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Exploiting Inherent Human Motor Behaviour in the
Online Personalisation of Human-Prosthetic

Interfaces
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Abstract—Human-prosthetic interfaces require their settings
to be tuned to individual users. This can potentially be done
autonomously while the prosthesis user performs a task by
using online personalisation algorithms. These online personali-
sation algorithms adjust the interface parameters to optimise a
given measure of performance. For convergence to be reached,
both the human and the personalisation algorithm need to
optimise towards the same objective. To date, task-oriented
measures of performance have been utilised as the objective,
requiring explicit feedback of the measure of performance to
the prosthesis user, which is not practical. In this paper, the
use of inherent human motor behaviour as the measure of
performance for online personalisation algorithms is proposed
and investigated. This allows the personalisation procedure to
occur without the prosthesis user needing explicit knowledge of
the measure of performance. The methodology for formulating
inherent human motor behaviour within the framework of online
personalisation of human-prosthetic interfaces is presented and
validated through an experiment with nine able-bodied subjects.
Experimental results demonstrate the efficacy of inherent human
motor behaviour-based measures of performance in the design
of an intuitive human-prosthetic interface specifically, applicable
to human-robot interaction in general.

Index Terms—Prosthetics and Exoskeletons; Human-Robot
Collaboration; Optimization and Optimal Control.

I. INTRODUCTION

HUMAN-prosthetic interfaces (HPIs) require their param-
eters to be tuned to each individual. In motion-based

synergistic HPIs, this involves finding the synergy parameters
for any given individual [1], [2]. This adjustment can be
done autonomously while the user performs a task with
the prosthetic device [3], [4]. These methods utilise online
optimisation approaches which use a measure of performance
to tune the parameters of the HPI, referred to as “online
personalisation of HPIs” henceforth. So far, these methods
have been used under the assumption that the task is known
a priori.
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In [4], a task-oriented measure of performance was used
for the personalisation of a synergistic elbow prosthesis in a
reaching task scenario. The use of a task-oriented measure of
performance required the user to explicitly know the measure
of performance being used for optimisation in order to achieve
convergence of the algorithm [4]. This was ensured in [4] by
displaying a score proportional to the measure of performance
to the user after each repetition of a reaching task, which was
possible due to the use of virtual reality (VR).

From a practical perspective, continuously displaying the
measure of performance of a prosthetic reaching task is not
desirable. Firstly, this requires the knowledge of the task being
performed, which may not be available. For example, when
using reaching-accuracy and reaching-time as in [4], it would
require the knowledge of the pose of the target object and
the accuracy of the positioning of the hand, as well as the
exact time the intended motion is initiated and concluded.
Secondly, displaying this information to the user at all times
may be cumbersome to the user, as there is a need for a
display mechanism to be present at all time. Furthermore,
the user needs to be conscious of its performance for various
movements all the time, which is mentally taxing. Therefore,
the use of task-oriented measures of performance may not be
a feasible approach for the online personalisation of HPIs.

Not being able to explicitly inform the human on the
measure of performance introduces a new challenge to the
online personalisation of HPIs, which is ensuring that both the
human and personalisation algorithm have the same objective
(measure of performance). This challenge also applies more
generally to the wider human-robot interaction and shared
control problems [5], [6], [7]. In human-robot collaboration,
there needs to be an alignment between the objective functions
that the robot and the human optimise towards. If there is no
alignment between these, the convergence of the adaptation
of the two agents (the human user and the online adapting
prosthesis) cannot be ensured. In [8], an example of the case
when the human converges to a different motor behaviour
than intended when no explicit information on the measure
of performance is provided to the user is presented.

A possible approach for performing online personalisation
of HPIs without explicitly informing the human user what
measure of performance is being optimised by the prosthesis is
to utilise a known inherent human motor behaviour associated
with the task as the measure of performance. The literature has
provided well studied and established models of human motor
control behaviour for upper-limb reaching tasks [9], [10], [11].
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While these are able to describe reaching motion of the upper-
limb, it is important to consider the practical limitations around
what can be measured in a prosthetic setting. Based on clinical
studies in prosthetics [12], [13] and the theory of metabolic
effort [10], the extent of trunk compensation during a reaching
motion was found to be an appropriate measure of metabolic
and biomechanical efforts that can be conveniently measured,
such as with wearable Inertial Measurement Units (IMUs).

