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Shou-Han Zhou, Denny Oetomo, Ying Tan, Iven Mareels, Etienne
Burdet Sensory information is used in adapting to new environments,
but does it determine the strategy used by the central nervous system
for this adaptation? To elucidate this question, this study investigates
learning of a motor task with different prior sensory experiences. Two
groups of subjects learned to execute reaching arm movements in en-
vironments with task-irrelevant visual cues, in which all subjects are
presented with distorted visual information, namely with velocity de-
pendent error that disappears at the end of each movement. However
one group of subjects had a previous experience of learning arm reaching
movement using visual cues that are task-relevant. The results demon-
strate that the prior sensory experience influences the way in which
the new task is learned and executed. The group with no task-relevant
visual information experience uses the visual feedback as presented,
i.e. they use a motor correction strategy for learning the environment.
However it appears that the group that experienced task-relevant visual
information uses a motor command that reacts to their estimation of
the movement, which involves a more elaborate forward model of the
environment, and does not use the visual feedback directly.

Human Motor Learning; Task relevant and irrelevant sensory feedback; Sensori-

motor learning strategies

Introduction

Humans have the ability to adapt effectively to visual de-
formations, as was demonstrated through the use of prismatic
glasses (Helmholtz and Southall, 1925; Harris, 1963; Redding
and Wallace, 1996; Pisella et al., 2006; Michel et al., 2007). To
analyze the visuo-motor learning systematically, recent works
have observed modifications of arm reaching when visual feed-
back is affected during the movement (Flanagan et al., 1999;
Krakauer et al., 2000; Scheidt et al., 2005). In this way (Tseng
et al., 2007; Sarlegna and Sainburg, 2009; Wei and Kording,
2010; Marko et al., 2012; Schaefer et al., 2012) have empha-
sized the modification of sensory prediction, while (Wang,
2005) and (Shabbott and Sainburg, 2010) have also showed
that visuo-motor adaptation can be explained as the adjust-
ment to a feed-forward controller. In all cases, the mismatch
between visual and proprioceptive feedback is compensated
based on the amount of error between these two modalities
(Wolpert et al., 2011; Richardson et al., 2013; Seidler et al.,
2013).

This learning may be related to visual reflexes identified in
recent works (Day and Lyon, 2000; Saijo et al., 2005; Franklin
and Wolpert, 2008; Franklin et al., 2012), i.e. involuntary
motor responses opposing visual deformations. Interestingly,
these responses are attenuated when the deformation is task-
irrelevant, i.e. when it does not prevent the hand from reach-
ing the target for the task of arm reaching (Franklin and
Wolpert, 2008). In contrast, visual reflexes persist in task-
relevant deformations, and are used to compensate for the
observed errors in order to reach the target.

However, the individual effect of these reflexes in human
motor learning has so far not been analyzed. Here we study
the effect of task- relevant and task-irrelevant errors on the
strategy humans use for learning a visual field. In particu-
lar, could the learning of task-irrelevant visual environment
be affected by training with task-relevant visual feedback? To
address this question, two groups of subjects performed reach-
ing movements in a visual environment with a task-irrelevant
deformation. However, one group was previously trained in
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Fig. 1. Setup of the experiment: Subjects perform target reaching movements

while their hand is attached to the robot, which supports the arm against gravity

and can measure the hand position.

another visual environment producing a task-relevant defor-
mation. The results demonstrate a change of learning strategy
caused by exposure to the task-relevant deformations in the
visual environment which is systematically analyzed.

Experiment

Eight right-handed subjects (aged 21−42, with 4 females)
with no reported neurological disorders participated in the ex-
periment as the first group (G1 group). A group of six subjects
(aged 23−40, with 3 females) participated as the second group
(G2 group). The experiments of this study were approved by
the Imperial College ethics committee and the subjects gave
written consent prior to performing the experiment.

