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Abstract— Muscle fatigue is usually defined as a decrease
in the ability to produce force. The surface electromyography
(sEMG) signals have been widely used to provide information
about muscle activities including detecting muscle fatigue by
various data-driven techniques such as machine learning and
statistical approaches. However, it is well-known that SEMGs
are usually weak signals with a smaller amplitude and a lower
signal-to-noise ratio, making it difficult to apply the traditional
signal processing techniques. In particular, the existing methods
cannot work well to detect muscle fatigue coming from static
poses. This work exploits the concept of weak monotonicity,
which has been observed in the process of fatigue, to robustly
detect muscle fatigue in the presence of measurement noises and
human variations. Such a population trend methodology has
shown its potential in muscle fatigue detection as demonstrated
by the experiment of a static pose.

I. INTRODUCTION

Muscle fatigue is the failure of a muscle to generate
expected force [1]. Normally, it can be a result of vigorous
exercise, exhaustive labor, or holding static postures for a
prolonged period. Fatigue is also one of the most common
causes of chronic pain [2]. Every year, millions of people
worldwide suffer from chronic pain. Hence, a system that
detects muscle fatigue followed by an appropriate interven-
tion can greatly reduce the risk of chronic pain.

Surface electromyography (SEMG) can be used to detect
muscle fatigue [3]. It has been observed that the frequency
spectrum of sEMG signal will downshift when a muscle
becomes fatigued [4]. Many signal processing techniques
have been proposed to detect muscle fatigue, for example
statistical methods [5] and unsupervised machine learning
[6]. It is not surprising that the performance of signal pro-
cessing algorithm depends on the quality of signals. Due to
the low signal-to-noise ratio (SNR) of sSEMG signals [7] and
large human variations, the existing methods can detect the
muscle fatigue coming from dynamic movements when the
subjects already feel exhausted in the experiments. However,
the existing techniques cannot work well in detecting muscle
fatigue from static poor postures, which have demonstrated
huge potential health risks [8].

Recent investigations in [9] have shown that upper-back
muscles will fatigue after sitting with a poor posture for a
short time duration by statistically analysing experimental
results of a population, but there is still no systematic way to
capture muscle fatigue from static poses using SEMG signals
for each individual.
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It has been observed that the downshift of the median
frequency of sEMG signals can be used to detect muscle
fatigue [10]. It suggests this downshift is a population trend
that can be utilized to detect muscle fatigue, leading to
the threshold-based detection algorithm [11]. Due to the
low SNR properties of SEMG and the existence of huge
human variations, the population trend might not be al-
ways dominant or clearly observed, so the concept of weak
monotonicity (WM) was proposed in [12] to relax the strict
monotonicity (SM). This work utilizes the concept of WM to
develop a novel fatigue detection algorithm to capture upper-
back muscle fatigue during a short-duration poor posture. In
order to validate the effectiveness of the proposed algorithm,
two sets of experiments have been conducted. Experiment
1 collected sEMG signals when subjects were required
to sit in a poor posture for 15 minutes, and Experiment
2 worked with a physiotherapist to detect muscle fatigue
when subjects were sitting in the same poor posture. The
data collected in the Experiment 1 was used to tune the
parameters of proposed WM-based muscle fatigue detection,
and Experiment 2 was used to demonstrate the effectiveness
of the proposed method.

II. METHODS

Detecting muscle fatigue coming from long time static
poses using SEMG signals is difficult, because of the ex-
istence of noise and human variations. Hence, traditional
statistical methods are not sensitive enough to capture muscle
fatigue for each individual. Instead of only using measured
data, the population trend observed in muscle fatigue pro-
cesses has been employed to detect muscle fatigue. This work
focuses on weak monotonicity, which is a kind of robust
population trend in the presence of measurement noises and
human variations.

For one measured SEMG signal z(t) of a subject during
static sitting, the signal will be pre-processed (e.g. filtering,
de-trending) and segmented as:
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where, t; is the 7" sampling instant, the time interval of the
j" data segment is [Tj_1,7}),j = 1,2, , N, with starting
time of T,_; and ending time of 7). Here, ¢(-) represents
an operator to pre-process the SEMG signal.

