t is easy to see that any coherent (3, if)-module is smooth along the 
orbits of K and is holonomic ES. The irreducible (3, !T)-modules are 
in a 1-1 correspondence by means of the i{* construction, with irreducible 
smooth (@(Y), ÌT)-modules on different JC-orbits Y, and these are defined 
by representations of the stabilizers of points. 

Arrange this to get a classification of irreducible (3), K) (and so of 
(^, J5T))-modules. For any IT-orbit Y put HT:= KnBylKnN e E where 
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y e Y (note that Er does not depend on y e Y); hY : = Liej7F, and thus. 
Er is a product of the torus E°r and the finite abelian group ErIE°y. 

THEOEEM [1], [13]. For % e h*, the irreducible (3X, K)-modules are in 
a 1-1 correspondence with the set of pairs ( Y, rr), where Y is a K-orbil 
on X and xY is the irreducible (h, Er)-module on which h acts by %. If % 
is regular dominant, this is also the classification of irreducible (&', K)~ 
modules with central character &(%).m 

Bemarlcs. (a) We see that the standard and irreducible modules that 
correspond to an orbit Y form dim(Ä/Ap.)-parameter families (integrality 
condition on %lhy). All the standard modules are irreducible for generic 
values of the parameter. If they are irreducible for any value of the par-
ameters (or for some integral one) then Y is a closed orbit — this is the-
case of (generalized) discrete series. Some information on the non-closed 
orbits case will be presented in Section I. (In fact, to work clearly with 
the standard modules one has to suppose that for any orbit its imbedding-' 
into X is affine; this is the case in any example of the next remar]?:.) 

(b) The subgroups K usually considered are the fixed points of in-
volutions of G (this correspond to the Harish-Chandra modules or repre-
sentations of real reductive groups) or either Nx or Bx for certain x e X 
(the representations with highest weights) ; the second case may be reduced 
to the first (the representations of complex reductive groups). Such sub-
groups K are admissible. The standard modules for K = N are just the 
Verma modules and the dual ones; in the Harish-Chandra situation the 
standard modules (and thus the classification) coincide with those Nof 
Langlands. This was proved by Vogan in [12]: he compared the above 
construction with that of Zuckerman (the cohomological parabolic in-
duction). I t would be interesting to use some analysis to compare it 
directly with that of Langlands. I understand that J. Bernstein has been 
working on this subject. 

(c) The standard modules are considered as the simplest from the re-
presentation-theoretic point of view; in particular in Harish-Chandra's 
situation their characters are known. As both the standard and the irre-
ducible modules form bases in the Grothendieck group of (<&, üTJ-modules, 
it is of importance to find the ones in terms of the others. And this is. 
what the Kazhdan-Lusztig algorithm does. 

F . Perverse sheaves 
Now suppose that our ground field is C. Let us describe the topological 
interpretation of holonomic ES ^-modules. In the case of smooth modules. 
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what follows is just the old result of Deligne, which claims that the local 
systems are the same as bundles with integrable connections having 
ES at infinity. 

Let X be a smooth variety and Ji a ^-module. Denote by Q(Jt) 
the analytic de Eham complex of Ji: Q(Jt):~(Jt->Ql®Jt->...), Ji 

<5X 

being placed in degree —dimX This defines the functor Q from the 
derived category of ^-modules to that of sheaves on Xan. Kashiwara 
proved that Q(Jl) has a constructible cohomology for holonomic Jt. 
And, due to Kashiwara, Kawai and Mebkhout, we have the following 
comparison theorem. 

THEOEBM. The functor Q indîices an equivalence between the derived 
category of the complexes of 3x-modules, having a holonomic B8 cohomology, 
und that of the complexes of C-sheaves on X, having a constructible cohomo-
logy. This equivalence transforms * to the Verdier duality, and /#,/* to 
the functors of the same notation from the constructible sheaf theory, m 

Example. Eeturn to the situation from the beginning of Section E; 
suppose that Ji has ES. Then fì(Ji) is the local system, corresponding 
to Jt, placed in degree —dim Y. We have Q(ixJt) = ixQ(Jt), the same 
applies to t*yjbnd Q(ix*Jt) is the Deligne-Goresky-MacPherson complex 
of Q(Jt) on Y, prolonged by 0 o n l \ 7 ([1], [5]). • 

But what about ^-modules themselves? If Jt is a holonomic ES, 
then according to Kashiwara we have the following conditions on Q(Ji): 
dimsuppIP'(ß(«#)) < — i for any i, and the same applies to *Q(Ji). 
Such constructible complexes are called perverse sheaves [3], [4], and^ 
the theorem implies that Q induces the equivalence between the category 
of ^-modules holonomic ES and that of perverse C-sheaves. 

