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Abstract. We prove that an algebraic stack, locally of finite presentation and

quasi-separated over a quasi-separated algebraic space with affine stabilizers,
is étale locally a quotient stack around any point with a linearly reductive

stabilizer. This result generalizes the main result of [AHR19] to the relative

setting and the main result of [AOV11] to the case of non-finite inertia. We
also provide various coherent completeness and effectivity results for algebraic

stacks as well as structure theorems for linearly reductive groups schemes. Fi-

nally, we provide several applications of these results including generalizations
of Sumihiro’s theorem on torus actions and Luna’s étale slice theorem to the

relative setting.
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1. Introduction

1.1. A local structure theorem. One of the main theorems in this paper provides
a local description of many algebraic stacks:

Theorem 1.1 (Local structure). Suppose that:

• S is a quasi-separated algebraic space;
• X is an algebraic stack, locally of finite presentation and quasi-separated

over S, with affine stabilizers;
• x ∈ |X| is a point with residual gerbe Gx and image s ∈ |S| such that the

residue field extension κ(x)/κ(s) is finite; and
• h0 : W0 → Gx is a smooth (resp., étale) morphism where W0 is a gerbe over

the spectrum of a field and has linearly reductive stabilizer.

Then there exists a cartesian diagram of algebraic stacks

Gw = W0
h0 //

��

Gx

��
[SpecA/GLn] = W

h // X

where h : (W, w) → (X, x) is a smooth (resp., étale) pointed morphism and w is
closed in its fiber over s. Moreover, if X has separated (resp., affine) diagonal and
h0 is representable, then h can be arranged to be representable (resp., affine).

Remark 1.2. In the case that X has finite inertia and h0 is an isomorphism, this
theorem had been established in [AOV11, Thm. 3.2].

In Corollary 17.4, we provide more refined descriptions of the stack W in terms of
properties of the gerbe W0. For example, (a) if W0 is affine over a linearly reductive
gerbe G0, then W is affine over a gerbe G extending G0, and (b) if W0

∼= [SpecB/G0]
where G0 → Specκ(w) is a linearly reductive group scheme, then there exists
a smooth (resp. étale if κ(x)/κ(s) is separable) morphism (S′, s′) → (S, s) with
κ(s′) = κ(w) such that W ∼= [SpecC/G] where G→ S′ is a geometrically reductive
group scheme with Gs′ ∼= G0. Moreover, except in bad mixed characteristic situa-
tions, the gerbe G in (a) and the group scheme G→ S′ in (b) are linearly reductive,
and the adequate moduli space W → SpecAGLN is a good moduli space. Over a
field, with h0 an isomorphism, the theorem takes the following form:

Theorem 1.3. Let X be a quasi-separated algebraic stack which is locally of finite
type over a field k with affine stabilizers. Let x ∈ |X| be a point with linearly
reductive stabilizer such that its residue field κ(x) is finite over k. Then there exists
an algebraic stack W affine over the residual gerbe Gx of x, a point w ∈ |W|, and
an étale morphism h : (W, w)→ (X, x) inducing an isomorphism of residual gerbes
at w. Moreover, if X has separated (resp., affine) diagonal, then h can be arranged
to be representable (resp., affine).

Remark 1.4. If x ∈ |X| is a k-point, then the residual gerbe Gx is neutral and the
theorem gives an étale morphism h : ([SpecA/Gx], w) → X inducing an isomor-
phism of stabilizer groups at w. This had been established in [AHR19, Thm. 1.1]
in the case that k is algebraically closed.

The proof of Theorem 1.1 is given in Section 12 and follows the same general
strategy as the proof of [AHR19, Thm. 1.1]:

(1) We begin by constructing smooth infinitesimal deformations hn : Wn → Xn
where Xn is the nth infinitesimal neighborhood of Gx in X. This follows by
standard infinitesimal deformation theory.
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(2) We show that the system Wn effectivizes to a coherently complete stack Ŵ.
This is Theorem 1.10.

(3) Tannaka duality [HR19] (see also §1.7.6) then gives us a unique formally

smooth morphism ĥ : Ŵ→ X.
(4) Finally we apply equivariant Artin algebraization [AHR19, App. A] to ap-

proximate ĥ with a smooth morphism h : W→ X.

Steps (3) and (4) are satisfactorily dealt with in [HR19] and [AHR19]. Step (2) is
the main technical result of this paper. Theorem 1.10 is far more general than the
related results in [AHR19]—even over an algebraically closed field. Steps (1)–(3)
are summarized in Theorem 1.11.

The equivariant Artin algebraization results established in [AHR19, App. A] are
only valid when W0 is a gerbe over a point and the morphism W0 → Gx is smooth.
In future work with Halpern-Leistner [AHHR], we will remove these restrictions
and also replace Gx with other substacks. With these results, we can also remove
the assumption that κ(x)/κ(s) is finite in Theorem 1.1.

1.2. Coherent completeness. The following definition first appeared in [AHR19,
Defn. 2.1].

Definition 1.5. Let Z ⊆ X be a closed immersion of noetherian algebraic stacks.
We say that the pair (X,Z) is coherently complete (or X is coherently complete along
Z) if the natural functor

Coh(X)→ lim←−
n

Coh(X
[n]
Z ),

from the abelian category of coherent sheaves on X to the category of projective

systems of coherent sheaves on the nth nilpotent thickenings X
[n]
Z of Z ⊆ X, is an

equivalence of categories.

The following statement was an essential ingredient in all of the main results
of [AHR19]: if A is a noetherian k-algebra, where k is a field, and G is a linearly
reductive affine group scheme over k acting on SpecA such that there is a k-point
fixed by G and the ring of invariants AG is a complete local ring, then the quotient
stack [SpecA/G] is coherently complete along the residual gerbe of its unique closed
point [AHR19, Thm. 1.3]. For further examples of coherent completeness, see §3.3.

In this article, coherent completeness also features prominently and we need to
generalize [AHR19, Thm. 1.3]. To this end, we establish the following theorem
where we do not assume a priori that X has the resolution property, only that the
closed substack Z does.

Theorem 1.6 (Coherent completeness). Let X be a noetherian algebraic stack
with affine diagonal and good moduli space π : X → X = SpecA. Let Z ⊆ X be
a closed substack defined by a coherent ideal I. Let I = Γ(X, I). If Z has the
resolution property, then X is coherently complete along Z if and only if A is I-
adically complete. If this is the case, then X has the resolution property.

An important special case of this theorem is established in Section 5, and the
proof is finished in Section 10. The difference between the statement above and
formal GAGA for good moduli space morphisms is that the statement above asserts
that X is coherently complete along Z and not merely along π−1(π(Z)). Indeed, as
a consequence of this theorem, we can easily deduce the following version of formal
GAGA (Corollary 1.7), which had been established in [GZB15, Thm. 1.1] with the
additional hypotheses that X has the resolution property and I is maximal, and in
[AHR19, Cor. 4.14] in the case that X is defined over a field and I is maximal.
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Corollary 1.7 (Formal GAGA). Let X be a noetherian algebraic stack with affine
diagonal. Suppose there exists a good moduli space π : X → SpecR, where R is
noetherian and I-adically complete. Suppose that either

(1) I ⊆ R is a maximal ideal; or
(2) X×SpecR Spec(R/I) has the resolution property.

Then X has the resolution property and the natural functor

Coh(X)→ lim←−Coh
(
X×SpecR Spec(R/In+1)

)
is an equivalence of categories.

1.3. Effectivity. The key method to prove many of the results in this paper is
an effectivity result for algebraic stacks. This is similar in spirit to Grothendieck’s
result on algebraization of formal schemes [EGA, III.5.4.5].

Definition 1.8. A diagram

X0 ↪→ X1 ↪→ . . .

is called an adic sequence if for each i ≤ j there are compatible closed immersions
of noetherian algebraic stacks uij : Xi ↪→ Xj such that if I(j) denotes the coherent

sheaf of ideals defining u0j , then Ii+1
(j) defines uij .

The sequence of infinitesimal thickenings of a closed substack of a noetherian
algebraic stack is adic.

Definition 1.9. Let {Xn}n≥0 be an adic sequence of algebraic stacks. An algebraic

stack X̂ is a completion of {Xn} if

(1) there are compatible closed immersions Xn ↪→ X̂ for all n;

(2) X̂ is noetherian with affine diagonal; and

(3) X̂ is coherently complete along X0.

By Tannaka duality (see §1.7.6), the completion is unique if it exists. Moreover,
Tannaka duality implies that if the completion exists, then it is the colimit of
{Xn}n≥0 in the category of noetherian stacks with quasi-affine diagonal (and in the
category of algebraic stacks with affine stabilizers if X0 is excellent).

The following result, which has no precursor for stacks, is our main effectivity
theorem. The reader is directed to Definition 2.7 for the definition of linearly
fundamental stacks.

Theorem 1.10 (Effectivity). Let {Xn}n≥0 be an adic sequence of noetherian al-

gebraic stacks. If X0 is linearly fundamental, then the completion X̂ exists and is
linearly fundamental.

We prove Theorem 1.10 in three stages of increasing generality. The case of
characteristic zero is reasonably straightforward, being dealt with in Section 6.
The case of positive and mixed characteristic requires a short detour on group
schemes (Section 7). When X0 is a gerbe over a field, we establish Theorem 1.10 in
Corollary 8.2. This is sufficient for Theorems 1.1 and 1.3. We prove Theorem 1.10
in Section 10, and then use it in Section 11 to establish the existence of formally
smooth neighborhoods and completions.

Theorem 1.11 (Formal neighborhoods). Let X be noetherian algebraic stack and
X0 ⊆ X be a locally closed substack. Let h0 : W0 → X0 be a syntomic (e.g., smooth)
morphism. Assume that W0 is linearly fundamental and that its good moduli space
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is quasi-excellent. Then there is a cartesian diagram

W0

h0

��

// Ŵ

h

��
X0

// X,

where h : Ŵ → X is flat and Ŵ is noetherian, linearly fundamental and coherently
complete along W0.

Theorem 1.12 (Existence of completions). Let X be a noetherian algebraic stack
with affine stabilizers. For any point x ∈ |X| with linearly reductive stabilizer, the
completion of X at x exists and is linearly fundamental.

In fact, both theorems above are proven more generally for pro-immersions (The-
orem 11.1 and Theorem 11.2).

1.4. The structure of linearly reductive affine group schemes. We prove
that every linearly reductive group scheme G → S is étale-locally embeddable
(Corollary 13.2) and canonically an extension of a finite flat tame group scheme by a
smooth linearly reductive group scheme with connected fibers G0

sm (Theorem 18.9).
If S is of equal characteristic, then G is canonically an extension of a finite étale
tame group scheme by a linearly reductive group scheme G0 with connected fibers.
In equal positive characteristic, G0 is of multiplicative type and we say that G is
nice.

We also prove that if (S, s) is henselian and Gs → Specκ(s) is linearly reductive,
then there exists an embeddable linearly reductive group scheme G→ S extending
Gs (Proposition 16.8).

1.5. Applications. In the course of establishing the results above, we prove several
foundational results of independent interest. For instance, we prove that adequate
moduli spaces are universal for maps to algebraic spaces (Theorem 3.12) and estab-
lish Luna’s fundamental lemma for adequate moduli spaces (Theorem 3.14). We
also prove that an adequate moduli space X → X, where the closed points of X

have linearly reductive stabilizers, is necessarily a good moduli space (Theorem 9.3
and Corollary 13.11). We have also resolved the issue (see [AHR19, Question 1.10])
of representability of the local quotient presentation in the presence of a separated
diagonal (Proposition 12.5(2)).

In Sections 13, 14, 19 and 20 we establish the following consequences of our
results and methods.

(1) We provide the following refinement of Theorem 1.1: if X admits a good
moduli space X, then étale-locally on X, X is of the form [SpecA/GLn]
(Theorem 13.1).

(2) We prove that a good moduli space X→ X necessarily has affine diagonal
as long as X has separated diagonal and affine stabilizers (Theorem 13.1).

(3) We prove compact generation of the derived category of an algebraic stack
admitting a good moduli space (Proposition 14.1).

(4) We prove algebraicity results for stacks parameterizing coherent sheaves
(Theorem 14.6), Quot schemes (Corollary 14.7), and Hom stacks (Theo-
rem 14.9).

(5) We provide generalizations of Sumihiro’s theorem on torus actions (Theo-
rem 19.1 and Corollary 19.2).

(6) We prove a relative version of Luna’s étale slice theorem (Theorem 19.4).
(7) We prove the existence of henselizations of algebraic stacks at points with

linearly reductive stabilizer (Theorem 20.3).
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(8) We prove that two algebraic stacks are étale locally isomorphic near points
with linearly reductive stabilizers if and only if they have isomorphic henseliza-
tions or completions (Theorem 20.5).

Finally, Theorem 1.1 and its refinements are fundamental ingredients in the re-
cent preprint of the first author with Halpern-Leistner and Heinloth on establishing
necessary and sufficient conditions for an algebraic stack to admit a good moduli
space [AHH18].

1.6. Roadmap. This paper is naturally divided into five parts:

(I) Sections 1 to 3 consist of the introduction and basic setup. We provide
definitions and properties of reductive group schemes, fundamental stacks
and local, henselian and coherently complete pairs. Section 3 ends with two
applications—universality of adequate moduli spaces (Theorem 3.12) and
Luna’s fundamental lemma for adequate moduli spaces (Theorem 3.14).

(II) Sections 4 to 12 contain most of the central theorems of this paper: formal
functions for good moduli spaces (Corollary 4.2), coherent completeness for
good moduli spaces (Theorem 1.6 established in Section 10 with the prelim-
inary version Proposition 5.1), effectivity of adic sequences (Theorem 1.10
established in increasing generality in Sections 6, 8 and 10), the existence
of formal neighborhoods (Theorem 1.11 established in Section 11), and the
local structure theorem (Theorem 1.1 established in Section 12).

(III) Sections 13 and 14 contain our first applications of the local structure the-
orem: the resolution property holds étale locally on a good moduli space
(Theorem 13.1), compact generation of the derived category of stacks ad-
mitting a good moduli space (Proposition 14.1) and algebraicity results
(Theorem 14.6, Corollary 14.7, and Theorem 14.9).

(IV) Sections 15 to 17 contain technical results on approximation of linearly fun-
damental stacks (Theorem 15.3) and good moduli spaces (Corollary 15.5)
and various results on deforming objects over henselian pairs in Section 16
which allow us to provide refinements of Theorem 1.1 in Corollary 17.4.

(V) Sections 18 to 20 contain our final applications: structure results of linearly
reductive group schemes (Theorem 18.9), our generalizations of Sumihiro’s
theorem on torus actions (Theorem 19.1 and Corollary 19.2), a relative ver-
sion of Luna’s slice theorem (Theorem 19.4) and the existence of henseliza-
tions (Theorem 20.3).

1.7. Notation and conventions.

1.7.1. If X is a locally noetherian algebraic stack, we let Coh(X) be the abelian
category of coherent OX-modules.

1.7.2. If X is a locally noetherian algebraic stack and Z ⊆ X is a closed substack,

we denote by X
[n]
Z the nth order thickening of Z in X (i.e. if Z is defined by a sheaf

of ideals I, then X
[n]
Z is defined by In+1). If i : Z→ X denotes the closed immersion,

then we write i[n] : X
[n]
Z → X for the nth order thickening of i.

1.7.3. Throughout this paper, we use the concepts of cohomologically affine mor-
phisms and adequately affine morphisms slightly modified from the original defi-
nitions of [Alp13, Defn. 3.1] and [Alp14, Defn. 4.1.1]: a quasi-compact and quasi-
separated morphism f : X → Y of algebraic stacks is cohomologically affine (resp.
adequately affine) if (1) f∗ is exact on the category of quasi-coherent OX-modules
(resp. if for every surjection A→ B of quasi-coherent OX-algebras, then any section
s of f∗(B) over a smooth morphism SpecA → Y has a positive power that lifts to
a section of f∗(A)), and (2) this property is stable under arbitrary base change. In
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[Alp13, Defn. 3.1] and [Alp14, Defn. 4.1.1], condition (2) was not required. If Y has
quasi-affine diagonal (e.g., Y is a quasi-separated algebraic space), then (2) holds
automatically ([Alp13, Prop. 3.10(vii)] and [Alp14, Prop. 4.2.1(6)].

1.7.4. We also use throughout the concepts of good moduli spaces [Alp13, Defn.
4.1] and adequate moduli spaces [Alp14, Defn. 5.1.1]: a quasi-compact and quasi-
separated morphism π : X→ X of algebraic stacks, where X is an algebraic space,
is a good moduli space (resp. an adequate moduli space) if π is cohomologically affine
(resp. adequately affine) and OX → π∗OX is an isomorphism.

1.7.5. See Definition 2.1 for our terminology regarding group schemes. In par-
ticular, we assume that linearly and geometrically reductive group schemes are
necessarily affine (even though this was not the convention in [Alp13, Defn. 12.1]
and [Alp14, Defn. 9.1.1]). See also Remark 2.6.

1.7.6. We freely use the following form of Tannaka duality, which was established
in [HR19]. Let X be a noetherian algebraic stack with affine stabilizers and let
Z ⊆ X be a closed substack such that X is coherently complete along Z. Let Y be
a noetherian algebraic stack with affine stabilizers. Suppose that either

(1) X is locally the spectrum of a G-ring (e.g., quasi-excellent), or
(2) Y has quasi-affine diagonal.

Then the natural functor

Hom(X,Y)→ lim←−
n

Hom
(
X

[n]
Z ,Y

)
is an equivalence of categories. This statement follows directly from [HR19, Thms. 1.1
and 8.4]; cf. the proof of [AHR19, Cor. 2.8].

1.7.7. An algebraic stack X is said to have the resolution property if every quasi-
coherent OX-module of finite type is a quotient of a locally free sheaf. By the main
theorems of [Tot04] and [Gro17], a quasi-compact and quasi-separated algebraic
stack is isomorphic to [U/GLN ], where U is a quasi-affine scheme and N is a
positive integer, if and only if the closed points of X have affine stabilizers and X

has the resolution property. Note that when this is the case, X has affine diagonal.

1.8. Acknowledgements. We thank Daniel Halpern-Leistner for useful conversa-
tions. During the preparation of this paper, the first author was partially supported
by the Australian Research Council (DE140101519) and National Science Founda-
tion (DMS-1801976), the second author was partially supported by the Australian
Research Council (DE150101799), and the third author was partially supported by
the Swedish Research Council (2015-05554). This collaboration was also supported
by the the Göran Gustafsson Foundation.

2. Reductive group schemes and fundamental stacks

In this section, we recall various notions of reductivity for group schemes (Defi-
nition 2.1) and introduce certain classes of algebraic stacks that we will refer to as
fundamental, linearly fundamental, and nicely fundamental (Definition 2.7). The
reader may prefer to skip this section and only refer back to it after encountering
these notions. In particular, nice group schemes and nicely fundamental stacks do
not make an appearance until Section 7 and Section 8, respectively. We also recall
various relations between these notions. Besides some approximation results at the
end, this section is largely expository.
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2.1. Reductive group schemes.

Definition 2.1. Let G be a group algebraic space which is affine, flat and of finite
presentation over an algebraic space S. We say that G→ S is

(1) embeddable if G is a closed subgroup of GL(E) for a vector bundle E on S;
(2) linearly reductive if BG→ S is cohomologically affine [Alp13, Defn. 12.1];
(3) geometrically reductive if BG→ S is adequately affine [Alp14, Defn. 9.1.1];
(4) reductive if G→ S is smooth with reductive and connected geometric fibers

[SGA3III, Exp. XIX, Defn. 2.7]; and
(5) nice if there is an open and closed normal subgroup G0 ⊆ G that is of

multiplicative type over S such that H = G/G0 is finite and locally constant
over S and |H| is invertible on S.

Linearly reductive group schemes are the focus of this paper, but we need to
consider geometrically reductive and nice group schemes for the following two rea-
sons.

• In positive characteristic GLn is geometrically reductive but not linearly
reductive.

• A linearly reductive group scheme G0 defined over the residue field κ(s)
of a point s in a scheme S deforms to a linearly reductive group scheme
over the henselization at s (Proposition 16.8) but in general only deforms
to a geometrically reductive group scheme over an étale neighborhood of s
(see Remark 2.4). The reason is that the functor parameterizing linearly
reductive group schemes is not limit preserving in mixed characteristic (see
Remark 2.16).

Remark 2.2 (Relations between the notions). We have the implications:

nice =⇒ linearly reductive =⇒ geometrically reductive⇐= reductive.

The first implication follows since a nice group algebraic space G is an extension
of the linearly reductive groups G0 and H, and is thus linearly reductive [Alp13,
Prop. 2.17]. The second implication is immediate from the definitions, and is re-
versible in characteristic 0 [Alp14, Rem. 9.1.3]. The third implication is Seshadri’s
generalization [Ses77] of Haboush’s theorem, and is reversible if G → S is smooth
with geometrically connected fibers [Alp14, Thm. 9.7.5]. If k is a field of char-
acteristic p, then GLn is reductive over k but not linearly reductive, and a finite
non-reduced group scheme (e.g., αp) is geometrically reductive but not reductive.

Remark 2.3 (Positive characteristic). The notion of niceness is particularly useful
in positive characteristic and was introduced in [HR15, Defn. 1.1] for affine group
schemes over a field k. If k is a field of characteristic p, an affine group scheme G of
finite type over k is nice if and only if the connected component of the identity G0

is of multiplicative type and p does not divide the number of geometric components
of G. In this case, by Nagata’s theorem [Nag62] and its generalization to the non-
smooth case (cf. [HR15, Thm. 1.2]), G is nice if and only if it is linearly reductive;
moreover, this is also true over a base of equal characteristic p (Theorem 18.9). In
mixed characteristic, we prove that every linearly reductive group scheme G → S
is canonically an extension of a finite tame linearly reductive group scheme by a
smooth linearly reductive group scheme (Theorem 18.9), and that G → S is nice
étale-locally around any point of characteristic p (Corollary 13.6).

