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Abstract— This paper focuses on detecting the forces exerted
by stroke patients in the repetitive exercises using the rehabil-
itation robotic system: EMU, without using any external force
sensor. As the model of such a system is hard to identify precisely,
a simple feedback-based iterative learning control algorithm is
proposed to identify such forces. The convergence analysis of such
force estimators is provided in this paper. The simulation and
experimental results illustrates the effectiveness of the proposed
force observers.

I. INTRODUCTION

Each year, more than 15 million people in the world
experience their first stroke, with approximately two in three
surviving with permanent disability [1]. Recently, various
robotic devices have been developed as promising tools that
can extend the physiotherapists ability: to care for more
people, to follow up over more extended periods of time,
and to assist people at a distance, in the comfort of their
own homes with more information that can be measured using
sensors of robotic devices [2], [3].

In order to fully utilize rehabilitation robotic devices, mea-
suring the forces exerted by the patient in the exercises are
useful to quantify the patients motion capabilities, to ensure
safety movements of patients, to provide the tactile feedback
to the patients, to encourage and modulate neural plasticity
[4], and to modulate the assistance appropriate to the patient’s
conditions [5]. It can also be used to estimate the motor control
dynamics of the human user, such as muscle stiffness and limb
spasticity [6]. Adding force sensors to rehabilitation robotic
device is not always preferred in a clinical setting due to the
cost and extra efforts of integration in the mechanical design
of the manipulator. Under such a situation, force observers are
generally preferred.

Most of the force observers used for robotic manipulators
are model-based [5], [7], [8]. Such observers require a rela-
tively accurate nominal model for an external force estimation.
This paper focuses on designing a force observer for an
end-effector based rehabilitation robotic device: EMU [9].
Although this device is completely backdrivable, it is observed
that the accurate model parameters are difficult to identify for
a wide range of operating conditions. Hence a model free
force observer is preferred. On the other hand, the model-free
techniques such as the extended state observer (ESO) cannot
be directly used [10], [11], as it usually estimates the lumped
uncertainties and is difficult to identify the external forces from
the lumped uncertainties.

It is well-accepted that “consistent repetition that re-
establishes communication between the damaged parts of the
brain and the body is crucial in stroke rehabilitation” [3].
Hence it is very natural to link the rehabilitation processes
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with iterative learning control (ILC), which uses the repetitive
nature of a task to learn an unknown control signal [12], [13].
In particular, when the external forces from the patient do
not change much over repetition, the unknown forces can be
treated as iteration-invariant disturbances. Some adaptive-like
ILC algorithms might be useful [14] for this purpose.

It is worthwhile to highlight that the ultimate goal of
this work is to estimate unknown time-varying but iteration-
invariant external forces in a rehabilitation robotic device. This
is different from a standard ILC setting, where the standard
control objective is to track a desired reference signal. A
careful design is thus needed to formulate the force estimation
in the setting of ILC.

Although the external forces can be treated as iteration-
invariant matched uncertainties, due to the existence of mod-
eling uncertainties, they cannot be treated as parametric un-
certainties that can be factorized as unknown parameters and
known functions or basis functions. On the other hand, the
EMU system or the robotic manipulator with position and
velocity measurements has the relative degree 1, if a pure
feed-forward ILC is used to learn the unknown forces, the
derivatives of measurements are needed to ensure convergence
by using contraction mapping (CM) techniques [15], [16].
Due to possible high frequency noises from measurements,
the feed-forward ILC needs a careful design of filters in
implementations [17].

With the consideration of implementation, this paper pro-
poses a feedback-based ILC algorithm that can estimate the
forces exerted by patients when using an upper limb rehabil-
itation robotic device. The role of the feedback is to ensure
the uniform boundedness of the trajectories for a given time
interval over any iteration. A new composite energy function
is used to show that the force observer converges in L2

norm sense and the trajectories of the robot manipulator are
stabilized. Simulation and experimental results support the
theoretical findings.

II. PRELIMINARIES AND MOTIVATION

The set of real numbers is denoted by R and the set of
natural numbers are represented by N . The Euclidean norm of
any vector x ∈ Rn is calculated as |x|2 , xᵀx. For any matrix
A ∈ Rn×m, |A| represents the induced matrix norm. For a
square matrix A ∈ Rn×n, A > 0 indicates A is a positive
definite matrix. (·)ᵀ represents the transpose of a vector or a
matrix. In denotes the identity matrix of dimension n. The
compact set B∆ is defined as B∆ :

4
= {x ∈ Rn | |x| ≤ ∆}.

