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Abstract— An interface for a powered upper limb prosthesis
is designed to achieve the target poses intended by the human
user as interpreted from input features measured from a variety
of sensors typically worn on the residual limb. Selection of
which input features to use in the interface is usually done
based on which features provide the best likelihood to identify
the intended target poses. This work investigates the outcomes
of the prosthetic interfaces constructed with input features
selected based on the performance of all subjects (population-
averaged) vs. the performance of individual subjects (person-
alised). Specifically, two outcomes are evaluated. First, the
diversity in the resulting input feature sets across different
subjects is evaluated. Second, the accuracy in identifying the
intended target pose using the input features selected through
personalised and population-averaged data are analysed and
compared. The experiment was conducted with 10 able-bodied
subjects in a virtual reality (VR) platform. The corresponding
kinematic information of their arm movements and muscle
activities were recorded and utilised to construct the input
features in the scenario of transhumeral prostheses. The out-
comes show a significant variation in the resulting input feature
sets from subject to subject. The accuracy of the personalised
feature sets is found to be higher in classifying the intended
target poses. For the case of selecting 2 out of the 41 input
features constructed from the recorded sensor data, none of
the 10 subjects shares any common set of input features and
the accuracy is improved by 10.4± 6.8% with the personalised
selection. The outcomes demonstrate the extent of person-to-
person variation that needs to be taken into account when
designing prosthetic interfaces and the quantified potential gain
(albeit in a specific application) from personalising interfaces.

I. INTRODUCTION

Recent studies and development in upper limb powered
prostheses seek to provide coordinated movements in the
execution of tasks and activities of daily living [1]–[4].
The designed prosthetic interface takes as its input the
characteristics of sensor signals measured from the residual
limb (termed input features), which reflect the human user
intention. The interface then regulates the motors in the
prosthesis to realise a coordinated motion across the multiple
joints of the prosthesis, which improves the efficiency of
completing tasks [2], [4], [5].

To achieve the desired functionality of the prostheses, the
input features need to be constructed such that the interface
is able to accurately identify the prosthetic target poses in-
tended by the human user [6]. Some input features naturally
perform worse than the others for a given set of intended
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target pose due to the information content they contain.
For example, in the case of a transhumeral prosthesis, the
shoulder flexion/extension movements generally cannot tell
us what a person intends to do with the elbow [7], [8]. It is
therefore important to evaluate the information contained by
the input features and select those with the most useful infor-
mation to identify the intended target poses. Conventionally,
input features based on surface electromyography (sEMG)
were used heavily in the prosthetic interfaces. More recently,
the observations of upper extremity inter-joint coordination
[9], [10] prompted more kinematic features from the residual
limb movement to be chosen [2], [4], [11]–[13], such as
shoulder and upper body movements. The most recent stud-
ies combined both modalities to obtain better performance
[14]–[16]. In all these studies, the input features for the
interfaces were designed based on the overall subject data
and movement behaviour. From the practical point of view,
such population-averaged input features can be preferred
for wider implementation. However, how much difference
actually exists from person to person and how much effect
such variation has on the performance of the interface is
yet to be investigated. Some recent work searched for the
optimum sensor set among the population (mostly sEMG
sensors) [17], [18] or for individual [19], [20]. Subject-
to-subject variations in the resulting IMU-EMG electrode
positions were observed and reported in [20], which further
highlights the need to understand the extent and the effect
of such variations.

In this paper, the person-to-person variations of the input
feature sets that best identify the required set of intended
target poses are investigated. This is especially important
if we seek to utilise a low number of input features (cor-
responding to a low number of sensors to be mounted on
the prosthesis to obtain the human intention), while still
achieving an acceptable accuracy in identifying the intended
target poses. Specifically, two outcomes are sought. First, the
extent of the diversity in the resulting input features selected
when optimised for each subject (personalised) is evaluated.
A comparison is made to the resulting input features if the
interface had been designed based on the data from all the
subjects (population-averaged). Second, the accuracy of the
prosthetic interface in identifying the intended target pose is
evaluated for the personalised input features for each subject,
and compared to the accuracy achieved when the population-
averaged input feature set is used. In this paper, no constraint
was made to the modality of the input features, as long
as the information obtained constitute an input feature. As
such, both kinematics and sEMG input features were used
in the example. The study in this paper was conducted on a



transhumeral prosthetic interface scenario.
The outcomes of this paper not only inform the extent

of the person-to-person variations in the design of a pros-
thetic interface, but also quantify the potential performance
improvement that can be obtained by using a personalised
interface compared to that designed using population average
data/behaviours.