Remark 2.4 (Mixed characteristic). Consider a scheme S, a point s ∈ S and a
linearly reductive group scheme G0 over κ(s). If G0 is nice (e.g., if s has positive
characteristic), then it deforms to a nice group scheme G′ → S′ over an étale
neighborhood S′ → S of s (Proposition 7.1). If s has characteristic 0 but there
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is no open neighborhood of s ∈ S defined in characteristic 01 then G0 need not
deform to a linearly reductive group scheme G → S′ over an étale neighborhood
S′ → S of s. For example, take G0 = GL2,κ(s). However, G0 does deform to a
geometrically reductive embeddable group scheme over an étale neighborhood of s
(Proposition 16.8 and Lemma 2.12).

Remark 2.5 (Embeddability and geometric reductivity). Any affine group scheme of
finite type over a field is embeddable. It is not known to which extent general affine
group schemes are embeddable—even over the dual numbers [Con10]. Thomason
proved that certain reductive group schemes are embeddable [Tho87, Cor. 3.2]; in
particular, if S is a normal, quasi-projective scheme, then every reductive group
scheme G → S is embeddable. There is an example [SGA3II, Exp. X,§1.6] of a
2-dimensional torus over the nodal cubic curve that is not locally isotrivial and
hence not Zariski-locally embeddable. We will eventually show that every linearly
reductive group scheme G → S is embeddable if S is a normal quasi-projective
scheme (Corollary 18.10) and always étale-locally embeddable (Corollary 13.2).

If G is a closed subgroup of GL(E) for a vector bundle E on an algebraic space S,
then a generalization of Matsushima’s Theorem asserts that G→ S is geometrically
reductive if and only if the quotient GL(E)/G is affine [Alp14, Thm. 9.4.1].

If S is affine and G → S is embeddable and geometrically reductive, then
any quotient stack X = [SpecA/G] has the resolution property. Indeed, if G
is a closed subgroup of GL(E) for some vector bundle E of rank n on S, then
the (GL(E),GLn,S)-bitorsor IsomOS (E,OnS) induces an isomorphism BSGL(E) ∼=
BSGLn, and the composition X = [SpecA/G] → BSG → BSGL(E) ∼= BSGLn is
affine, that is X ∼= [SpecB/GLn,S ]. By [Gro17, Thm. 1.1], X has the resolution
property.

Remark 2.6 (Affineness). In contrast to [Alp13], we have only defined linear re-
ductivity for affine group schemes G → S. We will however prove that if G → S
is a separated, flat group scheme of finite presentation with (affine) linearly re-
ductive fibers, then G → S is necessarily quasi-affine. If in addition BG → S is
cohomologically affine, then G→ S is affine (Theorem 18.9).

2.2. Fundamental stacks. In [AHR19], we dealt with stacks of the form [SpecA/G]
where G is a linearly reductive group scheme over a field k. In this paper, we are
working over an arbitrary base and it will be convenient to introduce the following
classes of quotient stacks.

Definition 2.7. Let X be an algebraic stack. We say that X is:

(1) fundamental if X admits an affine morphism to BGLn,Z for some n, i.e. if
X = [U/GLn,Z] for an affine scheme U ;

(2) linearly fundamental if X is fundamental and cohomologically affine; and
(3) nicely fundamental if X admits an affine morphism to BSQ, where Q is a

nice and embeddable group scheme over some affine scheme S.

Remark 2.8 (Relations between the notions). We have the obvious implications:

nicely fundamental =⇒ linearly fundamental =⇒ fundamental

If X is fundamental (resp. linearly fundamental), then X admits an adequate (resp.
good) moduli space: Spec Γ(X,OX).

1This can happen even if s ∈ S is a closed point. For instance, let R be the localization Σ−1Z[x]
where Σ is the multiplicative set generated by the elements p+x as p ranges over all primes. Then

S = SpecR is a noetherian and excellent integral scheme, and s = (x) ∈ S is a closed point with
residue field Q which has no characteristic 0 neighborhood. Also see Appendix A.1.
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In characteristic 0, an algebraic stack is linearly fundamental if and only if it
is fundamental. We will show that in positive equicharacteristic, a linearly funda-
mental stack is nicely fundamental étale-locally over its good moduli space (Corol-
lary 13.6 and Lemma 2.15).

The additional condition of a fundamental stack to be linearly fundamental is
that X ∼= [SpecB/GLN ] is cohomologically affine, which means that the adequate
moduli space X → SpecBGLn is a good moduli space. We will show that this
happens precisely when the stabilizer of every closed point is linearly reductive
(Corollary 13.7).

Remark 2.9 (Equivalences I). If G is a group scheme which is affine, flat and of
finite presentation over an affine scheme S, then G→ S is geometrically reductive
(resp. linearly reductive, resp. nice) and embeddable if and only if BSG is funda-
mental (resp. linearly fundamental, resp. nicely fundamental). This follows from
Remark 2.5 and the definitions for geometrically reductive and linearly reductive
and an easy additional argument for the nicely fundamental case.

By definition, a fundamental (resp. nicely fundamental) stack is of the form
[U/G], where S is an affine scheme, G→ S is a geometrically reductive (resp. nice)
and embeddable group scheme, and U → S is affine; for fundamental, we may even
take G = GLn,S . Note that we may replace S with the adequate moduli space
U//G.

The definition of linearly fundamental is not analogous. If G is a linearly reduc-
tive and embeddable group scheme over an affine scheme S and U → S is affine,
then [U/G] is linearly fundamental. The converse, that every linearly fundamental
stack X is of the form [U/G], is not true; see Appendix A.1. We will, however, show
that under mild mixed characteristic hypotheses every linearly fundamental stack
over S is, étale-locally over its good moduli space, of the form [U/G] with G → S
linearly reductive and embeddable, and U → S affine (Corollary 13.5).

Remark 2.10 (Equivalences II). An algebraic stack X is a global quotient stack if
X ∼= [U/GLn], where U is an algebraic space. Since adequately affine and repre-
sentable morphisms are necessarily affine ([Alp14, Thm. 4.3.1]), we have the fol-
lowing equivalences for a quasi-compact and quasi-separated algebraic stack X:

fundamental ⇐⇒ adequately affine and a global quotient

linearly fundamental ⇐⇒ cohomologically affine and a global quotient

Remark 2.11 (Positive characteristic). Let G be a gerbe over a field k of character-
istic p > 0. If G is cohomologically affine, then it is nicely fundamental. Indeed,
since G → Spec k is smooth, there is a finite separable extension k ⊆ k′ that neu-
tralizes the gerbe. Hence, Gk′ ∼= BQ′, for some linearly reductive group scheme
Q′ over k′. By Remark 2.3, Q′ is nice. Let Q be the Weil restriction of Q′ along
Spec k′ → Spec k; then Q is nice and there is an induced affine morphism G→ BQ.

2.3. Approximation. Here we prove that the property of a stack being fundamen-
tal or nicely fundamental, or the property of an embeddable group scheme being
geometrically reductive or nice, can be approximated. These results will be used to
reduce from the situation of a complete local ring to an excellent henselian local ring
(via Artin approximation), from a henselian local ring to an étale neighborhood,
and from (non-)noetherian rings to excellent rings.

Lemma 2.12. Let {Sλ}λ∈Λ be an inverse system of quasi-compact and quasi-
separated algebraic spaces with affine transition maps and limit S. Let λ0 ∈ Λ and
let Gλ0

→ Sλ0
be a flat group algebraic space of finite presentation. For λ ≥ λ0, let

Gλ be the pullback of Gλ0 along Sλ → Sλ0 and let G be the pullback of Gλ0 along
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S → Sλ0
. If G is geometrically reductive (resp. nice) and embeddable over S, then

Gλ is geometrically reductive (resp. nice) and embeddable over Sλ for all λ� λ0.

Proof. Let E be a vector bundle on S and let G ↪→ GL(E) be a closed embedding.
By standard limit methods, there exists a vector bundle Eλ on Sλ and a closed
embedding Gλ ↪→ GL(Eλ) for all sufficiently large λ. If G is geometrically reductive,
then GL(E)/G is affine and so is GL(Eλ)/Gλ for all sufficiently large λ; hence Gλ
is geometrically reductive (Remark 2.5).

If G0 ⊆ G is an open and closed normal subgroup as in the definition of a nice
group scheme, then by standard limit methods, we can find an open and closed
normal subgroup G0

λ ⊆ Gλ for all sufficiently large λ satisfying the conditions in
the definition of nice group schemes. �

Lemma 2.13. An algebraic stack X is nicely fundamental if and only if there exists
an affine scheme S of finite presentation over SpecZ, a nice and embeddable group
scheme Q→ S and an affine morphism X→ BSQ.

Proof. The condition is sufficient by definition and the necessity is Lemma 2.12. �

Lemma 2.14. Let X be a fundamental (resp. a nicely fundamental) stack. Then
there exists an inverse system of fundamental (resp. nicely fundamental) stacks Xλ
of finite type over SpecZ with affine transition maps such that X = lim←−λ Xλ.

Proof. If X is fundamental, then we have an affine morphism X → BGLn,Z and
can thus write X = lim←−λ Xλ where Xλ → BGLn,Z are affine and of finite type.

Indeed, every quasi-coherent sheaf on the noetherian stack BGLn,Z is a union of
its finitely generated subsheaves [LMB, Prop. 15.4]. If X is nicely fundamental, we
argue analogously with BSQ of Lemma 2.13 instead of BGLn,Z. �

If X → X and Xλ → Xλ denote the corresponding adequate moduli spaces,
then in general X → Xλ ×Xλ X is not an isomorphism. It is, however, true that
X = lim←−λXλ (see Lemma 2.15 below). If X → X is of finite presentation and

Xλ is linearly fundamental for sufficiently large λ, then one can also arrange that
X→ Xλ ×Xλ X is an isomorphism.

Lemma 2.15. Let X = lim←−λ Xλ be an inverse limit of quasi-compact and quasi-

separated algebraic stacks with affine transition maps.

(1) If X is fundamental (resp. nicely fundamental), then so is Xλ for all suffi-
ciently large λ.

(2) If X→ X and Xλ → Xλ are adequate moduli spaces, then X = lim←−λXλ.

(3) Let x ∈ |X| be a point with image xλ ∈ |Xλ|. If Gx (resp. {x}) is nicely

fundamental, then so is Gxλ (resp. {xλ}) for all sufficiently large λ.

Proof. For the first statement, let Y = BGLn,Z (resp. Y = BSQ for Q as in
Lemma 2.13). Then there is an affine morphism X → Y and hence an affine mor-
phism Xλ → Y for all sufficiently large λ [Ryd15, Prop. B.1, Thm. C].

The second statement follows directly from the following two facts (a) push-
forward of quasi-coherent sheaves along πλ : Xλ → Xλ preserves filtered colimits
and (b) if A is a quasi-coherent sheaf of algebras, then the adequate moduli space
of SpecXλ A is SpecXλ(πλ)∗A.

The third statement follows from the first by noting that Gx = lim←−λ Gxλ and

Gx = lim←−λ Gxλ . �

Remark 2.16. The analogous statements of Lemma 2.12 (resp. Lemma 2.15) for lin-
early reductive and embeddable group schemes (resp. linearly fundamental stacks)
are false in mixed characteristic. Indeed, GL2,Q = lim←−m GL2,Z[ 1

m ] and GL2,Q is
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linearly reductive but GL2,Z[ 1
m ] is never linearly reductive. Likewise, BGL2,Q is

linearly fundamental but BGL2,Z[ 1
m ] is never linearly fundamental.

The analogue of Lemma 2.14 for linearly fundamental stacks holds in equal
characteristic and in certain mixed characteristics (Corollary 15.4) but not always
(Appendix A).

3. Local, henselian, and coherently complete pairs

In this section, we define local, henselian and coherently complete pairs. We also
state a general version of Artin approximation (Theorem 3.4) and establish some
basic properties.

3.1. Preliminaries.

Definition 3.1. Fix a closed immersion of algebraic stacks Z ⊆ X. The pair (X,Z)
is said to be

(1) local if every non-empty closed subset of |X| intersects |Z| non-trivially;
(2) henselian if for every finite morphism X′ → X, the restriction map

(3.1) ClOpen(X′)→ ClOpen(Z×X X′),

is bijective, where ClOpen(X) denotes the set of closed and open substacks
of X [EGA, IV.18.5.5]; and

(3) coherently complete if X is noetherian and the functor

Coh(X)→ lim←−
n

Coh(X
[n]
Z )

is an equivalence of abelian categories, where X
[n]
Z denotes the nth nilpotent

thickening of Z in X.

In addition, we call a pair (X,Z) affine if X is affine and an affine pair (X,Z)
(quasi-)excellent if X is (quasi-)excellent. Occasionally, we will also say X is local,
henselian, or coherently complete along Z if the pair (X,Z) has the corresponding
property.

Remark 3.2. For a pair (X,Z), we have the following sequence of implications:

coherently complete =⇒ henselian =⇒ local.

The second implication is trivial: if W ⊆ X is a closed substack, then ClOpen(W)→
ClOpen(Z∩W) is bijective. For the first implication, note that we have bijections:

ClOpen(X) ' lim−→
n

ClOpen(X
[n]
Z ) ' ClOpen(Z)

whenever (X,Z) is coherently complete. The implication now follows from the
elementary Lemma 3.5(1). It also follows from the main result of [Ryd16] that if X
is quasi-compact and quasi-separated, then (X,Z) is a henselian pair if and only if
(3.1) is bijective for every integral morphism X′ → X.

Remark 3.3 (Nakayama’s lemma for stacks). Passing to a smooth presentation, it
is not difficult to see that the following variants of Nakayama’s lemma hold for local
pairs (X,Z): (1) if F is a quasi-coherent OX-module of finite type and F|Z = 0,
then F = 0; and (2) if ϕ : F → G is a morphism of quasi-coherent OX-modules with
G of finite type and ϕ|Z is surjective, then ϕ is surjective.

The following theorem is well-known. When S is the henselization of a local ring
essentially of finite type over a field or an excellent Dedekind domain, it is Artin’s
original approximation theorem [Art69, Cor. 2.2].
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Theorem 3.4 (Artin approximation over henselian pairs). Let (S, S0) = (SpecA,SpecA/I)

be an affine excellent henselian pair and let Ŝ = Spec Â be its I-adic completion. Let

F : (Sch/S)opp → Sets be a limit preserving functor. Given an element ξ ∈ F (Ŝ)
and an integer n ≥ 0, there exists an element ξ ∈ F (S) such that ξ and ξ have
equal images in F (Sn) where Sn = SpecA/In+1.

Proof. The completion map Ŝ → S is regular, hence by Néron–Popescu desingular-
ization [Pop86, Thm. 1.8], there exists a smooth morphism S′ → S and a section
ξ′ ∈ F (S′) such that ξ′|Ŝ = ξ. By Elkik [Elk73, Thm., p. 568], there is an element
ξ ∈ F (S) as requested. Also see [Pop86, Thm. 1.3]. �

3.2. Permanence properties. We now establish some techniques to verify that
a pair (X,Z) is henselian or coherently complete. Analogous results for local pairs
typically require far fewer hypotheses and will not be used in this article, so are
omitted.

Let A be a noetherian ring and let I ⊆ J ⊆ A be ideals. Assume that A is
J-adically complete. Recall that A/I is then J-adically complete and A is also
I-adically complete. This is analogous to parts (1) and (2), respectively, of the
following result. We omit the proof.

Lemma 3.5. Let Z ⊆ X be a closed immersion of algebraic stacks. Assume that
the pair (X,Z) is henselian or coherently complete.

(1) Let f : X′ → X be a finite morphism and let Z′ ⊆ X′ be the pullback of Z.
Then (X′,Z′) is henselian or coherently complete, respectively.

(2) Let W ⊆ X be a closed substack. If |Z| ⊆ |W|, then (X,W) is henselian or
coherently complete, respectively.

For henselian pairs, the analogue of Theorem 1.6 is straightforward.

Theorem 3.6. Let X be a quasi-compact and quasi-separated algebraic stack with
adequate moduli space π : X → X. Let Z ⊆ X be a closed substack with Z = π(Z).
The pair (X,Z) is henselian if and only if the pair (X,Z) is henselian.

Proof. The induced morphism Z → Z factors as the composition of an adequate

moduli space Z→ Z̃ and an adequate homeomorphism Z̃ → Z [Alp14, Lem. 5.2.11].
If X′ → X is integral, then X′ admits an adequate moduli space X ′ and X ′ → X
is integral. Conversely, if X ′ → X is integral, then X ×X X ′ → X ′ factors as

the composition of an adequate moduli space X ×X X ′ → X̃ ′ and an adequate

homeomorphism X̃ ′ → X ′ [Alp14, Prop. 5.2.9(3)]. It is thus enough to show that

ClOpen(X)→ ClOpen(Z)

is bijective if and only if

ClOpen(X)→ ClOpen(Z)

is bijective. But X → X and Z → Z are surjective and closed with connected
fibers [Alp14, Thm. 5.3.1]. Thus we have identifications ClOpen(X) = ClOpen(X)
and ClOpen(Z) = ClOpen(Z) that are compatible with the restriction maps. The
result follows. �

One direction of Theorem 1.6 is also not difficult and holds more generally for
adequate moduli spaces.

Proposition 3.7. Let X be a noetherian algebraic stack with noetherian adequate
moduli space π : X → X. Let Z ⊆ X be a closed substack with Z = π(Z). If
X = SpecA is affine and the pair (X,Z) is coherently complete, then the pair
(X,Z) is coherently complete.
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Proof. Let I ⊆ A be the ideal defining Z, let A → Â be the I-adic completion

and let X̂ = Spec Â. The composition X
[n]
Z → X→ X factors through X

[n]
Z , hence

lifts uniquely to X̂. By Tannaka duality, we obtain a unique lift X → X̂. But, by

definition, Γ(X,OX) = A, so we obtain a retraction Â → A. It follows that A is
I-adically complete. �

Remark 3.8. An alternative argument establishes that the conclusion of Proposi-
tion 3.7 still holds if the hypothesis that X is affine is replaced with the hypothesis
that π : X→ X is a good moduli space.

3.3. Examples. We list some examples of henselian and coherently complete pairs.

Example 3.9. Let A be a noetherian ring and let I ⊆ A be an ideal. Then
(SpecA,SpecA/I) is a coherently complete pair if and only if A is I-adically com-
plete. The sufficiency is trivial. For the necessity, we note that lim←−n Coh(A/In+1) '
Coh(Â), where Â denotes the completion of A with respect to the I-adic topology.

Hence, the natural functor Coh(A) → Coh(Â) is an equivalence of abelian tensor

categories. It follows from Tannaka duality (see §1.7.6) that the natural map A→ Â
is an isomorphism.

Example 3.10. Let A be a ring and let I ⊆ A be an ideal. Let f : X→ SpecA be
a proper morphism of algebraic stacks. Let Z = f−1(SpecA/I).

(1) If A is I-adically complete, then (X,Z) is coherently complete. This is just
the usual Grothendieck Existence Theorem, see [EGA, III.5.1.4] for the case
of schemes and [Ols05, Thm. 1.4] for algebraic stacks.

(2) If A is henselian along I, then (X,Z) is henselian. This is part of the proper
base change theorem in étale cohomology; the case where I is maximal is
well-known, see [HR14, Rem. B.6] for further discussion.

3.4. Characterization of henselian pairs. A quasi-compact and quasi-separated
pair of schemes (X,X0) is henselian if and only if for every étale morphism g : X ′ →
X, every section of g0 : X ′ ×X X0 → X0 extends to a section of g (for g separated
see [EGA, IV.18.5.4] and in general see [SGA43, Exp. XII,Prop. 6.5]). This is also
true for stacks:

Proposition 3.11. Let (X,X0) be a pair of quasi-compact and quasi-separated
algebraic stacks. Then the following are equivalent

(1) (X,X0) is henselian.
(2) For every representable étale morphism g : X′ → X, the induced map

Γ(X′/X)→ Γ(X′ ×X X0/X0)

is bijective.

Proof. This is the equivalence between (1) and (3) of [HR16, Prop. 5.4]. �

We will later prove that (2) holds for non-representable étale morphisms when
X is a stack with a good moduli space and affine diagonal (Proposition 16.4). A
henselian pair does not always satisfy (2) for general non-representable morphisms
though, see Example 3.16.

3.5. Application: Universality of adequate moduli spaces. For noetherian
algebraic stacks, good moduli spaces were shown in [Alp13, Thm. 6.6] to be univer-
sal for maps to quasi-separated algebraic spaces and adequate moduli spaces were
shown in [Alp14, Thm. 7.2.1] to be universal for maps to algebraic spaces which are
either locally separated or Zariski-locally have affine diagonal. We now establish
this result unconditionally for adequate (and hence good) moduli spaces.
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Theorem 3.12. Let X be an algebraic stack. An adequate moduli space π : X→ X
is universal for maps to algebraic spaces.

Proof. We need to show that if Y is an algebraic space, then the natural map

(3.2) Map(X,Y )→ Map(X, Y )

is bijective. To see the injectivity of (3.2), suppose that h1, h2 : X → Y are maps
such that h1 ◦ π = h2 ◦ π. Let E → X be the equalizer of h1 and h2, that is, the
pullback of the diagonal Y → Y ×Y along (h1, h2) : X → Y ×Y . The equalizer is a
monomorphism and locally of finite type. By assumption π : X→ X factors through
E and it follows that E → X is universally closed, hence a closed immersion [Stacks,
Tag 04XV]. Since X→ X is schematically dominant, so is E → X, hence E = X.

The surjectivity of (3.2) is an étale-local property on X; indeed, the injectivity of
(3.2) implies the gluing condition in étale descent. Thus, we may assume that X is
affine. In particular, X is quasi-compact and since any map X→ Y factors through
a quasi-compact open of Y , we may assume that Y is also quasi-compact. Let
g : X→ Y be a map and p : Y ′ → Y be an étale presentation where Y ′ is an affine
scheme. The pullback f : X′ → X of p : Y ′ → Y along g : X → Y is representable,
étale, surjective and induces an isomorphism of stabilizer group schemes at all
points.