In this paper, the methodology for formulating measures
of performance based on inherent human motor behaviour
into the framework for the online personalisation of HPIs
is presented. The advantage of using inherent human motor
behaviour as the measure of performance is that the personal-
isation algorithm does not require the human to be explicitly
informed of the measure of performance being optimised,
which is experimentally demonstrated in the context of this
work. The methodology is presented in the context of a
point-to-point reaching task with a transhumeral synergistic
prostheses [4], [14]. Upper-body compensation motion is used
as the measure of performance, inspired by the concept of
metabolic cost optimisation [10] and clinical outcomes in
upper-limb prosthetics [12], [13], which suggest that humans
minimise trunk movement during reaching. While the concept
is implemented specifically on a prosthetic application, on
a specific formulation of online personalisation, the idea is
applicable more generally to a collaborative human-robot
interaction, with the appropriate choice of inherent human
control behaviour for the intended task.

II. PRELIMINARIES

In this section, the preliminary information on the human-
prosthesis system and the personalisation algorithm are pre-
sented. The following notation is used throughout the paper.
The set of real numbers is denoted as R, and the set of
positive real numbers as R+. The term “synergy” is used
to describe the parametrisation of a HPI, and in the context
of this work is used to refer to the coordination between
multiple degrees of freedom in the human body to achieve
a task [15] as opposed to dimensionality reduction such as
used to discuss muscle synergies [16]. The synergy parameters
of a HPI are given by θi ∈ Θ, where Θ is a compact
set in Rn representing the parameter set of interest. For a
given static mapping yx = h(x) : R → R, its gradient is
expressed as y

′

x = ∂h(x)/∂x, and curvature (Hessian) as
y

′′

x = ∂2h(x)/∂x2. The subscript xi is used to indicate the
iteration domain, such that xi indicates the ith iteration of x,
where an iteration represents a repetition of the task.

A. Human-Prosthesis System

The system considered in this paper consists of a human
user wearing an upper-limb prosthetic elbow who is perform-
ing a reaching task with the prosthesis. A block diagram
of this system, including the HPI personalisation algorithm
is presented in Figure 1. This formulation assumes that the
human generates a residual limb trajectory (qh, q̇h), which
is used to produce the prosthesis’ trajectory in the case of

a synergistic HPI. Similarly, the synergistic prosthesis gener-
ates a trajectory (qp, q̇p) based on the synergy parameters
(θ) and the residual limb trajectory (qh, q̇h). The human
and prosthesis trajectories are then combined to describe the
human-prosthesis arm dynamics and kinematics, which result
in hand trajectories. Given that these trajectories are task
dependent and the dimensionality problem observed in HPIs,
the synergy parameters (θ) are task dependent. This means
that θ is identified for each task, or family of tasks. Then,
the user selects the relevant “synergy” for the desired task, or
an intention detection system is employed. Another potential
avenue to address task dependency could be to incorporate
sEMG [17] or task information [18] into the synergistic HPI.

Fig. 1: Human-prosthesis system with synergy personalisation.
This work focuses on Jp.

The human is assumed to have an internal measure of
performance for the task (Jh ∈ R+), which is optimised
throughout the human’s motor learning process. This measure
of performance may include both task-oriented [9] and inher-
ent human motor behaviour components [10]. It is assumed
that human motor learning occurs over iterations of the task
and can be described by LTI dynamics as in [4], [19].

Similarly to the human, the prosthesis system has its own
measure of performance (Jp ∈ R+), which is a design choice
and is used in the personalisation algorithm to tune the synergy
parameters (θ). The design of Jp is of utmost importance
to achieve the desired behaviour with the prosthesis as the
personalisation algorithm will drive θ to optimise Jp. The
online HPI personalisation algorithm proposed in [4], which
tunes θ to optimise Jp, is summarised in Section II-B.