Definition 1: For any signal in L2[0, Tf ]1, its L2 norm

is defined as ‖x‖L2 ,
(∫ Tf

0
|x(τ)|2dτ

) 1
2

. For any signal

1The space of L2[0, Tf ] contains all square-integrable functions over a
finite interval [0, Tf ]



Fig. 1. Prototype of a rehabilitation robot, EMU.

in L∞[0, Tf ]2, the supremum norm is defined as ‖x‖s ,
maxt∈[0, Tf ] |x(t)|∞ , ◦

Definition 2: A continuous function α : [0, a) → [0,∞)
is said to belong to class K if it is strictly increasing and
α(0) = 0. It is said to belong to class K∞ if a = ∞ and
α(r)→∞ as r →∞ [18, Definition 3.3]. ◦

Next a motivating example for this paper is discussed.

A. A Motivating Example

The robotic manipulator can be modelled using Lagrangian
formulation with an appropriate parameterization. Once the
equations of motion is derived, standard techniques such as
parameter identifications can be used estimate the unknown
parameters. The unknown parameters may include effective
lumped masses, positions of centre of mass, friction coeffi-
cients etc. Details on modelling and identification of parameter
in robotic manipulators can be found in [19] and references
therein.

The prototype of a rehabilitation robot, EMU [9] (shown
in Fig. 1) is used in this motivating example. Standard model
identification procedures are followed to obtain the nominal
model parameters of the system. Torque input that generate
output trajectories with increasing frequencies, ranging from
approximately 0.1 Hz to 2 Hz is used for parameter identifi-
cation.

To demonstrate that the identified parameters may not
always yield accurate predictions of joint positions when the
torques applied that are quite different from the torque used
in identification. The torque shown in Fig. 2 is applied to the
robot. The variation of estimated output and measured output
for two joints: θ2 and θ3 are shown in Fig 3. However, it is
observed that better predictions can be obtained if compara-
tively high frequencies in output trajectory are used. Clearly,
the model is not accurate in predicting the measured values
for a wide range of frequencies. As it is well known that, the
external force observers in literature [5], [7], [8] are model-
based, accurate model information is needed for a successful
force estimation. But in reality, it is hard to obtain an accurate
model that can work for a wide range of excitation frequencies.
Hence, such model based observers has limited applications.

2The space of L∞[0, Tf ] contains all essentially bounded functions over
a finite interval [0, Tf ].

Fig. 2. Applied torque

Fig. 3. Comparison of predicted joint angles using identified model and
measured joint angles

This motivates this work to explore model-free force observers
where the repetitions in a task can be used to learn the external
disturbance using a suitable ILC.

III. PROBLEM FORMULATION

The dynamic model of a m link rigid robotic manipulator
can be represented by the following model

M(θ)θ̈ + C(θ, θ̇)θ̇ + f(θ̇) + g(θ) = u + d (1)

where θ, θ̇ and θ̈ ∈ Rm are joint angles, velocities and
accelerations. The notion of M(·) ∈ Rm×m represents the
inertia matrix, C(·, ·) ∈ Rm×m represents the total Coriolis
and Centripetal terms, f(·) ∈ Rm is the friction compo-
nent, and g(·) ∈ Rm is the gravity force. The input u is
the applied torque and d is the unknown time-varying, but
iteration-invariant input disturbance. It is assumed that the
robot performs a given repetitive task with a finite time interval
t ∈ [0, Tf ].

The following properties hold for the robotic manipulator
systems (1):

Property 1: The inertia matrix M(·) in (1) is symmetric and
positive definite in the domain of interests. More precisely, ,
there exist two positive constants µ1 and µ2, s.t 0 < µ1In ≤
M(·) ≤ µ2In. �

Property 2: The matrix (Ṁ − 2C) in (1) is a skew sym-
metric matrix. Hence for any x ∈ Rm, the following relation
hold: xᵀ(Ṁ − 2C)x = 0. �

Property 3: Let ∆ be given. For any
[
θᵀ θ̇

ᵀ
]ᵀ
∈ B∆,

there exist three positive constants Cb, Fb, and Gb such that:∣∣∣C(θ, θ̇)
∣∣∣ ≤ Cb ∣∣∣θ̇∣∣∣, ∣∣∣f(θ̇)

