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Abstract 

Background: Spasticity is defined as “a motor disorder characterised by a velocity dependent increase in tonic 
stretch reflexes (muscle tone) with exaggerated tendon jerks”. It is a highly prevalent condition following stroke and 
other neurological conditions. Clinical assessment of spasticity relies predominantly on manual, non-instrumented, 
clinical scales. Technology based solutions have been developed in the last decades to offer more specific, sensitive 
and accurate alternatives but no consensus exists on these different approaches.

Method: A systematic review of literature of technology-based methods aiming at the assessment of spasticity was 
performed. The approaches taken in the studies were classified based on the method used as well as their out-
come measures. The psychometric properties and usability of the methods and outcome measures reported were 
evaluated.

Results: 124 studies were included in the analysis. 78 different outcome measures were identified, among which 
seven were used in more than 10 different studies each. The different methods rely on a wide range of different 
equipment (from robotic systems to simple goniometers) affecting their cost and usability. Studies equivalently 
applied to the lower and upper limbs (48% and 52%, respectively). A majority of studies applied to a stroke population 
(N = 79). More than half the papers did not report thoroughly the psychometric properties of the measures. Analysis 
identified that only 54 studies used measures specific to spasticity. Repeatability and discriminant validity were found 
to be of good quality in respectively 25 and 42 studies but were most often not evaluated (N = 95 and N = 78). Clinical 
validity was commonly assessed only against clinical scales (N = 33). Sensitivity of the measure was assessed in only 
three studies.

Conclusion: The development of a large diversity of assessment approaches appears to be done at the expense of 
their careful evaluation. Still, among the well validated approaches, the ones based on manual stretching and measur-
ing a muscle activity reaction and the ones leveraging controlled stretches while isolating the stretch-reflex torque 
component appear as the two promising practical alternatives to clinical scales. These methods should be further 
evaluated, including on their sensitivity, to fully inform on their potential.
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Background
The definition of spasticity has long been debated in 
published studies and amongst clinicians. This defini-
tion has sometime encompassed any increase in muscle 
tone of various physiological origins, whether they are 
constant (and then referred to simply as “tone”, “hyper-
resistance” or “hyper-tonicity”) or are only velocity-
dependent (and in which case are due to an exaggerated 
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stretch-reflex)  [1]. Still, the more commonly used defi-
nition—adopted in this work—remains the more spe-
cific one proposed by Lance in 1980: “a motor disorder 
characterised by a velocity dependent increase in tonic 
stretch reflexes (muscle tone) with exaggerated ten-
don jerks, resulting from hyperexcitability of the stretch 
reflex, as one component of the upper motor neuron syn-
drome”  [2]. This definition has been recently confirmed 
and updated by a European consensus, stating that “spas-
ticity refers to velocity dependent stretch hyperreflexia as 
part of hyper-resistance” [3]. These definitions should still 
be taken with care when considering the measurement 
modality and procedure used. Indeed, Lance’s defini-
tion was primarily derived from muscle activity observa-
tions, while today clinical practices rely on the measure 
of an exaggerated force or torque response (e.g. a catch 
angle). In addition, a continuous velocity-dependent 
torque response has also been recently demonstrated for 
the elbow joint by McPherson et al. [4]. Overall, past the 
phenomenon definition, it remains unclear as to which 
modality is appropriate to characterise spastic responses.

Significance of spasticity and its assessment
Spasticity is a highly prevalent symptom in people suf-
fering a neurological injury, with estimates ranging from 
30 to 80% after stroke  [5]. Upper limb spasticity follow-
ing a stroke affects a large number of individuals in the 
chronic phase  [6] and is strongly correlated with post-
stroke pain [7] and limitation of patient’s engagement in 
rehabilitation [8, 9]. The socioeconomic burden for those 
with post-stroke spasticity is estimated to be four times 
greater than for stroke survivors without spasticity  [10]. 
Therefore, effective management of post-stroke spastic-
ity remains a critical issue of importance in the field of 
neurological rehabilitation  [11]. However, measuring 
effectiveness of treatments requires sensitive, valid and 
reliable assessment tools.

The Modified Ashworth Scale (MAS) and Modified 
Tardieu Scale (MTS) are the more commonly used meas-
ures of spasticity in clinical practice [12]. These measures 
have important limitations, especially the limited ability 
to distinguish between spasticity—velocity dependent 
and of neural origin, as per Lance’s definition—on one 
hand and tone or stiffness—of non-neural origin—on the 
other hand. The importance of this differentiation has 
been recently stressed by a European consensus [3].

Specifically, the MAS rates the reaction of the assessed 
muscle to stretch using a six point scale [13]. The meas-
ure evaluates the resistance torque at a single, approxi-
mately defined stretching velocity, so it cannot capture 
the velocity-dependent component of spasticity. The 
MAS has also been shown to have only moderate intra-
rater and inter-rater reliabilities, leading to questions 

regarding the overall validity of this tool in the meas-
urement of spasticity  [14]. The MTS  [15] has been rec-
ommended as a more appropriate measurement of 
spasticity [16]. Like the MAS, this tool rates the reaction 
of the affected muscle using a Likert scale from 0—no 
resistance to 4—unfatigable clonus. The primary differ-
ence between the two measures is that the MTS explicitly 
considers velocity-dependent characteristics by requiring 
the clinicians to stretch the joint at two different veloci-
ties, “as slow as possible” and “as fast as possible”  [17]. 
However, the MTS does not fully reflect the variation 
of the intensity of the stretch induced by the velocity as 
the scale is only based on the angles at which the muscle 
reaction occurs. Its sensitivity is also limited by the ability 
of the rater to evaluate the reflex torques accurately and 
its inter-rater reliability is dependent on the experience of 
the clinician [15].