Let x ∈ X be a point, q ∈ |X| be the unique closed point over x and q′ ∈ |X′| any
point over q. Note that κ(q)/κ(x) is a purely inseparable extension. After replacing
X with an étale neighborhood of x (with a residue field extension), we may thus
assume that κ(q′) = κ(q). Since f induces an isomorphism of stabilizer groups, the
induced map Gq′ → Gq on residual gerbes is an isomorphism. Theorem 3.6 implies
that (X×X SpecOhX,x,Gq) is a henselian pair and since f is locally of finite presen-
tation, Proposition 3.11 implies that after replacing X with an étale neighborhood
of x, there is a section s : X→ X′ of f : X′ → X. Thus, the map g : X→ Y factors as

X
s−→ X′

g′−→ Y ′
p−→ Y . Since X and Y ′ are affine, the equality Γ(X,OX) = Γ(X,OX)

implies that the map X
s−→ X′

g′−→ Y ′ factors through π : X→ X. �

3.6. Application: Luna’s fundamental lemma.

Definition 3.13. If X and Y are algebraic stacks admitting adequate moduli spaces
X → X and Y → Y , we say that a morphism f : X → Y is strongly étale if the
induced morphism X → Y is étale and X ∼= X ×Y Y.

The following result generalizes [Alp10, Thm. 6.10] from good moduli spaces to
adequate moduli spaces and also removes noetherian and separatedness assump-
tions.

Theorem 3.14 (Luna’s fundamental lemma). Let f : X → Y be a morphism of
algebraic stacks with adequate moduli spaces πX : X → X and πY : Y → Y . Let
x ∈ |X| be a closed point such that

(1) f is étale and representable in a neighborhood of x,
(2) f(x) ∈ |Y| is closed, and
(3) f induces an isomorphism of stabilizer groups at x.

Then there exists an open neighborhood U ⊆ X of x such that π−1
X (πX(U)) = U and

f |U : U→ Y is strongly étale.

Remark 3.15. If G a smooth algebraic group over an algebraically closed field k
such that G0 is reductive and ϕ : U → V is a G-equivariant morphism of irreducible
normal affine varieties over k, then [BR85, Thm. 4.1] (see also [MFK94, pg. 198])
established the result above for f : [U/G]→ [V/G].

http://stacks.math.columbia.edu/tag/04XV
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Proof. We may replace X with a saturated open neighborhood of x such that f
becomes étale and representable. Let y = f(x). The question is étale-local on Y so
we can assume that Y is affine. Then Y is quasi-compact and quasi-separated by
definition.

If Y is strictly henselian, then (Y, y) is a henselian pair (Theorem 3.6) and
Gx → Gy is an isomorphism. We can thus find a section s of f such that s(y) = x
(Proposition 3.11). In general, since f is locally of finite presentation, we obtain
a section s of f such that s(y) = x after replacing Y with an étale neighborhood
(Y ′, y′) → (Y, y). The image of s is an open substack U ⊆ X and f |U is an
isomorphism. Let V = X r π−1(π(X r U)) ⊆ U. Then V ⊆ X is a saturated open
neighborhood of x and it is enough to prove the result after replacing X with V.
We can thus assume that f is separated. After repeating the argument we obtain
a section s which is open and closed. Then U ⊆ X is automatically saturated and
we are done. �

The result is not true in general if f is not representable and Y does not have
separated diagonal.

Example 3.16. Let k be a field and let S be the strict henselization of the affine
line at the origin. Let G = (Z/2Z)S and let G′ = G/H where H ⊆ G is the
open subgroup that is the complement of the non-trivial element over the origin.
Let X = BG and Y = BG′ which both have good moduli space S (adequate if
char k = 2). The induced morphism f : X→ Y is étale and induces an isomorphism
of the residual gerbes BZ/2Z of the unique closed points but is not strongly étale
and does not admit a section.

4. Theorem on formal functions

The following theorem on formal functions for good moduli spaces is an essential
ingredient in our proof of Theorems 1.1 and 1.3 (and more specifically in the proof
of the coherent completeness result of Theorem 1.6). This theorem is close in spirit
to [EGA, III.4.1.5] and is a generalization of [Alp12, Thm. 1.1].

Theorem 4.1 (Formal functions, adequate version). Let X be an algebraic stack
that is adequately affine. Let Z ⊆ X be a closed substack defined by a sheaf of
ideals I. Let I = Γ(X, I) be the corresponding ideal of A = Γ(X,OX). If A is
noetherian and I-adically complete, and X → SpecA is of finite type, then for
every F ∈ Coh(X) the following natural map

(4.1) Γ(X,F)→ lim←−
n

Γ(X,F)/Γ(X, InF)

is an isomorphism.

Proof. By [Alp14, Thm. 6.3.3], Γ(X,−) preserves coherence. Let In = Γ(X, In)
and Fn = Γ(X, InF). Note that I∗ :=

⊕
In is a finitely generated OX-algebra

and I∗F :=
⊕

InF is a finitely generated I∗-module [AM69, Lem. 10.8]. If we let
I∗ =

⊕
In = Γ(X, I∗), then SpecX I∗ → Spec I∗ is an adequate moduli space [Alp14,

Lem. 5.2.11]. It follows that I∗ is a finitely generated A-algebra and that F∗ :=⊕
Fn = Γ(X, I∗F) is a finitely generated I∗-module [Alp14, Thm. 6.3.3].
Hence, there is a sufficiently divisible integer N ≥ 1 (e.g., a common multiple

of the degrees of a set of homogeneous A-algebra generators for I∗) such that
INk = (IN )k for all k ≥ 1. That is, the topology induced by the non-adic system
In is equivalent to the IN -adic topology. Without loss of generality, we can replace
I with IN so that I∗ = I∗ =

⊕
k≥0 I

k.

Similarly, for sufficiently large n (e.g., larger than all degrees of a set of homo-
geneous generators), Fn+1 = IFn [AM69, Lem. 10.8]; that is, (Fn) is an I-stable
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filtration on F := Γ(X,F). It follows that (Fn) induces the same topology on F as
(InF ) [AM69, Lem. 10.6]. But F is a finite A-module, hence I-adically complete,
hence complete with respect to (Fn). �

Corollary 4.2 (Formal functions, good version). Let X be a noetherian algebraic
stack that is cohomologically affine. Let Z ⊆ X be a closed substack defined by a
sheaf of ideals I. Let I = Γ(X, I) be the corresponding ideal of A = Γ(X,OX). If A
is I-adically complete, then for every F ∈ Coh(X) the following natural map

(4.2) Γ(X,F)→ lim←−
n

Γ(X,F/InF)

is an isomorphism.

Proof. By [Alp13, Thm. 4.16(x)], the ringA is noetherian and by [AHR19, Thm. A.1],
X → SpecA is of finite type so Theorem 4.1 applies. For good moduli spaces, the
natural map Γ(X,F)/Γ(X, InF)→ Γ(X,F/InF) is an isomorphism by definition. �

Remark 4.3. The formal functions theorem generalizes the isomorphism of [AHR19,
Eqn. (2.1)] from the case of X = [SpecB/G] for G linearly reductive and A =
BG complete local, all defined over a field k, to X = [SpecB/GLn] and A =
BGLn complete but not necessarily local. This also includes [SpecB/G] for G
geometrically reductive and embeddable, see Remark 2.5.

Remark 4.4. In the setting of Theorem 4.1, if Hi(X,−) preserves coherence for all
i, then it seems likely that (4.2) is an isomorphism with an argument similar to
[EGA, III.4.1.5]. We note that if X = [Spec(A)/G] where A is a finitely generated
k-algebra and G is reductive group over k, then it follows from [TK10, Thm. 1.1]
that Hi(X,−) preserves coherence.

5. Coherently complete pairs of algebraic stacks

The main result of this section is the the following important special case of
Theorem 1.6.

Proposition 5.1 (Coherent completeness assuming resolution property). Let X be
a noetherian algebraic stack with affine diagonal and good moduli space π : X →
X = SpecA. Let Z ⊆ X be a closed substack defined by a coherent sheaf of ideals
I ⊆ OX and let I = Γ(X, I). Assume that X has the resolution property. If A is
I-adically complete, then X is coherently complete along Z.

Note that in this proposition, X is assumed to have the resolution property,
whereas in Theorem 1.6 it is only assumed that Z has the resolution property. The
proof of Theorem 1.6 will be completed in Section 10.

The following full faithfulness result uses arguments similar to those of [EGA,
III.5.1.3] and [GZB15, Thm. 1.1(i)].

Lemma 5.2. Let X be a noetherian algebraic stack that is cohomologically affine.
Let Z ⊆ X be a closed substack defined by a sheaf of ideals I. Let I = Γ(X, I) be the
corresponding ideal of A = Γ(X,OX). If A is I-adically complete, then the functor

Coh(X)→ lim←−
n

Coh(X
[n]
Z ).

is fully faithful.

Proof. Following [Con, §1], let O
X̂

denote the sheaf of rings on the lisse-étale site
of X that assigns to each smooth morphism p : SpecB → X the ring lim←−nB/I

nB.

The sheaf of rings O
X̂

is coherent and the natural functor

Coh(X̂)→ lim←−
n

Coh(X
[n]
Z )
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is an equivalence of categories [Con, Thm. 2.3]. Let c : X̂ → X denote the induced
morphism of ringed topoi and let F,G ∈ Coh(X); then it remains to prove that the
map

HomOX
(F,G)→ HomO

X̂
(c∗F, c∗G)

is bijective. Now we have the following commutative square, whose vertical arrows
are isomorphisms:

HomOX
(F,G) //

��

HomO
X̂

(c∗F, c∗G)

��
Γ(X,HomOX

(F,G)) // Γ(X̂,HomO
X̂

(c∗F, c∗G)).

Since c is flat and F is coherent the natural morphism

c∗HomOX
(F,G)→ HomO

X̂
(c∗F, c∗G)

is an isomorphism [GZB15, Lem. 3.2]. Thus, it remains to prove that the map

Γ(X,Q)→ Γ(X̂, c∗Q)

is an isomorphism whenever Q ∈ Coh(X). But there are natural isomorphisms:

Γ(X̂, c∗Q) ∼= lim←−
n

Γ(X̂,Q/In+1Q) ∼= lim←−
n

Γ(X
[n]
Z ,Q/In+1Q) ∼= lim←−

n

Γ(X,Q/In+1Q).

The result now follows from Corollary 4.2. �

Proof of Proposition 5.1. By Lemma 5.2 it remains to show that if {Fn} ∈ lim←−n Coh(X
[n]
Z ),

then there exists a coherent F on X with (i[n])∗F ' Fn for all n. Now X has the
resolution property, so there is a vector bundle E on X together with a surjec-
tion φ0 : E → F0. We claim that φ0 lifts to a compatible system of morphisms
φn : E→ Fn for every n > 0. Indeed, since E∨ ⊗ Fn+1 → E∨ ⊗ Fn is surjective and
Γ(X,−) is exact, it follows that the natural map HomOX

(E,Fn+1)→ HomOX
(E,Fn)

is surjective. By Nakayama’s Lemma (see Remark 3.3), each φn is surjective.
It follows that we obtain an induced morphism of systems {φn} : {En} → {Fn},

which is surjective. Applying this procedure to the kernel of {φn}, there is an-
other vector bundle H and a morphism of systems {ψn} : {Hn} → {En} such that
coker{ψn} ∼= {Fn}. By the full faithfulness (Lemma 5.2), the morphism {ψn} arises

from a unique morphism ψ : H → E. Let F̃ = cokerψ; then the universal property

of cokernels proves that there is an isomorphism of systems {F̃n} ∼= {Fn} and the
result follows. �

We conclude this section with the following key example.

Example 5.3. Let S = SpecB where B is a noetherian ring. Let G ⊆ GLn,S be
a linearly reductive closed subgroup scheme acting on a noetherian affine scheme
X = SpecA. Then [SpecA/G] satisfies the resolution property; see Remark 2.5. If
(AG,m) is an m-adically complete local ring, then it follows from Proposition 5.1
that [SpecA/G] is coherently complete along the unique closed point. When S
is the spectrum of a field and the unique closed G-orbit is a fixed point, this is
[AHR19, Thm. 1.3].

6. Effectivity I: general setup and characteristic zero

In this section, we consider an adic sequence {Xn}n≥0 of noetherian algebraic
stacks (see Definition 1.8). A classical result states that if each Xi is affine, then A =
lim←−n Γ(Xn,OXn) is a noetherian ring and Xi is the ith infinitesimal neighborhood

of X0 in SpecA [EGA, 0I.7.2.8]. One of our main results (Theorem 1.10) is that an
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analogous result also holds when X0 is linearly fundamental. In this section, we will
prove this result in characteristic 0 and lay the groundwork for the general case.

6.1. Preliminary lemmas.

Setup 6.1. Let {Xn}n≥0 be an adic sequence of noetherian algebraic stacks and let
I(j) be the coherent sheaf of ideals defining the closed immersion u0j : X0 ↪→ Xj .
Let An = Γ(Xn,OXn), Xn = SpecAn, A = lim←−nAn, In = ker(A → An−1), and

X = SpecA.

A key observation here is that the sequence of closed immersions of affine schemes:

(6.1) X0 ↪→ X1 ↪→ · · · .
is not adic (this is just as in the proof of Theorem 4.1). The following lemma shows
that the sequence (6.1) is equivalent to an adic one, however.

Lemma 6.2. Assume Setup 6.1. If X0 is cohomologically affine, then A is noe-
therian and I1-adically complete.

Proof. Let A(i) = GrI(i) OXi =
⊕i

j=0 I
j
(i)/I

j+1
(i) . This is a graded OX0-algebra that is

finitely generated in degree 1. If i ≤ k, then A(i) = A
≤i
(k). In particular, if Fi := Ii(i),

then Fi = Ii(k)/I
i+1
(k) for every k ≥ i and A• =

⊕∞
j=0 Fj is an OX0 -algebra that is

finitely generated in degree 1. Moreover, In/In+1 = ker(An → An−1) = Γ(X0,Fn)
(here we use cohomological affineness). Thus, Γ(X0,A

•) = GrI∗ A :=
⊕
In/In+1.

Now by [AHR19, Lem. A.2], GrI∗ A is a finitely generated and graded A0-algebra.
That is, for the filtration {In}n≥0 on the ring A, the associated graded ring is a
noetherian A0-algebra. It follows from [God56, Thm. 4] that A is noetherian.

Since A is noetherian and complete with respect to the topology defined by

{In}n≥0, it is also complete with respect to the I1-adic topology. Indeed, if Â
denotes the I1-adic completion of A, then there is a natural factorization

A→ Â = lim←−
n

A/(I1)n → A = lim←−
n

A/In

of the identity. Since Â → A is surjective and Â is noetherian and complete with
respect to the I1-adic topology, so is A. �

The following lemma generalizes [AHR19, Prop. A.8(1)] to the non-local situa-
tion.

Lemma 6.3. Let f : X→ Y be a morphism of algebraic stacks. Let I be a nilpotent
quasi-coherent sheaf of ideals of OX. Let X1 ⊆ X be the closed immersion defined

by I2. If the composition X1 → X
f−→ Y is a closed immersion, then f is a closed

immersion.

Proof. The statement is local on Y for the smooth topology, so we may assume that
Y = SpecA. Since X1 is affine and X is an infinitesimal thickening of X1, it follows
that X is also affine [Ryd15, Cor. 8.2]. Hence, we may assume that X = SpecB and

I = Ĩ for some nilpotent ideal I of B. Let φ : A→ B be the induced morphism.
The assumptions are that the composition A → B → B/I2 is surjective and

that In+1 = 0 for some n ≥ 0. Let K = ker(A → B/I). Since KB → I → I/I2

is surjective and In+1 = 0, it follows that KB → I is surjective by Nakayama’s
Lemma for B-modules (I = KB + I2 = KB + I4 = · · · = KB). That is, KB = I.

Further, since A → B → B/KB = B/I is surjective and Kn+1B = In+1 = 0,
it follows that φ : A→ B is surjective by Nakayama’s Lemma for A-modules (B =
imφ+KB = imφ+K2B = · · · = imφ). �

The following lifting lemma is a key result.
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Lemma 6.4. Let S be an affine scheme. Let Z ↪→ Z′ be a closed immersion
of algebraic S-stacks defined by a nilpotent quasi-coherent sheaf of ideals I. Let
f : Z→W be a representable morphism of algebraic S-stacks. If W→ S is smooth
and Z is cohomologically affine, then there is lift of f to a S-morphism f ′ : Z′ →W.

Proof. By induction, we immediately reduce to the situation where I2 = 0. The ob-
struction to lifting f now belongs to the group Ext1

OZ
(Lf∗LW/S , I) [Ols06, Thm. 1.5].

Since W→ S is smooth, the cotangent complex LW/S is perfect of amplitude [0, 1].
The assumption that Z is cohomologically affine now proves that this obstruction
group vanishes. Hence, there is an S-lift f ′ : Z′ → Y as claimed. �

We now come to a general embedding lemma. We state it in greater generality
than strictly needed now, so we can use it later in the paper.

Lemma 6.5. Assume Setup 6.1. Let Y → X be smooth and fundamental. If X0

is cohomologically affine and there is a representable morphism X0 → Y, then there
exists

(1) an affine morphism H→ Y; and
(2) compatible closed immersions Xn ↪→ H

such that the natural morphism H → X, where H is the adequate moduli space of
H, is finite, adequate, and admits a section. In particular, H is noetherian and H

has linearly reductive stabilizers at closed points.

Remark 6.6. Once we establish Theorem 9.3 in Section 9, it will follow that H is
necessarily cohomologically affine.

Proof of Lemma 6.5. By [AHR19, Thm. A.1], X0 → X0 is of finite type. Hence,
X0 → X is of finite type and cohomologically affine. But the diagonal of Y→ X is
affine and of finite type, so φ0 : X0 → Y is cohomologically affine and of finite type.
By assumption, it is representable, so Serre’s Theorem (e.g., [Alp13, Prop. 3.3])
tells us that φ0 : X0 → Y is also affine. By Lemma 6.4, there is a lift of φ0 to
φ1 : X1 → Y.

Since Y has the resolution property, there exists a vector bundle of finite rank
E on Y and a surjection of quasi-coherent OY-algebras SymOY

(E) → (φ1)∗OX1
.

Let H̃ be the relative spectrum of SymOY
(E); then there is an induced closed

immersion i1 : X1 ↪→ H̃ and H̃→ X is smooth. Using Lemma 6.4, we can produce

compatible X-morphisms in : Xn → H̃ lifting i1. By Lemma 6.3, the in are all
closed immersions.

Let H̃ = Spec Γ(H̃,O
H̃

) be the adequate moduli space of H̃. Since H̃ → X is

of finite type and X is noetherian (Lemma 6.2), H̃ → X is of finite type [Alp14,

Thm. 6.3.3] and so H̃ → H̃ is of finite type and H̃ is noetherian. Since Xn → Xn

is a good moduli space, there are uniquely induced morphisms Xn → H̃. Passing

to limits, we produce a unique morphism x : X → H̃; moreover, the composition

X → H̃ → X is the identity. Take H to be the base change of H̃ → H̃ along

X → H̃. We now take H = Spec Γ(H,OH); then arguing as before we see that
H → X is now an adequate universal homeomorphism of finite type, which is finite.
Since H → X is universally closed, the statement about stabilizers only needs to
be verified when X is a field. But H → X is a finite universal homeomorphism, so
H has a unique closed point and this is in the image of X0. The claim follows. �

6.2. Effectivity.

Proposition 6.7. In the situation of Lemma 6.5, if H is cohomologically affine
(e.g., if Y is cohomologically affine), then the completion of the sequence {Xn}n≥0

exists and is a closed substack of H.
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Proof. By pulling back H→ H along the section X → H, we may further assume
in Lemma 6.5 that H = X. Let H0 = X0 and for n > 0 let Hn be the nth
infinitesimal neighborhood of H0 in H. Then the closed immersions in : Xn → H

factor uniquely through closed immersions Xn ↪→ Hn. Since the system {Xn}n≥0

is adic, the 2-commutative diagram

Xn−1
//

��

Xn

��
Hn−1

// Hn

is 2-cartesian. Indeed, since Xn → H is a closed immersion, Xn ×H H0 = X0. If
we let K be the sheaf of ideals defining the closed immersion H0 → H, this means
that KOXn = I(n) and hence that KnOXn = In(n) which shows that the diagram is

2-cartesian.
But H is linearly fundamental, so H is coherently complete along H0 (Proposi-

tion 5.1) and so there exists a closed immersion X̂ ↪→ H that induces the Xn. �

Corollary 6.8 (Effectivity in characteristic zero). Let {Xn}n≥0 be an adic sequence
of noetherian algebraic Q-stacks. If X0 is linearly fundamental, then the completion
of the sequence exists and is linearly fundamental.

Proof. Since X0 is linearly fundamental, it admits an affine morphism to BGLN,Q
for some N > 0. This gives an affine morphism X0 → Y := BGLN,X . Note that X
is a Q-scheme, so Y is cohomologically affine. Since H→ Y is affine in Lemma 6.5,
we conclude that H also is cohomologically affine. The result now follows from
Proposition 6.7. �

To prove effectivity in positive and mixed characteristic (Theorem 1.10), we will
need to make a better choice of group than GLN,Q. To do this, we will study the
deformations of nice group schemes in Section 7. This neatly handles effectivity in
the “local case”, i.e., when X0 is a gerbe over a field so that the completion is a
local stack with residual gerbe X0, see Section 8. The local case is used to prove
Theorem 9.3 in Section 9, which in turn is used to prove the general effectivity
theorem in Section 10.

7. Deformation of nice group schemes

In this section, we will prove Proposition 7.1 which asserts that a nice and
embeddable group scheme (see Definition 2.1) can be deformed along an affine
henselian pair (Definition 3.1). This will be used to prove the effectivity theorem
for a local ring in positive or mixed characteristic (Proposition 8.1). After we have
established the general effectivity result, we will prove the corresponding result for
linearly reductive group schemes (Proposition 16.8).

Proposition 7.1 (Deformation of nice group schemes). Let (S, S0) be an affine
henselian pair. If G0 → S0 is a nice and embeddable group scheme, then there exists
a nice and embeddable group scheme G→ S whose restriction to S0 is isomorphic
to G0.