II. INPUT FEATURE SELECTION

The input feature selection algorithm is constructed based
on the concept of class separability which selects nd features
from a feature pool of total D candidate features. To provide
context, note that 41 input features were constructed out of
the sensors used in this study, listed in Tab. I. They consisted
of 6 kinematics-based input features (A1 to C2) and 35
surface electromyography (sEMG) based input features (D1
to J5). The intended target poses are shown in Fig. 1, showing
9 possible target poses, made up of 3 discrete shoulder
flexion angles and 3 elbow flexion angles. However, as a
transhumeral scenario was being emulated, the target poses
of interest were those of the elbow, thus there were only 3
target poses (T1 - T3). The subsection below explains how to
evaluate the separability of the target poses from observing
the available input features.

A. Target pose separability

Scatter-matrix based class separability measure [21], [22]
is used in this work for its simplicity and generality. Denote
F as the set containing the overall D candidate features,
F = {f1, ..., fD}. The overall intended target pose set is
denoted as P with C target classes with P = {T1, ..., TC}.

With the scatter matrices, the target pose separability
provided by any feature set Fs ⊆ F for any class set of
Ps ⊆ P can be calculated. Assume the sampled data with n
samples are arranged in a matrix X = [x1, ...,xn] ∈ Rd×n,
where d is the number of the features that are of interest
to evaluate and d ≤ D. Each sample xi (i = 1, ..., n) is
assigned to a label with c classes in an intended target subset
Ps. Denote nj as the number of samples in the jth class, i.e.,∑c

j=1 nj = n . By the relabeling of n samples, denote xj,k

(j = 1, . . . , c, k = 1, . . . , nj) to represent the kth samples
of the jth class. The inter-class and intra-class scatter matrix
SB and SW are

SB =

c∑
j=1

nj(mj −m)(mj −m)T , (1)

SW =

c∑
j=1

nj∑
k=1

(xj,k −mj)(xj,k −mj)
T , (2)

where mj ∈ Rd is the mean of the jth class, computed
from the sampled data in the jth class while m ∈ Rd is the
mean of all samples. Finally, the target pose separability s
is evaluated by

s = tr
(
S−1
W SB

)
if det(SW ) 6= 0, (3)

where det(·) denotes the determinant of a square matrix.
Note that the measure s is always positive and the lower the

s, the worse the separability and vice versa. The determinant
det(SW ) is zero only if at least one of the features is a linear
combination of the other features, which is unlikely due to
human movement variability.

B. Input features ranking and selection

A filter method is used to rank the total D features based
on an objective function J which is decoupled from the
interface scheme. The feature with a higher rank is given a
higher priority to be selected. The forward sequential search
(SFS) is applied to rank the features, which incrementally
searches the next feature with the highest objective function
value when used in combination with the previously ranked
ones. The process is repeated until the number of ranked
features reaches the overall number D. After the ranking,
the first nd features will be selected.

The objective function J used for feature ranking is
formulated as

J = βs, (4)

where scaling factor β ∈ [0, 1] is used to modify the value s
obtained from (3). This is required to mitigate the scenario
of highly uneven separability, where a high value of s can
result from some very highly separable class pairs while the
others in the set perform far below the expectation. It is noted
that the (3) is an averaged behaviour without showing the
variance with respect to the average. In our application, it is
important to be able to accurately distinguish each target pose
from the others. Therefore, scaling factor β is introduced to
scale down the input feature sets where the worst separability
between two classes in the target pose set is below the lower
bound. Denote sp as the minimum separability between all
the possible combinations of two classes and sp as the lower
bound of sp which is a tuning variable. The β takes the form

β = min

{
sp
sp

, 1

}
. (5)

III. EXPERIMENTAL METHODOLOGY

In this section, the experimental protocol is presented,
followed by the methodology to perform the comparison
between the outcomes from the population-averaged and
personalised input feature sets.