A set of features that can be derived from each data
segment is thus obtained. As demonstrated in [1], we are
particularly interested in frequency domain features as the
population trend is identified in frequency domain.

F(Tj) = ()b(fv]:(STJ(tt)))) fO < f < fsa (2)

where F(-) is an operator to transform a continuous-time
signal to a frequency domain signal, f is the instantaneous
frequency, and [fo, fs] is the frequency range of interests.



In the context of SEMG signals, the frequency range can
take around 10 Hz to 150 Hz [13][14]. The operator ¢(-)
maps a frequency-dependent signal of the segmentation to
a frequency-invariant feature value. For example, it can
represent the calculation of the mean or median values from
a frequency-domain signal.

With calculating features for each data segment, the cor-
responding point for the j** data segment J(T};) = {F(T})}
is obtained to compute the trend and used to indicate muscle
fatigue. Traditionally, a threshold is used to detect the muscle
fatigue, that is,
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where o(-,-,-) is an operator to calculate the threshold of
the trajectory where 6 is the threshold. For example, when
the downshift of the median frequency of sEMG signals is
larger than a given threshold 6, (T, J(Tj), §) becomes “1”,
indicating the trigger of muscle fatigue. When it is smaller
than the threshold 6, o(T}, J(T}), ) becomes “0”.

However, the trajectory of J(7;) may be affected by
measurement noise and variations, making it less sensitive
to detect the muscle fatigue coming from static poses.

Next, the weak monotonicity (WM) is used to characterize
the robust trend. For the calculated trajectory F'(7}), the WM
is defined if the following inequality is satisfied [12],

F(T;) < F(Tj-1) + 6(Tj-1), 4)

where, |0(T;—1)| < A represents the fluctuation of trend due
to measurement noises and human variations, and A is the
WM bound determined by a user-defined variation rate A,.,
which links to the variation of the data.

With the definition of WM using inequality (4), for the
trajectory with a decreasing trend, the positive and negative
sets of the trajectory can be calculated as follows,

Dy~ = {F(Ty) | F(T) < F(Tj—1) + 6(Tj-1),
VTJ > Tj_l}, (5)
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Then, the number of data points in each of the two datasets
Dwm+ and Dyy,,,— can be calculated as,

{sz+ = Cardi(Dywm~+),
Swm— = Cardi(DWWF)7

(6)

where Cardi(-) is an operator to calculate the number of
data points in the dataset, sy ,,,+ and sy ,,,— are the number
of elements in the two sets. The WM value of a F'(T}) can
be calculated as:

WM = SWm+ N SWmfv (7)
n—1 n—1

where Sy ,+ is the number of positive increasing data
points, Sw.,— is the number of negative decreasing data
points, and n is the total number of data points in the dataset.

The final WM value is between —1 and 1, where WM
value close to —1 means the trend is more monotone
decreasing, and WM value close to 0 means the trend is less
apparent. Similar to (3), we can use an appropriate threshold
to detect muscle fatigue.

As a special case, the following algorithm is used to design

0-(.’.’.);
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where A, is the WM bound variation rate, Fj,; is the fre-
quency at the beginning of the trajectory, Fy, is the frequency
shift threshold, WM (T};) is the WM value obtained at the
same time point, and W My, is the WM value threshold.

The frequency shift baseline Fj,; is calculated as the
mean median frequency (MMF) at the beginning of the
frequency trajectory. As the median frequency downshift can
be observed in the processed data, we set Fy, as 1.25 Hz for
poor posture sitting to fit the data collected in Experiment 1
in the designed algorithm.

The proposed detection algorithm selects the WM bound
variation rate A, as 0.0083 for poor posture sitting by fitting
the data collected in Experiment 1. Our future work will fo-
cus on systematically selecting WM bound to ensure that the
proposed WM-based detection algorithm can achieve good
performance in the presence of knowledge of measurement
noises and human variations.

The WM value threshold W My, is triggered by a WM
value which is lower than —0.5. Given that a WM value can
reveal the trend of median frequency trajectory, this threshold
is introduced because a WM value lower than —0.5 ensures
that the frequency trajectory keeps a decreasing trend whilst
allowing the existence of fluctuations from human variations
and measurement noises.

