
Does Real-Time Feedback Improve User Performance in SSVEP-based
Brain-Computer Interfaces?

Jing Mu, Po-Chen Liu, David B. Grayden, Ying Tan, and Denny Oetomo

Abstract— Offline and online experiments are both widely
used in SSVEP-based BCI research and development for
different purposes. One of the major differences between offline
and online experiments is the existence of real-time feedback to
the user while they are using the interface. However, the role of
feedback in SSVEP-based BCIs has not yet been well studied.
This work focuses on understanding the effect of feedback
in SSVEP-based BCIs and if there exists any relationship
between offline and online BCI performance. An experiment
was designed to compare directly the accuracies of the BCI
with and without feedback for participants. Results showed
that feedback can improve performance in a complex task, but
no clear improvement was observed in a simple task.

I. INTRODUCTION

Brain-computer interfaces (BCIs) are alternative commu-
nication pathways between human and computer to replace
or complement physical commands. The steady-state visual
evoked potential (SSVEP) is one of the most commonly
used brain signals in non-invasive BCIs. SSVEPs are reactive
brain activities that respond to a periodically flickering visual
stimulation, and is considered to have minimum user training
requirement and higher decoding accuracy compared to other
modalities such as motor imagery [1].

In SSVEP-based BCI research and development, two types
of experiments have been used: offline experiments, where
no feedback is provided to the user during the experiment,
and online experiments, where users have access to real-time
feedback (real-time feedback refers to instant feedback after
each decoding cycle here) on their performance. Usually,
offline experiments are performed to understand SSVEP
responses from selected stimulation setups and online exper-
iments are conducted to test and validate the performance of
the designed interface.

Both offline and online experiments are used widely in
SSVEP-based BCI research and sometimes both are included
in a study. However, the role of feedback in SSVEP-based
BCIs has not yet been carefully studied to understand
how feedback to users during usage would affect SSVEP-
based BCI performance and if offline experiment results
can meaningfully imply online experiment results. Previous
studies [2]–[4] presented results for both experiments without
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feedback and with feedback (offline and online experiments);
however, how feedback affected each participant’s result was
not investigated. Researchers have also studied and compared
the effectiveness of different visual feedback methods in
SSVEP-based BCIs [5]. Even though a significant improve-
ment in speed was observed when feedback was provided
compared to no feedback conditions, it was a comparison
between each subject’s best performing feedback modality
and the no feedback case. Moreover, the best performing
feedback method varied from person to person [5].

This paper describes an experiment designed to compare
directly the accuracies of the BCI when feedback was
removed vs. provided to the participants. In order to further
understand if the performance from the two cases and the
difference between the two changes with the complexity of
the interface, small (8 targets) and large (24 targets) interface
setups were tested in the experiment. The results from the
experiment were then analysed to understand the effect of
feedback on performance and whether or not the performance
from offline SSVEP-based BCI experiments implies online
performance.

II. METHODS

A. Experimental Setup

In this work, Unity (Unity Technologies, USA) was used
to design the SSVEP interface and Simulink (The Math-
Works, Inc., USA) was used to record the data in synchrony
with the stimulation.

Participants sat on a chair 70 cm away from the screen
(Alienware AW2518HF; 24.5 inch, 1920 × 1080) as shown
in Fig. 1 with the centre of screen in the sagittal plane and the
height of the chair adjusted to their comfort. The experiment
was carried out in a normal engineering dry lab environment.

Stimulation consisted of either a large (4 × 6) or a small
(2 × 4) matrix of square flashing targets that are of size 108
× 108 pixels each and targets were placed 108 pixels apart to
avoid potential attenuation on the stimulation frequency [6].
These two layouts are referred to as large grid or small grid,
respectively, in the rest of this paper. The square flashing
targets were white in colour and patterned by a square wave
with zero phase. Stimuli were presented at a 120 Hz refresh
rate on the screen. For the large grid, the 24 frequencies
ranged from 8 Hz to 12.6 Hz (inclusive) in steps of 0.2
Hz. For the small grid, the 8 frequencies ranged from 8 Hz
to 9.4 Hz (inclusive) in steps of 0.2 Hz. In both cases, the
frequencies were randomly shuffled between the targets.