Let me show how to deal with the tdo case. To be brief, consider the 
flag space only. There is a canonical JST-torsor %: X =GIN->X =GjB 
over X ("the base affine space"). The ring n*(Gz) is graded by the weight 
lattice, and we have the corresponding gradation on n*3±. The zero 
component of uz*3% is just 3f, so ^-modules are the same as graded 7t*3±-
modules — and so are ^-modules. This leads to the following perverse 
description of 3)x- and ^-modules. A perverse sheaf & on X is said to 
be monodromic if it is smooth along the fibres of n. For such & one has 
the monodromy representation (along the fibres) of the co-weight lattice 
( = %x(E)) in Aut & [11]. Then the category of (holonomic ES) ^-mod-
ules is equivalent to that of monodromic perverse C-sheaves on X of 
monodromy exp% and ^-modules are monodromic sheaves such that 
every eigenvalue of monodromy is exp%. 
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Bemarlc. The advantage of replacing holonomic modules by perverse 
sheaves is the possibility to use any coefficient ring (e.g., one has the 
örHarish-Chaiidra modules). Since ^-perverse sheaves has an étale 
meaning, this opens the door to arithmetics (certainly, there should be 
an arithmetical crystalline theory of ^-modules, but at a moment one 
has to use constructible sheaves). 

G. Molrvic language: mixed perverse sheaves 
The yoga of motives claims that there should exist a fine category of 
motives over X such that any "natural" perverse sheaf on X or ^ -mod-
ule is a realization of a certain motive. Since the motivic theory has 
not appeared yet, one is forced to use its Z-adic realization — the theory 
of mixed perverse sheaves [3], [4], based on the Weil conjectures 
proved by Deligne [6]. 

Here are a few properties of mixed sheaves. There is an abelian cat-
egory «#mis:ea W °ï mixed perverse sheaves on X, together with canoni-
cal functor from Jij^^^X) to the category Jf(X) of £rperverse sheaves. 
Any mixed perverse sheaf M has a canonical (finite) decreasing weight 
filtration W.(M); any morphism in Jtm\™n is strongly compatible with 
the weight filtration. The object Gr^ (M) is semi-simple, at least in Jt(X). 
There is Verdier's duality functor * on Jl^^^^, compatible with the one 
on Jt(X)\ one has *TFt-(Jf) = W__i(*M). There is also the corresponding 
derived category of mixed sheaves, together with all the standard functors, 
compatible with the one on usual sheaves. 

Thus, in this way we get the category of mixed Harish-Chandra mod-
ules (this category will be non-empty for rational %, but, if that is so, 
then any irreducible module has a mixed structure). 

Problem. Construct this category by representation theoretical means 
(any natural representation should get a mixed structure: and so the 
weight filtration with the properties above). 

I shall mention two applications of this mixed category. The first 
is the Kazhdan-Lusztig algorithm (the starting point of all the things 
above) and the second one is the structure of Jantzen's filtration on 
standard modules. 

H. The Kazhdan-Lusztig algorithm 
What follows is only a very rough exposition of the basic ideas; the al-
gorithm itself may be found in [7], [10] (the Verna modules case) and 
in [12], [13] (the general Harish-Chandra case, due to Vogan)r 

49 — proceedings... 
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Suppose we are given a variety X stratified by strata X§ and also 
a number of irreducible local systems ( = smooth perverse sheaves) 
{Vó} on any X5. Suppose that every i$: X^X is affine, and that irre-
ducible components of any ix(Yß) are isomorphic to some i?x*(Vr). Let 
% be a subgroup of the Grothendieck group of perverse sheaves on X 
generated by {ij&CVj)}. I t has two natural bases: the irreducible one 
{ix*(V)} and the standard one {ix(V)}. The problem is to compute {ix*} 
via {ix} (cf. Section E, Eemark c). 