∣∣∣ ≤ Fb ∣∣∣θ̇∣∣∣ and |G(θ)| ≤ Gb, �



Assumption 1: The external disturbance d(t) is invariant in
iteration and is uniformly bounded for all t ∈ [0, Tf ], i.e there
exists a positive constant db such that ‖d‖s < db <∞. �

Remark 1: Generally, the forces exerted by patients are not
iteration-invariant as large human variations can be observed
during the training session. It is usually assumed that the
human variation is a white noise with zero mean [20]. Hence
the role of this force estimator is to estimate the averaged
force from the patient, which can represent the patient’s ability
during the training sessions. ◦

The control objective is to identify the iteration-invariant
input disturbance d(t) when the control task is repeated with
a finite time interval t ∈ [0, Tf ].

Remark 2: It is noted that the role of the ILC based force
estimator is to learn an unknown time-varying disturbance
which is different from a standard tracking objective in an
ILC setting. Any disturbance rejection techniques such as ESO
[11] will not work for this control objective. ◦

IV. MAIN RESULT

Let x1 = θ and x2 = θ̇ and x =
[
xᵀ

1 , xᵀ
2

]ᵀ ∈ R2m. For
convenience, the following notations are used.

b(x1,x2) , −M−1(x1) [C(x1,x2)x2 + f(x2) + g(x1)] .
(2)

Without any loss of generality, any force estimation problem
in (1) can be converted to a stabilization problem for the
nonlinear dynamics, represented in state-space as:(

ẋ1

ẋ2

)
=

(
x2

b(x1,x2)

)
+

(
0

M−1(x1)

)
(u + d) , (3)

equivalently (1) can be represented as:

ẋi = φ(xi) +G(xi) (ui + d) (4)

where φ(x)ᵀ =
[
xᵀ

2 , b(x1,x2)ᵀ
]

and G(x) =

[
0m×m
M−1(x1)

]
.

Remark 3: This problem formulation is quite similar to
unknown parametric uncertainties presented in [15, Chapter
7]. As G(x) is unknown, in the context of identifying the
unknown forces d(t), the standard adaptive techniques [15],
[21] cannot be directly applied. ◦

Remark 4: The problem formulation is also similar to stan-
dard tracking problem used in ILC [15], [22], [23]. The system
has a relative degree 1, if a contraction mapping based method
is used, the derivative signal ẋ(t) is needed to design the pure
feed-forward updating law with some convergence condition.
This paper is motivated from the idea presented in [22]. The
energy function used in [22] is exploited with careful analysis
of the uniform boundedness of the trajectories. ◦

It is assumed that the nonlinear mappings φ(·) and G(x)
are unknown. Due to Property 1, the G(·) is bounded globally.

The following assumptions are needed.
Assumption 2: For a given compact set B∆, there exists a

continuous feedback: h(x) : R2m → Rm and a continuously
differentiable Lyapunov function V (x) : R2m → R≥0 and
class K functions α1, α2 and α3 which satisfies:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V

∂x
[φ(x) +G(x)h(x)] ≤ − α3(|x|)∣∣∣∣∂V∂x

∣∣∣∣ ≤ α4(|x|) (5)

�
Remark 5: This assumption indicates that there is a feed-

back controller that can stabilize the system semi-globally.
This assumption always holds for robotic systems. A simple
PD controller with a sufficiently large gain usually satisfies
this assumption. ◦

Assumption 3: The system (4) satisfies an identical initial
condition in all iterations, i.e. xi(0) = x0. �

Remark 6: Assumption 3 is a standard assumption in an
ILC setting. This assumption can be relaxed. For example,
refer [24], [25]. ◦
The proposed control is given by

ui(t) = h(xi(t))− P[d̂i(t)]

d̂i(t) = P[d̂i−1(t)] + Γ1x1,i + Γ2x2,i

d̂0(t) = 0, i = 1, 2, 3, .... (6)

where Γ1 ∈ Rm×m and Γ2 ∈ Rm×m are symmetric positive
definite matrices, d̂i(t) is an estimate of the disturbance
vector d(t), h(x, t) is chosen based on Assumption 2, P[·]
represent a projection operator. The projection operator for a
scalar d is defined as P[d] , sign (d)min{db, |d|}. For any
d ∈ Rm and the projection function is defined as P[d] ,[
P[d1], · · · ,P[dm]

]ᵀ
.