Technology assisted assessments
Given the importance of spasticity evaluation and its rel-
evance to motor impairment and rehabilitation, together 
with the stated limitations of the existing clinical scales, 
many attempts have been made to offer efficient and reli-
able technological solutions to this evaluation. Two main 
classes of systems have been developed since the late 
1980s [18, 19]: passive instruments, where the goal is to 
accurately measure the resistance force and/or muscle 
activity at a given joint which is manually stretched by a 
clinician; and active (i.e. robotic) devices which produce 
a controlled movement of a specific joint at several pos-
sible velocities while measuring the resistance force or 
muscle activity.

These techniques use a variety of different apparatus 
and propose a variety of different outcome measures 
but have often been individually evaluated, for differ-
ent populations, different joints and often relatively low 
number of subjects, making it challenging to define and 
compare their clinical relevance. Many of these measures 
have not been adopted into clinical practice, possibly due 
to the complexity of their apparatus, amongst other fac-
tors. Indeed, studies have found that perceived ease of 
use and perceived usefulness are strong predictors of cli-
nician likelihood to adopt such devices in practice  [20]. 
It is to note that despite the aforementioned limitations, 
the MAS and MTS are simple and quick assessments to 
administer, potentially explaining their predominance 
against instrumented measures with lower usability.

Although two recent dedicated reviews [21, 22] inves-
tigated robotic-assisted methods for spasticity, the 
restriction of their scope to robotic systems does not 
allow for a full picture and comparison of existing meth-
ods. A more complete picture of the field is provided 
in a review of systematic reviews encompassing all 
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assessment methods  [23]. This review shows the overall 
limited evaluation of the existing assessments but does 
not propose a specific categorisation—and thus compari-
son—of the methods used. Additionally, none of these 
previous reviews address the question of the usability of 
the assessment methods which is a critical point for clini-
cal adoption, especially in comparison to the widely used 
existing clinical scales which have the benefit of being 
cost-effective and easy to administer.

This systematic review thus proposes to identify exist-
ing technology-assisted methods aiming to assess the 
level of spasticity. A classification based on the method 
characteristics is then proposed, allowing for a usability 
comparison. Finally the psychometric properties of the 
different outcome measures are analysed. The review 
scope encompasses any limb and joint (or muscle) and 
any condition leading to spasticity, as the underly-
ing mechanism of spasticity and its manifestation are 
expected to remain consistent across these conditions.

Methodology
Search and screening
A systematic literature review search was performed on 
the Medline, Embase and IEEEXplore databases. The 
search query was constructed to identify papers of which 
title or abstract contain at least one keyword of each of 
the three following groups: (1) spasticity, (2) assessment 
and (3) technology. The keywords of each group were 
defined as follows: 

1 spastic* (spastic, spasticity), muscle tone, muscular 
tone, hyperton* (hypertonia, hypertonic, hypertonic-
ity);

2 assess* (assess, assessment), measure* (measure, 
measurement), quanti* (quantify, quantification, 
quantitative);

3 technolog* (technology, technological), instru-
ment* (instrument, instrumental, instrumented), 
mechatronic, mechanical, muscle activity meas-
urement, electromyography, EMG, sEMG, inertial 
measurement unit, IMU, force sensor, dynamometer, 
ergometer, robot* (robot, robotic, robotics), kine-
matic* (kinematic, kinematics, kinematical).

Note that the key terms of group (1) deliberately included 
terms that may not be specific to spasticity as per Lance’s 
definition. These terms were included to ensure to not 
exclude valid studies using an inappropriate terminology. 
The construct validity of each measure was then evalu-
ated in a second time, as explained below. The technology 
group (3) was constructed to include any mechatronic 
and/or sensor based systems.

The search was restricted to papers published after 
January 2000 to exclude older results leveraging outdated 
technology. Both journal articles and full-text conference 
proceedings written in English were included. Additional 
papers identified outside of the search were also included.

Eligibility was assessed based on the paper abstract to 
ensure that the reported study was specific to spasticity, 
or more generally to muscle tone, and applied to a neuro-
logically injured population. Only papers directly aiming 
at the assessment of spasticity were considered. As such 
papers only reporting spasticity treatments or manage-
ment methods were not included. Finally, it was ensured 
that the papers were using or proposing a technology-
assisted measure. Typically, studies assessing psycho-
metric properties of non-instrumented clinical measures 
(such as MAS or MTS) were excluded. Abstracts of iden-
tified papers were then screened independently by two 
reviewers (XG and RW) for eligibility. In case of disagree-
ment, inclusion decision was made by a third reviewer 
(VC).