In order to ensure the human and prosthesis achieve the
same objective, it is necessary for Jp and Jh to be matched.
In [4], this was done explicitly through a visual feedback
mechanism to the human user which was proportional to Jp,
such that Jh → Jp. Alternatively, such as proposed in this
work, one can design Jp in such a way that it resembles the
human measure of performance, such that Jp → Jh. This
follows the concept of collaboration in the wider human-robot
interaction and shared control formulations [5], [6], [7].

B. Online Personalisation Algorithm

The objective of the personalisation algorithm, such as pro-
posed in [4], is to determine the synergy parameter (θ) that op-
timises the measure of performance (Jp). The algorithm works
under the assumptions that the kinematic synergy parameter
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θ and the performance of the resulting movement measured
by Jp are related, i.e., Jp is a function of θ, Jp(θ); and that
it is possible to obtain a measurement of Jp, represented as
Ĵp. The transient characteristics of human motor learning, and
their effects on Jp(θ), are already addressed in the algorithm
design as presented in [4]. Details of this are omitted in this
manuscript for brevity.

In [4], the human subject is assumed to operate an elbow
prosthesis as a function of the shoulder displacement, related
through the kinematic synergy parameter θ. The measure of
performance of the arm forward reaching motion is evaluated
by a cost function Jp(θ), which is given in the form of a
score to the human subject at the end of each attempt. The
prosthesis adjusts the kinematic synergy parameter at the end
of each attempt. It is assumed and shown in that study that the
human user also updates their shoulder movements to improve
the performance at the next attempt.

For a given measure of performance Ĵp and synergy pa-
rameterisation θ, the following conditions on Ĵp(θ) need to
be satisfied as established in [4]. These conditions layout the
methodology presented herein.

Condition 1: There exists a θ∗ ∈ Θ such that Ĵp(θ∗) <
Ĵp(θ) for all θ ∈ Θ.

Condition 2: Given a unique θ∗ ∈ Θ, there is a Ĵ∗
p (θ∗),

such that Ĵ
′

p(θ) = 0, iff θ = θ∗, and Ĵ
′′

p (θ) > 0,∀θ ∈ Θ.
Demonstrating that Conditions 1 and 2 are satisfied for

a designed Ĵp is necessary. The steps in the methodology
presented herein verify the validity of a proposed measure of
performance to the online personalisation of HPIs.

The personalisation algorithm uses an online optimisation
approach and in [4], an extremum seeking technique [20]
was employed, whose components are shown in Figure 1.
The algorithm has the following tuning parameters: the dither
frequency (ωo), the dither amplitude (a), the optimiser gain
(k), the optimiser threshold (ε), and the observer gain (L).
For further details on the algorithm please refer to [4]. These
parameters need to only be tuned once for a given synergy
parameterisation and measure of performance, and can be
used with any individual as shown in [4]. The purpose of
this manuscript is to extend [4] by incorporating a Jp that
approximates Jh, where the human user is not provided with
explicit feedback on Jp, and validate the applicability of inher-
ent human motor behaviour-based measures of performance in
the online personalisation of HPIs.

III. METHODOLOGY

This section presents the methodology for formulating
measures of performance based on inherent human motor
behaviour for the online personalisation of HPIs, the experi-
mental set-up, and the experimental protocols followed at each
of the steps in the methodology.

A. Formulating Measures of Performance based on Inherent
Human Motor Behaviour

The steps proposed as part of the methodology are detailed
in this section while a specific example is presented in Sections
III-C and IV. It is important to highlight that throughout these

steps, the prosthesis users should not be informed of any
particular metrics being used to evaluate their performance.
The following steps are carried out:

1) Identify the relationship between the synergy parameters
(θ) in the range of interest (Θ) and the measured vari-
ables, e.g., sensor measurements, deemed relevant to the
inherent human motor behaviour that is to be used as
the measure of performance. Validate that these measured
variables are suitable, i.e., that they are sensitive to θ.

2) Construct a measure of performance (Jp ∈ R+) using
the suitable measured variables (from Step 1) to define
the inherent human motor behaviour-based measure of
performance. Verify that it satisfies Conditions 1 and 2.

3) Validate that the personalisation procedure successfully
converges without the user knowing the proposed inherent
human motor behaviour-based measure of performance
and that the human user also converges to a steady state
over iterations.