ITI. EXPERIMENT AND SIGNAL PROCESSING

Two sets of experiments were conducted in this study. Ex-
periment 1 was used to tune the parameters of the WM-based
muscle fatigue detection. Experiment 2 was used to test the
performance of the proposed algorithm using new subjects
and the expertise of the physiotherapist. Two experiments had
the same set-up, procedure and signal processing techniques.
In Experiment 2, an experienced physiotherapist evaluated
muscle condition every three minutes from the beginning
of each trial, and a 3-point scale (0-no stiffness, 1-moderate
stiffness, 2-hard stiffness) was used to assess muscle fatigue.

A. Subjects

Experiment 1: Seventeen healthy subjects were recruited for
the experiment. For two of them, the data were invalid
because of the looseness of SEMG sensors during the experi-
ment. The characteristic information of the remaining fifteen
male subjects is shown in Table I.

Experiment 2: Six healthy male subjects were recruited in
the experiment (Participant 16 - Participant 21). In addition,
the muscle fatigue condition of each trial was evaluated by
an experienced physiotherapist.

In both experiments, informed written consent was ob-
tained from each subject before the experiment. The project
was approved by the Human Research Ethics Committee of
the University of Melbourne with ID #1954575.

B. Experimental Setup

In both the two experiments, the subjects were required
to keep sitting in a poor posture as shown in Fig. 1(a)
for 15 minutes. The poor posture is a forward head and

TABLE I: Characteristic information of subjects

Maximum  Minimum  Median Mean + SD

Age (y) 29 20 23 2393 £ 2.55
Height (cm) 195 168 180 179.87 4+ 7.38
Weight (kg) 115 66 71.5 82.10 + 14.65




rounded shoulder posture comparing to the natural posture
as Fig. 1(b) shows. During the experiment, eight SEMG
sensors (DELSYS Trigno Biofeedback System, DELSYS
Inc., USA) were placed on upper back muscles demonstrated
in Fig. 1(c). They are designed to record SEMG signals
from right upper trapezius (sensor #1), left upper trapezius
(sensor #2), right middle trapezius (sensor #3), left middle
trapezius (sensor #4), right lower trapezius (sensor #5), left
lower trapezius (sensor #6), right infraspinatus (sensor #7)
and left infraspinatus (sensor #8) respectively.

C. sSEMG Signal Processing

The raw sEMG signal is sampled with 2148 Hz during data
collection. The outliers are removed, which are defined as the
values outside three standard deviations from the mean. Then
the sEMG signals are filtered by a 6! order Butterworth
band-pass filter with the effective frequency range of sSEMG
signals 10 Hz to 500 Hz, and a 2" order Butterworth band-
stop filter with cutoff frequencies 49 Hz and 51 Hz to remove
the power frequency noise. Fig. 2 demonstrates the original
raw SEMG signal and the pre-processed signal.

Wavelet analysis is applied to analyse the pre-processed
SEMG signals, and decompose the signals into 64 frequency
bands with a frequency interval 16.78 Hz. Specifically,
Daubechies wavelet (dbl4), Symlet wavelet (sym7), and
Coiflets wavelet (coif2) are used. Then, the analysis of
variance (ANOVA) function is used to obtain p-values of
the median frequencies of SEMG signals at the 1°¢, 7t and
14" minute, representing the beginning, middle and end of
the duration of sitting in a poor posture. A p-value less than
0.05 is considered statistically significant. Such information
can be employed to figure out which muscle is sensitive to
the muscle fatigue during this static pose when analysing
the data. As a result, the frequency band #5 of the left upper
trapezius (sensor #2) has a p-value 0.044 when analysing
with the Daubechies wavelet (db14), which is employed for
the muscle fatigue detection algorithm development in this
study.