A g.USBamp amplifier (g.tec medical engineering GmbH,
Austria) at a sampling rate of 512 Hz was used to record



Fig. 1: Experimental setup. Participant sits 70 cm away from
the screen where SSVEP targets are displayed. In this figure,
the large grid (4 × 6) is being presented.

EEG data from 16 g.SAHARA dry electrodes positioned at
Fz, FCz, FC1, FC2, Cz, C1, C2, Pz, P3, P4, PO3, POz, PO4,
O1, Oz and O2 according to the international 10-10 system.
The EEG signal was notch filtered at 50 Hz and 0.5 Hz - 100
Hz bandpass filtered on all channels during data recording.

B. Experimental Protocol

The experiment included four sessions with each session
containing four tests, as shown in Fig. 3. For a fair com-
parison of performance under with and without feedback
conditions, the four sessions were arranged using an ABBA
protocol such that sessions 1 and 4 were without feedback
and sessions 2 and 3 were with feedback. Each session
contained two tests with large grid and two tests with small
grid. The tests within the same session is also arranged
in ABBA pattern and alternated with BAAB in different
sessions. Breaks were provided after each test with varying
durations as shown in Fig. 3.

Two setups were used in the tests: a small grid with
8 targets or a large grid with 24 targets. In each test,
participants were asked to follow a cue to go through all
targets on the screen one-by-one in a fixed sequence (from
left to right, top to bottom), 1 trial per target. Therefore, each
test contained 8 or 24 trials for the small grid or large grid
test, respectively.

For the feedback sessions, each trial consisted of a 1
second cue, 3 seconds of stimulation, 1 second of rest and 1
second of feedback as depicted in Fig. 2. During the feedback
presentation, the intended target turned to solid green or red
to represent correct (green) or incorrect (red) decoding from
the classifier. Trials in no feedback sessions had a 2 seconds
rest after the stimulation instead. In the feedback sessions,
a score was displayed on the screen by the end of the test
with the score being the number of correctly decoded trials
in the test.

C. Participants

Eight participants (2 females and 6 males) of age 20 -
26 years (22.5 ± 2.35) participated in this experiment. All

Fig. 2: Trial structure in no feedback (top row) and with
feedback (bottom row) sessions.

Fig. 3: Experimental structure. Sessions 1 and 4 are no
feedback sessions. Sessions 2 and 3 are feedback sessions.
Each session contains 2 small grid and 2 large grid tests.

participants were right-handed with no known neurological
diseases. Two participants (P7 and P8) have had previous
BCI experience. This experiment was approved by the Uni-
versity of Melbourne Human Research Ethics Committee
(Ethics ID 1851283). Written consent was collected from
all participants prior to the experiment.

D. Data Processing and Analysis

In all sessions, data was processed and decoded in real-
time with the entire 3 seconds of SSVEP recording. However,
in no feedback sessions, decoding results were not shown to
the participants. Canonical correlation analysis (CCA) was
used as the decoding algorithm with up to the third harmonic
[7]. Channels Pz, P3, P4, PO3, POz, PO4, O1, Oz and O2
were used in SSVEP processing and decoding.

III. RESULTS

The results are presented in terms of score and accuracy
in this paper. Scores were calculated as the number of trials
correctly decoded in each test; therefore, the maximum score
was 8 for small tests and 24 for large tests. Accuracies were
calculated as the percentage of correct identifications in the
total number of trials of a test. Information transfer rate
(ITR) is not reported as the trial durations were consistent
throughout the experiment.

A boxplot of the scores (number of correct trials in the
test) from all tests and all participants is shown in Fig. 4.
The top and bottom whiskers represent the maximum and
minimum values, respectively. The tops and bottoms of the
boxes represent the third and first quartiles of the data, re-
spectively. The orange lines represent the median values. The
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Fig. 4: Boxplots of scores for all participants and all tests.
The orange line in each box represents the median, the
magenta diamond represents the mean, and the black dashed
lines indicate maximum possible scores (8 for the small grid
and 24 for the large grid). The asterisk labels the significant
improvement (p = 0.0175) found between large no feedback
and large with feedback using two-way ANOVA.

magenta diamonds indicate mean values. Maximum scores
achievable in small (8) and large (24) tests are indicated with
black dashed lines.