Setup

The apparatus setup for the experiment is shown in Figure
1. The robot is a stiff four-bar linkage offering little resistance
to motion, which is equipped with optical encoders to measure
the joints angle at 1kHz. Each human subject is required to
sit on a chair while his/her hand is strapped to a cuff attached
to the robot end effector, which prevents wrist movement and
provides support to the arm against gravity. The subject’s
arm is therefore restricted to planar movement and can be
modeled as a two bar serial linkage.

The hand movement is recorded in Cartesian coordinates
[xH yH ]T ∈ R2 relative to the shoulder. The cursor’s posi-
tion [xC yC ]T ∈ R2 on the computer screen is reflected from a
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Fig. 2. Experiment protocol.

mirror separating the subject’s eyes from the hand, enabling
the experimenter to generate any computer-controlled visual
distortions by modifying the cursor position from the actual
hand position. Both the cursor and the hand movements are
recorded at 200Hz. The start and end of the movement record-
ings are determined from a velocity threshold of 0.03m/s as
in (Tseng et al., 2007).

Protocol

The experiment task consisted of performing target reach-
ing movements with the right arm from the start position lo-
cated at (−15, 15)cm to a 1cm-radius target 15cm away in
the y direction. The arm motion is performed on a plane
approximately 10cm below the subject’s shoulder level.

Before each trial, the target and the cursor appear and the
robot ceases to apply any force, enabling the subject to per-
form free movement. After each trial, the cursor disappears
and the robot moves the subject’s hand back to the start-
ing position for next trial. In this way, no visual feedback is
provided to the subject’s hand at the end of each movement,
preventing him or her from easily noticing the discrepancies
between the hand position and the cursor positions (Franklin
et al., 2008).

If the hand reaches the target in 700 ± 100ms, the tar-
get displays a ripple and the movement is rewarded with a
point. If the movement is too fast or too slow, there is no
reward and the target’s color is modified as shown in Figure
2A. The subjects are required to obtain a score of 200 points
(G1 group) or 300 points (G2 group) in order to complete the

Cursor

Hand

α β

Fig. 3. Definition of angles α and β determining the initial and final movement

directions, respectively defined in equations (4) and (5).

2 Journal of Neurophysiology



effect of sensor experience on motor learning strategy 3

experiment. The subjects are informed that their movements
may be affected during the experiment.

Two types of visual environment are provided to the sub-
jects (Figure 2B). In environment 1 (VE1) the cursor position
(xC yC)T is related to the hand position (xH yH)T as(

xC

yC

)
=

(
0.1ẏH

yH

)
[1]

where ẏH represents the hand’s velocity in the y-direction.
Note that when the subjects stop moving, ẏH ≡ 0 and the
cursor does not induce any end-point error in the x-direction.
In environment 2 (VE2)(

xC

yC

)
=

(
xH + 0.1ẏH

yH

)
[2]

When the subjects finish the movement in this environment,
ẏH ≡ 0 and the realized cursor position is aligned with the
subject’s hand position. Therefore deviations of the hand
from the target are reflected on the screen and the subjects
need to correct for this error, which is in contrast to the first
environment (VE1).

Probe trials are used to observe changes in the planned
movement. In these trials, the visual cursor is turned off, so
that subjects have no visual feedback during movement, but
can see their final hand position after they have completed
the movement.

The subjects in G1 group perform arm reaching move-
ments in VE1 according to the protocol given in Figure 2C.
In a form of primitive reward, subjects progress through differ-
ent phases of the experiment by completing a given number of
successful trials (Figure 2C, D), i.e., trials reaching the target
in the suitable duration. The starting phase consists of tri-
als without visual deformation, during which the subjects can
experience the task and the robot dynamics. After fifty suc-
cessful trials, VE1 is switched on to the unsuspecting subject,
who has been only informed that changes may occur during
the experiment but not the form of the changes nor when the
changes would takes place. In the subsequent learning phase,
the subjects carry out the trials until they have produced 50
successful trials. This is followed by a learned phase with a 50
successful trials target during which probe trials are randomly
integrated. Finally, a washout phase is applied with a target
of 20 successful trials in which the environment is turned off.
Any effects from the environment can be observed by compar-
ing the post-null field probe trials of the washout phase with
the pre-null field probe trials of the starting phase.