The PRISMA methodology [24] was used to report the 
literature review.

Data extraction and analysis
The full texts of the included papers were then analysed. 
The first objective was to characterise the spasticity 
assessment method used (or proposed). This step con-
sisted of identifying the type of sensor(s) and device(s) 
used, the type of physiological measure(s), procedure, 
outcome measure and joint being assessed. When multi-
ple outcome measures were proposed in the same study, 
only the one(s) claimed to be specific to spasticity by the 
authors were reported. When a paper presented several 
distinct assessment methodologies, these were consid-
ered independently. Conversely, when several papers 
were relative to the same assessment method, those were 
reported together.

The information extracted was used to populate a first 
table and further used to provide a full picture of tech-
nology-assisted assessments of spasticity.

The second step aimed at extracting, for each study, 
the relevant psychometric properties of the assessment 
and other information relative to its evaluation with the 
targeted population. When a study used more than one 
method, those were considered independently. Methods 
only tested with non-neurologically impaired popula-
tions were not considered at this stage. Specifically, infor-
mation were sought regarding:

• the targeted population;
• the spasticity severity of the targeted population (in 

terms of a clinical score);
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• the sample size, assessed here as number of limbs 
tested and either belonging to the test population 
or control (including own control);

and on the reporting of the following five psychometric 
properties. 

1 The construct validity, evaluating the specificity of 
the measure based on Lance’s and the European 
consensus definitions. Two aspects were sought for 
evaluation: (1) is the measure (and/or procedure) 
accounting for the velocity dependent aspect of the 
phenomenon (independently of the type of the out-
come measure); and (2) is the measure (and/or pro-
cedure) attempting to isolate the stretch reflex from 
any voluntary muscle component and other joint 
passive resistance? This was thus rated from 0 to 2.

2 The discriminant validity, based on the existence of 
a control group/limb and ability of the measure to 
discriminate between these groups. This was rated as 
Significant, Conditionally Significant (under specific 
conditions) or Non-Significant.

3 The clinical (concurrent) validity, based on its corre-
lation with the clinical measures reported as a Kappa, 
Spearman or Pearson correlation coefficients and 
rated from Very Weak to Very Strong [25, 26].

4 The reliability, based on a rating of the repeatability 
from Poor to Excellent (ICC [27]).

5 The sensitivity evaluation, reporting the Minimal 
Detectable Change (MDC) or similar measures.

The information, when available, was used to populate a 
second extraction table. This extraction was performed 
by one of the authors (XG) and discussed among all the 
authors in case of doubt.

Due to the heterogeneity of the data, no quality 
appraisal of the studies was performed but this infor-
mation was further used to analyse how the different 
assessment methods—and outcome measure(s)—have 
been investigated along the different psychometric 
properties.

For the assessment methods with a construct validity 
of two out of two (thus specifically evaluating spasticity 
as a velocity-dependent increase of the stretch reflex) a 
usability evaluation was performed. The administration 
time, equipment cost and portability of the equipment 
necessary to these methods were estimated. The admin-
istration time was estimated by the authors  based on 
the procedure description, the required instrumentation 
(such as EMG sensors placement or exoskeleton adjust-
ment) and the number of movements/actions required 
(see Appendix, Table  5). The administration time was 
then classified as either:

• comparable administration time to a MAS or MTS: 
less than 10 min;

• equivalent to a typical intervention session: 10 to 
30 min;

• length of an extended session: 30 to 60 min or;
• longer than an extended session: more than 60 min.

The equipment cost was estimated using the cost of a 
standard equivalent equipment (see Appendix, Table  6) 
and classified as either:

• a disposable expense: less than $1000 USD;
• an expense requiring a departmental funding: $1000 

to $10,000 USD;
• an expense requiring an institutional funding: 

$10,000 to $50,000 USD or;
• an expense requiring a grant or special funding: more 

than $50,000 USD.

Portability was estimated based on the less portable piece 
of equipment and classified as either:

• easily transportable (e.g. EMG sensors);
• transportable from room-to-room (e.g. Ultra-Sound 

system on wheels) or;
• not movable (e.g. BIODEX system).

Results
The search conducted in May 2021 identified 491 papers 
and six were added from other sources by the authors 
(see Fig.  1), 310 papers were excluded based on their 
abstract and 20 additional ones were excluded after a 
full-text review, leading to a total of 124 papers included 
in the analysis. During the screening phase, there was 
an agreement among the two reviewers on 384 papers 
whereas 70 required an arbitration.

Available assessment methods
In total, 120 different assessments were identified. The 
extraction table summarising the assessment methodolo-
gies presented in each paper is available as a supplemen-
tary material (Additional file 1).

Physiological measures
Four categories of physiological measures—and their 
combinations—used to produce the outcome measure 
were identified. They are summarised in Table 1.

A majority of studies used Kinematic measures (KI, 
N = 105), then Muscle Activity measures (MA, N = 83), 
then Force/Torque (FT, N = 64), and a few studies used 
intrinsic Muscle Properties (MP, N = 8) (see Fig.  2a). 
The most common combinations were Kinematic with 
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Muscle Activity (N = 63), and Kinematic with Force/
Torque (N = 56).