In small tests the median and mean scores were similar
with and without feedback, however, in large tests the median
score was higher with feedback. Statistically significant
improvement was found in the large test with feedback
compared to without feedback (p = 0.0175) using two-way
ANOVA with setups and participants as factors. However, no
significance was found in the small test (p = 0.5906).

Percentage of improvement was calculated as the differ-
ence between with feedback and no feedback accuracies
divided by the accuracy without feedback. Fig. 5 shows
the percentage of improvement plotted against the overall
accuracy of tests without feedback for each participant.
As shown in Fig. 5a, there was, in general, a positive
improvement when feedback was introduced compared to
without feedback in the small grid test, but the amount of
improvement did not vary with accuracy without feedback
(correlation coefficient r = 0.1037, p = 0.8070). In the
large grid test, as shown in Fig. 5b, a general positive
improvement is also observed; moreover, it was found that
the percentage of improvement with feedback is negatively
correlated (correlation coefficient r = −0.5238, p = 0.1827)
to the accuracy without feedback.

Accuracies from all participants in all setups are sum-
marised in Fig. 6. Heights of the bars represent the average
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(b) Large grid.

Fig. 5: Average accuracy of the participants for tests without
feedback versus their respective improvement in percentage
given tests with feedback for small (a) and large (b) grids.

accuracy from each participant in different setups. Error bars
indicate standard error. The asterisks indicate statistical sig-
nificance (p < 0.05) with Wilcoxon rank-sum test between
no feedback and with feedback tests in each of the setups.

IV. DISCUSSION

The results showed that there was a statistically significant
improvement between the population performance of the
large grid SSVEP-based BCI when feedback was hidden or
provided to the participants. However, the performance var-
ied between the individuals: 2 out of 8 participants showed
significant improvement in large grid tests with feedback
compared to without feedback; in the 6 with no significance,
2 showed some decrease and 4 showed some increase in
accuracy. No significant differences were observed in small
grid tests with or without feedback. But, in general, partici-
pants tended to perform better (positive improvement) when
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Fig. 6: Bar charts for each participant comparing feedback vs no feedback tests. Heights of the bars represent the average
accuracy for each participant in different setups. Error bars label standard error. The asterisks indicate the significance with
Wilcoxon rank-sum test (*: p < 0.05).

feedback was provided during the experiments (Fig. 5).
It was also observed from the large tests that the per-

centage of improvement in performance when feedback
was provided was negatively correlated to the participant’s
performance (accuracy) without feedback.

Overall, these results suggest that offline (without feed-
back) experimental results can well represent online (with
feedback) experiment results when the task is relatively
simple (small grid). In a more complex task (large grid),
significant difference was found between the performance
between offline and online experiments, even though the
mean and spread of offline experimental results does not
differ much from online results when focusing on population
performance (Fig. 4).

A. Differences Between Small Grid and Large Grid Tests

Figs. 5a and 5b show different trends in percentage of
improvement in performance with feedback vs. performance
without feedback in small and large grid tests, respectively.
A moderate negative correlation was found from the large
grid tests, but not from the small grid tests. This means
that, in large grid tests, participants who performed well
without feedback tended to have a smaller improvement
in accuracy with feedback compared to those who did not
perform well without feedback. Except for the fact that
the high-performers have lesser room for improvement, we
believe that feedback helped participants to focus on the task,
which resulted in more relative improvement for the low-
performing participants. The reason for the small grid test
not showing a similar trend is potentially because the small
grid test only had 8 targets, which made the task easier and
shorter in time, such that the focus level of the participants
did not change as much during the test as in the large grid
test. Note that with a sample size of 8, it is difficult to get
significance statistically and only the general trend observed
from this 8 samples is discussed here.

B. Future Work
Due to COVID-19 restrictions, only 8 participants were

recruited in this study to show a preliminary result. A
larger scale experiment would be desirable to show more
comprehensive results.

V. CONCLUSION

In this paper, experiments were done under the conditions
where real-time feedback was hidden or presented to the user
to investigate the role of feedback in SSVEP-based BCIs
and the relationship between the performance of offline and
online experiments. Results show that providing feedback to
the user can improve performance in non-trivial tasks and
offline performance can well represent online performance
when focusing on population results. However, each individ-
ual responds differently to the feedback.
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