Proof. Let (S, S0) = (SpecA,SpecA/I). By standard reductions (using Lemma 2.12),
we may assume that S is the henselization of an affine scheme of finite type over
SpecZ. Let Sn = SpecA/In+1. Also, let R be the I-adic completion of A and let

Ŝ = SpecR.
Let F : (Sch/S)opp → Sets be the functor that assigns to each S-scheme T the

set of isomorphism classes of nice and embeddable group schemes over T . By
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Lemma 2.12, F is limit preserving. Suppose that we have a nice embeddable group

scheme GŜ ∈ F (Ŝ) restricting to G0. By Artin Approximation (Theorem 3.4),

there exists GS ∈ F (S) that restricts to G0. We can thus replace S by Ŝ and
assume that A is complete.

Fix a closed immersion of S0-group schemes i : G0 → GLn,S0
. By definition, there

is an open and closed subgroup (G0)0 ⊆ G0 of multiplicative type. By [SGA3II,
Exp. XI, Thm. 5.8], there is a lift of i to a closed immersion of group schemes
iS : G0

S → GLn,S , where G0
S is of multiplicative type. Let N = NormGLn,S (G0

S) be
the normalizer, which is a smooth S-group scheme and closed S-subgroup scheme
of GLn,S [SGA3II, Exp. XI, 5.3 bis].

Since (G0)0 is a normal S0-subgroup scheme of G0, it follows that G0 is a closed
S0-subgroup scheme of N×SS0. In particular, there is an induced closed immersion
qS0

: (G0)/(G0)0 → (N/G0
S) ×S S0 of group schemes over S0. Since G0 is nice,

the locally constant group scheme (G0)/(G0)0 has order prime to p. Since R is
complete, there is a unique locally constant group scheme H over S such that
H ×S S0 = (G0)/(G0)0. Note that H is finite and linearly reductive over S.

Since N/G0
S is a smooth and affine group scheme over S, there are compatible

closed immersions of Sn-group schemes qSn : H ×S Sn → (N/G0
S)×S Sn lifting qS0

,
which are unique up to conjugation [SGA3I, Exp. III, Cor. 2.8]. Since H is finite,
these morphisms effectivize to a morphism of group schemes qS : H → N/G0

S . We
now define GS to be the preimage of H under the quotient map N → N/G0

S . Then
GS is nice and embeddable, and GS ×S S0

∼= G. �

8. Effectivity II: local case in positive characteristic

In this short section, we apply the results of the previous section on nice group
schemes to establish the next level of generality for our effectivity theorem (Theo-
rem 1.10). The main result of this section is the following proposition which uses
the terminology of nicely fundamental stacks introduced in Definition 2.7.

Proposition 8.1 (Effectivity for nice stacks). Let {Xn}n≥0 be an adic sequence of
noetherian algebraic stacks. If X0 is nicely fundamental, then the completion of the
sequence exists and is nicely fundamental.

Proof. Let X0 be the good moduli space of X0. Since X0 is nicely fundamental, it
admits an affine morphism to BX0Q0, for some nice and embeddable group scheme
Q0 → X0. Now let X = Spec

(
lim←−n Γ(Xn,OXn)

)
as in Setup 6.1. By Lemma 6.2,

X is complete along X0. It follows from Proposition 7.1 that there is a nice and
embeddable group scheme Q → X lifting Q0 → X0. Let Y = BXQ; then Y → X
is smooth and linearly fundamental. The result now follows immediately from
Proposition 6.7. �

The following corollary will shortly be subsumed by Theorem 1.10. We include
it here, however, because it is an essential step in the proof of Theorem 9.3, which
features in the full proof of Theorem 1.10. We expect Corollary 8.2 to be sufficient
for many applications.

Corollary 8.2 (Effectivity for local stacks). Let {Xn}n≥0 be an adic sequence of
noetherian algebraic stacks. Assume that X0 is a gerbe over a field k. If X0 is
linearly fundamental (i.e., has linearly reductive stabilizer), then the completion of
the sequence exists and is linearly fundamental.

Proof. If X is a Q-stack, then we are already done by Corollary 6.8. If not, then
k has characteristic p > 0 and X0 is nicely fundamental by Remark 2.11. Proposi-
tion 8.1 completes the proof. �
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9. Adequate moduli spaces with linearly reductive stabilizers are
good

In this section we prove that adequate moduli spaces of stacks with linearly re-
ductive stabilizers at closed points are good (Theorem 9.3). This uses the adequate
version of the formal function theorem (Theorem 4.1) and the effectivity theorem
in the form of Corollary 8.2. This theorem is fundamental in proving the general
effectivity result (Theorem 1.10) and therefore in the proof of Theorem 1.1.

Lemma 9.1. Let X be an algebraic stack and let Z ↪→ X be a closed substack defined
by the sheaf of ideals I. Assume that X has an adequate moduli space π : X→ SpecA
of finite type, where A is noetherian and I-adically complete along I = Γ(X, I). Let
Bn = Γ(X,OX/I

n+1) for n ≥ 0 and B = lim←−nBn. If Z is cohomologically affine

with affine diagonal, then the induced homomorphism A→ B is finite.

Proof. Let In = Γ(X, In). By Theorem 4.1, A is complete with respect to the
filtration given by (In), that is, A = lim←−nA/In. We note that A/In+1 → Bn is

injective and adequate for all n. In particular, the homomorphism A → B is an
injective continuous map between complete topological rings.

Since Z = X [0] is cohomologically affine with affine diagonal, so are its in-
finitesimal neighborhoods X [n]. It follows that Bn → Bn−1 is surjective with
kernel Γ(X, In/In+1) for all n. Thus, if we let Jn+1 = ker(B → Bn), then
Jn/Jn+1 = Γ(X, In/In+1) and the topology on B is given by the filtration (Jn).

The surjection In → In/In+1 induces an injective map In/In+1 → Jn/Jn+1.
Taking direct sums gives a surjection of algebras

⊕
In → GrI(OX), hence an injec-

tive adequate map GrI∗ A =
⊕
In/In+1 → GrJ∗ B =

⊕
Jn/Jn+1.

We further note that GrI(OX) is a finitely generated algebra. Since Spec
(
GrJ∗ B

)
is the adequate moduli space of SpecX

(
GrI(OX)

)
, it follows that GrJ∗ B is a finitely

generated A-algebra [Alp14, Thm. 6.3.3]. Thus GrI∗ A → GrJ∗ B is an injective
adequate map of finite type, hence finite. It follows that A → B is finite [God56,
Lem. on p. 6]. �

Remark 9.2. It is, a priori, not clear that A → B is adequate. Consider the
following example: A = F2JxK, B = A[y]/(y2− x2y− x). Then SpecB → SpecA is
a ramified, generically étale, finite flat cover of degree 2, so not adequate. But the
induced map on graded rings F2[x]→ F2[x, y]/(y2−x) is adequate. Nevertheless, it
follows from Theorem 9.3, proven below, that A = B in Lemma 9.1. If the formal
functions theorem (Corollary 4.2) holds for stacks with adequate moduli spaces,
then A = B without assuming that Z is cohomologically affine.

Theorem 9.3. Let S be a noetherian algebraic space. Let X be an algebraic stack
of finite type over S with an adequate moduli space π : X→ X. Assume that π has
affine diagonal. Then π is a good moduli space if and only if every closed point of
X has linearly reductive stabilizer.

Remark 9.4. See Corollary 13.7 and Corollary 13.11 for non-noetherian versions.

Proof. We begin by noting that X is of finite type over S [Alp14, Thm. 6.3.3]. We
can thus replace S with X. If π is a good moduli space, then every closed point
has linearly reductive stabilizer [Alp13, Prop. 12.14]. For the converse, we need
to prove that π∗ is exact. This can be verified after replacing X = S with the
completion at every closed point. We may thus assume that X = S is a complete
local scheme.

By Corollary 8.2, the adic sequence X0 ↪→ X1 ↪→ . . . has completion X̂ that has
a good moduli space X ′. By Tannaka duality (see §1.7.6), there is a natural map
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f : X̂→ X. This induces a map g : X ′ → X of adequate moduli spaces. In the no-
tation of Lemma 9.1, X ′ = SpecB and X = SpecA, and we conclude that X ′ → X

is finite. In particular, f : X̂ → X is also of finite type since the good moduli map

X̂→ X ′ is of finite type [AHR19, Thm. A.1]. The morphism f : X̂→ X is formally
étale, hence étale, and also affine [AHR19, Prop. 3.2], hence representable. More-

over, f : X̂ → X induces an isomorphism of stabilizer groups at the unique closed
points so we may apply Luna’s fundamental lemma (Theorem 3.14) to conclude

that X ′ ×X X = X̂ and thus f : X̂→ X is finite. But f is an isomorphism over the
unique closed point of X, hence f is a closed immersion. But f is also étale, hence
a closed and open immersion, hence an isomorphism. We conclude that X ′ = X
and thus that π∗ is exact. �

As an immediate corollary, we obtain:

Corollary 9.5. Let S be a noetherian algebraic space and let G→ S be an affine flat
group scheme of finite presentation. Then G → S is linearly reductive if and only
if G→ S is geometrically reductive and every closed fiber is linearly reductive. �

The corollary also holds in the non-noetherian case by Corollary 13.11.

10. Effectivity III: the general case

We now finally come to the proof of the general effectivity result for adic systems
of algebraic stacks..

Proof of Theorem 1.10. Let X be as in Setup 6.1. Since X0 is linearly fundamental,
it admits an affine morphism to Y = BGLN,X . By Lemma 6.5, there is an affine
morphism H→ Y and compatible closed immersions Xn ↪→ H such that the induced
morphism H → X (where H is the adequate moduli space of H) is finite, adequate,
and admits a section. In particular, H is noetherian and H has linearly reductive
stabilizers at closed points. By Theorem 9.3, H is cohomologically affine. The
result now follows from Proposition 6.7. �

We can now finish the general coherent completeness theorem:

Proof of Theorem 1.6. The necessity of the condition follows from Proposition 3.7.

By effectivity (Theorem 1.10), the completion X̂ of {X[n]
Z } exists and is linearly

fundamental. By formal functions (Corollary 4.2), the good moduli space of X̂

is X. By Tannaka duality, there is an induced morphism f : X̂ → X and it is

affine [AHR19, Prop. 3.2], cf. Proposition 12.5(1). The composition X̂→ X→ X is
a good moduli space and hence of finite type [AHR19, Thm. A.1]. It follows that f is
of finite type. Since f is formally étale, it is thus étale. Luna’s fundamental lemma

(Theorem 3.14) now implies that f : X̂→ X is an isomorphism. In particular, X is
linearly fundamental, i.e. has the resolution property. �

We are now in position to prove Formal GAGA (Corollary 1.7).

Proof of Corollary 1.7. The first case follows from the second since if I ⊆ R is a
maximal ideal, X×SpecRSpec(R/I) necessarily has the resolution property [AHR19,
Cor. 4.14]. The corollary then follows from applying Theorem 1.6 with Z =
X×SpecR Spec(R/I). �
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11. Formally syntomic neighborhoods

In this section, we prove Theorem 1.11, which establishes the existence of for-
mally syntomic neighborhoods of locally closed substacks. We then use this theorem
to prove Theorem 1.12 establishing the existence of completions at points with lin-
early reductive stabilizers. These two results are stated and proved more generally
for pro-unramified morphisms; see Theorems 11.1 and 11.2.

If X is a noetherian algebraic stack, then a morphism V → X is pro-unramified
(resp. a pro-immersion) if it can be written as a composition V ↪→ V′ → X,
where V ↪→ V′ is a flat quasi-compact monomorphism and V′ ↪→ X is unram-
ified and of finite type (resp. a closed immersion). Clearly, pro-immersions are
pro-unramified. Note that residual gerbes on quasi-separated algebraic stacks are
pro-immersions [Ryd11b, Thm. B.2]. Moreover, every monomorphism of finite type
is pro-unramified.

11.1. Existence of formally syntomic neighborhoods. As promised, we now
establish the following generalization of Theorem 1.11.

Theorem 11.1 (Formal neighborhoods). Let X be a noetherian algebraic stack.
Let X0 → X be pro-unramified. Let h0 : W0 → X0 be a syntomic (e.g., smooth)
morphism. Assume that W0 is linearly fundamental. If either

(1) X has quasi-affine diagonal; or
(2) X has affine stabilizers and Γ(W0,OW0

) is quasi-excellent;

then there is a flat morphism h : Ŵ → X, where Ŵ is noetherian, linearly funda-

mental, h|X0 ' h0, and Ŵ is coherently complete along W0 = h−1(X0). Moreover if
h0 is smooth (resp. étale), then h is unique up to non-unique 1-isomorphism (resp.
unique up to unique 2-isomorphism).

Proof. Since X0 → X is pro-unramified, it factors as X0
j−→ V0

u−→ X, where j is
a flat quasi-compact monomorphism and u is unramified and of finite type. Note
that j is schematic [Stacks, Tag 0B8A] and even quasi-affine [Ray68, Prop. 1.5] and
that X0 is noetherian [Ray68, Prop. 1.2]. By [Ryd11a, Thm. 1.2], there is a further

factorization V0
i−→ X′

p−→ X, where i is a closed immersion and p is étale and finitely
presented. Since p has quasi-affine diagonal, we may replace X by X′.

Let g0 = j ◦ h0 : W0 → V0 = X
[0]
V0

. We claim that it suffices to prove, using
induction on n ≥ 1, that there are compatible cartesian diagrams:

Wn−1
//

gn−1

��

Wn

gn
��

X
[n−1]
V0

// X[n]
V0
,

where each gn is flat and the Wn are noetherian. Indeed, the flatness of the gn
implies that the resulting system {Wn}n≥0 is adic. By Theorem 1.10, the com-

pletion Ŵ of the sequence {Wn}n≥0 exists and is noetherian and linearly funda-
mental. If X has quasi-affine diagonal, then the morphisms Wn → X induce a

unique morphism Ŵ by Tannaka duality (case (b) of §1.7.6). If X only has affine
stabilizers, however, then Tannaka duality (case (a) of §1.7.6) has the additional

hypothesis that Ŵ is locally the spectrum of a G-ring, so we prove that the quasi-

excellency of Γ(W0,OW0
) implies this. But A = Γ(Ŵ,O

Ŵ
) is a J-adically complete

noetherian ring, where J = ker
(
Γ(Ŵ,O

Ŵ
) → Γ(W0,OW0

)
)
. Since Ŵ is linearly

fundamental, A/J = Γ(W0,OW0). Hence, A is quasi-excellent by the Gabber–

Kurano–Shimomoto Theorem [KS16, Main Thm. 1]. But Ŵ → SpecA is of finite

http://stacks.math.columbia.edu/tag/0B8A
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type, so Ŵ is locally quasi-excellent. The flatness of Ŵ → X is just the local
criterion for flatness [EGA, 0III.10.2.1].

We now get back to solving the lifting problem. By [Ols06, Thm. 1.4], the ob-
struction to lifting gn−1 to gn belongs to the group Ext2

OW0
(LW0/V0

, g∗0(In/In+1)),

where I is the coherent ideal sheaf defining the closed immersion i : V0 ↪→ X. Note
that Olsson’s paper requires that g0 is representable. To work around this, we
may choose an affine morphism W0 → BGLN for some N and replace X with
X×BGLN ; since BGLN has smooth diagonal, the induced representable morphism
W0 → X0 ×BGLN is syntomic.

Now since X0 → V0 is a flat monomorphism, it follows immediately that LX0/V0
'

0 [LMB, Prop. 17.8]. Hence, LW0/V0
' LW0/X0

. But W0 → X0 is syntomic, so
LW0/X0

is perfect of amplitude [−1, 0] and W0 is cohomologically affine. Thus, the
Ext-group vanishes, and we have the required lift. That Wn is noetherian is clear:
it is a thickening of a noetherian stack by a coherent sheaf of ideals.

For the uniqueness statement: Let h : Ŵ → X and h′ : Ŵ′ → X be two dif-

ferent morphisms as in the theorem. Let gn = jn ◦ hn : Wn → X
[n]
V0

and g′n =

jn ◦ h′n : W′n → X
[n]
V0

be the induced nth infinitesimal neighborhoods. By Tan-

naka duality, it is enough to show that an isomorphism fn−1 : Wn−1 → W′n−1

lifts (resp. lifts up to a unique 2-isomorphism) to an isomorphism fn : Wn → W′n.
The obstruction to a lift lies in Ext1

OW0
(f∗0LW′0/V0

, g∗0(In/In+1)), which vanishes if

h0 = h′0 is smooth. The obstruction to the existence of a 2-isomorphism between
two lifts lies in Ext0

OW0
(LW′0/V0

, g∗0(In/In+1)) and the 2-automorphisms of a lift lies

in Ext−1
OW0

(LW′0/V0
, g∗0(In/In+1)). All three groups vanish if h0 is étale. �

11.2. Existence of completions. If X0 → X is a morphism of algebraic stacks, we
say that a morphism of pairs (W,W0)→ (X,X0) (that is, compatible maps W→ X

and W0 → X0) is the completion of X along X0 if (W,W0) is a coherently complete
pair (Definition 3.1) and (W,W0)→ (X,X0) is final among morphisms from coher-
ently complete pairs. That is, if (Z,Z0) → (X,X0) is any other morphism of pairs
from a coherently complete pair, there exists a morphism (Z,Z0) → (W,W0) over
X unique up to unique 2-isomorphism. In particular, the pair (W,W0) is unique
up to unique 2-isomorphism.

We prove the following generalization of Theorem 1.12.

Theorem 11.2 (Existence of completions). Let X be a noetherian algebraic stack.
Let X0 → X be a pro-immersion such that X0 is linearly fundamental, e.g., the
residual gerbe at a point with linearly reductive stabilizer. If either

(1) X has quasi-affine diagonal; or
(2) X has affine stabilizers and Γ(X0,OX0

) is quasi-excellent;

then the completion of X along X0 exists and is linearly fundamental.

Proof. Let X̂ → X be the flat morphism extending the pro-immersion X0 → X of
Theorem 11.1 applied to W0 = X0. Let (Z,Z0) be any other coherently complete
stack with a morphism ϕ : Z → X such that ϕ|Z0

factors through X0. Let I ⊆ OX

be the sheaf of ideals defining the closure of X0. Then Xn = V (In+1O
X̂

) and

Zn ⊆ V (In+1OZ). Since Xn → V (In+1) is a flat monomorphism, it follows that
Zn → X factors uniquely through Xn. By coherent completeness of Z and Tannaka

duality (using that X̂ has affine diagonal), there is a unique morphism Z→ X̂. �

If X is a noetherian algebraic stack, then we let X̂x denote the completion at a
point x with linearly reductive stabilizer. Note that when x = V (I) is a closed point,

then X̂x = lim−→n
V (In+1) in the category of algebraic stacks with affine stabilizers.
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12. The local structure of algebraic stacks

In this section, we prove a slightly more general version of the local structure
theorem (Theorem 1.1).

Theorem 12.1 (Local structure). Suppose that:

• S is a quasi-separated algebraic space;
• X is an algebraic stack, locally of finite presentation and quasi-separated

over S, with affine stabilizers;
• x ∈ |X| is a point with residual gerbe Gx and image s ∈ |S| such that the

residue field extension κ(x)/κ(s) is finite; and
• h0 : W0 → Gx is a smooth (resp., étale) morphism where W0 is linearly

fundamental and Γ(W0,OW0
) is a field.

Then there exists a cartesian diagram of algebraic stacks

W0
h0 //

��

Gx

��
[SpecA/GLn] = W

h // X

where h : (W, w) → (X, x) is a smooth (resp., étale) pointed morphism and w is
closed in its fiber over s. Moreover, if X has separated (resp., affine) diagonal and
h0 is representable, then h can be arranged to be representable (resp., affine).

Remark 12.2. Theorem 1.1 is the special case when in addition W0 is a gerbe over
the spectrum of a field.

Remark 12.3. In Theorems 1.1 and 12.1, the condition that κ(x)/κ(s) is finite
is equivalent to the condition that the morphism Gx → Xs is of finite type. In
particular, it holds if x is closed in its fiber Xs = X×S Specκ(s).

Proof of Theorem 1.1. Step 1: Reduction to S an excellent scheme. It is
enough to find a solution (W, w) → (X, x) after replacing S with an étale neigh-
borhood of s so we can assume that S is affine. We can also replace X with a
quasi-compact neighborhood of x and assume that X is of finite presentation.

Write S as a limit of affine schemes Sλ of finite type over SpecZ. For sufficiently
large λ, we can find Xλ → Sλ of finite presentation such that X = Xλ ×Sλ S. Let
w0 ∈ |W0| be the unique closed point and let xλ ∈ |Xλ| be the image of x. Since
Gx is the limit of the Gxλ , we can, for sufficiently large λ, also find a smooth (or
étale if h0 is étale) morphism h0,λ : (W0,λ, w0,λ)→ (Gxλ , xλ) with pull-back h0. For
sufficiently large λ:

(1) Xλ has affine stabilizers [HR15, Thm. 2.8];
(2) if X has separated (resp. affine) diagonal, then so has Xλ;
(3) Stab(xλ) = Stab(x) (because Stab(xµ) → Stab(xλ) is a closed immersion

for every µ > λ); and
(4) W0,λ is fundamental (Lemma 2.15).

That Gx → Gxλ is stabilizer-preserving implies that Gx = Gxλ ×Specκ(xλ) Specκ(x)
and, in particular, W0 = W0,λ ×Specκ(xλ) Specκ(x). It follows, by flat descent,
that W0,λ is cohomologically affine and that Γ(W0,λ,OW0,λ

) is the spectrum of a
field. We can thus replace S, X, W0 with Sλ, Xλ, W0,λ and assume that S is an
excellent scheme. By standard limit arguments, it is also enough to find a solution
after replacing S with SpecOS,s. We can thus assume that s is closed.

Step 2: An effective formally smooth solution. Since W0 is linearly fun-
damental, we can find a formal neighborhood of W0 → X0 := Gx ↪→ X, that is,

deform the smooth morphism W0 → X0 to a flat morphism Ŵ → X where Ŵ is a
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linearly fundamental stack which is coherently complete along W0 (Theorem 1.11).