Step 1 involves evaluating the prosthetic user’s behaviour
for a range of synergy parameters (θ) in order to determine
the relationship between θ and the candidate metrics. This can
be done by having the prosthesis user perform the task with a
wide range of synergy parameters settings. The result of Step 1
would be the relationship between the synergy parameters and
the candidate metrics in plot form. From this relationship it
can be determined whether an optimal exists within the range
of interest. The definition of what the “optimal” is will depend
on the application. For instance, one may want to maximise
some metric such as a score or minimise a behaviour such as
compensation motion.

In Step 2, an objective function (Jp) is constructed which
combines the relevant variables identified in Step 1 to achieve
a convex relationship (for minimisation) between the synergy
parameters θ and Jp. A synergy to measure of performance
mapping (Jp(θ)) is constructed to verify the satisfaction of
Conditions 1 and 2. Given that a human-in-the-loop system
is considered, this is typically done experimentally. The same
data from Step 1 could be used for this purpose as it already
contains a sweep for a range of synergy parameters.

Step 3 involves performing the personalisation procedure
on a range of individuals using the HPI to ensure the proper
operation of the algorithm. The convergence of the algorithm
to a synergy parameter value which optimises the measure of
performance Jp is considered as a successful result.

The specific example used to demonstrate these steps is
presented next. The example involves a point-to-point upper-
limb forward reaching task with a synergistic prosthetic elbow,
where trunk and shoulder displacement are used as the candi-
date metrics for the measure of performance.

B. Experimental Set-up

This section presents the experimental set-up utilised to
demonstrate the methodology presented in this work. Follow-
ing the experimental set-up in [4], a point-to-point reaching
task with a synergistic elbow prosthesis is utilised for the
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experiments to exemplify the proposed methodology. The HPI
for the synergistic prosthetic elbow is given by

q̇e = θq̇s, (1)

where q̇e is the prosthetic elbow extension angular velocity
and q̇s the shoulder extension angular velocity. This set-up
was chosen to keep the movement and the kinematic synergy
to be of low order of complexity to allow the study to
focus on the validity of exploiting human motor behaviour
for online personalisation. This HPI implements the standard
synergy control widely used in the literature to regulate elbow
flexion from shoulder flexion, such as shown in [1], [14], [21],
where the synergy represents the first principal component of
shoulder-elbow coordination for forward reaching tasks [22],
[23]. More complex kinematic synergies for the upper limb
have often been expressed through PCA or artificial neural
networks [1]. Without loss of generality, the method proposed
herein can be applied to higher-dimensional parameterisations
of kinematic synergies. The experimental set-up is shown in
Figure 2.

(a) Starting position for the
reaching task and sensor location
for the prosthetic case.

(b) Example of the target reach-
ing task with the emulated pros-
thetic elbow and forearm.

Fig. 2: Experimental set-up for a point-to-point reaching task.

The task required subjects to reach forward from a neutral
seating position and touch a target on a (computer display)
touch screen. The starting position is shown in Figure 2a,
with the target location being a red circle on the screen. The
screen location was adjusted to for each subject’s arm length.
The forward distance and height of the screen were set at the
position of the subject’s wrist joint when the arm was held
forward. The lateral position was set such that the centre of
the screen was aligned with the centre of the subject’s chest.

Two experiment configurations were included in this study:
an able-bodied (AB) and a transhumeral prosthetic (TH) con-
figuration. The able-bodied configuration required subjects to
reach the screen with their dominant hand (without prosthesis).
The prosthetic configuration utilised a prosthetic elbow and
forearm attached to the subject’s dominant arm, as shown
in Figure 2b. The able-bodied subject’s actual elbow is held
in place by a mechanical brace. The prosthetic elbow was
configured to operate with the kinematic synergy interface as
described in (1). The range of θ used in this study is [0.8, 2.7].

Bosch BNO055 IMUs were mounted on the subject’s C7
vertebrae to measure trunk motion (C7), on the shoulder
acromion (SA) to measure shoulder motion, on the upper-arm
(UA) to be used for the synergistic HPI and measure upper-
arm motion, and on the lower-arm (LA) to get able-bodied

elbow motion data, which was used only in the able-bodied
configuration. For the prosthetic configuration, a joint encoder
at the prosthetic elbow unit was used to gather elbow motion
data. Sensor placement is shown in Figure 2a.