Stretching methods
Studies were further categorised based on the type of 
movement used defined in Table 2.

Most studies relied either on Manual stretching of the 
limb (N = 60) or on Controlled stretching movements 
(N = 45). Only a small number of studies (N = 14) relied 
on Voluntary movements. This last option has the disad-
vantage of not providing a standard movement velocity—
and its variations—but has the advantage of being more 
directly representative of the spasticity effect on patients 
function.

These stretches were applied at several different veloci-
ties in 69 studies—either in a randomised or increasing 
velocity order (N = 48 and N = 21 respectively)—which 
demonstrate how most methods tackle the velocity 
dependence aspect of spasticity. Still, in 44 studies, only 
one stretching velocity was used and 23 did not clearly 
report the number of velocities used or did not use any 
stretching (NS).

Joints of application
The different methods were equally applied to the upper 
or lower limb joints (52% vs 48%) but much more fre-
quently to the more distal joints with only two studies 

relative to the shoulder and four to the hip (see Fig. 2c). 
Only four studies were applied to the fingers joints.

Devices used
Ten categories of technological devices could be identi-
fied in the different studies. Most of the studies used two 
or more types of devices. Fifty studies relied on active sys-
tems, either a robotic end-effector system (REE, N = 34) 
or a robotic exoskeleton (REXO, N = 16), among which 
they were coupled with EMG measurements in 23 cases. 
Electrical stimulation (STI) was used in four studies. Pas-
sive orthoses (ORT) were used to guide or stabilise the 
movement and measure either kinematic or kinetic data 
in 20 cases.

Purely in terms of measurement devices, EMG is 
the most commonly used system (N = 83), followed 
by goniometers (GON, N = 26) and IMUs (N = 17), 
dynamometers (DYN, N = 8) and finally Ultra-Sound or 
mechanomyography (US or MMG, N = 7).

Outcome measures
Seventy-eight different outcome measures were identi-
fied with only a few recurrent ones and multiple studies 
reporting several outcome measures. The largest cat-
egory encompasses the Force/Torque level outcomes 
(N = 51), either resistive torques measured in varying 
conditions or the Force/Torque evolution over stretch-
ing angle or velocity. Thirty-six studies reported a Muscle 

Fig. 1 PRISMA diagram of the literature review
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Fig. 2 Distributions of studies by a types of measurement (some studies use more than one type of measurement); b types of stretch used and 
breakdown of measurements for the two main stretch categories; c joint(s) on which the methods have been applied to; and d most commonly 
encountered outcome measures (some studies have several outcome measures). KI kinematic measure, MA muscle activity measure, FT force/
torque measure, MP muscle property measure

Table 1 Definition of the physiological measures categories

Abbr. Denotations Definitions

KI Kinematic A measure of the limb movement, either position or velocity

MA Muscle Activity A measure proportional to the muscle contraction intensity (e.g. EMG measure-
ment)

FT Force/Torque A measure of the force exerted by the limb, or equivalent torque at a joint, to resist a 
limb movement

MP Muscle Property A measure of the mechanical condition (e.g. stiffness) of a muscle

Table 2 Definition of the stretching methods categories

Abbr. Denotations Definitions

M Manual Stretch The subject’s limb is manually stretched by a practitioner

C Controlled Stretch The subject’s limb is stretched by a mechatronic device controlling the movement

V Voluntary Stretch The subject voluntarily controls their limb movement without external intervention

NS No Stretch The measure is performed at static pose(s) of the subject’s limb
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Activity level, 19 reported a catch angle, 16 the presence 
of an EMG onset and 15 the Tonic Stretch Reflex Thresh-
old (TSRT), sometimes with the associated Tonic Stretch 
Reflex Slope (TSRS). Figure  2d presents the most com-
monly encountered measures and a full list is available in 
the Additional file 1. Among the variety of other outcome 
measures reported, it is noted that six studies aimed at 
estimating a MAS score equivalent, either by reproduc-
ing the MAS procedure using technological equipment 
or by using machine learning techniques on a set of 
recorded features.

Types of measurement
When comparing the main stretching categories (Fig. 2b), 
not surprisingly, all methods using Controlled stretching 
relied on Kinematic measures—as it is directly provided 
and controlled by the stretching system. Quite natu-
rally, Controlled methods also more commonly relied on 
Force/Torque measurements than Manual methods, as 
this measure can be directly provided by the mechatron-
ics system. Instead, Manual methods tend to use Muscle 
Activity measures more frequently as an alternative to 
Force/Torque.

Psychometric properties
The detailed data extraction table with the characteristics 
of each study, and for each outcome measure, is provided 
as a Supplementary material (Additional file 2). Six stud-
ies [28–33] were excluded from the psychometric prop-
erties analysis as they only recruited healthy subjects.

There is quite a large variety of study designs, which 
do not all aim at formally assessing the psychometric 
properties of the used—or proposed—assessment meth-
ods. As such, not surprisingly, no study reported all the 
expected items and six studies reported four of the five 
properties  [34–39]. When psychometric items were 
reported, they also were commonly evaluated only for 
some of the outcome measures proposed.