The subjects in G2 group are required to perform arm
reaching movements in VE2 before completing movements in
the VE1 (Figure 2D). VE2 is learned with the same protocol
as above, and the subsequent learning of VE1 follows directly
the phase of post exposure. That is, the post exposure phase
is used both to observe the learning of VE2 and to initialized
for the subsequent learning under VE1.

Data Analysis

The data of the hand position is collected during the ex-
periment. The hand velocity is computed using numerical
differentiation followed by a fifth order zero phase Butter-
worth low pass filter with a cut-off frequency of 30Hz. Three
measures are used to analyze learning:

1. The absolute hand path error of each trial is defined as
the area delimited by the hand path and the cursor path
(Burdet et al., 2001):

S =

N∑
i=1

∣∣∣xH(i)− xC(i)
∣∣∣ ∣∣∣ẏH(i)

∣∣∣ [3]

where N is the total number of points collected during the
trial.

2. The initial direction error α depicted in Figure 3 is calcu-
lated as the difference between the velocity vectors of the
hand and the cursor over the first quarter of the trajectory:

αk = arctan

(
∆(ẏHint, ẏ

H
0 )

∆(ẋHint, ẋ
H
0 )

)
−arctan

(
∆(ẏCint, ẏ

C
0 )

∆(ẋCint, ẋ
C
0 )

)
[4]

where xint = x(N/4) and ∆(r, s) = r − s.
3. The final direction error β depicted in Figure 3 is defined

as the difference between the directions of the positions of
the hand and cursor at the end of their movement, relative
to the movement start position:

βk = arctan

(
∆(yHf , y

H
0 )

∆(xHf , x
H
0 )

)
− arctan

(
∆(yCf , y

C
0 )

∆(xCf , x
C
0 )

)
[5]

All trials are considered in the results analysis, and the tri-
als in each phase are normalized so that the performances of
different subjects can be compared (e.g. in Figures 6 and 8).
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Fig. 4. Evolution of cursor trajectories (solid yellow to red lines) and hand path

(solid blue to purple lines) for two representative subjects of group 1 and group

2. Observe the different effect of VE1 and VE2 in the two first columns, as well

as the effect of previous learning of VE2 on the learning in VE1 by comparing the

first and third columns. Because the cursor is aligned with the hand in the null

and washout fields, only the hand paths is plotted.
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Results

In this section, the results of typical subjects of each group
are first described and then systematically analyzed to iden-
tify the relevant learning patterns.

Qualitative evolution of movement paths and direction

In the Null Field, the hand paths made by subject 1 of
group 1 and by subject 2 of group 2 resemble a straight line
(Figure 4, Null Field row).

In the task-relevant environment VE2, subject 2 initially
moves in the opposite direction to the deformation (Figure
4B, First 10 Movements), before learning to move in the same
direction as the cursor movement (Figure 4B, final 10 Move-
ments). When the visual deformation of VE2 is turned off, the
subject quickly reverts to the straight-line trajectory (Figure
4B, Washout).

In the task-irrelevant environment VE1, it is seen that
subject 1’s hand immediately deviates from the straight line
trajectory (Figure 4A, First 10 Movements). The hand path
continues to drift with consecutive trials in the opposite di-
rection to the deformation (Figure 4A, Last 10 Movements).

In the same environment, subject 2’s hand path moves
away from the visual deformation on the very first trials (Fig-
ure 4C, First 10 Movements). However, unlike the results
observed with subject 1 in Figure 4A, subject 2 learns to fol-
low the observed deformation in this environment. After suf-
ficiently many trials in VE1, the subject settles to following
the visual cursor, resulting in the hand reaching the actual
target (Figure 4C, Last 10 Movements).