A. Experimental protocol

Ten able-bodied (7 male, 3 female; all were right-handed;)
were recruited in this study. The age range was [24, 32] with
a median at 27. The experimental protocol was approved by
the University of Melbourne Human Research Ethics Com-
mittee, project ID 11878. Informed consents were received
from all subjects. Subjects were asked to perform forward-
reaching tasks towards targets placed along the parasagittal
plane of extending the upper limb forward, for ten iterations
each. The targets, shown as a small sphere that the subject
should reach with their hand, were displayed in the head-
mounted display based virtual reality (VR) environment, see
Fig. 1. The position of the target was adjusted for each
subject to reflect the intended shoulder and elbow flexion



Fig. 1. (a) Experiment setup and sensor deployment, (b) Target set within
the parasagittal plane, T1-T3 denote the intended target poses.

angles. The subjects were required to hold their arm position
upon reaching the target for one second to allow the quasi-
static readings upon reaching to be collected. A set of
kinematic and sEMG signals associated with the human
subject upper limb and upper body movements upon reaching
the target poses were recorded.

Nine reaching targets set in the parasagittal plane were
set based on the joint space human arm displacements, as
illustrated in Fig. 1(b). To set the locations of the targets,
subjects were required to reach the target joint poses as
shown in Fig. 1(b) during the initialisation of the experiment.
In this study, only the prosthetic poses are of interest, thus
C = 3 intended target pose classes, denoted as Ti, (i =
1, 2, 3), are extracted from the 9 targets as labelled in Fig.
1(b). It is worth noting that alternatively, one can consider
the pose of the entire arm as the intended target poses, if the
application is extended beyond the prosthetic application, in
cases where the upper extremity poses are of interest (e.g.
for a general human-machine interface problem).

B. Data collection and feature extraction
The body and arm kinematic signals and upper arm

sEMG signals were collected using wearable sensors with
a sampling rate of 90 Hz and 1,111 Hz, respectively. Fig.
1(a) shows the sensor deployment. Upper body and upper
arm postural data were acquired through three HTC VIVE
Trackers (with motion capture sensors and an embedded
Inertial Measurement Unit (IMU)) attached to the subjects’
upper arm (UA), shoulder acromion (SA) and C7 vertebrae
(C7). Another tracker on the forearm (FA) and the controller
in the hand were utilised to control the arm in the VR
environment only. Seven Delsys Trigno sEMG electrodes
were attached to the dominant upper arm of the subjects:
two on the biceps long/short heads, two on the triceps
lateral/long heads, three on the anterior, middle and posterior

of the deltoid. The raw sEMG signals were filtered by a 4th

order Butterworth band-pass filter with 10-500 Hz passband.
Outliers of more than three standard deviations from the
mean were removed.

The candidate features were extracted from the quasi-static
data during the last-second holding period upon reaching the
targets in a coordinated fashion, and were summarised in Tab.
I. For sEMG features, time-domain features were selected
as they were reported to be superior to frequency-domain
features in classifying the intended target poses [23] and
are of low computational cost. To extract the time-domain
features for each of the 7 signal sites of sEMG, a sliding
window of 200ms was applied, with overlapping 100ms
(resulting 10Hz sampling rate). Assume that the sEMG signal
y has ns sampling points in a sliding window and yi be the
ith sample. The following time-domain sEMG features were
extracted, consistent with [23].

Mean absolute value (MAV) is usually used to detect the
onset of the sEMG signal for prostheses control.

MAV =
1

ns

ns∑
i=1

|yi|. (6)

Root mean square (RMS) captures the envelope of the
sEMG signals and reflects the strength of muscle contraction.