Overall, more than half of the studies (N = 76) pro-
posed or evaluated a method which scores less than two 
on the construct validity criterion, showing that it is 
either not velocity-dependent or does not attempt to iso-
late the stretch reflex component.

For 42 studies, at least one outcome measure was able 
to discriminate between the test and control populations, 
whereas this discrimination was not possible, or only 
under specific conditions, in 10 studies. 78 studies did 
not report any discriminant validity evaluation.

A Strong or Very Strong correlation of the evaluated 
measure with clinical measures of spasticity was found in 
28 studies, out of the 62 reporting such evaluation. It is 
to note that in most of these studies (N = 33) the concur-
rent validity was evaluated against the MAS. Given the 

limited properties and limited specificity of the MAS, 
this raises the question of relevance of these correlations.

The repeatability of the proposed measures was 
reported in only 29 cases and was found excellent in 25 
cases.

Sensitivity was evaluated in only three studies, either 
using a Minimal Detectable Change (MDC), a Smallest 
Real Difference (SRD) or a Smallest Detectable Differ-
ence (SDD).

The targeted population was well specified in a large 
majority of studies with only two studies missing this 
information. A majority of studies applied to the Stroke 
population (N = 79), followed by CP population (N = 30) 
and SCI population (N = 15). The spasticity severity of 
the test group was provided in 108 studies.

Assessment methods comparison
In order to estimate which of the main assessment 
method categories (defined in the previous section) ben-
efit from the more positive evaluation across the different 
psychometric properties, Table 3 reports the percentage 
of studies in each method, with what is considered a good 
psychometric property: a fully valid construct ( = 2 ), a 
Significant discriminant validity, a Strong or Very Strong 
correlation with clinical scales, an Excellent repeatability 
and any evaluation of the sensitivity.

None of the different assessment methods demonstrate 
a good or even systematic validation across the five psy-
chometric properties. Among the methods relying on 
Manual stretching, the ones using the larger set of meas-
urements (M-MA+KI+FT) have an overall better valida-
tion. The simpler approach (M-KI), requiring the simpler 
equipment, has a good validation overall even if its con-
struct validity remains low. Similarly, among methods 
relying on a Controlled stretching, the ones with the 
larger set of measurements (C-MA+KI+FT) demon-
strate the best overall properties. Approaches relying on 
either Voluntary movements (V-) or on a static measure-
ment (NS-) have a low construct validity score and gener-
ally suffer from an absence of repeatability evaluation.

Outcome measures comparison
The same analysis was performed based on the studies 
outcome measure(s). The results for the most commonly 
used measures are presented in Table 4.

A more detailed analysis accounting only for studies 
reporting on a specific property is presented on Fig.  3. 
When evaluated, most outcomes demonstrate an Excel-
lent repeatability and a positive discriminant validity. It 
is to note still, that the use of TSRT and the presence of 
EMG onset are very rarely evaluated along these proper-
ties. Overall, across the spectrum, only the Force/Torque 
measure, either as a whole (i.e. resistive) or isolating the 
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Table 3 Summary of the studies in the literature, categorised into the Manual (M), Controlled (C), Voluntary (V) and Static (NS) 
approaches and type of measure

It shows the percentage of the studies in each category that showed a construct validity of 2 (out of 2), a Significant discriminant validity, a greater than Strong 
correlation with a clinical measure, an Excellent repeatability and the percentage of those that included a sensitivity evaluation. The table also reports the total 
sample size for each category as: number of tested limbs (P), own control limbs (PC) and healthy subjects’ control limbs (HC); and the number of studies in each of 
the category. Note that these results do not account for the individual sample size of each study and aggregate studies reporting a poor property and studies not 
reporting it

Stretch Measure Construct Discriminant Clinical Repeatability Sensitivity # limbs # References
(2/2) (Significant) (≥Strong) (Excellent) (Reported) (P/PC+HC)

M MA+KI 65 4 27 19 8 453/45+22 26 [17, 40–64]

MA+KI+FT 89 33 11 33 0 259/0+78 9 [38, 55, 65–71]

KI+FT 13 63 13 13 0 344/16+29 8 [41, 72–78]

KI 14 57 57 57 0 119/19+93 7 [35–37, 79–82]

MA 0 33 17 17 0 242/41+40 6 [83–88]

Other 33 33 0 0 0 26/0+8 3 [89–91]

C KI+FT 36 36 23 18 5 791/75+411 22 [34, 92–112]

MA+KI+FT 85 54 8 31 0 268/0+163 13 [113–125]

MA+KI 67 0 0 0 0 115/8+22 6 [60, 126–130]

KI 0 0 100 100 0 46/46+192 1 [131]

V MA 0 20 20 0 0 60/22+8 5 [132–136]

MA+KI 60 40 40 0 0 80/34+37 5 [59, 137–140]

Other 0 33 33 0 0 80/80+124 3 [141–143]

NS MP 0 83 50 0 0 257/153+0 6 [95, 95, 132, 144–146]

MA 0 40 20 0 0 178/116+64 5 [70, 81, 146–148]

Other 0 80 0 40 0 76/47+17 5 [39, 96, 122, 149, 150]