The C7 and SA sensors were used to determine the trunk
and shoulder forward displacement, respectively. Displace-
ment was calculated using the subject’s body measurements,
trunk length and C7 to shoulder acromion distance, and the
estimated joint angle from the IMUs. The upper-body was
considered to be a set of rigid links. Data gathering was done
using an Arduino M0 Zero and an application developed in
Visual Studio/C#.

C. Experimental Protocol

The experimental protocol followed for the experiments
required in Steps 1 and 3 are presented next. The procedure
was approved by the University of Melbourne Human
Research Ethics Committee, project number 1750711.2.
Informed consent was obtained from all subjects in the study.

1) Step 1 Experiments: Able-bodied Reaching and Rela-
tionship between Synergy and Upper-body Motion

Step 1 verifies that there is a synergy parameter that
achieves minimal upper-body motion (trunk and shoulder
displacement). Minimal upper-body motion is utilised as it has
been found in able-bodied studies that humans do optimise
their trunk motion in reaching tasks, with the trunk being
recruited primarily for targets outside of the arm’s workspace
[24], [25], [26]. From a prosthetics perspective, achieving
minimal compensation motion is desirable as upper-body
compensation may lead to long term health issues such as
musculoskeletal pain and overuse syndromes [27], [28].

A) Able-bodied Reaching (AB Configuration): Three subjects
were asked to perform the point-to-point reaching task
with their arm (able-bodied) for 30 iterations to obtain
their able-bodied motor behaviour as a reference. Subjects
were only asked to touch the target on the screen and to
return to the start position after each repetition, no other
instructions related to the task were given. The subject’s C7
and SA displacement from the starting position was measured
throughout the experiment.

B) Relationship between Synergy Parameter and Trunk
Movement during Forward Reaching (TH Configuration):
Three subjects were asked to perform the point-to-point
reaching task with the prosthetic elbow and forearm unit,
using the synergistic human-prosthesis interface. Subjects
were only instructed to touch the target on the screen with
the end-effector of the prosthetic forearm and to return to the
starting position after each repetition, no other instructions
related to the task were given. Subjects were provided with
sufficient training with the device in order to minimise the
effects of motor learning on the synergy-motion results.
Subjects repeated the reaching task for 200 iterations, with
the synergy value changing every 5 iterations (∆θ = 0.05).
The synergy in equation (1) was used with θ in the range of
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[0.8, 2.7]. The subject’s C7 and SA displacement from the
starting position was measured throughout the experiment.

2) Step 2 Experiments: To complete Step 2, additional
experiments are not necessary as the same upper-body
displacement data from Step 1 experiments can be used to
evaluate the proposed measure of performance.

3) Step 3 Experiments: Online Personalisation with Inher-
ent Human Motor Behaviour as Measure of Performance

This experiment addresses the performance of the personal-
isation algorithm with the proposed measure of performance.
It is important to highlight that the key aspect of this test is to
observe the co-convergence of the adaptation of behaviour by
the prosthesis and the human, without the explicit knowledge
of the human of the measure of performance being optimised.

Nine subjects were asked to perform the point-to-point
reaching task with the prosthetic elbow + forearm setup.
Subjects were only asked to touch the target on the screen with
the end-effector of the prothesis forearm and to return to the
start position after each repetition, no other instructions related
to the task were given. Subjects were provided with sufficient
training with the device in order to minimise the effects
of motor learning on the synergy-motion results. Subjects
performed the task for 80 iterations, with a one minute rest
after 40 iterations. The personalisation algorithm was used
to iteratively adjust the synergy parameter (θ) after every
repetition of the task. The tuning parameters for the online
personalisation algorithm used in this study as summarised in
(1) are: ωo = π/4, a = 0.06, k = 0.0008, ε = 0.1, and
L =

[
0.3840 0.6067 −0.2273 −0.8977 −1.0302

]T
.

IV. RESULTS & DISCUSSION

The dataset for the results presented herein can be accessed
at https://git.io/JTsxF.