Since Wn → Xn is smooth, Ŵ→ X is formally smooth at W0 [AHR19, Prop. A.14].
Step 3: Algebraization. We now apply equivariant Artin algebraization (The-

orem 12.4 below) to obtain a fundamental stack W, a closed point w ∈ W, a mor-

phism h : (W, w)→ (X, x) smooth at w, and an isomorphism Ŵw
∼= Ŵ over X. Let

W̃0 = h−1(X0). Then (W̃0)̂w
∼= (W0)̂w0

= W0 since W0 is complete along w0. It

follows that after shrinking W, the adequate moduli space of W̃0 is a point and

W̃0 = W0 = h−1(X0).
If h0 : W0 → X0 is étale, then h is étale at w. After shrinking W, we can assume

that h is smooth (resp. étale). If X has separated (resp. affine) diagonal, then we
can shrink W so that h becomes representable (resp. affine), see Proposition 12.5
below.

To keep W adequately affine during these shrinkings we proceed as follows. If
π : W → W is the adequate moduli space, then when shrinking to an open neigh-
borhood U of w, we shrink to the smaller open neighborhood π−1(V ) where V is
an open affine neighborhood of π(w) contained in W r π(Wr U)

)
. �

In the proof we used the following version of equivariant Artin algebraization:

Theorem 12.4 (Equivariant Artin algebraization). Let S be an excellent scheme.
Let X be an algebraic stack, locally of finite presentation over S. Let Z be a noe-
therian fundamental stack with adequate moduli space map π : Z→ Z of finite type
(automatic if Z is linearly fundamental). Let z ∈ |Z| be a closed point such that
Gz → S is of finite type. Let η : Z → X be a morphism over S that is formally
versal at z. Then there exists

(1) an algebraic stack W which is fundamental and of finite type over S;
(2) a closed point w ∈W;
(3) a morphism ξ : W→ X over S; and
(4) isomorphisms ϕ[n] : W[n] → Z[n] over X for every n;

(5) if Stab(z) is linearly reductive, an isomorphism ϕ̂ : Ŵ → Ẑ over X, where

Ŵ and Ẑ denote the completions of W at w and Z at z which exist by
Theorem 1.12.

In particular, ξ is formally versal at w.

Proof. We apply [AHR19, Thm. A.18] with T = Z and X1 = X and X2 = BGLn for
a suitable n such that there exists an affine morphism Z→ X2. This gives (1)–(4)
and (5) is an immediate consequence of (4). �

We also used the following generalization of [AHR19, Prop. 3.2 and Prop. 3.4],
which also answers part of [AHR19, Question 1.10].

Proposition 12.5. Let f : W→ X be a morphism of algebraic stacks such that W
is adequately affine with affine diagonal (e.g., fundamental). Suppose W0 ⊆ W is
a closed substack such that f |W0 is representable.

(1) If X has affine diagonal, then there exists an adequately affine open neigh-
borhood U ⊆W of W0 such that f |U is affine.

(2) If X has separated diagonal and W is fundamental, then there exists an
adequately affine open neighborhood U ⊆ W of W0 such that f |U is repre-
sentable.

Proof. Since f |W0
is representable, we can after replacing W with an open, ade-

quately affine, neighborhood of W0, assume that f has quasi-finite diagonal (or in
fact, even unramified diagonal). For (1) we argue exactly as in [AHR19, Prop. 3.2]
but replace [Alp13, Prop. 3.3] with [Alp14, Cor. 4.3.2].
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For (2), we note that the subgroup G := IW/X ↪→ IW is closed because X has
separated diagonal and is quasi-finite over W because f has quasi-finite diagonal.
We conclude by Lemma 12.6 below and Nakayama’s lemma. �

Lemma 12.6. Let W be a fundamental stack and let G ↪→ IW be a closed subgroup.
If G→W is quasi-finite, then G→W is finite.

Proof. Note that IW → W is affine so G → W is also affine. If h ∈ |G| is a point,
then the order of h is finite. It is thus enough to prove the following: if h ∈ |IW| is

a point of finite order such that Z := {h} →W is quasi-finite, then Z→W is finite.
Using approximation of fundamental stacks (Lemma 2.14) we reduce this question
to the case that W is of finite presentation over SpecZ.

By [Alp14, Lem. 8.3.1], it is enough to prove that Z→W takes closed points to
closed points and that the morphism on their adequate moduli spaces Z → W is
universally closed. This can be checked using DVRs as follows: for every DVR R
with fraction field K, every morphism f : SpecR→W and every lift h : SpecK →
Z, there exists a lift h̃ : SpecR→ Z such that the closed point 0 ∈ SpecR maps to
a point in W that is closed in the fiber over f(0).

Since W → W is universally closed, we can start with a lift ξ : SpecR → W,
such that ξ(0) is closed in the fiber over f(0). We can then identify h with an
automorphism h ∈ AutW(ξ)(K) of finite order. Applying [AHH18, Prop. 5.7 and
Lem. 5.14]2 gives us an extension of DVRs R ↪→ R′ and a new lift ξ′ : SpecR′ →W

such that ξ′(0) = ξ(0) together with an automorphism h̃ ∈ AutW(ξ′)(R′). Since Z

is closed in IW, this is a morphism h̃ : SpecR→ Z as requested. �

Remark 12.7. If h ∈ |IW| is any element of finite order, then every element of

Z = {h} is of finite order but Z is not always quasi-finite. For an example see
[AHH18, Ex. 3.54].

13. Applications to good moduli spaces and linearly reductive groups

In this section, we prove that if π : X → X is a good moduli space, with affine
stabilizers and separated diagonal, then X has the resolution property étale-locally
on X (Theorem 13.1). This generalizes [AHR19, Thm. 4.12] to the relative case.
We also give a version for adequate moduli spaces (Theorem 13.10).

Theorem 13.1. Let X be an algebraic stack with good moduli space π : X → X.
Assume that X has affine stabilizers, separated diagonal and is of finite presentation
over a quasi-separated algebraic space S. Then

(1) there is a Nisnevich covering X ′ → X such that the pull-back X′ = X×XX ′
is linearly fundamental,

(2) π : X→ X has affine diagonal, and
(3) X → S is of finite presentation,
(4) π∗F is finitely presented if F is a finitely presented OX-module.

Moreover, if every closed point x ∈ |X| either has charκ(x) > 0 or has an open
neighborhood of characteristic zero, then we can arrange that X′ ∼= [SpecA/G] where
G→ X ′ is linearly reductive and embeddable.

If there are closed points of characteristic zero without characteristic zero neigh-
borhoods, then it is sometimes impossible to find a linearly reductive G; see Ap-
pendix A.

2While the paper [AHH18] cites this paper on several occasions, the proofs of [AHH18, Prop. 5.7
and Lem. 5.14] do not rely on results of this paper.
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Corollary 13.2. Let S be a quasi-separated algebraic space and let G → S be
a linearly reductive group scheme (or merely a separated group algebraic space,
flat of finite presentation, with affine fibers such that BG → S is a good moduli
space). Then there exists a Nisnevich covering S′ → S such that G′ = G ×S S′ is
embeddable. �

Remark 13.3. A consequence of Corollary 13.2 is that in the definition of a tame
group scheme given in [Hoy17, Defn. 2.26], if we assume that G → B is separated
with affine fibers, then the condition on having the G-resolution property Nisnevich-
locally is automatic.

Before proving Theorem 13.1, we study the structure around points of positive
characteristic.

13.1. Niceness is étale local. We show that fundamental stacks (resp. geometri-
cally reductive and embeddable group schemes) are étale-locally nicely fundamental
(resp. nice) near points of positive characteristic.

Proposition 13.4. Let X be a fundamental algebraic stack with adequate moduli
space X→ X. Let x ∈ |X| be a point and let y ∈ |X| be the unique closed point in
the fiber of x. If the stabilizer of y is nice, then there exists an étale neighborhood
(X ′, x′)→ (X,x), with κ(x′) = κ(x), such that X×X X ′ is nicely fundamental.

Proof. Since nicely fundamental stacks can be approximated (Lemma 2.15(1)), we
may assume that X is henselian with closed point x. Then y is the unique closed
point of X. Note that the residual gerbe Gy = {y} is nicely fundamental (cf.
Remark 2.11).

We can write X = lim←−λ Xλ where the Xλ are fundamental and of finite type over

SpecZ with adequate moduli space Xλ of finite type over SpecZ (Lemma 2.14).
Let xλ ∈ Xλ be the image of x and let yλ ∈ |Xλ| be the unique closed point above
xλ. Then yλ is contained in the closure of the image of y. Thus, for sufficiently
large λ, we can assume that yλ has nice stabilizer (Lemma 2.15(3)).

Let Xh
λ denote the henselization of Xλ at xλ and Xhλ = Xλ ×Xλ Xh

λ . Then the
canonical map X → Xλ factors uniquely through Xh

λ and the induced map X→ Xhλ
is affine. It is thus enough to prove that Xhλ is nicely fundamental. By Theorem 9.3,
the adequate moduli space Xhλ → Xh

λ is good, that is, Xhλ is linearly fundamental.
We can thus assume that X is excellent and that X is linearly fundamental. Let

Xn be the nth infinitesimal neighborhood of x. Let Q0 → Specκ(x) be a nice
group scheme such that there exists an affine morphism f0 : X0 → Bκ(x)Q0. By
the existence of deformations of nice group schemes (Proposition 7.1), there exists
a nice and embeddable group scheme Q → X. Let I ⊆ X denote the sheaf of
ideals defining X0. By [Ols06, Thm. 1.5], the obstruction to lifting a morphism
Xn−1 → BXQ to Xn → BXQ is an element of Ext1

OX0
(Lf∗0LBXQ/X , I

n/In+1). The

obstruction vanishes because the cotangent complex LBXQ/X is perfect of amplitude
[0, 1], since BXQ→ X is smooth, and X0 is cohomologically affine.

Let X̂ = Spec ÔX,x and X̂ = X ×X X̂. Since X̂ is linearly fundamental, it is
coherently complete along X0 (Proposition 5.1). By Tannaka duality (see §1.7.6),

we may thus extend X0 → BX0
Q0 to a morphism X̂ → BXQ, which is affine by

Proposition 12.5(1). Applying Artin approximation (Theorem 3.4) to the functor
HomX(X ×X −, BXQ) : (Sch/X)opp → Sets yields an affine morphism X → BXQ.

�

Note that if X is linearly fundamental and charκ(x) > 0, then y has nice stabi-
lizer. We thus have the following corollaries:
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Corollary 13.5. Let X be a linearly fundamental algebraic stack with good moduli
space X → X and let x ∈ |X| be a point. If either charκ(x) > 0 or x has an
open neighborhood of characteristic zero, then there exists an étale neighborhood
(X ′, x′) → (X,x), with κ(x′) = κ(x), such that X ×X X ′ = [SpecA/G] where
G→ X ′ is a linearly reductive embeddable group scheme. �

Corollary 13.6. Let (S, s) be a Henselian local scheme such that charκ(s) > 0.

(1) If X is a linearly fundamental algebraic stack with good moduli space X→ S,
then X is nicely fundamental.

(2) If G→ S is a linearly reductive and embeddable group scheme, then G→ S
is nice. �

We also obtain the following non-noetherian variant of Theorem 9.3 at the ex-
pense of assuming that X has the resolution property. Also see Corollary 13.11 for
a different variant.

Corollary 13.7. Let X be a fundamental algebraic stack. Then the following are
equivalent.

(1) X is linearly fundamental.
(2) Every closed point of X has linearly reductive stabilizer.
(3) Every closed point of X with positive characteristic has nice stabilizer.

Proof. The only non-trivial implication is (3) =⇒ (1). Let π : X → X be the
adequate moduli space. It is enough to prove that π is a good moduli space after
base change to the henselization at a closed point. We may thus assume that X
is the spectrum of a henselian local ring. If X is a Q-scheme, then the notions
of adequate and good coincide. If not, then the closed point of X has positive
characteristic, hence the unique closed point of X has nice stabilizer. We conclude
that X is nicely fundamental by Proposition 13.4. �

Corollary 13.8. Let X be a fundamental stack with adequate moduli space π : X→
S. Let g : S′ → S be a morphism of algebraic spaces such that X′ := X ×S S′ has
a good moduli space. Then π′ : X′ → S′ is its good moduli space and the natural
transformation g∗π∗ → π′∗g

′∗ is an isomorphism on all quasi-coherent OX-modules.

Proof. Both claims can be checked on stalks so we may assume that S′ = SpecA′

and S = SpecA are spectra of local rings and that the closed point s′ ∈ S′ maps to
the closed point s ∈ S. Since X′ has a good moduli space, it follows that the unique
closed point of X has linearly reductive stabilizer. Hence X is linearly fundamental
(Corollary 13.7) and the result follows from [Alp13, Prop. 4.7]. �

Corollary 13.9. Let X be a linearly fundamental stack of finite presentation over
a quasi-separated algebraic space S with good moduli space π : X → X. Then X is
of finite presentation over S and π∗ takes finitely presented OX-modules to finitely
presented OX-modules.

Proof. We may assume that S is quasi-compact and can thus write S as an inverse
limit of algebraic spaces Sλ of finite presentation over SpecZ with affine transition
maps [Ryd15, Thm. D]. For sufficiently large λ, we can find Xλ → Sλ of finite
presentation that pulls back to X→ S. After increasing λ, we can assume that Xλ is
fundamental by Lemma 2.15(1) and that a given OX-module F of finite presentation
is the pull-back of a coherent OXλ -module Fλ. Then Xλ has an adequate moduli
space Xλ of finite presentation over Sλ and the push-forward of Fλ is a coherent
OXλ -module [Alp14, Thm. 6.3.3]. The result now follows from Corollary 13.8. In
particular, X = Xλ ×Sλ S is the good moduli space of X. �
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13.2. Étale-local structure of stacks with adequate moduli spaces around
points with linearly reductive stabilizer.

Theorem 13.10. Let X be an algebraic stack with adequate moduli space π : X→ X
and let x ∈ X be a point. Assume that

(1) X has affine stabilizers and separated diagonal,
(2) X is of finite presentation over a quasi-separated algebraic space, and
(3) the unique closed point in π−1(x) has linearly reductive stabilizer.

Then there exists an étale neighborhood (X ′, x′) → (X,x) with κ(x′) = κ(x) such
that the pull-back X′ of X is fundamental. That is, there is a cartesian diagram

[SpecA/GLn] = X′
f //

π′

��

X

π

��
SpecB = X ′ // X.

�

where π′ is an adequate moduli space (i.e. B = AGLn). In particular, π has affine
diagonal in an open neighborhood of x.

Proof. Applying Theorem 1.1 with h0 : W0 → Gx an isomorphism yields an étale
representable morphism f : ([SpecA/GLn], w) → (X, x) inducing an isomorphism
Gw → Gx. The result follows from Luna’s fundamental lemma (Theorem 3.14). �

As a consequence, we may remove the noetherian hypothesis from Theorem 9.3.

Corollary 13.11. Let X be an algebraic stack of finite presentation over a quasi-
compact and quasi-separated algebraic space S. Suppose that there exists an ade-
quate moduli space π : X→ X. Then π is a good moduli space with affine diagonal
if and only if

(1) X has separated diagonal and affine stabilizers, and
(2) every closed point of X has linearly reductive stabilizer.

Proof. The conditions are clearly necessary. If they are satisfied, then it follows that
π has affine diagonal from Theorem 13.10. To verify that π is a good moduli space,
we may replace X with the henselization at a closed point. Then X is fundamental
by Theorem 13.10 and the result follows from Corollary 13.7. �

Corollary 13.12. Let S be a quasi-separated algebraic space. Let G→ S be a flat
and separated group algebraic space of finite presentation with affine fibers such that
BG → S is adequately affine (e.g., G → S is geometrically reductive). If s ∈ S is
a point such that Gs is linearly reductive, then there exists an étale neighborhood
(S′, s′) → (S, s), with trivial residue field extension, such that G′ = G ×S S′ is
embeddable.

Proof. This follows from Theorem 13.10 since G′ is embeddable if and only if BG′

is fundamental (Remark 2.9). �

Remark 13.13. If G→ S is a reductive group scheme (i.e., geometrically reductive,
smooth, and with connected fibers) then G → S is étale-locally split reductive. A
split reductive group is a pull-back from SpecZ [SGA3II, Exp. XXV, Thm. 1.1,
Cor. 1.2], hence embeddable.

Proof of Theorem 13.1. Parts (1) and (2) follow from Theorem 13.10. Parts (3)
and (4) then follow from Corollary 13.9 and descent. The final claim follows from
Corollary 13.5. �
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14. Applications to compact generation and algebraicity

14.1. Compact generation of derived categories. Here we prove a variant of
[AHR19, Thm. 5.1] in the mixed characteristic situation.

Proposition 14.1. Let X be a quasi-compact algebraic stack with good moduli
space π : X → X. If X has affine stabilizers, separated diagonal and is of finite
presentation over a quasi-separated algebraic space S, then X has the Thomason
condition; that is,

(1) Dqc(X) is compactly generated by a countable set of perfect complexes; and
(2) for every quasi-compact open immersion U ⊆ X, there exists a compact and

perfect complex P ∈ Dqc(X) with support precisely X \ U.

Proof. By Theorem 13.1, there exists a surjective, étale, separated and repre-
sentable morphism p : W→ X such that W has the form [SpecC/GLn]; in particu-
lar, W has the resolution property. Moreover, since X and p are concentrated (i.e.,
quasi-compact, quasi-separated and of finite cohomological dimension [HR17, §2]),
it follows that W is concentrated. In particular, W is ℵ0-crisp [HR17, Prop. 8.4].
By [HR17, Thm. C], the result follows. �

14.2. Algebraicity results. Here we generalize the algebraicity results of [AHR19,
§5.3] to the setting of mixed characteristic. We will do this using the formulation
of Artin’s criterion in [Hal17, Thm. A]. This requires us to prove that certain
deformation and obstruction functors are coherent, in the sense of [Aus66].

In this subsection, we will assume that we are in the following situation:

Setup 14.2. Fix an excellent algebraic space X and an algebraic stack X with affine
diagonal over X, such that X → X is a good moduli space. Note that X → X is
automatically of finite type [AHR19, Thm. A.1].

Remark 14.3. The results of this section also hold when X is non-excellent, provided
that X satisfies one of the conditions (FC), (PC) or (N) (see Corollary 15.5).

The following result generalizes [AHR19, Prop 5.14] to the setting of mixed
characteristic.

Proposition 14.4. Assume Setup 14.2 and that X is affine. If F ∈ Dqc(X) and
G ∈ Db

Coh(X), then the functor

HomOX
(F,G⊗L

OX
Lπ∗(−)) : QCoh(X)→ QCoh(X)

is coherent.

Proof. The proof is identical to [AHR19, Prop. 5.14]: by Proposition 14.1, Dqc(X)
is compactly generated. Also, the restriction of R(fqc)∗ : Dqc(X) → Dqc(X) to
D+

Coh(X) factors through D+
Coh(X) [Alp13, Thm. 4.16(x)]. By [HR17, Cor. 4.19], the

result follows. �

The following corollary is a mixed characteristic variant of [AHR19, Cor. 5.15].
The proof is identical, so is omitted (also see [Hal14, Thm. D]).

Corollary 14.5. Assume Setup 14.2. Let F be a quasi-coherent OX-module. Let
G be a finitely presented OX-module. If G is flat over X, then the X-presheaf

HomOX/X
(F,G), whose objects over T

τ−→ X are homomorphisms τ∗XF → τ∗XG of

OX×XT -modules (where τX : X×X T → X is the projection), is representable by an
affine X-scheme. �
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Theorem 14.6 (Stacks of coherent sheaves). Assume Setup 14.2. The X-stack
CohX/X , whose objects over T → X are finitely presented quasi-coherent sheaves
on X×X T flat over T , is an algebraic stack, locally of finite presentation over X,
with affine diagonal over X.

Proof. The proof is identical to [AHR19, Thm. 5.7], which is a small modifica-
tion of [Hal17, Thm. 8.1]: the formal GAGA statement of Corollary 1.7 implies
that formally versal deformations are effective and Proposition 14.4 implies that
the automorphism, deformation and obstruction functors are coherent. Therefore,
Artin’s criterion (as formulated in [Hal17, Thm. A]) is satisfied and the result fol-
lows. Corollary 14.5 implies that the diagonal is affine. �

Just as in [AHR19], the following corollaries follow immediately from Theo-
rem 14.6 appealing to the observation that Corollary 14.5 implies that Quot

X/X
(F)→

CohX/X is quasi-affine.

Corollary 14.7 (Quot schemes). Assume Setup 14.2. If F is a quasi-coherent OX-

module, then the X-sheaf Quot
X/X

(F), whose objects over T
τ−→ X are quotients

τ∗XF → G (where τX : X ×X T → X is the projection) such that G is a finitely
presented OX×XT -module that is flat over T , is a separated algebraic space over
X. If F is finitely presented, then Quot

X/X
(F) is locally of finite presentation over

X. �

Corollary 14.8 (Hilbert schemes). Assume Setup 14.2. The X-sheaf HilbX/X ,
whose objects over T → X are closed substacks Z ⊆ X ×X T such that Z is flat
and of finite presentation over T , is a separated algebraic space locally of finite
presentation over X. �

We now establish algebraicity of Hom stacks. Related results were established
in [HP14] under other hypotheses.

Theorem 14.9 (Hom stacks). Assume Setup 14.2. Let Y be an algebraic stack,
quasi-separated and locally of finite presentation over X with affine stabilizers. If
X→ X is flat, then the X-stack HomX(X,Y), whose objects are pairs consisting of
a morphism T → X of algebraic spaces and a morphism X×X T → Y of algebraic
stacks over X, is an algebraic stack, locally of finite presentation over X with
quasi-separated diagonal. If Y → X has affine (resp. quasi-affine, resp. separated)
diagonal, then the same is true for HomX(X,Y)→ X.

Proof. This is also identical to the proof of [AHR19, Thm. 5.10], which is a variant
of [HR19, Thm. 1.2], so is omitted. �

Corollary 14.10 (G-equivariant Hom stacks). Let S be an excellent algebraic
space. Let Z be an algebraic space of finite type over S and W a quasi-separated
Deligne–Mumford stack, locally of finite type over S. Let G → S be a linearly
reductive affine group scheme acting on Z and Y. Suppose that Z → S is flat
and a good GIT quotient (i.e. [Z/G] → S is a good moduli space). Then the

S-stack HomG
S (Z,W), whose objects over T → S are G-equivariant S-morphisms

Z ×S T → W, is a Deligne–Mumford stack, locally of finite type over S. In addi-
tion, if W has separated diagonal (resp. is an algebraic space), then HomG

S (Z,W)
is quasi-separated (resp. is a quasi-separated algebraic space).