Remark 7: The projection operator is widely used in many
adaptive control laws [26], [27]. It can be treated as saturation
operator when input saturation is considered [28]. ◦

Theorem 1 states that the proposed force observer can work.
Theorem 1: Assume that Assumptions 1, 2 and 3 holds.

The trajectories of the closed- loop system, which consists of
the plant, the control law and the updating law, satisfy

1) lim
i→∞

|xi| = 0 uniformly.

2) d̂i converges to d(t) in L2 norm.

Proof. The proof of Theorem 1 can be found in Appendix.

V. SIMULATION AND EXPERIMENTAL
VALIDATION

The effectiveness of the proposed force estimator is illus-
trated by using simulation examples and implementation on
the prototype of an end effector based rehabilitation robot,
EMU [9]. It is a fully actuated, highly backdrivable, three
degrees of freedom robot with revolute joints. The joint-
links are highlighted in Fig. 1 which shows the structure of
the prototype model. For the ease of presentation, only two
degrees of freedom: θ2 and θ3, are used in simulations as
well as in experimental validations where control input and
disturbance that excites θ1 is taken as zero. For simulation,
the nominal model of EMU from [29] is used.

The feedback control, that can stabilize the robot at a
specified joint configuration x0 ∈ Rm is given by:

h(xi) = −K1

(
x1,i − x0

)
−K2x2,i + g0(x1,i) (7)

where K1 and K2 are symmetric positive definite matrices
and g0(x1) is the gravity compensation based on a nominal
model. Assume that the initial joint configuration is given by
x0, i.e x1,i(0) = x0 for all iteration i. Hence, the ILC update
law in (6) takes the form:

d̂i(t) = P[d̂i−1(t)] + Γ1(x1,i − x0) + Γ2x2,i (8)

For the three degree of freedom manipulator, x1 =
[θ1, θ2, θ3]ᵀ, x2 = [θ̇1, θ̇2, θ̇3]ᵀ.



Fig. 4. Simulation Results: Supremum error of output error (joint position).

The disturbance torque has been applied as a feed-forward
torque input in the controller to ensure an iteration invariant
disturbance in experimental validation.

In simulation, three different disturbances are considered for
illustration in simulations, which are as follows:

d1(t) = [0, − 1.2 sin(2π t
Tf

), − sin(2π t
Tf

)]ᵀ, d2(t) =

[0, − 6 sin(10π t
Tf

), − 5 sin(10π t
Tf

)]ᵀ, and d3(t) ={
d1(t) 0 ≤ t ≤ 1

2Tf
0 1

2Tf < t ≤ Tf
.

In experiments, only d3(t) is tested. The disturbance bound
is taken as db = 1.6 which is needed for the projection
operator P[·] in the proposed control law. The following
parameters are taken for simulation and experiments: K1 =
0.1I3, K2 = 0.05I3, Γ1 = 0.05I3 and Γ2 = 0.1I3, where I3
is an identity matrix of order 3. The initial joint configuration
is taken as x1(0) = x0 = [0, 0.9, 0.8]ᵀ. The task is executed
for a finite time interval Tf = 2.5s and data are recorded with
a sampling time of 0.001s.

A. Simulation Results

In order to demonstrate the performance of the proposed
control, the supremum norm of the error in joint angles∥∥x1,i − x0

∥∥
s

is shown in Fig. 4. The convergence in Fig.4
indicates that the learning control is effective in compensat-
ing the unknown disturbances and therefore yielded a good
estimate of input disturbance.

B. Experimental Results

As mentioned earlier, a known input disturbance d3(t) is
added from the control module in robotic manipulator shown
in Fig. 1. It has to be noted that the effective disturbance
torque at the the joint configuration will be different due
to the nonlinearities in the electro-mechanical couplings of
the manipulator configuration. However, adding disturbance
torque with the control input to the actuators will generate an
iteration-invariant disturbance torque at the joint level. Hence
Assumption 1 is satisfied in experiments. The variation of
supremum norm of error in joint position,

∥∥x1,i − x0
∥∥
s

is
shown in Fig. 5. The convergence of

∥∥x1,i − x0
∥∥
s

indicates
that the estimated values of disturbance, d̂i converges to the
disturbance torque at the joints. A butter-worth filter with a
cut-off frequency of 20Hz is used to filter out noises in the
disturbance estimation, d̂(t). The variation of joint positions at
iteration number at i = 1, 5, 18 and corresponding estimated
disturbances are shown in Fig. 6 and Fig. 7, respectively.
Note that d̂3,2(t) and d̂3,3(t) in Fig. 7 indicates the second
and third element of vector d̂3(t) which is corresponds to the
estimated disturbance at joints θ2 and θ3. The performance in

Fig. 5. Experimental Results: The variation of supremum norm of output
error.