A. Step 1 Results: Able-bodied and Prosthetic Upper-body
Motion

Experimental results for able-bodied reaching and the re-
lationship between the synergy parameter and trunk and
shoulder displacement for the three subjects are presented in
Figure 3. Comparing the trunk displacement resulting from the
measurements by sensor C7: the blue lines represents average
trunk displacement for the able-bodied (AB) cases while the
blue circles for the prosthetics reaching (TH) cases. Similarly
for the shoulder displacement, as measured by sensor SA and
C7, the red line represents average able-bodied (AB) shoulder
displacement while the red circles the prosthetics (TH) case.

It can be observed that trunk displacement for the able-
bodied (AB) case is close to zero for the given reaching
task. In the prosthetics (TH) case, trunk displacement has a
near linear relationship with the synergy, which is desirable
for formulating the objective function. Moreover, it can be
seen that the TH case data intersects the subject’s AB dis-
placement line. Intuitively, if the prosthetic forearm is close
in characteristics to the biological arm, then as the synergy
value moves away from this intersection, the individual will

recruit trunk motion to compensate for the elbow not extending
enough, or over-extending. This behaviour is desirable for
personalisation purposes as it suggests that there is a unique
synergy that minimises trunk displacement. Moreover, the AB
line intersection is at a different synergy value across subjects
and the slope of the synergy-displacement map differs across
subjects, highlighting individuality in motor behaviour.

It can be seen that shoulder forward displacement is always
present in the reaching motion, with AB displacement of about
four centimetres for the given task. In the TH case, different
compensation strategies can be observed across subjects in
the shape of the synergy-displacement map. This highlights
individuality and preference in motor behaviour. Similar to
trunk compensation, the TH curve intersects the AB curve for
shoulder displacement as well, which in this case is at 4cm.

B. Step 2 Results: Synergy to Proposed Measure of Perfor-
mance Map

Given that the results for Step 1 showed that the synergy-
displacement relationship is close to linear, a candidate Jp
that satisfies Conditions 1 and 2 is the convex combination of
squared trunk (C7) and shoulder (SH) displacements:

Jp = α(x̄t − xt)2 + (1− α)(x̄s − xs)2. (2)

0 < α < 1 is a weight to be determined, xt the trunk forward
displacement, x̄t the desired trunk forward displacement (able-
body-like), xs the shoulder forward displacement, and x̄s the
desired shoulder forward displacement (able-body-like). As
Jp is a measure of compensation motion, the objective is to
minimise it.

A rigorous choice of the weight α would require deter-
mining the involvement of each joint in the reaching motion,
and thus an analysis of human motor behaviour and the
theorised internal optimisation mechanisms for human motion
planning [9], [29]. For instance, by taking an inverse optimality
approach [30]. This is out of the scope of this paper and will
be investigated in future work. Therefore, it was chosen to
equally weigh both trunk and shoulder displacement by setting
α = 0.5. x̄t and x̄s were chosen as zero so the objective is to
minimise upper-body compensation.

The obtained synergy-cost maps (Jp(θ)) for the three sub-
jects are presented in Figure 4. The experimental data is
represented by the blue circles, while the quadratic polynomial
fit to this data is shown by the black lines. The estimated
optimal synergies (θ∗), given by the polynomial, are 1.99, 1.91,
and 1.92, for each respective subject. However, it is important
to note from the experimental data that the minimum cost
is observed for a range of synergy values. As expected, the
synergy-performance maps (Jp(θ)) show desirable features for
online personalisation. These results shows that the proposed
compensation motion-based objective function satisfies the
conditions for the algorithm presented in [4].

C. Step 3 Results: Inherent Human Motor Behaviour-based
Online Personalisation of Synergistic Elbow

The results for the personalisation procedure for a repre-
sentative subject (Subject 3) are presented in Figures 6 and
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(b) Subject 2.
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Fig. 3: Relationship between the synergy (θ), and trunk (C7) and shoulder (SA) forward displacement for three subjects. Blue
and red lines represent mean able-bodied (AB) C7 and SA displacements, respectively. Blue and red circles represent C7 and
SA displacements for the prosthetic case (TH), respectively.
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(a) Subject 1.
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(b) Subject 2.
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Fig. 4: Synergy-Performance map (Jp(θ)) for three subjects, where performance is given by eqn. (2). The blue circles represent
experimental data. The fitted quadratic map is shown in black. The optimal synergy (θ∗) for each subject, given by the fitted
quadratic map, is shown in each plot.