RMS =
1

ns

√√√√ ns∑
i=1

y2
i . (7)

Wave length (WL) calculates the cumulative length of
sEMG waveform within the sliding window.

WL =

ns−1∑
i=1

|yi+1 − yi|. (8)

Before listing the following sEMG features, first define
the sgn(·) function as

sgn(x) =
{
1, if x > threshold
0, otherwise

. (9)

Zero crossing (ZC) is a rough estimation of the frequency
characteristics of the sEMG sequence.

ZC =

ns−1∑
i=1

sgn(−yiyi+1). (10)

Slope sign change (SSC) measures the times that the
sEMG sequence changes the slope sign, which also shows

TABLE I
KINEMATIC & SEMG FEATURES AND SIMPLIFIED LABELS

Label Features
A1 Shoulder flexion/extension
A2 Shoulder adduction/abduction
B1 Scapular protraction/retraction
B2 Scapular depression/elevation
C1 Trunk flexion/extension
C2 Trunk left/right bending

(a) Kinematic features and the simplified
labels for each feature.

Features Biceps Triceps Deltoid
Short head Long Head Lateral Head Long Head Anterior Middle Posterior

MAV D1 E1 F1 G1 H1 I1 J1
RMS D2 E2 F2 G2 H2 I2 J2
WL D3 E3 F3 G3 H3 I3 J3
ZC D4 E4 F4 G4 H4 I4 J4

SSC D5 E5 F5 G5 H5 I5 J5

(b) sEMG features and the simplified labels arranged in matrix form. For example, the mean absolute value
(MAV) of biceps short head sEMG is simplified as D1.



the frequency characteristics of the sEMG signal.

SSC =

ns−1∑
i=1

sgn ((yi − yi−1)(yi+1 − yi)) . (11)

Kinematic postural data were downsampled to 10Hz.
The kinematic features were: shoulder flexion/extension
(f/e) and adduction/abduction (abd/add); scapular protrac-
tion/retraction (p/r) and depression/elevation (d/e); and trunk
flexion/extension (f/e) and left/right bending (lb/rb). Since
the targets were in the parasagittal plane, shoulder inter-
nal/external rotation and trunk rotation were not considered.
The motion trajectory of position, velocity and acceleration
in the motion were not considered.

In total, D = 41 candidate features were extracted. The
details are summarised in Tab. I. For the convenience, each
feature is coded with a label representing its category and
the place in the category. For each iteration of reaching, the
recorded data matrix with D features was of size 41×10 and
was concatenated one after another. The overall samples of
each feature were normalised to zero mean and unit variance.

C. Comparison of the outcomes: population-averaged and
personalised input feature sets

1) Feature selection: The population-averaged and per-
sonalised cases differ in terms of the data set used to
determine the input feature set. The personalised feature sets,
denoted as Fper are selected based on the data from each
subject, while the population-averaged feature sets denoted
as Fpop are based on the overall dataset. The number of
selected features is denoted as nd whose maximal value Nd

in this study is the number when the classification accuracy
saturates with the increasing number of selected features.
The stop criterion is defined as the step-wise improvement
of classification accuracy of less than 1% for the consecutive
possible values of nd.

2) Feature evaluation: The selected feature set is eval-
uated on the dataset from each subject by its classification
performance based on the linear discriminant analysis (LDA)
classifier. The average classification accuracy from 10-fold
cross-validation is selected as the performance metric. The
classification evaluations are applied on both the population-
averaged input feature sets F i

pop (i = 1, 2, . . . , Nd) and the
personalised input feature sets F j

per (j = 1, 2, . . . , Nd). Here,
the superscript i and j denote the number of selected input
features. Thus, each input set F i

pop and F j
per would result in a

classification accuracy value (performance) for each subject.
It should be noted that for each subject, the selected features
of F j

per can be different. The cases where nd < Nd are
evaluated to see how much the number of input features can
be reduced while maintaining functional performance.