Table 4 Summary of the studies in the literature evaluating the most common outcome measures (used in 10 or more studies)

It shows the percentage of the studies for each of the outcome measures that showed a construct validity of 2 (out of 2), a Significant discriminant validity, a greater 
than Strong correlation with a clinical measure, an Excellent repeatability and the percentage of those that included a sensitivity evaluation. The table also reports the 
total sample size for each outcome measure as: number of tested limbs (P), own control limbs (PC) and healthy subjects’ control limbs (HC); and the number of studies 
in each outcome measure. Note that these results do not account for the individual sample size of each study and aggregate studies reporting a poor property and 
studies not reporting it

Outcome measure Construct Discriminant Clinical Repeatability Sensitivity # limbs # References
(2/2) (Significant) (≥Strong) (Excellent) (Reported) (P/PC+HC)

MA level 54 24 14 19 3 951/122+232 37 [17, 38, 40, 41, 49, 53, 55, 55, 58, 59, 
59, 60, 60, 63–65, 67, 68, 70, 70, 71, 
83–88, 91, 113, 118, 123, 127, 132, 
134, 136, 137, 143]

Catch angle 35 6 6 47 0 364/50+250 17 [47, 49, 55, 57, 62, 63, 66–68, 71, 73, 
78, 82, 114, 115, 118, 131]

FT (resistive) 47 41 18 24 0 458/9+236 17 [34, 38, 55, 67, 68, 70, 90, 93, 
101–105, 112, 119, 123, 143]

FT (neural) 88 53 18 29 6 388/42+239 17 [70, 77, 80, 90, 94–99, 116–118, 
120–122, 124]

TSRT 100 0 21 0 7 247/8+11 14 [42, 43, 46, 48, 50–52, 54, 61, 79, 126, 
127, 129, 140]

EMG onset 62 15 15 0 0 268/0+85 13 [17, 38, 56, 60, 60, 63, 66, 119, 120, 
124, 127, 130, 134]

Work 70 60 20 40 0 317/0+108 10 [38, 55, 67, 68, 71, 73, 77, 106, 119, 
123]
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neural component, and the Work measure demonstrate 
good properties in a majority of studies. This similar 
behaviour is not surprising, as these two outcome meas-
ures are relatively similar, the Work being the integration 
of the Force (or Torque) along the stretching movement.

Only one study reported properties of a good level 
across the first four psychometric properties (Additional 
file 1), and this for the MA level outcome measure when 
applied at the knee joint with subjects with CP [38]. The 
same authors, in a different study with the same popula-
tion at the ankle, were the only ones to also report good 
construct validity, discriminant validity and repeatability 
(but without assessing clinical validity) [77]. This applied 
to the overall Work, specific Neural Work and Torque 
outcome measures.

Usability analysis of valid approaches
Usability was evaluated and analysed for 54 studies which 
specifically evaluated spasticity and so had a construct 
validity of 2/2.

Usability comparison by method approaches
Less than half of the studies’ procedures (N = 19) could 
be administered in less than 10 mins, making them 

comparable to the MAS or MTS. It is of note that most 
of these 19 studies were in the Manual Stretch method 
category which generally required minimal time for 
equipment setup. In contrast, the majority of studies 
had an administration time as much as a typical inter-
vention session (10–30  mins, N = 21) or an extended 
intervention session (30–60 mins, N = 14).

In terms of equipment cost, nearly half of the studies 
(N = 26) had a cost between $1000 and $10,000 USD. 
Meanwhile, six studies had a cost of $10,000–50,000 
USD and 21 studies had a cost more than $50,000 USD, 
where most of these studies used a robotic device (REE 
or REXO) to perform Controlled stretching. A rela-
tively low cost (less than $1000 USD) was only found 
in one study, which combined a musculoskeletal model 
and Kinematic measurements from three IMUs during 
Manual stretching to predict the velocity-dependent 
TSRT [79].

The portability analysis showed the assessment 
equipment was not movable in nearly half of the studies 
(N = 26). Only 11 studies used a device which could be 
transportable from room-to-room, and 17 studies (all 
in the Manual Stretch category) used easily transport-
able equipment.

Fig. 3 Response on the different psychometric properties for the more commonly adopted outcome measures (in 10 or more studies). Sensitivity 
being reported in only three studies is not presented. Note that this does account only for studies reporting the given property and as such leads to 
a very inequal total number across the different properties (and different vertical scales)
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Usability comparison by outcome measures
In order to compare which validated assessment methods 
and their associated outcome measures have advantages 
in practicality, the usability for the most commonly used 
outcome measures (used in 10 or more studies) is pre-
sented in Fig. 4.

MA level approaches had an overall good usability 
across administration time, equipment cost and port-
ability. More than half of the studies measuring MA level 
had an administration time of less than 10  mins, which 
is thus comparable to a MAS or MTS, they required an 
equipment costing between $1000 and $10,000 USD and 
scored high on portability.

Overall, the good usability of MA level relied on simple 
equipment used (e.g. EMG) and a relatively small number 
of Manual stretches in most of these studies.