Figure 7. Figure 6 shows the synergy parameter value (θ)
and the measure of performance (Jp) over iterations of the
task. Figure 7 shows trunk and shoulder displacements over
iterations of the task. The results from this subject exemplify
the behaviour of the personalisation algorithm.

From Figures 6 and 7 it can be seen that as the personali-
sation algorithm updated the synergy setting, the subject was
able to reduce compensation motion. This was as a result of
the elbow extending further for a given residual limb motion.
This was done until trunk motion was close to zero (around
iteration 50), which at this point both the algorithm and the
human behaviour co-converged. It is important to highlight
that the shoulder motion was only changed slightly, suggesting
that this motion occurs naturally in human reaching behaviour.
As a result of the non-zero shoulder compensation, Jp was
not driven completely to zero. Nevertheless, the algorithm
achieved its objective and converged to a steady θ in the
vicinity of an able-bodied-like forward reaching motion.

Figure 5a shows the subject’s posture when reaching the
target at the start of the experiment, when θ was not person-
alised. Figure 5b shows the subject’s posture when reaching
the target at the end of the experiment, when θ was person-
alised (and co-convergence to the steady state is achieved).
This demonstrates the efficacy of personalising HPIs and the
capabilities of the personalisation algorithm when using the
proposed inherent human motor behaviour-based measure of
performance. Statistical analyses of the results for the nine

subjects are presented next. On average, the algorithm and
human behaviour co-converged within 40 iterations of the task.
This personalisation procedure behaviour is comparable to the
results presented in [4].

(a) Subject posture at the start
of the experiment with a non-
personalised synergy parameter.

(b) Subject posture at the end
of the experiment with a person-
alised synergy parameter.

Fig. 5: Subject 3 posture when reaching the target at different
stages of the experiment.

Statistical analyses of the C7 displacement, SA displace-
ment, completion time, accuracy, synergy parameter, and
measure of performance were performed for the first and
last eight iterations of the reaching task.The first and last
iterations in the personalisation process were selected as these
compare the non-personalised and personalised cases. The
metrics indicated are used as the dependent variables. The
general linear model was used to perform two-way analyses
of variance (two-way ANOVA) and comparisons between the
first and last eight iterations with confidence levels of 95%
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and 99% (p < 0.05, p < 0.01) after adjustment for multiple
comparisons using Tukey’s method. The analyses were used
to determine whether statistically significant differences exist
between the non-personalised and personalised cases in terms
of the indicated metrics.

Figure 8 shows the statistical results for the trunk (C7)
displacement, shoulder (SA) displacement, completion time
and reach accuracy; comparing the metrics at the start and
the end of the personalisation process for each subject. A
statistical significance with p < 0.01 was found in trunk and
shoulder displacement (Figs. 8a and 8b). This confirms that the
reduction in compensation due to personalisation is significant.

A statistical significance with p < 0.05 was found in reach
completion time (Fig. 8c). However, this cannot be attributed
to the personalisation procedure as it could be a result of the
human’s practice performing the task. This will be investigated
further in the future. The reaching accuracy was not found
to be significantly different between the non-personalised and
personalised outcomes (Fig. 8d).

Results for the synergy parameter and measure performance
for the last iterations for each subject are shown in Figures
9a and 9b. Figure 9a shows the wide range of personalised
synergy values obtained across the subjects. Figure 9b shows
the subjects’ achieved performance reflected by Jp, which
is proportional to trunk and shoulder displacements. Within
the given time, only subject 4 was not found to reduce Jp
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Fig. 8: Population statistical results for C7 displacement, SA
displacement, reach completion time, reach accuracy for the
first and last eight iterations.

1 2 3 4 5 6 7 8 9
Subject

1.5

2.0

2.5

Sy
ne
rg
y

(a) Box plots for each subject’s
synergy parameter.