3) Statistical analysis: The Non-parametric method is
selected because the obtained classification performance does
not fit the normality assumption. First, a Friedman test is
performed to detect if there is any significant difference
between the performance of all possible F i

pop and F j
per. If

the null hypothesis is rejected, then a post hoc pairwise
comparison is conducted. The performance of F i

pop and F j
per

with i = j = 1, 2, . . . , Nd are compared using the two-sided

Wilcoxon signed-rank test followed by Bonferroni p−value
correction to control the family-wise error as suggested
in [24]. However, unlike [24], we only compare the nd
interested pairs with i = j and correct the corresponding
p−values. The significance level is set to be α = 0.05.

IV. RESULTS AND DISCUSSION

The first outcome: the resulting input feature sets when
constructed for each subject and for the overall population
are presented in the first subsection. The second outcome:
the resulting accuracy of the personalised and population-
averaged constructed input features are presented and dis-
cussed in the second subsection.

A. Input feature selection
Tab. II and III list the input feature selection results for

nd = 2 and nd = Nd = 8, respectively. This means that out
of the 41 available input features, only nd input features were
selected. The effect is similar to the dimensionality reduction
process in Principal Component Analysis (PCA) techniques,
but with a significant difference in that, the PCA does not
select features but projects the original feature space to a
lower dimension space, which will contain components from
all the original features. In contrast, input feature selection
techniques directly select the input features and do not form
new features out of the combinations of the original features.

Tab. II shows the resulting input features for each subject
(S1 - S10) and that selected based on the population average
(labelled Pop) when nd is small (nd = 2). A high degree
of diversity in the selected input features can be observed.
No two subjects ended up with the same input feature set.
Only one subject (S7) ended up with the same input feature
set as the population-averaged set. Subjects S9 and S10
were observed to “utilise” sEMG-only features, whereas the
combination of kinematic and sEMG input features scored
higher for most other subjects.

Tab. III shows the resulting input features when nd is the
maximal value Nd. In this case, Nd was determined based on
Fig. 2 which demonstrates the average classification accuracy
among the subject datasets versus the number of selected
input features nd. The dotted line illustrates the determined
value at nd = Nd = 8 where the classification accuracy
meets the stop criterion as described in Section III-C, where
adding another input feature will not improve the accuracy
by more than 1%.

From the Tab. III, it can be observed that the resulting
input feature sets still demonstrated a high degree of diver-
sity. However, several input features were prominent, such
as C1 (appears 9 times in 10 subjects), B1 and B2 (8 times
in 10 subjects) and C2 (7 out of 10 subjects). Despite their
prevalence, it ought to be noted that C1, C2, B1 and B2
are kinematics-based features and that alone they cannot be
used to determine uniquely the intended target pose, because
different target elbow poses should share the same shoulder
and trunk pose, see Fig. 1. Referring back to Tab. II, this
observation was confirmed (when only 2 input features can
be selected, separability of the target poses were not achieved
in any subjects (except S7) using exclusively kinematics-
based input features).



1 6 8 11 16 21 26 31 36 41

Number of features selected n
d

55

60

65

70

75

80

85

90

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 %

Fig. 2. Classification accuracy vs. the number of selected features. The
dotted line shows the Nd determined in this study where the consecutive
nd improve the performance by less than 1%.

B. Resulting target pose classification accuracy

Up to this point, we have discussed the variation of the
individual resulting input feature sets between the subjects.
Here, we investigate whether the resulting variation would
result in a statistically significant difference in performance
(the intended target pose classification accuracy). The per-
formance of the population-averaged input feature sets F i

pop,
(i = 1, 2, . . . , 8) and personalised input feature sets F j

per,
(j = 1, 2, . . . , 8) were evaluated through 10-fold cross
validation classification accuracy, thus each input feature set
resulted in 10 values. As a result, a table with 10 rows of
classification evaluations and 16 columns for different input
feature sets can be sorted for statistical analysis.