Proof. This is also identical to the proof of [AHR19, Cor. 5.11], so is omitted. �
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15. Approximation of linearly fundamental stacks

In this section we use the results of Section 13 to extend the approximation
results for fundamental and nicely fundamental stacks in Section 2.3 to linearly
fundamental stacks (Theorem 15.3) and good moduli spaces (Corollary 15.5). This
will be crucial in Section 16 to reduce from the henselian case to the excellent
henselian case. To this end, we introduce the following mild mixed characteristic
assumptions on an algebraic stack W:

(FC) There is only a finite number of different characteristics in W.
(PC) Every closed point of W has positive characteristic.

(N) Every closed point of W has nice stabilizer.

Remark 15.1. Note that if η ; s is a specialization in W, then the characteristic of η
is 0 or agrees with that of s. In particular, if (W,W0) is a local pair (Definition 3.1),
then conditions (FC), (PC) and (N) for W0 and W are equivalent.

Let X be a fundamental stack with adequate moduli space π : X → X. Let
Xnice ⊆ |X| be the locus of points x ∈ |X| such that the unique closed point in the
fiber π−1(x) has nice stabilizer. If x ∈ Xnice, then there exists an étale neighborhood
X ′ → X of x such that X×XX ′ is nicely fundamental (Proposition 13.4). It follows
that Xnice is open and that X×X Xnice → Xnice is a good moduli space.

Lemma 15.2. Let X be a fundamental stack with adequate moduli space X. Let
X = lim←−λ Xλ be an inverse limit of fundamental stacks with affine transition maps.

Then

(1) X ×Xλ (Xλ)nice ⊆ Xnice for every λ, and
(2) if V ⊆ Xnice is a quasi-compact open subset, then V ⊆ X ×Xλ (Xλ)nice for

every sufficiently large λ.

Proof. Note that the map X → Xλ ×Xλ X is affine but not an isomorphism (if it
was, the result would follow immediately).

For x ∈ (Xλ)nice, let Uλ → Xλ be an étale neighborhood of x such that Xλ×XλUλ
is nicely fundamental (Proposition 13.4). Then X×XλUλ is also nicely fundamental
as it is affine over the former. Thus X ×Xλ (Xλ)nice ⊆ Xnice. This proves (1).

For (2), let U → V be an étale surjective morphism such that X×X U is nicely
fundamental (Proposition 13.4). Since X = lim←−λXλ (Lemma 2.15(2)) and U → X

is affine, we can for all sufficiently large λ find Uλ → Xλ affine étale such that
U = Uλ ×Xλ X. Since X ×X U = lim←−λ Xλ ×Xλ Uλ is nicely fundamental, so is

Xλ ×Xλ Uλ for all sufficiently large λ (Lemma 2.15(1)). It follows that (Xλ)nice

contains the image of Uλ so V ⊆ X ×Xλ (Xλ)nice. �

The main theorem of this section is the following variant of Lemma 2.15 for
linearly fundamental stacks.

Theorem 15.3 (Approximation of linearly fundamental). Let Y be a quasi-compact
and quasi-separated algebraic stack. Let X = lim←−λ Xλ where Xλ is an inverse system

of quasi-compact and quasi-separated algebraic stacks over Y with affine transition
maps. Assume that (1) Y is (FC), or (2) X is (PC), or (3) X is (N). Then, if X is
linearly fundamental, so is Xλ for all sufficiently large λ.

Proof. By Lemma 2.15 we can assume that the Xλ are fundamental. Since X is
linearly fundamental, (PC) =⇒ (N). If X satisfies (N), then Xnice = X and it
follows from Lemma 15.2 that (Xλ)nice = Xλ for all sufficiently large λ; hence
that Xλ is linearly fundamental. Thus, it remains to prove the theorem when Y

satisfies (FC). In this case, YQ := Y ×SpecZ SpecQ is open in Y. Similarly for the
other stacks. In particular, if X denotes the good moduli space of X, then X is
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the union of the two open subschemes Xnice and XQ. In addition, since X rXQ is
closed, hence quasi-compact, we may find a quasi-compact open subset V ⊆ Xnice

such that X = V ∪XQ. For sufficiently large λ, we have that V ⊆ (Xλ)nice ×Xλ X
(Lemma 15.2(2)) and thus, after possibly increasing λ, that Xλ = (Xλ)nice∪(Xλ)Q.
It follows that Xλ is linearly fundamental. �

Corollary 15.4. Let X be a linearly fundamental stack. Assume that X satisfies
(FC), (PC) or (N). Then we can write X = lim←−λ Xλ as an inverse limit of linearly

fundamental stacks, with affine transition maps, such that each Xλ is essentially of
finite type over SpecZ.

Proof. If X satisfies (FC), let S be the semi-localization of SpecZ in all character-
istics that appear in S. Then there is a canonical map X→ S. If X satisfies (PC)
or (N), let S = SpecZ. Since X is fundamental, we can write X as an inverse limit
of algebraic stacks Xλ that are fundamental and of finite presentation over S. The
result then follows from Theorem 15.3. �

Corollary 15.4 is not true unconditionally, even if we merely assume that the Xλ
are noetherian, see Appendix A.

Corollary 15.5 (Approximation of good moduli spaces). Let X = lim←−λXλ be

an inverse system of quasi-compact algebraic spaces with affine transition maps.
Let α be an index, let fα : Xα → Xα be a morphism of finite presentation and let
fλ : Xλ → Xλ, for λ ≥ α, and f : X→ X denote its base changes. Assume that Xα

satisfies (FC) or X satisfies (PC) or (N). Then if X → X is a good moduli space,
so is Xλ → Xλ for all sufficiently large λ.

Proof. Theorem 13.1 gives an étale and surjective morphism X ′ → X such that
X′ = X×X X ′ is linearly fundamental. For sufficiently large λ, we can find an étale
surjective morphism X ′λ → Xλ that pulls back to X ′ → X. For sufficiently large λ,
we have that X′λ := Xλ ×Xλ X ′λ is linearly fundamental by Theorem 15.3. Its good

moduli space X
′
λ is of finite presentation over X ′λ (Corollary 13.9). It follows that

X
′
λ → X ′λ is an isomorphism for all sufficiently large λ. By descent, it follows that

Xλ → Xλ is a good moduli space for all sufficiently large λ �

16. Deformation of linearly fundamental stacks

In this section, we will be concerned with deforming objects over henselian pairs
(Definition 3.1). For the majority of this section, we will be in the following situa-
tion.

Setup 16.1. Let X be a quasi-compact algebraic stack with affine diagonal and
affine good moduli space X. Let X0 ↪→ X be a closed substack with good moduli
space X0. Assume that (X,X0) is an affine henselian pair and one of the following
conditions holds:

(a) X0 has the resolution property, X is noetherian and (X,X0) is complete; or
(b) X0 has the resolution property, X is noetherian and (X,X0) is excellent; or
(c) X has the resolution property and X0 satisfies (FC), (PC), or (N).

In Section 16.6, we will deform objects over étale neighborhoods instead of over
henselian pairs.

Remark 16.2. Note that (FC) and (PC) for X0 are clearly equivalent to the corre-
sponding properties for X0. Since the pair (X,X0) is henselian and so local, it fol-
lows that these are equivalent to the corresponding properties for X (Remark 15.1)
and so X. Similarly, (N) for X0 is equivalent to (N) for X. Also, Corollary 15.5
permits “X has the resolution property” to be weakened to “X0 has the resolution
property” in Setup 16.1(c) if X→ X is of finite presentation (e.g., X noetherian).
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16.1. Deformation of the resolution property. The first result of this section
is the following remarkable proposition. It is a simple consequence of some results
proved several sections ago.

Proposition 16.3 (Deformation of the resolution property). Assume Setup 16.1(a)
or (b). Then X has the resolution property; in particular, X is linearly fundamental.

Proof. Case (a) is part of the coherent completeness result (Theorem 1.6). For (b),

let X̂ denote the completion of X along X0 and X̂ = X ×X X̂. By the complete

case, X̂ has the resolution property. Equivalently, there is a quasi-affine morphism

X̂ → BGLn for some n. The functor parametrizing quasi-affine morphisms to
BGLn is locally of finite presentation [Ryd15, Thm. C] so by Artin approximation
(Theorem 3.4), there exists a quasi-affine morphism X→ BGLn. �

16.2. Deformation of sections. If f : X′ → X is a morphism of algebraic stacks,
we will denote the groupoid of sections s : X→ X′ of f as Γ(X′/X).

Proposition 16.4 (Deformation of sections). Assume Setup 16.1. If f : X′ → X

is a quasi-separated and smooth (resp. smooth gerbe, resp. étale) morphism with
affine stabilizers, then Γ(X′/X) → Γ(X′ ×X X0/X0) is essentially surjective (resp.
essentially surjective and full, resp. an equivalence of groupoids).

Proof. Any section s0 of X′ ×X X0 → X0 has quasi-compact image. In particular,
we may immediately reduce to the situation where f is finitely presented.

We first handle case (a): By Theorem 1.6, X is coherently complete along X0. Let

I be the ideal sheaf defining X0 ⊆ X and let Xn := X
[n]
X0

be its nilpotent thickenings.

Set X′n = X′×XXn. Let s0 : X0 → X′0 be a section of X′0 → X0. Given a section sn−1

of X′n−1 → Xn−1, lifting s0, the obstruction to deforming sn−1 to a section sn of

X′n → Xn is an element of Ext1
OX0

(Ls∗0LX′/X, I
n/In+1) by [Ols06, Thm. 1.5].3 Since

X′ → X is smooth (resp. a smooth gerbe, resp. étale), the cotangent complex LX′/X

is perfect of amplitude [0, 1] (resp. perfect of amplitude 1, resp. zero). Further X0 is
cohomologically affine, so there exists a lift (resp. a unique lift up to non-unique 2-
isomorphism, resp. a unique lift up to unique 2-isomorphism). By Tannaka duality
(see §1.7.6), these sections lift to a unique section s : X→ X′.

We now handle case (b). Let X̂ be the completion of X along X0 and set

X̂ = X×S Ŝ and X̂′ = X′ ×S Ŝ. Case (a) yields a section ŝ : X̂ → X̂′ extending s0.
The functor assigning an S-scheme T to the set of sections Γ(X′ ×S T/X ×S T ) is
limit preserving, and we may apply Artin approximation (Theorem 3.4) to obtain
a section of s : X′ → X restricting to s0.

Finally, we handle case (c). Fix a section s0 : X0 → X′ ×X X0 to f0 : X′ ×X

X0 → X0. Then there is a factorization X0 ↪→ X̃0 ↪→ X, where X̃0 ↪→ X is a
finitely presented closed immersion (X has the resolution property, making the

approximation trivial) and s0 extends to a section s̃0 to X′ ×X X̃0 → X̃0. By
Remark 16.2, X inherits the properties (FC), (PC) or (N). We may now approximate

(X̃0,X) by (X̃λ,0,Xλ), where Xλ is linearly fundamental and essentially of finite
type over SpecZ (Corollary 15.4). Since X′ → X is smooth (resp. a smooth gerbe,
resp. étale) and finitely presented, after possibly increasing λ it descends to X′λ →
Xλ and retains its properties of being smooth (resp. a smooth gerbe, resp. étale)
[Ryd15, Prop. B.3]. After further increasing λ, s̃0 descends. Now pull all of the

3Note that [Ols06, Thm. 1.5] only treats the case of embedded deformations over a base scheme.
In the case of a relatively flat target morphism, however, this can be generalized to a base algebraic
stack by deforming the graph and employing [Ols06, Thm. 1.1], together with the tor-independent
base change properties properties of the cotangent complex. In the situation at hand we may also
simply apply [Ols06, Thm. 1.1] to sn : Xn → X′ and Xn ↪→ X.
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descended objects back along the henselization of the good moduli space Xλ along

the good moduli space of X̃λ,0. The claim now follows from (b).
The uniqueness statements can be argued using similar methods—the complete

case is clear, the excellent case can be reduced to the complete case using Artin
approximation, and the others can be also reduced to the excellent case. �

16.3. Deformation of morphisms. A simple application of Proposition 16.4
yields a deformation result of morphisms.

Proposition 16.5. Assume Setup 16.1. If Y → X is a quasi-separated and
smooth (resp. smooth gerbe, resp. étale) morphism with affine stabilizers, then any
morphism X0 → Y can be extended (resp. extended uniquely up to non-unique 2-
isomorphism, resp. extended uniquely up to unique 2-isomorphism) to a morphism
X→ Y. In particular,

(1) The natural functor FÉT(X) → FÉT(X0) between the categories of finite
étale covers is an equivalence.

(2) The natural functor VB(X)→ VB(X0) between the categories of vector bun-
dles is essentially surjective and full.

(3) Let G→ X be a flat group scheme of finite presentation. If X0 = [SpecA/G],
then X = [SpecB/G].

(4) If X0 is nicely fundamental, then so is X.

Proof. For the main statement, apply Proposition 16.4 with X′ = X ×X Y. For
(1), apply the result to Y =

∐
nBSn,X noting that BSn classifies finite étale covers

of degree n. Similarly, for (2), apply the result to Y =
∐
nBGLn,X . For (3),

apply the result to Y = BG together with Proposition 12.5(1) to ensure that the
induced morphism X → BG is affine. For (4), note that, by definition, X0 =
[SpecA/G0] where G0 → S0 is nice and embeddable. We next deform G0 to a nice
and embeddable group scheme G→ S (Proposition 7.1) and then apply (3). �

16.4. Deformation of linearly fundamental stacks. If (S, S0) is an affine com-
plete noetherian pair and X0 is a linearly fundamental stack with a syntomic mor-
phism X0 → S0 that is a good moduli space, Theorem 1.11 constructs a noetherian
and linearly fundamental stack X that is flat over S, such that X0 = X×S S0 and
X is coherently complete along X0. The following lemma shows that X→ S is also
a good moduli space. We also consider non-noetherian generalizations.

Lemma 16.6. Let X be a quasi-compact algebraic stack with affine diagonal and
affine good moduli space X. Let π : X → S be a flat morphism. Let S0 ↪→ S be a
closed immersion. Let X0 = X ×S S0 and assume π0 : X0 → S0 is a good moduli
space and (X,X0) is a local pair. In addition, assume that (S, S0) is an affine local
pair and

(a) X is noetherian and (S, S0) is complete; or
(b) X is noetherian and π is of finite type; or
(c) X has the resolution property, π is of finite presentation and X0 satisfies

(FC), (PC), or (N).

Then π is a good moduli space morphism of finite presentation. Moreover,

(1) if π0 is syntomic (resp. smooth, resp. étale), then so is π; and
(2) if π0 is an fppf gerbe (resp. a smooth gerbe, resp. an étale gerbe), then so

is π.

Proof. We first show that π is a good moduli space morphism of finite presentation.
Let S = SpecA, S0 = Spec(A/I) and X = SpecB. Since (X,X0) is a local pair,

it follows that (SpecB, SpecB/IB) is a local pair. In particular, IB is contained
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in the Jacobson radical of B. Note that if X is noetherian, then X → SpecB is of
finite type [AHR19, Thm. A.1]. Moreover, in the commuting diagram:

X0_�

��

// Spec(B/IB)
_�

��

// S0_�

��
X // X // S,

the outer rectangle is cartesian, as is the right square, so it follows that the left
square is cartesian. Since the formation of good moduli spaces is compatible with
arbitrary base change, it follows that the morphism A/I → B/IB is an isomor-
phism.

Case (a): let An = A/In+1 and Xn = V (In+1OX). Since Xn is noetherian
and πn : Xn → Sn := SpecA/In+1 is flat, it follows that Bn = Γ(Xn,OXn) =
B/In+1B is a noetherian and flat An = A/In+1-algebra [Alp13, Thm. 4.16(ix)].

But Bn/IBn = A/I so An → Bn is surjective and hence an isomorphism. Let B̂ be

the IB-adic completion of B; then the composition A→ B → B̂ is an isomorphism

and B → B̂ is faithfully flat because IB is contained in the Jacobson radical of B.
It follows immediately that A→ B is an isomorphism.

Case (b): now the image of π contains S0 and by flatness is stable under gener-
izations; it follows immediately that π is faithfully flat. Since X is noetherian, it
follows that S is noetherian.

We may now base change everything along the faithfully flat morphism Spec Â→
SpecA, where Â is the I-adic completion of A. By faithfully flat descent of good
moduli spaces, we are now reduced to Case (a).

Case (c): this follows from (b) using an approximation argument similar to that
employed in the proof of Proposition 16.4.

Now claim (1) is immediate: every closed point of X lies in X0. For claim (2),
since X→ S and X×SX→ S are flat and X0 contains all closed points, the fiberwise
criterion of flatness shows that ∆X/S is flat if and only if ∆X0/S0

is flat. It then
follows that ∆X/S is smooth (resp. étale) if ∆X0/S0

is so. �

Combining Theorem 1.11 and Lemma 16.6 with Artin approximation yields the
following result.

Proposition 16.7 (Deformation of linearly fundamental stacks). Let π0 : X0 → S0

be a good moduli space, where X0 is linearly fundamental. Let (S, S0) be an affine
henselian pair and assume one of the following conditions:

(a) (S, S0) is a noetherian complete pair;
(b) S is excellent;
(c) X0 satisfies (FC), (PC), or (N).

If π0 is syntomic, then there exists a syntomic morphism π : X→ S that is a good
moduli space such that:

(1) X×S S0
∼= X0;

(2) X is linearly fundamental; and
(3) X is coherently complete along X0 if (S, S0) is a noetherian complete pair.
(4) π is smooth (resp. étale) if π0 is smooth (resp. étale).
(5) π is an fppf (resp. smooth, resp. étale) gerbe if π0 is such a gerbe.

Moreover, if π0 is smooth (resp. a smooth gerbe, resp. étale), then π is unique
up to non-unique isomorphism (resp. non-unique 2-isomorphism, resp. unique 2-
isomorphism).

Proof. In case (a): the existence of a flat morphism X → S satisfying (1)–(3) is
immediate from Theorem 1.11 applied to X0 → S0 → S. Lemma 16.6(a) implies
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that X → S is syntomic and a good moduli space, as well as the other conditions.
If X′ → S is another lift, the uniqueness statements follow by applying Proposi-
tion 16.5 with Y = X′.

In case (b): consider the functor assigning an S-scheme T to the set of isomor-
phism classes of fundamental stacks Y over T such that π : Y → T is syntomic.
This functor is limit preserving by Lemma 2.15, so we may use the construction in
the complete case and Artin approximation (Theorem 3.4) to obtain a fundamental
stack X over S such that X×S S0 = X0 and X→ S is syntomic. An application of
Lemma 16.6(b) completes the argument again.

Case (c) follows from case (b) by approximation (similar to that used in the
proof of Proposition 16.4). �

16.5. Deformation of linearly reductive groups. As a direct consequence of
Proposition 16.7, we can prove the following result, cf. Proposition 7.1.

Proposition 16.8 (Deformation of linearly reductive group schemes). Let (S, S0)
be an affine henselian pair and G0 → S0 a linearly reductive and embeddable group
scheme. Assume one of the following conditions:

(a) (S, S0) is a noetherian complete pair;
(b) S is excellent; or
(c) G0 has nice fibers at closed points or S0 satisfies (PC) or (FC).

Then there exists a linearly reductive and embeddable group scheme G → S such
that G0 = G×S S0. If, in addition, G0 → S0 is smooth (resp. étale), then G → S
is smooth (resp. étale) and unique up to non-unique (resp. unique) isomorphism.

Proof. Applying Proposition 16.7 to BG0 → S0 yields a linearly fundamental and
fppf gerbe X→ S such that BG0 = X×S S0. By Proposition 16.4, we may extend
the canonical section S0 → BG0 to a section S → X with the stated uniqueness
property. We conclude that X is isomorphic to BG for an fppf affine group scheme
G→ S extending G0. Since BG is linearly fundamental, G→ S is linearly reductive
and embeddable (see Remark 2.9). �

Remark 16.9. When G0 → S0 is a split reductive group scheme, then the existence
of G → S follows from the classification of reductive groups: G0 → S0 is the pull-
back of a split reductive group over SpecZ [SGA3II, Exp. XXV, Thm. 1.1, Cor. 1.2].
Our methods require linearly reductivity but also work for non-connected, non-split
and non-smooth group schemes.

16.6. Extension over étale neighborhoods. In this last subsection, we consider
the problem of extending objects over étale neighborhoods. Recall that if π : X→ X
is an adequate moduli space, then a morphism X′ → X is strongly étale if X′ =
X×X X ′ for some étale morphism X ′ → X (Definition 3.13).

Proposition 16.10 (Extension of gerbes). Let (S, S0) be an affine pair. Let
π0 : X0 → S0 be an fppf gerbe (resp. smooth gerbe, resp. étale gerbe). Suppose
that X0 is linearly fundamental and satisfies (PC), (N) or (FC). Then, there exists
an étale neighborhood S′ → S of S0 and a fundamental fppf gerbe (resp. smooth
gerbe, resp. étale gerbe) π : X′ → S′ extending π0.

Proof. The henselization Sh of (S, S0) is the limit of the affine étale neighborhoods
S′ → S of S0 so the result follows from Proposition 16.7 and Lemma 2.15(1). �

Proposition 16.11 (Extension of groups). Let (S, S0) be an affine pair. Let G0 →
S0 be a linearly reductive and embeddable group scheme. Suppose that G0 has nice
fibers or that S0 satisfies (PC) or (FC). Then, there exists an étale neighborhood
S′ → S of S0 and a geometrically reductive embeddable group G′ → S′ extending
G0.
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Proof. Argue as before, using Proposition 16.8 and Lemma 2.12. �

Proposition 16.12 (Extension of morphisms). Let (X,X0) be a fundamental pair
over an algebraic stack S. Suppose that X0 is linearly fundamental and satisfies
(PC), (N) or (FC). Let Y→ S be a smooth morphism, that is quasi-separated with
affine stabilizers (resp. affine diagonal) and let f0 : X0 → Y be an S-morphism (resp.
an affine S-morphism). Then there exists a strongly étale neighborhood X′ → X of
X0 such that f0 extends to an S-morphism (resp. an affine S-morphism) f ′ : X′ → Y.