Although TSRT demonstrated a similar performance 
on equipment cost and portability as MA level, its 
administration time was longer, more commonly of more 
than 30 mins as it requires a larger number of stretches. 
Indeed, a larger number of stretches is required to elicit 
sufficient Dynamic Strectch Reflex Thresholds (DSRT) 
data points to obtain a reliable TSRT value.

In contrast with MA level and TSRT, most FT (neu-
ral) studies had an equipment cost over $50,000 USD 
and lacked equipment movability as these assessment 
methods were generally performed on a robotic sys-
tem (REE or REXO). Additionally, more than half of 
the FT (neural) studies required more than 10 mins for 
measurement.

Discussion
The diversity of outcome measures shows that there is no 
clear agreement on efficient method for such assessment. 
The psychometric properties of the different measures 
are not well explored.

A very large spectrum of methods and outcome meas-
ures have been developed and used in studies with vari-
ous methodology approaches. This development seems 
to be at the expense of limited formal evaluation of the 
proposed methods. Many studies neglect the evaluation 
of important psychometric properties of the measures. 
This is evident for the sensitivity (present in only three 
studies) and also repeatability which is not evaluated in 
a majority of studies. Clinical validity is more often pre-
sent. If it appears important to provide a benchmark 
against accepted scales, its significance remains limited 
given the low specificity and inter/intra rater properties 
of the MAS and MTS (the most frequently encountered). 
This correlation cannot be considered alone to charac-
terise an appropriate measure of spasticity. It would thus 
appear more appropriate to evaluate proposed methods 
against relatively well established ones such as Muscle 
Activity approaches (MA level) or ones properly isolating 
the stretch reflex in Controlled stretches (FT neural).

Measures specificity to spasticity
The diversity of proposed methods and the limited con-
struct validity (<2) in more than half the studies show 
the limited specificity of the methods evaluated. This 
is illustrated by the wide use of catch angles measures 

Fig. 4 Usability analysis on the equipment cost, administration time and portability for the more commonly adopted outcome measures
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considered only at a single velocity, or the use of a MAS 
equivalent, also known to not be velocity-dependent. It 
was noted that, as suggested by McPherson et  al.  [4], 
catch angles may be used to construct a valid outcome 
measure (representing the stretch-reflex sensitivity) 
but only when their velocity dependence is considered. 
This lack of specificity in the literature is in agreement 
with a conclusion of a previous systematic review which 
found that a “majority of studies rely on methods that 
assess resistance to passive movement rather than 
spasticity” [23].

Still, the importance of specificity might be rela-
tive for clinical use. Typically, Botulinum toxin type A 
injection decisions can be made on the basis of static 
postures  [151] or MAS scores  [152] to address both 
hypertonicity and spasticity all-together. As such, when 
a specific measure is not required, it appears that sim-
ple instrumented methods relying on a manual stretch-
ing and a simple kinematic measurement [35–37, 79–82] 
could be favoured.

Lack of repeatability and sensitivity evaluation
Overall, most outcome measures demonstrate an excel-
lent repeatability when reported but with the notable 
exception of the TSRT and the presence of EMG onset 
(Fig. 3). This absence of repeatability evaluation is espe-
cially problematic given that these two measures are the 
ones with the higher construct validity overall—because 
they take advantage of a Muscle Activity measure—and 
are such very relevant approaches.

In general, repeatability, which is a fundamental prop-
erty relatively straightforward to evaluate is very much 
lacking for most methods and outcome measures, and 
care should be taken to fill in this gap.

The sensitivity of the outcome measures is even more 
critically lacking from the literature, with only three stud-
ies proposing such evaluation. This confirms and extends 
a previous finding about robotic assessments of spastic-
ity by van der Velden et al. [22]. The recommendation of 
the authors to invest more effort “in studying diagnostic 
accuracy” and its “added value for clinical care” can be 
extended to all existing instrumented measures.

Usability and clinical implications
One of the main objectives of the different methodology 
developments in the literature is to provide alternatives 
to the MAS and MTS scales in clinical practice. These 
scales are criticised for their limited repeatability, speci-
ficity and sensitivity but have the major advantage of not 
requiring a specific equipment and being quick to admin-
ister with minimal training. As such, usability considera-
tions are important when looking at possible alternatives.

A number of existing methods address this issue and 
have an estimated administration time of less than 10 
minutes. Those mostly include instrumented Manual 
stretching methods measuring a Muscle Activity reac-
tion and the Kinematics (e.g. [55]) or Force/Torque reac-
tion (e.g. [77]). Lower cost alternatives relying only on a 
kinematic measure, provided by either a goniometer [80] 
or an IMU  [35, 36, 79] have been proposed but have 
reported relatively poor psychometric properties, except 
for [79] and [80] (see Additional file 1).

It is also to note that, if TSRT is an interesting approach 
quite well explored, it can only be recommended as a 
comparison point in research studies as it requires a large 
number of stretches to be efficient, thus increasing its 
administration time.

Another, less specific alternatives to the MAS and MTS 
are static methods not relying on any stretching move-
ments (NS-) and measuring either intrinsic Muscle Prop-
erties using Ultra-Sound  [132, 144–146] or measuring 
the H-reflex using EMG and electrical stimulation  [70, 
81]. These approaches, past their low construct validity, 
have a good discriminant validity and a Moderate to Very 
Strong clinical validity, but no repeatability nor sensitiv-
ity evaluation.