1 2 3 4 5 6 7 8 9
Subject

0

20

40

Pe
rfo
rm
an
ce

(b) Box plots for each subject’s
measure of performance.

Fig. 9: Subject results for the last eight iterations.

below 20, which would be equivalent to 5cm in total trunk
and shoulder displacement. Regardless, the reduction of trunk
motion to able-bodied-like levels was achieved across the
subjects in the experiment when using the proposed measure
of performance constructed based on inherent human motor
behaviour, while the subjects had no knowledge of the measure
of performance. These results validate the proposed method.

D. Discussion & Future Work

In this paper, the idea of utilising the human motor be-
haviour to construct a cost function for the personalisation of
a prosthetic arm was validated (and shown to be effective)
on a simplified forward reaching task. Further work is still
necessary to evaluate the extent of the validity over more
complex tasks, which may be representative of the variety of
practical tasks in daily living.

It should be pointed out that θ is task dependent. In a prac-
tical implementation, there is a kinematic synergy controller
(with different input signals and different synergy parameter
θ) that is activated for each task. This selection can be done
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explicitly by the human user (e.g. by pressing a button) or
through automatically detecting the intended task.

For each task (or family of task) the corresponding synergy
parameter θ is updated through the mechanism presented here.
It can be done in one session, or through multiple iterations
spanning each time the task is selected. It should be noted that
in a practical implementation, the prosthesis will come pre-
loaded with synergy parameters identified through the average
population of users which act as the initial values of the
parameters for the personalisation process.

There are practical considerations of using wearable sensors
in realising the proposed approach. These sensors will need
to be easy to attach by using a single hand and the algorithm
will need to be robust to the uncertainties in sensor placement
reasonably expected in the scenario.

Lastly, the overall personalisation session took approxi-
mately 15 minutes for each subject. While it is comparable
to the time it currently takes to set up a prosthesis, e.g., a
clinician manually tuning the parameters, it should be noted
that the proposed method can be run online to adjust the
parameters during operation, using preset values as the initial
parameter settings. The outcome reported here was the result
of human motor adaptation during the relatively short period
of the experimental sessions. The long-term validation of such
adaptation and its convergence would require a longitudinal
study in the future.

V. CONCLUSION

This paper presented the methodology to utilise inherent
human motor behaviour as the basis for the online person-
alisation of HPIs. This methodology extends the previous
HPI personalisation algorithm proposed by the authors in [4]
to operate without the need to provide explicit performance
feedback to the human and using only wearable sensors. An
experiment with nine able-bodied subjects was performed to
investigate the efficacy of utilising the human inherent ten-
dency to minimise trunk extension during forward arm reach-
ing motion as an implicit optimisation measure of performance
in a synergistic prosthetic elbow. The experimental results
validate the applicability of such measure of performance to
the personalisation of HPIs. Future work will consider higher
dimensional synergy parameterisation and evaluate multiple
measures of performance.
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and N. Jarrassé, “Can we achieve intuitive prosthetic elbow control based
on healthy upper limb motor strategies?,” Front. Neurorobot., vol. 12,
2018.

[2] R. Garcia-Rosas, D. Oetomo, C. Manzie, Y. Tan, and P. Choong, “On the
relationship between human motor control performance and kinematic
synergies in upper limb prosthetics,” in Eng. Med. Biol. Conf., pp. 3194
– 3197, 2018.

[3] S. Kumar, A. Mohammadi, N. Gans, and R. D. Gregg, “Automatic tuning
of virtual constraint-based control algorithms for powered knee-ankle
prostheses,” in Conf. Control Technol. Appl., pp. 812–818, 2017.

[4] R. Garcia-Rosas, Y. Tan, D. Oetomo, C. Manzie, and P. Choong,
“Personalized Online Adaptation of Kinematic Synergies for Human-
Prosthesis Interfaces,” IEEE Trans. Cybern., vol. 51, pp. 1070–1084,
feb 2021.

[5] Y. Li, K. P. Tee, R. Yan, W. L. Chan, and Y. Wu, “A Framework
of Human–Robot Coordination Based on Game Theory and Policy
Iteration,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1408–1418, 2016.
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