Proof. Let X be the adequate moduli space of X and X0 ⊆ X the image of X0.
Then (X,X0) is an affine pair and its henselization Xh is the limit of étale neigh-
borhoods X ′ → X of X0. Since X0 ↪→ Xh contains all closed points, it follows that
Xh := X×X Xh is linearly fundamental by Corollary 13.7. The result follows from
Proposition 16.5, Proposition 12.5(1) and standard limit methods. �

Proposition 16.13 (Extension of nicely fundamental). Let (X,X0) be a fundamen-
tal pair. If X0 is nicely fundamental, then there exists a strongly étale neighborhood
X′ → X of X0 such that X′ is nicely fundamental.

Proof. As in the previous proof, it follows that Xh is linearly fundamental, hence
nicely fundamental by Proposition 16.5(4). By Lemma 2.15(1), there exists an étale
neighborhood X ′ → X of X0 such that X′ := X×X X ′ is nicely fundamental. �

Proposition 16.14 (Extension of linearly fundamental). Let (X,X0) be a funda-
mental pair. Suppose that X0 satisfies (PC), or (N), or that X satisfies (FC) in an
open neighborhood of X0. If X0 is linearly fundamental, then there exists a saturated
open neighborhood X′ ⊆ X of X0 such that X′ is linearly fundamental.

Proof. Let X be the adequate moduli space of X and X0 the image of X0. The
Zariskification XZ of X is the limit of all affine open neighborhoods X ′ → X of X0.
Since X0 ↪→ XZ contains all closed points, the stack XZ := X ×X XZ is linearly
fundamental (Corollary 13.7). By Theorem 15.3, there exists an open neighborhood
X ′ → X of X0 such that X′ := X×X X ′ is linearly fundamental. �

Remark 16.15. Note that when S0 is a single point, then (FC) always holds for S0

and for objects over S0. In the results of this subsection, the substacks S0 ⊆ S and
X0 ⊆ X are by definition closed substacks. The results readily generalize to the
following situation: S0 = {s} is any point and X0 = Gx is the residual gerbe of a
point x closed in its fiber over the adequate moduli space.

17. Refinements on the local structure theorem

In the section, we detail refinements of Theorem 1.1. These follows from the
extension results of Section 16.

Proposition 17.1 (Gerbe refinement). Let S be a quasi-separated algebraic space.
Let W be a fundamental stack of finite presentation over S. Let w ∈ |W| be a point
with linearly reductive stabilizer and image s ∈ |S| such that w is closed in its fiber
Ws. Then there exists a commutative diagram of algebraic stacks

W′
h //

t

��

W

��
H // S′

g // S

where

(1) g : (S′, s′) → (S, s) is a smooth (étale if κ(w)/κ(s) is separable) morphism
such that there is a κ(s)-isomorphism κ(w) ∼= κ(s′);
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(2) H→ S′ is a fundamental gerbe such that Hs′
∼= Gw;

(3) h : (W′, w′)→ (W, w) is a strongly étale (see Definition 3.13) neighborhood
of w such that Gw′ → Gw is an isomorphism; and

(4) t : W′ → H is an affine morphism extending the inclusion Gw′ ∼= Gw → H.

Moreover, we can arrange so that

(5) if w has nice stabilizer (e.g. charκ(w) > 0), then H is nicely fundamental;
(6) if w has nice stabilizer or admits an open neighborhood of characteristic

zero, then H is linearly fundamental.

Proof. We can replace (S, s) with an étale neighborhood and assume that S is an
affine scheme. To obtain g as in (1), we may then take S′ = S×An for a suitable n
or as an étale extension of Specκ(w)→ Specκ(s) if the field extension is separable.

After replacing S′ with an étale neighborhood of s′, we obtain a fundamental
gerbe H → S′ extending Gw by Proposition 16.10 (and Remark 16.15). Since
H→ S′ → S is smooth, we may apply Proposition 16.12 to obtain the morphisms
h : W′ →W and t : W′ → H satisfying (3) and (4). Finally, (5) and (6) follow from
Proposition 16.13 and Proposition 16.14 respectively. �

Proposition 17.2 (Group refinement). Let S be an affine scheme, let H → S
be a fundamental gerbe and let s ∈ S be a point. Then after replacing S with an
étale neighborhood of s, there exists a geometrically reductive and embeddable group
scheme G→ S and an affine S-morphism H→ BG. Moreover, we can arrange so
that

(1) if Hs = BG0, then Gs ∼= G0 and H→ BG is an isomorphism;
(2) if H is nicely fundamental, then G is nice; and
(3) if H is linearly fundamental, then G is linearly fundamental.

Proof. If Hs = BG0, i.e., has a section σ0 with automorphism group G0, then
after replacing S with an étale neighborhood, we obtain a section σ of H (Propo-
sition 16.12) and the result follows with G = Aut(σ).

In general, there exists, after replacing S with an étale neighborhood of s, a
finite étale surjective morphism S′ → S such that H ×S S′ → S′ has a section σ′.
The group scheme H ′ = Aut(σ′)→ S′ is geometrically reductive and embeddable.
We let G be the Weil restriction of H ′ along S′ → S. It comes equipped with a
morphism H→ BG which is representable, hence affine by Proposition 12.5(1). It
can be seen that G→ S is geometrically reductive and embeddable and also linearly
reductive (resp. nice) if H is linearly fundamental (resp. nicely fundamental). �

Proposition 17.3 (Smooth refinement). Let S be a quasi-separated algebraic space.
Let H → S be a fundamental gerbe and let t : W → H be an affine morphism of
finite presentation. Let w ∈ |W| be a point with linearly reductive stabilizer and
image s ∈ |S| such that w is closed in its fiber Ws. Suppose that the induced map
Gw → Hs is an isomorphism. If W→ S is smooth, then after replacing S with an
étale neighborhood of s, there exists

(1) a section σ : H→W of t such that σ(s) = w; and
(2) a morphism q : W → V(Nσ), where Nσ = t∗(I/I

2) and I is the sheaf of
ideals in W defining σ, which is strongly étale in an open neighborhood of
σ and such that q ◦ σ is the zero-section.

Proof. The existence of the section σ follows from Proposition 16.12. Note that
since t is affine and smooth, the section σ is a regular closed immersion. An easy
approximation argument allows us to replace S by the henselization at s. Then H

is linearly fundamental (Corollary 13.7). Let I ⊆ OW be the ideal sheaf defining σ.
Since Nσ = t∗(I/I

2) is locally free and H is cohomologically affine, the surjection
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t∗I → Nσ of OH-modules admits a section. The composition Nσ → t∗I → t∗OW

gives a morphism q : W→ V(Nσ). By definition, q maps σ to the zero-section and
induces an isomorphism of normal spaces along σ, hence is étale along σ, hence is
strongly étale in a neighborhood by Luna’s fundamental lemma (Theorem 3.14). �

Corollary 17.4. In the setting of Theorem 1.1, we can arrange that there is a
commutative diagram of algebraic stacks

W
h //

t

��

X

��
H

r // BG // S′
g // S

where

(1) g : (S′, s′) → (S, s) is a smooth (étale if κ(w)/κ(s) is separable) morphism
such that there is a κ(s)-isomorphism κ(w) ∼= κ(s′);

(2) H→ S′ is a fundamental gerbe such that Hs′
∼= W0; and

(3) G→ S′ is a geometrically reductive embeddable group scheme; and
(4) t : W→ H and r : H→ BG are affine morphisms, so W = [SpecB/G].

Moreover, we can arrange so that:

(5) if W0 = BG0, then Gs′ ∼= G0 and H = BG,
(6) if w has nice stabilizer, then H is nicely fundamental and G is nice,
(7) if charκ(s) > 0 or s has an open neighborhood of characteristic zero, then

H is linearly fundamental and G is linearly reductive,
(8) if X → S is smooth at x and κ(w)/κ(s) is separable, then there exists a

commutative diagram

V(Nσ)

""

W
qoo

t

��
H

σ

VV

0

[[

where q is strongly étale and σ is a section of t such that σ(s′) = w.

Proof. Theorem 1.1 produces a morphism h : (W, w) → (X, x). We apply Propo-
sition 17.1 to (W, w) and replace (W, w) with (W′, w′). Then we apply Proposi-
tion 17.2 to (H, s′). Finally, if X → S is smooth at x and S′ → S is étale, then
W→ S′ is smooth and we can apply Proposition 17.3. �

Proof of Theorem 1.3. Theorem 1.1 gives an étale neighborhood (W, w) → (X, x)
inducing an isomorphism Gw → Gx. Since Gx → Spec k is smooth, Proposition 16.12
shows that after replacing W with a strongly étale neighborhood, there is an affine
morphism W→ Gx. �

18. Structure of linearly reductive groups

Recall from Definition 2.1 that a linearly reductive (resp. geometrically reductive)
group scheme G→ S is flat, affine and of finite presentation such that BG→ S is
a good moduli space (resp. an adequate moduli space). In this section we will show
that a group algebraic space is linearly reductive if and only if it is flat, separated, of
finite presentation, has linearly reductive fibers, and has a finite component group
(Theorem 18.9).
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18.1. Extension of closed subgroups.

Lemma 18.1 (Anantharaman). Let S be the spectrum of a DVR. If G → S is a
separated group algebraic space of finite type, then G is a scheme. If in addition
G→ S has affine fibers or is flat with affine generic fiber Gη, then G is affine.

Proof. The first statement is [Ana73, Thm. 4.B]. For the second statement, it is
enough to show that the flat group scheme G = Gη is affine. This is [Ana73,
Prop. 2.3.1]. �

Proposition 18.2. Let G → S be a geometrically reductive group scheme that is
embeddable fppf-locally on S (we will soon see that this is automatic if G is linearly
reductive).

(1) If N ⊆ G is a closed normal subgroup such that N → S is quasi-finite, then
N → S is finite.

Let H → S be a separated group algebraic space of finite presentation and let u : G→
H be a homomorphism.

(2) If u is a monomorphism, then u is a closed immersion.
(3) If us : Gs → Hs is a monomorphism for a point s ∈ S, then uU : GU → HU

is a closed immersion for some open neighborhood U of s.

Proof. The questions are local on S so we can assume that G is embeddable. For
(1) we note that a normal closed subgroup N ⊆ G gives rise to a closed subgroup
[N/G] of the inertia stack [G/G] = IBG (where G acts on itself via conjugation).
The result thus follows from Lemma 12.6.

For (2), it is enough to prove that u is proper. After noetherian approximation,
we can assume that S is noetherian. By the valuative criterion for properness,
we can further assume that S is the spectrum of a DVR. We can also replace H
with the closure of u(Gη). Then H is an affine group scheme (Lemma 18.1) so
H/G → BG → S is adequately affine, hence affine. It follows that u is a closed
immersion.

For (3), we apply (1) to ker(u) which is quasi-finite, hence finite, in an open
neighborhood of s. By Nakayama’s lemma u is thus a monomorphism in an open
neighborhood and we conclude by (2). �

Remark 18.3. If H → S is flat, then (2) says that any representable morphism
BG → BH is separated. When G is of multiplicative type then Proposition 18.2
is [SGA3II, Exp. IX, Thm. 6.4 and Exp. VIII, Rmq. 7.13b]. When G is reductive
(i.e., smooth with connected reductive fibers) it is [SGA3II, Exp. XVI, Prop. 6.1
and Cor. 1.5a].

Proposition 18.4. Let (S, s) be a henselian local ring, let G → S be a flat group
scheme of finite presentation with affine fibers and let is : Hs ↪→ Gs be a closed
subgroup. If Hs is linearly reductive and Gs/Hs is smooth, then there exists a
linearly reductive and embeddable group scheme H → S and a homomorphism
i : H → G extending is.

(1) If Gs/Hs is étale (i.e., if is is open and closed), then i is étale and the pair
(H, i) is unique.

(2) If G→ S is separated, then i is a closed immersion.

Proof. Note that since (S, s) is local, condition (FC) is satisfied. By Proposi-
tion 16.7, the gerbe BHs extends to a unique linearly fundamental gerbe H→ S.

Since BG → S is smooth, we can extend the morphism ϕ0 : BHs → BGs to a
morphism ϕ : H→ BG (Proposition 16.5). The morphism ϕ is flat and the special
fiber ϕ0 is smooth since Gs/Hs is smooth. Thus ϕ is smooth. Similarly, if Gs/Hs

is étale, then ϕ is étale and also unique by Proposition 16.4.
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The tautological section S → BG restricted to the special fiber is compatible
with the tautological section fs : s→ BHs so we obtain a lift f : S → H compatible
with these by Proposition 16.4. The lift f is unique if ϕ is étale.

We let H = Aut(f) and let i : H → G = Aut(ϕ ◦ f) be the induced morphism,
extending is. Finally, if G is separated, then i is a closed immersion (Proposi-
tion 18.2). �

Remark 18.5. Note that even if Gs/Hs is not smooth the tautological section of

BHs extends to a section of H → S so H = BH̃ where H̃ is an extension of Hs

and ϕ induces a homomorphism H̃ → G̃ where G̃ is a twisted form of G. If Hs is
smooth, then H is unique but not i.

18.2. The smooth identity component of linearly reductive groups. Recall
that if G → S is a smooth group scheme, then there is an open subgroup G0 ⊆ G
such that G0 → S is smooth with connected fibers [SGA3II, Exp. 6B, Thm. 3.10].
This is also true when G → S is a smooth group algebraic space [LMB, 6.8]. For
a (not necessarily smooth) group scheme of finite type over a field, the identity
component exists and is open and closed. When (S, s) is henselian and (Gs)

0 is
linearly reductive but not smooth, so of multiplicative type, then Proposition 18.4
gives the existence of a unique i : G0 → G extending is : (Gs)

0 ↪→ Gs. The group
scheme G0 has connected fibers in equal characteristic p but not necessarily in
mixed characteristic. Also if G is not separated then i need not be injective. The
latter phenomenon can also happen if G is smooth but not separated and then G0

of Proposition 18.4 does not agree with the usual G0.

Example 18.6. We give two examples in mixed characteristic and one in equal
characteristic:

(1) Let G = µµµp,Zp → SpecZp which is a finite linearly reductive group scheme.

Then G0 = G but the generic geometric fiber is not connected. If we let G′

be the gluing of G and a finite group over Qp containing µµµp as a non-normal
subgroup, then G′0 = G0 ⊆ G′ is not normal.

(2) Let G be as in the previous example and consider the étale group scheme
H → SpecZp given as extension by zero from µµµp,Qp → SpecQp. Then we
have a bijective monomorphismH → G which is not an immersion andG′ =
G/H is a quasi-finite group algebraic space with connected fibers which
is not locally separated. Note that (G′)0 = G0 and the étale morphism
(G′)0 → G′ is not injective.

(3) Let G = Gm × S → S = Spec kJtK and let H → S be µr over the generic
point extended by zero. Let G′ = G/H. Then G′ is a smooth locally
separated algebraic space, G′0 = G and G′0 → G′ is not injective.

From now on, we only consider separated group schemes. Then G0 → G is a
closed subgroup and the second phenomenon does not occur. The subgroup G0

exists over the henselization but not globally in mixed characteristic. We remedy
this by considering a slightly smaller subgroup which is closed but not open.

Lemma 18.7 (Identity component: nice case). Let S be an algebraic space and
let G → S be a flat and separated group algebraic space of finite presentation with
affine fibers.

(1) The locus of s ∈ S such that (Gs)
0 is nice is open in S.

Now assume that (Gs)
0 is nice for all s ∈ S.

(2) There exist a unique characteristic closed subgroup G0
sm ↪→ G smooth over

S that restricts to (Gs)
0
red on fibers.

(3) G0
sm → S is a torus, G/G0

sm → S is quasi-finite and separated, and G→ S
is quasi-affine.
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Now assume in addition that S has equal characteristic.

(4) There exist a unique characteristic open and closed subgroup G0 ↪→ G that
restricts to (Gs)

0 on fibers.
(5) G0 → S is of multiplicative type with connected fibers and G/G0 → S is

étale and separated.

Proof. The questions are étale-local on S. For (1), if (Gs)
0 is nice, i.e., of mul-

tiplicative type, then over the henselization at s we can find an open and closed
subgroup G0 ⊆ G such that G0 is of multiplicative type Proposition 18.4. After
replacing S with an étale neighborhood of s, we can thus find an open and closed
subgroup H ⊆ G where H is embeddable and of multiplicative type. It follows that
(Gs)

0 is of multiplicative type for all s in S.
For an H as above, we have a characteristic closed subgroup Hsm ↪→ H such

that Hsm is a torus and H/Hsm is finite. Indeed, the Cartier dual of H is an étale
sheaf of abelian groups and its torsion is a characteristic subgroup. It follows that
G/Hsm is quasi-finite and separated and that G is quasi-affine.

It remains to prove that Hsm is characteristic and independent on the choice
of H so that it glues to a characteristic subgroup G0

sm. This can be checked after
base change to henselian local schemes. If (S, s) is henselian, then G0 ⊆ H and
since these are group schemes of multiplicative type of the same dimension, it follows
that G0

sm = Hsm. Since any automorphism of G leaves G0 fixed, any automorphism
leaves G0

sm fixed as well.
If S has equal characteristic, then H is an open and closed subgroup with con-

nected fibers, hence clearly unique. �

Lemma 18.8 (Identity component: smooth case). Let S be an algebraic space and
let G → S be a flat and separated group algebraic space of finite presentation with
affine fibers. Suppose that G→ S is smooth and that (Gs)

0 is linearly reductive for
all s.

(1) The open and closed subgroup G0 ↪→ G is linearly reductive (and in partic-
ular affine).

(2) G/G0 → S is étale and separated and G→ S is quasi-affine.

Proof. This follows immediately from Proposition 18.4 since in the henselian case
G0 is the unique open and closed subscheme containing (Gs)

0. �

Theorem 18.9 (Identity component). Let S be an algebraic space and let G→ S
be a flat and separated group algebraic space of finite presentation with affine fibers.
Suppose that (Gs)

0 is linearly reductive for every s ∈ S.

(1) There exist a unique linearly reductive and characteristic closed subgroup
G0

sm ↪→ G smooth over S that restricts to (Gs)
0
red on fibers, and G/G0

sm → S
is quasi-finite and separated.

(2) If S is of equal characteristic, then there exists a unique linearly reductive
characteristic open and closed subgroup G0 ↪→ G that restricts to (Gs)

0 on
fibers, and G/G0 → S is étale and separated.

(3) G→ S is quasi-affine.

The following are equivalent:

(4) G→ S is linearly reductive (in particular affine).
(5) G/G0

sm → S is finite and tame.
(6) (if S of equal characteristic) G/G0 → S is finite and tame.

In particular, if G→ S is linearly reductive and S is of equal characteristic p > 0,
then G→ S is nice.
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Proof. Let S1 ⊆ S be the open locus where (Gs)
0 is nice and let S2 ⊆ S be the

open locus where Gs is smooth. Then S = S1 ∪ S2. Over S1, we define G0
sm as

in Lemma 18.7. Over S2, we define G0
sm = G0 as in Lemma 18.8. The first two

statements follow. Since G0
sm → S is linearly reductive, it follows that BG → S

is cohomologically affine if and only if B(G/G0
sm) → S is cohomologically affine

[Alp13, Prop. 12.17]. If B(G/G0
sm) → S is cohomologically affine, then G/G0

sm is
finite [Alp14, Thm. 8.3.2]. Conversely, if G/G0

sm is finite and tame then BG → S
is cohomologically affine and G→ S is affine. �

Corollary 18.10. If S is a normal noetherian scheme with the resolution property
(e.g., S is regular and separated, or S is quasi-projective) and G → S is linearly
reductive, then G is embeddable.

Proof. The stackBG0
sm has the resolution property [Tho87, Cor. 3.2]. SinceBG0

sm →
BG is finite and faithfully flat, it follows thatBG has the resolution property [Gro17],
hence that G is embeddable. �

Remark 18.11. Let G → S be as in Theorem 18.9. When G/G0
sm is merely finite,

then G → S is geometrically reductive. This happens precisely when G → S is
pure in the sense of Raynaud–Gruson [RG71, Défn. 3.3.3]. In particular, G → S
is geometrically reductive if and only if π : G → S is affine and π∗OG is a locally
projective OS-module [RG71, Thm. 3.3.5].

19. Applications to equivariant geometry

19.1. Generalization of Sumihiro’s theorem on torus actions. Sumihiro’s
theorem on torus actions in the relative case is the following. Let S be a noetherian
scheme and X → S a morphism of scheme satisfying Sumihiro’s condition (N),
that is, X → S is flat and of finite type, Xs is geometrically normal for all generic
points s ∈ S and Xs is geometrically integral for all codimension 1 points s ∈ S
(which by a result of Raynaud implies that X is normal); see [Sum75, Defn. 3.4 and
Rem. 3.5]. If S is normal and T → S is a smooth and Zariski-locally diagonalizable
group scheme acting on X over S, then there exists a T -equivariant affine open
neighborhood of any point of X [Sum75, Cor. 3.11]. We provide the following
generalization of this result which simultaneously generalizes [AHR19, Thm. 4.4]
to the relative case.

Theorem 19.1. Let S be a quasi-separated algebraic space. Let G be an affine
and flat group scheme over S of finite presentation. Let X be a quasi-separated
algebraic space locally of finite presentation over S with an action of G. Let x ∈ X
be a point with image s ∈ S such that κ(x)/κ(s) is finite. Assume that x has
linearly reductive stabilizer. Then there exists a G-equivariant étale neighborhood
(SpecA,w) → (X,x) that induces an isomorphism of residue fields and stabilizer
groups at w.