Overall, Muscle Activity measures (using EMG) of 
Manual stretches seem to constitute the go-to alterna-
tive to existing clinical scales, given their short adminis-
tration time but also relative low-cost (<$10,000 for most 
of them). These Manual methods tend to have a lower 
equipment cost than their Controlled counterparts which 
require a robotic system but this additional cost is often 
defrayed given that when robotic systems are used for 
spasticity assessment, this is generally not their only—
or even primary—use, as discussed in  [21]. In addition, 
Muscle Activity based methods require an appropriate 
placement of EMG electrodes which may require spe-
cific experience. The choice between Controlled-Torque 
methods and Manual-Muscle Activity one is thus still 
open depending on the equipment available and clini-
cians experience.

Limitations
The diversity of outcome measures and variety of objec-
tives of the studies make it difficult to draw specific 
conclusions. As such, one limitation of this review is 
the lack of analysis for every different joint and pathol-
ogy. It is clear that practical considerations may not 
allow a straightforward translation of one method from 
one joint to another (e.g. sEMG placement or robotic 
devices fitting and adaption to the joints morphology) 
but such analysis would require a more narrow scope. 
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Similarly regarding the different pathologies, the assess-
ment needs, and limbs presentation, might vary slightly 
for the different pathologies and so affect each method 
differently.

In addition, the construct validity considered in this 
review intentionally does not characterise the physiologi-
cal mechanisms of spasticity specifically: no distinction 
is made between methods estimating an increased sen-
sitivity of the stretch reflex and methods estimating an 
increase of the reaction amplitude. This approach thus 
assumes that both effects may exist and can potentially 
characterise spasticity. This is expected to be aligned with 
current clinical definitions of spasticity.

The usability of the different methods in clinical prac-
tice is based on estimations of the equipment cost and 
administration time. It is acknowledged that the cost 
does not include the expertise that may be required by 
some methods and that the cost of the equipment itself 
can significantly vary. As such this remains only an 
approximation used for comparisons between methods. 
Similarly, the estimated administration time can highly 
depend on the patient presentation but also expertise 
of the assessor. It is only relevant here as a comparison 
between methods and against the commonly used clini-
cal scales, MAS and MTS, which have the advantage of 
being fast to administer.

Finally, the choice to include conference proceedings 
within the scope appeared important given the impor-
tance of such publications in the engineering field which 
contributes to the development of the assessment meth-
ods. Nevertheless, this may have introduced a bias when 
analysing the validation of the methods, given that some 
preliminary publication may not provide a full validation, 
complemented in a different publication. This approach 
also tends to aggregate studies which aim to introduce 
new evaluation methods with ones focusing on a more 
careful analysis of the psychometric properties.

Conclusions
The review found a large variety of technology assisted 
methods and associated outcome measures to assess 
spasticity. These methods generally lack systematic eval-
uation of their psychometric properties. It thus appears 
that some consolidation of knowledge around existing 
approaches is required and that no ready-to-use alter-
native to existing clinical scales (MAS and MTS) is 
yet fully validated. Nevertheless, methods measuring 
a Muscle Activity reaction to manual stretches appear 
as promising practical method to be investigated fur-
ther. Similarly, and when robotic systems are read-
ily available, measures relying on a specific Torque (or 
Work) reaction to a controlled stretching can also be 
recommended.

Appendix

Table 5 Definition of administration time used for usability 
evaluation

Action Standard duration

EMG/MMG sensor placement 1 min per sensor

IMU sensor placement 1 min per sensor

Electrogoniometer placement 1 min per sensor

Dynamometer placement 1 min per sensor

Instrumented orthosis placement 1 min per device

Robotic end-effector adjusted and donned 5–10 mins per device

Robotic exoskeleton adjusted and donned 5–10 mins per device

Motion capture system calibration 10 mins per system

Limb stretching followed by a rest 0.5 mins per action

Stimulation followed by a rest 0.25 mins per action

Maximum voluntary contraction test 1 min per action

Table 6 Definition of equipment costs used for the usability evaluation

Equipment Standard costing Representative equipment
(in USD)

EMG/MMG sensor $1500 per sensor Delsys Trigno System

IMU sensor $100 per sensor WitMotion WT61C 6 Axis Sensor

Electrogoniometer $1000 per sensor Biosignalsplux Goniometer

Dynamometer $1000 per sensor Hoggan Scientific MicroFET2 Digital Dynamometer

Electrical stimulator $300 per device Ultra 9000 Multifunction Stimulator

Ultra-Sound system $20,000 per device Chison Sonobook 9 Color Doppler Ultrasound

Robotic end-effector $10,000–100,000 per device Custom 1 DoF device to Biodex Isokinetic System 4 Pro

Robotic exoskeleton $10,000–100,000 per device Custom 1 DoF device to Hocoma Armeo Power

Motion capture system $100,000 per system Vicon Motion Capture System

Instrumented orthosis Summation of all mounted sensors costs
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