To do this, suppose that everything has arisen from a mixed situation 
(and so we have {ITmixea? ^mixea? • • •)? a n d that *hä set { 7 } ^ ^ is *-closed. 
Then * acts on 4 8 ^ ^ . We have one extra structure on Wmimi{ — namely 
the weight filtration W.. The space Wj may be defined in terms of stan-
dard bases, as the one generated by all ix(V) such that V is of weight 
< j . Then, if the weight of V is j , then ix*(V) is the unique element of 
%ixea> sncl]L t l i a t h*{V) eWjnxW^ and *i*(7) —*,(7) e W ^ . So to 
compute {%} in terms of {ix} it suffices to know the matrix of * in irbases. 

To find * in the representation-theoretic situation, one uses the action 
of the Hecke algebra (already appearing in the theorem of Section D2 — 
but now we need its mixed variant). The Hecke algebra M* is the fl^^yr 
group related to the stratification of X xX by ö-orbits (and the constant 
sheaves). The multiplication on ^f is the multiplication of correspondences. 
This algebra — the mixed variant of the group algebra of the Weyl 
group — may be given explicitly by generators and relations, and the * 
operator on jtf is given by compatibility with multiplication and by 
an explicit formula on generators [7], [8]. Let us return to Harish-Chandra's 
modules. The Hecke algebra acts on the corresponding Wmiima group? 
and the * operator on Vmima is more or less determined by compatibility 
with this action and by the claim that ix(V) = % ( 7 ) for closed orbits 
[9], [12]. 

I . The Jantzen's filtration 

This filtration shows how the standard representations become reducible 
under the specialization of parameters. 

Eeturn to the situation of Section E. Fix an orbit Y, the character 
% e Ä*, integral with respect to Y, and the (h, JTF)-module r of the theorem 
quoted there. We have the corresponding standard modifies ix(r), i*(r) 
and the canonical morphism ìX(T)->ì*(T), whose image is the irreducible 
%(r) . Now we may vary r in the family having (flhr)* + r a /* as par-
ameters (see Eemark (a) of Section E) to obtain the corresponding 3X-
modules ix(r) and i*(r) together with the morphism ix(r)-^û(r). 
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From now on we suppose that Lie K = @a for certain involution a 
of CS (see Eemark (b) of Section E ; the case K = Nx is even simpler). 
Let Ö be the intersection of (flhY)* with the positive cone of rational 
characters. If Y is not closed, then Ö is non-zero. Choose <p in the open 
cone 0° and consider the one-parameter subfamily rv of % that depends 
on % + tcp. One knows that i\{T9)-+i*(r9) is an injection whose cokernel 
i*lh(rq>) i s 0:C finite length. 

Define the filtration If*> on **(T)/*1I|C(T) = ì * / * I ( ^ ) / ^ * / ì ! ( T ) ( ^ ) by the 
formula jW : = [Ker(*ft eBnd (<*(Tv)/<te(rv))]modt; this defines the fil-
tration jW on £*(T) such that 4v) = V(T)-

This is Jantzen's filtration. 

Bernard. One may show, that the standard ^-module ix(r) is the 
IT-finite dual to a certain i*(r')) so Jantzen's filtration may be defined 
in terms of a "contra vari ant form". 

THEOREM. The filtration 1^ coincides, up to a shift, with the weight 
filtration on the mixed perverse sheaf i*(r). H 

COEOLLAEY. The filtration IW does not depend on the choice of y e ö°. 
The module giV»(**(T)) is a direct sum of irreducible ones. The multiplicities 
in terms of Jantzen*s filtration are given by the Kazhdaiir-Lusztig-Yogan 
algorithm. • 

To prove the theorem one has to identify the module i*li\+(Tv) with 
certain sheaf of vanishing cycles, and then to use Gabber's purity 
theorem for vanishing cycles. 

The theorem above, due to J. Bernstein and the present author, was 
conjectured (in the Verma modules ease) by Brylinski ; the corresponding 
numerical statement is the generalized Kazhdan-Lusztig conjecture of 
Gabber-Joseph and S. Gelfand-MacPherson. 
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