Fig. 6. Experimental Results: The output trajectories for i = 1, 5, 18

Fig. 7. Experimental Results: Estimated disturbance torque for i = 1, 5, 18

experiments indicates the effectiveness of the proposed model-
free estimation technique.

Our future work will validate the proposed force estimator
with measurement from force sensors, for healthy subjects and
stroke patients with appropriate Ethics approval.



VI. CONCLUSION

This paper proposed an iterative learning control algorithm
to estimate external forces coming from stroke patients when
repeating tasks with the help of a rehabilitation robot device.
Without using the information of the model, the proposed
ILC algorithm can identify time-varying but iteration-invariant
forces. Simulation results and experimental validations show
the effectiveness of the proposed method. Future work will
test this force observer on stroke patients.

APPENDIX

Proof of Theorem 1.
Proof : In the first part of the proof, a few notations and
relevant relations are established to facilitate the proof.

A new fictitious velocity, ξ is introduced for the ease of
presentation, which is defined as:

ξ , x2 + Γ−1
2 Γ1x1 (9)

The ILC law in (6) can be written in terms of ξ as:

d̂i = P[d̂i−1] + Γ2ξi (10)

For ease of presentation, denote ∆di , d − d̂i, ∆d̃i , d −
P[d̂i], Mi ,M(x1,i), Ci , C(x1,i,x2,i).

Using Property 3 from [28] and the boundedness of d, it is
possible to show that the following relation holds:∣∣∣d(t)− P[d̂(t)]

∣∣∣2 ≤ ∣∣∣d(t)− d̂(t)
∣∣∣2, i.e.

∣∣∣∆d̃i

∣∣∣2 ≤ |∆di|2

(11)
In addition, using Property 4 from [28] and the boundedness
of d, it is possible to show that:

|P[di]− di| ≤ |Γ2ξi| (12)

Multiplying with inertia matrix M on the time derivative of
(9), followed by substituting (6) and (10) yields:

Miξ̇i =Miẋ2,i +MiΓ
−1
2 Γ1ẋ1,2

=Mibi + ui + d +MiΓ
−1
2 Γ1x2,i

=∆d̃i − CiΓ2ξi + ζi (13)

where ζi , Mib + CiΓ2ξi + MiΓ
−1
2 Γ1x2,i + hi. Therefore

by rearranging the terms in (13), it is possible to show that:

∆d̃i = Miξ̇i + CiΓ2ξi − ζi (14)

A. Boundedness of trajectories

The boundedness of trajectories at any iteration can be
achieved as follows. Substituting (6) back into system dynam-
ics (4) yields,

ẋi = φ(xi) +G(xi)
(
h(x)− P[d̂i(t)] + d

)
(15)

This means that the Lyapunov function,V from Assumption 2
satisfies

V̇ (xi) =
∂V

∂x
ẋi =

∂V

∂x
[φ(xi) +G(xi)h(x)]

+
∂V

∂x
G(xi)

(
−P[d̂i] + d

)
≤ − α3(|xi|) + Crα4(|xi|) (16)

where Cr = max
xi∈R2m, t∈[0,Tf ]

|G(xi)|
∣∣∣−P[d̂i(t)] + d(t)

∣∣∣. Due

to Property 1, G(·) is bounded. Due to Assumption 1, d(t) is
bounded for all t ∈ [0, Tf ]. By definition, projection function

P[·] is also bounded by the boundedness of d(t). This shows
that Cr is also bounded. Hence, based on the properties of
α3(·) and α4(·), it is possible to find a compact set D such
that V̇ ≤ 0. This leads to the boundedness of trajectories in
all iterations.