Fig. 3 illustrates the box-and-whisker plot for the perfor-
mance evaluation. It can be seen that the F j

per performed
better than F i

pop when i = j. The Friedman test rejected
the null hypothesis (p < 0.01), indicating there exists a
significant difference among the groups in the resulting
classification accuracy. The pairwise Wilcoxon tests were
then performed and results are annotated in Fig. 3 as well.
The F j

per performed significantly better than the F i
pop for

i = j = 2, . . . , 8 with p < 0.05 except for i = j = 1 whose
p value level was 0.05 < p < 0.1. The conclusion can be
made that the F j

per significantly outperform the F i
pop in terms

of predicting the prosthetic elbow intended target poses.
Furthermore, the detailed improvement of applying the

Fper can be obtained from Fig. 4. It shows the classification
accuracy difference when applying the Fper compared to the
Fpop. The mean values are plotted as the solid line covered
by the shaded area representing the standard deviation. The
improvement at nd = 2 and 8 were 10.4% ± 6.8% and
5.4% ± 5.4%, respectively. The highest improvement was
12.4%±6.5% which occurred at nd = 3. In order to achieve
the equivalent accuracy as Fper with only 3 features, 7
features are required for the Fpop as illustrated in Fig. 3.
It should be noted that multiple sEMG input features were
captured by a single sEMG electrode (e.g. input features D1-
D5 were all obtained from the electrode on the biceps short
head). Here, the F 3

per required fewer or equal number of elec-
trodes (2.3 electrodes on average) than F 7

pop (3 electrodes).
Further optimisation in personalised input feature design can

TABLE II
nd = 2 FEATURE SELECTION RESULTS

Label Pop* S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
A2 •
B1 • • • • • •
C1 • •
C2 •
D1 •
D2 •
D5 • •
E1 •
E2 • •
E3 •
E5 •
G2 •
H4 •
I3 •
•: the feature is selected; *: Pop represents the population-averaged selection.

TABLE III
nd = Nd = 8 FEATURE SELECTION RESULTS

Label Pop* S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
A1 • • •
A2 • • •
B1 • • • • • • • • •
B2 • • • • • • • • •
C1 • • • • • • • • • •
C2 • • • • • • • •
D1 • •
D2 •
D3 • • •
D4 •
D5 • • • •
E1 • • • • •
E2 • • •
E3 • •
E5 • • •
F2 •
F3 •
G2 • • • •
H2 •
H4 •
H5 •
I1 •
I3 • • •
I4 • •
I5 • •
J1 •
J2 •
J3 • •
J4 •
•: the feature is selected; *: Pop represents the population-averaged selection.

be done to consider this factor and reduce the number of
electrodes required.

V. CONCLUSION

The outcomes of this study demonstrated a high degree
of variability in the selected input feature sets among the 10
subjects, in carrying out the same task in commanding the
elbow prosthesis to the same intended target poses. When
the overall population data was used to determine the input
features, the resulting input features for the population were
only shared with one out of 10 subjects when only two input
features were selected, and none out of 10 subjects when
8 input features were selected. This difference in the input
feature selections translated into a significant performance
difference in terms of the accuracy in identifying the intended
target pose through the prosthetic interface. When tested
against the interface constructed using population-averaged
data, the personalised interface demonstrated improvements
in the performance of up to 12.4% ± 6.5%. Note that
this result was obtained from able-bodied subjects. In the
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Fig. 3. The box-and-whisker plots show classification performance of each interested feature set. F i
pop and F j

per represent the population-average and
personalised feature set with i and j features. The results of statistical analysis are demonstrated through the p-value annotations where ns represents
0.05 < p < 0.1; * represents p < 0.05.

Fig. 4. The plot shows the classification accuracy difference in mean
and standard deviation (the shaded area) between the personalised and the
population-averaged by subtracting the accuracy of Fpop from Fper . The
mean accuracy improvement reaches the peak when nd = 3.

context of the prosthetic application, it is expected that the
anatomical differences of persons living with limb loss would
introduce an even more significant diversity, thus further
highlighting the need for input features used in the prosthetic
interfaces to be personalised to individual users.
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