IV. RESULTS

A. Proposed WM-Based Algorithm Tuned from Data Col-
lected from Experiment 1

The developed WM-based fatigue detection algorithm was
applied to total 15 subjects during their sitting in a poor pos-
ture. The proposed method is compared to the conventional
threshold-based method, where the threshold is obtained as
median frequency decline of 1.25 Hz. Case 1 shows that
the WM-based method is more sensitive to successfully

(a) (b) (©)

Fig. 1: Experimental setup of static poses. (a) poor posture.
(b) natural posture. (c) placement of SEMG sensors.
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Fig. 2: sEMG signal pre-processing.

detect muscle fatigue for the static pose compared with the
traditional method. The result in Table II shows that the
WDM-based method can detect muscle fatigue of 14 subjects
while the conventional method can only detect 6 subjects.
Fig. 3(a) shows a representative example that muscle fatigue
is detected by the WM-based method at 5.5 minutes but
cannot be detected by the conventional method.

Case 2 is defined for the subjects whose muscle fatigue can
be identified by both WM-based method and conventional
threshold-based method. We use the time when fatigue is
detected as the performance index to check the effectiveness.
For convenience of notation, T3, and T}, are denoted for
the time instant when muscle fatigue is detected. If T}, M <
T}, the index P. = 1; and P. = —1 when T, > T},

As shown in Table II, the WM-based method can detect
muscle fatigue much earlier. Fig. 3(b) presents a represen-
tative example that the WM-based method can capture the
muscle fatigue at 4 minutes comparing with the conventional
method at 6.5 minutes.

B. Validation through Experiment 2

The WM-based algorithm is able to detect muscle fatigue
for all 6 subjects in the algorithm verification experiment
which is shown in Fig. 4. In the figure, the step signal is the
stiffness score obtained by an experienced physiotherapist,
and used as a baseline to indicate the muscle fatigue. It
can be seen from Fig. 4 that the fatigue can be efficiently
captured by the WM-based method before the hard stiffness
of muscle condition happens for 5 subjects, which indicates
the WM-based method can provide leading time detection of
the muscle fatigue. Table II presents the comparison results
of the two methods on detecting muscle fatigue, it can be
seen from Table II that the proposed algorithm has a leading
detection time compared to the conventional threshold-based
method.
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Fig. 3: Representative examples of fatigue detection results.
(a) Case 1. (b) Case 2.
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Fig. 4: Validation results for Experiment 2

V. DISCUSSION

The comparison results show that both the WM-based
method and the conventional method are able to detect mus-
cle fatigue for a number of subjects. However, the WM-based
method can successfully detect 8 more subjects out of 15 in
Experiment 1 and 5 more subjects out of 6 in Experiment 2
than the conventional method. These results indicate that the
WM-based method is more robust in detecting muscle fatigue
during static poses though there are measurement noises and
human variations at all median frequency trajectories.

At the same time, the WM-based method can detect
muscle fatigue much earlier than the conventional method.
Early detection is important for the prevention and prediction
analysis, because it allows time to prevent muscle injury
caused by chronic and excessive muscle fatigue.

It is also noted that there is one subject whose muscle
fatigue cannot be detected by either the WM-based method
nor the conventional method in Experiment 1. This might
come from large human variations. In particular, this subject
felt more comfortable in the poor posture, suggesting that the

TABLE II: Comparison results between the two methods

. . WM-based Conventional
Experiment Categories method method
Experiment 1 Case 1 14715 (93.3%) 6/15 (40%)
P Case2 P.=1  5/6 (83.3%) -
Experiment 2 Case 1 6/6 (100%) 176 (16.7%)
P Case2 P, =1 1/1 (100%) -

definition of poor posture is subject-related. How to define
the personalized poor posture is very challenging. Our future
work will focus on it.

The current study investigated muscle fatigue detection for
subjects sitting in a given (well-known) poor posture, our
future research will also compare the results with subjects
sitting in a natural posture to obtain a more comprehensive
study. Meanwhile, more subjects with age and gender differ-
ences will be recruited to validate the developed WM-based
muscle fatigue detection algorithm.

VI. CONCLUSION

A novel fatigue detection algorithm for upper-back muscle
fatigue during a short-duration poor posture was proposed,
based on the population trend observed in the muscle fatigue
procedure in terms of median frequency trend of sEMG
signals. The concept of weak monotonicity (WM), which is a
robust population trend, is thus utilized to detect the muscle
fatigue in the presence of measurement noises and human
variations. The experimental results show that the WM-based
detection algorithm is more sensitive in successfully detect-
ing muscle fatigue with the possibility of early detection.
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