Proof. By applying Theorem 1.1 to X = [X/G] with W0 = Gx (the residual gerbe
of x), we obtain an étale morphism h : (W, w) → (X, x) with W fundamental and
h|Gx an isomorphism. By applying Proposition 12.5(1) to the composition W →
X → BG, we may shrink W around w so that W → BG is affine. It follows that
W := W ×X X is affine and W → X is G-equivariant. If we let w′ ∈ W be the
unique preimage of x, then (W,w′)→ (X,x) is the desired étale neighborhood. �

Corollary 19.2. Let S be a quasi-separated algebraic space, T → S be a group
scheme of multiplicative type over S (e.g., a torus), and X be a quasi-separated
algebraic space locally of finite presentation over S with an action of T . Let x ∈ X
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be a point with image s ∈ S such that κ(x)/κ(s) is finite. Then there exists a T -
equivariant étale morphism (SpecA,w) → (X,x) that induces an isomorphism of
residue fields and stabilizer groups at w.

Proof. This follows immediately from Theorem 19.1 as any subgroup of a fiber of
T → S is linearly reductive. �

Remark 19.3. In [Bri15], Brion establishes several powerful structure results for
actions of connected algebraic groups on varieties. In particular, [Bri15, Thm. 4.8]
recovers the result above when S is the spectrum of a field, T is a torus and X is
quasi-projective without the final conclusion regarding residue fields and stabilizer
groups.

19.2. Relative version of Luna’s étale slice theorem. We provide the follow-
ing generalization of Luna’s étale slice theorem [Lun73] (see also [AHR19, Thm. 4.5])
to the relative case.

Theorem 19.4. Let S be a quasi-separated algebraic space. Let G → S be a
smooth, affine group scheme. Let X be a quasi-separated algebraic space locally of
finite presentation over S with an action of G. Let x ∈ X be a point with image
s ∈ S such that k(x)/k(s) is a finite separable extension. Assume that x has linearly
reductive stabilizer Gx. Then there exists

(1) an étale morphism (S′, s′)→ (S, s) and a κ(s)-isomorphism κ(s′) ∼= κ(x);
(2) a geometrically reductive (linearly reductive if charκ(s) > 0 or s has an open

neighborhood of characteristic zero) closed subgroup H ⊆ G′ := G×SS′ over
S′ such that Hs′

∼= Gx; and
(3) an unramified H-equivariant S′-morphism (W,w) → (X ′, x′) of finite pre-

sentation with W affine and κ(w) ∼= κ(x′) such that W ×H G′ → X ′ is
étale. Here x′ ∈ X ′ := X ×S S′ is the unique κ(x)-point over x ∈ X and
s′ ∈ S′.

Moreover, it can be arranged that

(4) if X → S is smooth at x, then W → S′ is smooth and there exists an
H-equivariant section σ : S′ → W such that σ(s′) = w, and there exists a
strongly étale H-equivariant morphism W → V(Nσ);

(5) if X admits an adequate GIT quotient by G (e.g., X is affine over S and G
is geometrically reductive over S), and Gx is closed in Xs, then W×HG′ →
X ′ is strongly étale; and

(6) if G→ S is embeddable, H → S is linearly reductive, and either
(a) X → S is affine;
(b) G → S has connected fibers, S is normal noetherian scheme, and

X → S is flat of finite type with geometrically normal fibers, or
(c) there exists a G-equivariant locally closed immersion X ↪→ P(V ) where

V is a locally free OS-module with a G-action,
then W → X ′ is a locally closed immersion.

In the statement above, W ×H G′ denotes the quotient (W × G′)/H which
inherits a natural action of G′, and Nσ is the conormal bundle I/I2 (where I is
the sheaf of ideals in W defining σ) which inherits an action of H. If H → S is a
flat and affine group scheme of finite presentation over an algebraic space S, and
X and Y are algebraic spaces over S with an action of H which admit adequate
GIT quotients (i.e. [X/H] and [Y/H] admit adequate moduli spaces), then an H-
equivariant morphism f : X → Y is called strongly étale if [X/H]→ [Y/H] is.

The section σ : S′ → W of (4) induces an H-equivariant section σ̃ : S′ → X ′.
This factors as S′ → G′/H →W ×H G′ → X ′. Since the last map is étale, we have
that L(G′/H)/X′ = Nσ[1]. The map G′/H → X ′ is unramified and its image is the
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orbit of σ̃. We can thus think of Nσ as the conormal bundle for the orbit of σ̃. We
also have an exact sequence:

0→ Nσ → Nσ̃ → Ne → 0

where e : S′ → G′/H is the unit section.

Remark 19.5. A considerably weaker variant of this theorem had been established
in [Alp10, Thm. 2], which assumed the existence of a section σ : S → X such that
X → S is smooth along σ, the stabilizer group scheme Gσ of σ is smooth, and the
induced map G/Gσ → X is a closed immersion.

Proof of Theorem 19.4. We start by picking an étale morphism (S′, s′) → (S, s)
realizing (1) with S′ affine. After replacing S′ with an étale neighborhood, Propo-
sition 18.4 yields a geometrically reductive closed subgroup scheme H ⊆ G′ such
that Hs′

∼= Gx. This can be made linearly reductive if charκ(s) > 0 or s has an
open neighborhood of characteristic zero (Proposition 16.14).

We apply the main theorem (Theorem 1.1) to ([X ′/G′], x′) and h0 : W0 = BGx ∼=
Gx′ where x′ also denotes the image of x′ in [X ′/G′]. This gives us a fundamental
stack W and an étale morphism h : (W, w)→ ([X ′/G′], x′) such that Gw = BGx.

Since G → S is smooth, so is G′/H → S′ and [X ′/H] → [X ′/G′]. The point
x′ ∈ X ′ gives a canonical lift of Gw = BGx → [X ′/G′] to Gw = BGx → [X ′/H].
After replacing S′ with and étale neighborhood, we can thus lift h to a map
q : (W, w) → ([X ′/H], x′) (Proposition 16.12). This map is unramified since h
is étale and [X ′/H] → [X ′/G′] is representable. After replacing W with an open
neighborhood, we can also assume that W→ BH is affine by Proposition 12.5(1).
Thus W = [W/H] where W is affine and q corresponds to an H-equivariant unram-
ified map W → X ′. Note that since w ∈ |W| has stabilizer Hs′ , there is a unique
point w ∈ |W | above w ∈ |W|. This establishes (1)–(3).

If X is smooth, then so is W→ S′ and (4) follows from Proposition 17.3 applied
to W→ BH → S′. Note that unlessH is smooth it is a priori not clear thatW → S′

is smooth. But the section σ : S′ → W is a regular closed immersion since it is a
pull-back of the regular closed immersion BH ↪→ W given by Proposition 17.3. It
follows that W is smooth in a neighborhood of σ.

If [X/G] has an adequate moduli space, then W → [X/G] becomes strongly
étale after replacing W with a saturated open neighborhood by Luna’s fundamental
lemma (Theorem 3.14). This establishes (5).

Finally, for (6) we may assume that G is embeddable. If (b) holds, then there ex-
ists a G-quasi-projective G-invariant neighborhood U ⊆ X of x [Sum75, Thm. 3.9].
Thus, cases (6a) and (6b) both reduce to case (6c). For (6c), we may assume that
V is a free OS-module. As H is linearly reductive, there exists an H-semi-invariant
function f ∈ Γ(P(V ),O(1)) not vanishing at x. Then P(V )f is an H-invariant affine
open neighborhood. Applying Proposition 17.3 to [P(V )f/H] → BH → S gives,
after replacing S with an étale neighborhood, an affine open H-invariant neigh-
borhood U ⊆ P(V )f , a section σ̃ : BH → [U/H] and a strongly étale morphism
U → V(Nσ̃). We now consider the composition σ : BH → [U/H] → [P(V )/G].
Since σs is a closed immersion, it becomes unramified after replacing S with an
open neighborhood. This gives the exact sequence

0→ Nσ → Nσ̃ → ΩBH/BG → 0.

Since H is linearly reductive, this sequence splits. After choosing a splitting, we
obtain an H-equivariant closed subscheme V(Nσ) ↪→ V(Nσ̃) and by pull back, an
H-equivariant closed subscheme W ↪→ U . By construction [W/H] → [U/H] →
[P(V )/G] is étale at x. Finally, we replace W with an affine open H-saturated
neighborhood of x in the quasi-affine scheme W ∩X. �
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20. Applications to henselizations

20.1. Existence of henselizations. Let X be an algebraic stack with affine stabi-
lizers and let x ∈ |X| be a point with linearly reductive stabilizer. We have already

seen that the completion X̂x exists if X is noetherian (Theorem 11.2). In this section
we will prove that there also is a henselization Xhx when X is of finite presentation
over an algebraic space S and κ(x)/κ(s) is finite.

We say that an algebraic stack G is a one-point gerbe if G is noetherian and an
fppf-gerbe over the spectrum of a field k, or, equivalently, if G is reduced, noetherian
and |G| is a one-point space. A morphism X → Y of algebraic stacks is called pro-
étale if X is the inverse limit of a system of étale morphisms Xλ → Y such that
Xµ → Xλ is affine for all sufficiently large λ and all µ ≥ λ.

Let X be an algebraic stack and let x ∈ |X| be a point. Consider the inclusion
i : Gx ↪→ X of the residual gerbe of x. Let ν : G → Gx be a pro-étale morphism of
one-point gerbes. The henselization of X at ν is by definition an initial object in
the 2-category of 2-commutative diagrams

(20.1) G //

ν
��

X′

f

��
X

where f is pro-étale (but not necessarily representable even if ν is representable).
If ν : Gx → Gx is the identity, we say that Xhx := Xhν is the henselization at x.

Proposition 20.1 (Henselizations for stacks with good moduli spaces). Let X be
a noetherian algebraic stack with affine diagonal and good moduli space π : X→ X.
If x ∈ |X| is a point such that x ∈ |Xπ(x)| is closed, then the henselization Xhx of X
at x exists. Moreover

(1) Xhx = X×X SpecOhX,π(x),

(2) Xhx is linearly fundamental, and
(3) (Xhx,Gx) is a henselian pair.

Proof. Let Xhx := X×XSpecOhX,π(x) which has good moduli space SpecOhX,π(x). The

pair (Xhx,Gx) is henselian (Theorem 3.6) and linearly fundamental (Theorem 13.1).
It thus satisfies the hypotheses of Setup 16.1(c). To see that it is the henselization,
we note that Proposition 16.4 trivially extends to pro-étale morphisms X′ → X and
implies that a section Gx → X′ ×X Gx extends to a morphism Xhx → X′. �

Remark 20.2. In the previous proposition, it is enough that X has separated diag-
onal and π is of finite presentation. If X does not have separated diagonal, it is
still true that (X ×X SpecOhX,π(x),Gx) is a henselian pair but it need not be the

henselization. In Example 3.16 the pair (Y, BZ/2Z) is henselian with non-separated
diagonal and the henselization map X→ Y is non-representable.

Theorem 20.3 (Existence of henselizations). Let S be a quasi-separated algebraic
space. Let X be an algebraic stack, locally of finite presentation and quasi-separated
over S, with affine stabilizers. Let x ∈ |X| be a point such that the residue field
extension κ(x)/κ(s) is finite and let ν : G → Gx be a pro-étale morphism such that
G is a one-point gerbe with linearly reductive stabilizer. Then the henselization Xhν
of X at ν exists. Moreover, Xhν is a linearly fundamental algebraic stack and (Xhν ,G)
is a henselian pair.

Remark 20.4. If x ∈ |X| has linearly reductive stabilizer, the theorem above shows
that the henselization Xhx of X at x exists and moreover that Xhx is linearly funda-
mental and (Xhx,Gx) is a henselian pair.
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Proof of Theorem 20.3. By definition, we can factor ν as G → G1 → Gx where
G → G1 is pro-étale and representable and G1 → Gx is étale. We can also arrange
so that G → G1 is stabilizer-preserving. Then G = G1 ×k1 Spec k where k/k1 is a
separable field extension and G1 has linearly reductive stabilizer.

By Theorem 1.1 we can find a fundamental stack W, a closed point w ∈ W

and an étale morphism (W, w) → (X, x) such that Gw = G1. Then Wh
ν1 = W ×W

SpecOhW,π(w), where π : W → W is the adequate moduli space. Indeed, W ×W
SpecOhW,π(w) is linearly fundamental (Corollary 13.7) so Proposition 20.1 applies.

Finally, we obtain Wh
ν by base changing along a pro-étale morphism W ′ → W

extending k/k1. �

20.2. Étale-local equivalences.

Theorem 20.5. Let S be a quasi-separated algebraic space. Let X and Y be alge-
braic stacks, locally of finite presentation and quasi-separated over S, with affine
stabilizers. Suppose x ∈ |X| and y ∈ |Y| are points with linearly reductive stabiliz-
ers above a point s ∈ |S| such that κ(x)/κ(s) and κ(y)/κ(s) are finite. Then the
following are equivalent:

(1) There exists an isomorphism Xhx → Yhy of henselizations.
(2) There exists a diagram of étale pointed morphisms

([SpecA/GLn], w)

f

ww

g

''
(X, x) (Y, y)

such that both f and g induce isomorphisms of residual gerbes at w.

If S is locally noetherian, then the conditions above are also equivalent to:

(1′) There exists an isomorphism X̂x → Ŷy of completions.

Proof. The implications (2) =⇒ (1) and (2) =⇒ (1′) are clear. For the converses, we
may reduce to the case when S is excellent in which case the argument of [AHR19,
Thm. 4.19] is valid if one applies Theorem 1.1 instead of [AHR19, Thm. 1.1]. �

Appendix A. Counterexamples in mixed characteristic

We first recall the following conditions on an algebraic stack W introduced in
Section 15.

(FC) There is only a finite number of different characteristics in W.
(PC) Every closed point of W has positive characteristic.

(N) Every closed point of W has nice stabilizer.

We also introduce the following condition which is implied by (FC) or (PC).

(Qopen) Every closed point of W that is of characteristic zero has a neighborhood
of characteristic zero.

In this appendix we will give examples of schemes and linearly fundamental
stacks in mixed characteristic with various bad behavior.

(1) A noetherian linearly fundamental stack X with good moduli space X →
X such that X does not satisfy condition (Qopen) and we cannot write
X = [Spec(B)/G] with G linearly reductive étale-locally on X or étale-
locally on X (Appendix A.1). In particular, condition (Qopen) is necessary
in Theorem 13.1 and the similar condition is necessary in Corollary 17.4(7).

(2) A non-noetherian linearly fundamental stack X that cannot be written as
an inverse limit of noetherian linearly fundamental stacks (Appendices A.2
and A.3).
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(3) A noetherian scheme satisfying (Qopen) but neither (FC) nor (PC) (Appen-
dix A.4).

Such counterexamples must have infinitely many different characteristics and closed
points of characteristic zero.

Throughout this appendix, we work over the base scheme SpecZ[ 1
2 ]. Let SL2 act

on sl2 by conjugation. Then Y = [sl2/SL2] is a fundamental stack with adequate
moduli space Y → Y := sl2//SL2 = SpecZ[ 1

2 , t] given by the determinant. Indeed,
this follows from Zariski’s main theorem and the following description of the orbits
over algebraically closed fields. For t 6= 0, there is a unique orbit with Jordan
normal form [√

−t 0
0 −

√
−t

]
and stabilizer Gm. For t = 0, there are two orbits, one closed and one open, with
Jordan normal forms [

0 0
0 0

]
and

[
0 1
0 0

]
and stabilizers SL2 and µ2 × Ga respectively. The nice locus is Ynice = {t 6= 0}.
The linearly reductive locus is {t 6= 0} ∪ A1

Q.

A.1. A noetherian example. Let A = Z[ 1
2 , t,

1
t+p ] ⊆ Q[t] where p ranges over

the set of all odd primes P .

• A is a noetherian integral domain: the localization of Z[ 1
2 , t] in the multi-

plicative set generated by (t+ p).
• A/(t) = Q.

We let X = SpecA, let X → Y be the natural map (a flat monomorphism) and let
X = Y×Y X. Then X is linearly fundamental with good moduli space X.

The nice locus of X is {t 6= 0} and the complement consists of a single closed
point x of characteristic zero. Any neighborhood of this point contains points
of positive characteristic. It is thus impossible to write X = [SpecB/G], with a
linearly reductive group G, after restricting to any étale neighborhood of x ∈ X,
or more generally, after restricting to any étale neighborhood in X of the unique
closed point above x.

A.2. A non-noetherian example. Let A = Z[ 1
2 , t,

t−1
p ] ⊆ Q[t] where p ranges

over the set of all odd primes P . Note that

• A is a non-noetherian integral domain,
• A = Z[ 1

2 , t, (xp)p∈P ]/(pxp − t+ 1)p∈P ,
• A⊗Z Z(p) = Z(p)[xp] is regular, and thus noetherian, for every p ∈ P ,
• A⊗Z Q = Q[t],
• A/(t) = Q,
• A/(t − 1) = Z[ 1

2 , (xp)p∈P ]/(pxp)p∈P has infinitely many irreducible com-

ponents: the spectrum is the union of SpecZ[ 1
2 ] and A1

Fp for every p ∈ P ,

and
• SpecA→ SpecZ[ 1

2 ] admits a section: t = 1, xp = 0 for all p ∈ P .

We let X = SpecA, let X → Y be the natural map and let X = Y×Y X. Then X

is linearly fundamental with good moduli space X. Note that X → X is of finite
presentation as it is a pull-back of Y→ Y .

Proposition A.1. There does not exist a noetherian linearly fundamental stack
Xα and an affine morphism X→ Xα.
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Proof. Suppose that such an Xα exists. Then we may write X = lim←−Xλ where the
Xλ are affine and of finite presentation over Xα. Let Xλ → Xλ denote the good
moduli space which is of finite type [AHR19, Thm. A.1]. Thus, X → Xλ ×Xλ X
is affine and of finite presentation. For all sufficiently large λ we can thus find
an affine finitely presented morphism X′λ → Xλ such that X → X′λ ×Xλ X is an
isomorphism. Since also X→ Y×Y X is an isomorphism, it follows that there is an
isomorphism X′λ → Y×Y Xλ for all sufficiently large λ.

To prove the proposition, it is thus enough to show that there does not exist a
factorization X → Xλ → Y with Xλ noetherian and affine such that Y ×Y Xλ is
linearly fundamental. This follows from the following lemma. �

Lemma A.2. Let Z be an integral affine scheme together with a morphism Z →
Y = SpecZ[ 1

2 , t] such that

(1) fQ : ZQ → SpecQ[t] is an isomorphism,
(2) f−1(0) is of pure characteristic zero, and
(3) f−1(1) admits a section s.

Then Z is not noetherian.

Proof. For a ∈ Z and p ∈ P , let ap (resp. aQ) denote the point in Y corresponding
to the prime ideal (p, t−a) (resp. (t−a)). Similarly, let ηp (resp. η) denote the points
corresponding to the prime ideals (p) (resp. 0). Let W = SpecZ[ 1

2 ] ↪→ Z be the
image of the section s and let 1p ∈ Z also denote the unique point of characteristic
p on W .

Suppose that the local rings of Z are noetherian. We will prove that f−1(1) then
has infinitely many irreducible components. Since f−1(1) is the union of the closed
subschemes W and Wp := f−1(1p), p ∈ P , it is enough to prove that Wp has (at
least) dimension 1 for every p.

Note that OZ,1p is (at least) 2-dimensional since there is a chain 1p ≤ 1Q ≤ η
of length 2 (here we use (1)). By Krull’s Hauptidealsatz, OZ,1p/(p) has (at least)
dimension 1 (here we use that the local ring is noetherian). The complement
of SpecOWp,1p ↪→ SpecOZ,1p/(p) maps to ηp. It is thus enough to prove that

f−1(ηp) = ∅.
Consider the local ring OY,0p . This is a regular local ring of dimension 2. Since fQ

is an isomorphism, Z×Y SpecOY,ηp → SpecOY,ηp is a birational affine morphism to

the spectrum of a DVR. Thus, either f−1(ηp) = ∅ or Z×Y SpecOY,ηp → SpecOY,ηp
is an isomorphism. In the latter case, f−1(SpecOY,0p) = f−1(SpecOY,0p r 0p) ∼=
SpecOY,0p r 0p which contradicts that f is affine. �

A.3. A variant of the non-noetherian example. Let A = Z[ 1
2 , t,

t−1
pa ] ⊆ Q[t]

where a ≥ 1 and p ranges over the set of all odd primes P . Note that

• A is a non-noetherian integral domain,
• A = Z[ 1

2 , t, (xp,a)p∈P,a≥1]/(pxp,1 − t+ 1, pxp,a+1 − xp,a)p∈P,a≥1,
• A ⊗Z Z(p) = Z(p)[(xp,a)a≥1]/(pxp,a+1 − xp,a)a≥1 is two-dimensional and

integral but not noetherian, for every p ∈ P ,
• A⊗Z Q = Q[t],
• A/(t) = Q,
• A/(t−1) = Z[ 1

2 , (xp,a)p∈P,a≥1]/(pxp,1, pxp,a+1−xp,a)p∈P,a≥1 is non-reduced
with one irreducible component: the nil-radical is (xp,a)p∈P,a≥1.
• SpecA→ SpecZ[ 1

2 ] admits a section: t = 1, xp,a = 0 for all p ∈ P , a ≥ 1.

This also gives a counterexample, exactly as in the previous subsection.

A.4. Condition (Qopen). We provide examples illustrating that condition (Qopen)
is slightly weaker than conditions (FC) and (PC) even in the noetherian case. A
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non-connected example is given by S = Spec(Z × Q) which has infinitely many
different characteristics and a closed point of characteristic zero. A connected
counterexample is given by the push-out S = Spec

(
Z×Fp (Z(p)[x])

)
for any choice

of prime number p. Note that the irreducible component Spec(Z(p)[x]) has closed
points of characteristic zero, e.g., the prime ideal (px − 1). The push-out is noe-
therian by Eakin–Nagata’s theorem.

For an irreducible noetherian scheme, condition (Qopen) implies (FC) or (PC).
That is, an irreducible noetherian scheme with a dense open of equal characteristic
zero, has only a finite number of characteristics. This follows from Krull’s Haup-
tidealsatz. We also note that for a scheme of finite type over SpecZ, there are no
closed points of characteristic zero so (Qopen) and (PC) hold trivially.
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Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin, 1970.
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