B. Non-increasing Energy Function

Consider the energy function,Ji(t) for some positive λ, ∀t ∈
[0, Tf ], i ∈ N :

Ji(t) =

∫ t

0

e−λτ∆di
ᵀ(τ)∆di(τ)dτ, (17)

The difference of energy function between two iterations,
∆Ji = Ji−Ji−1. Using (11) and (10), the following inequality
realtion can be obtained:

∆Ji =

∫ t

0

e−λτ
(
|∆di|2 − |∆di−1|2

)
dτ

≤
∫ t

0

e−λτ
(
|∆di|2 −

∣∣∣∆d̃i−1

∣∣∣2)dτ
=

∫ t

0

e−λτ
(

∆di −∆d̃i−1

)ᵀ (
∆di + ∆d̃i−1

)
dτ

=

∫ t

0

e−λτ
(
P[d̂i−1]− d̂i

)ᵀ (
2d− d̂i − P[d̂i−1]

)
dτ

=

∫ t

0

e−λτ (−Γ2ξi)
ᵀ

(2∆di + Γ2ξi)dτ (18)

Note that ∆di = ∆d̃i + (P[di]− di). Substituting this
equality back into (18), followed by substituting (12) yields

∆Ji ≤ −2

∫ t

0

e−λτ (Γ2ξi)
ᵀ

∆d̃idτ −
∫ t

0

e−λτ |Γ2ξi|
2
dτ

− 2

∫ t

0

e−λτ (Γ2ξi)
ᵀ

(P[di]− di)dτ

≤ −2

∫ t

0

e−λτ (Γ2ξi)
ᵀ

∆d̃idτ +

∫ t

0

e−λτ |Γ2ξi|
2
dτ

(19)

Substituting for ∆d̃i from (14) into (19) yields:

∆Ji = −2

∫ t

0

e−λτ (Γ2ξi)
ᵀ
(
Miξ̇i + CiΓ2ξi

)
dτ

+

∫ t

0

e−λτ (Γ2ξi)
ᵀ

(Γ2ξi + 2ζi)dτ (20)

The following relation holds:

−2e−λt(Γ2ξi)
ᵀM ξ̇i

=− d

dt

(
e−λt(Γ2ξi)

ᵀMiξi
)

+ e−λt(Γ2ξi)
ᵀṀiξi

− λe−λt(Γ2ξi)
ᵀMiξi. (21)

Substituting (21) back to (20) and the invoking Property 2
results in

∆Ji ≤ −e−λt(Γ2ξi)
ᵀMiξi − λ

∫ t

0

e−λτ (Γ2ξi)
ᵀMiξidτ

+

∫ t

0

e−λτ (Γ2ξi)
ᵀ

(Γ2ξi + 2ζi)dτ (22)

Using Property 1 and 3, it is possible to show that there exists
two positive constants c1 and c2 such that, ζ can be bounded
as:

ζi ≤ c1 |ξi|+ c2 |ξi|
2
. (23)



Because of Property 1, there exists a positive constant γ >
Γᵀ

2Mi > 0 for any symmetric positive definite matrix Γ2. This
leads to

∆Ji ≤− γe−λτ |ξi|
2
dτ − (λγ)

∫ t

0

e−λτ |ξi|
2
dτ

+

∫ t

0

e−λτR(|ξi|)dτ (24)

where R(|ξi|) = 2 |Γ2|
(
c3 |ξi|

2
+ c2 |ξi|

3
)

is a polynomial
function in |ξ| and c3 = c1 + |Γ|. For any compact set D,
there exists a constant c4 = c4(D) such that

R(|ξi|) ≤ c4 |ξi|
2

By selecting λ > 1
γ c4, it follows that

∆Ji+1 ≤ −γe−λτ |ξi|
2
dτ − λγ

∫ t
0
e−λτ |ξi|

2
dτ ≤ 0

This shows that, by choosing a suitable λ results in a non-
increasing energy function.

C. Convergence Property

As the energy function is bounded and non-increasing in the
iteration-domain, the pointwise convergence of input signal in
terms of L2 norm can be obtained. This indicates that the
tracking error converges point-wisely. Using Barbalet Lemma,
the uniform boundedness of ξi can be ensured, which leads
to the uniform convergence of xi when i→∞.

This completes the proof.

REFERENCES

[1] R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. C.
Carrozza, P. Dario, and G. Minuco, “Robotic techniques for upper limb
evaluation and rehabilitation of stroke patients,” IEEE transactions on
neural systems and rehabilitation engineering, vol. 13, no. 3, pp. 311–
324, 2005.
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