In the washout trials of VE1, significant adjustments are
made by subject 1, with the subject returning to the straight
line trajectory (Figure 4A, Washout). However, the washout
trials of subject 2 in VE1 are not adjusted and continue to
move along a curved line (Figure 4C, Washout).

To further analyze the evolution of movement of subjects
1 and 2, we use the absolute hand path error, the initial direc-
tion error and final direction error between hand and cursor
trajectories defined in the Methods.

In VE2 (Figure 6A, C, E), the cursor deviates from subject
2’s hand, creating an arc, as reflected by the change of hand
path error (Figure 6A). Subject 2 maintains the movement
in subsequent trials and consequently no significant change is
observed between the cursor and the hand. This suggests that
the subject attempts to maintain a straight line trajectory in
VE2, as reflected in Figure 4B.

In Figure 6C, the initial angle is observed to deviate im-
mediately when VE2 is introduced while in Figure 6E, the
final angle is observed to not change across all four phases.
This suggests that the subject moves in a similar trajectory
as if he/she was moving without the visual deformation while
using online correction to adjust for the environment change.
Therefore, Figure 6C implies that the subject’s feed-forward
commands is not altered in the environment while Figure 6E
shows that the subject modifies the feedback command to
compensate for the visual environment.

In VE1 (Figure 6B, D, F, subject 2), subject 2 persists
with the same strategy over the trials, keeping the hand at a
certain distance from the cursor. Interestingly, the hand path
error in VE1 is less than in VE2, indicating that the subject
has improved performance in VE1 as a consequence of train-
ing in VE2. It is observed in Figure 4C that this improvement
is a consequence of the subject following the cursor instead of
maintaining a straight line.

This behavior contrasts with subject 1’s performance in
VE1 (Figure 6B, D, F, subject 1) whose movement is ob-
served to drift away from the cursor. This difference between

the cursor trajectory and the actual hand trajectory results in
the subject’s hand not reaching the target (Figure 6F, subject
1). However, in this task-irrelevant environment, the subject
is still able to bring the cursor to the target in VE1 and com-
plete the task.

Quantitative analysis

The bar plots of Figure 5 and associated t-test at 5% sig-
nificance level are used to examine whether the differences in
behavior between subjects from the two groups observed in
VE1 are valid for their whole group.

For group 1, all three measures of hand path error, ini-
tial direction angle and final error angle increased during the
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Fig. 6. Analysis of hand path error (panels A, B) and direction error (panels C-F) in the two visual environments.

last 10 movements in VE1 compared to first 10 movements in
VE1 (p < 1e−4 for all subjects). This means that subjects
in this group drift away from the cursor as they learn the
environment.

For group 2, all three measures indicate that there is little
change between the subjects’ first and last 10 movements in
VE1 (p > 0.17 for each subject). In addition, the measures of
group 2 are always smaller than that of group 1 (p < 0.05 for
the first 10 movements of all subjects and p < 1e−3 for the last
10 movements of all subjects). This implies that the subjects

in group 2 are not as sensitive to the environment VE1 as the
subjects in group 1. More importantly, the difference in the
three measures for the last 10 movements of the two groups
in VE1 indicates that they are learning a different trajectory
to achieve the task. This final trajectory is consistent among
subjects within each group but not between the two groups.

In the washout trials, the two groups exhibit distinctly dif-
ferent behavior as shown in Figure 7. In this figure, the three
measures involve the difference between the hand path of each
trial and the straight line (not between the hand and the cur-
sor as before). It is seen that the subjects in group 1 have

Journal of Neurophysiology 5



6 effect of sensor experience on motor learning strategy

a higher error and initial angle magnitude compared to the
subjects in group 2 (Figure 7A, B, p < 0.01 for all subjects).
The two groups have similar final direction error (Figure 7C,
p > 0.7 for all subjects) not significantly different from zero
(p > 0.3 over all subjects). For group 2, the initial direction
error is also not significantly different from zero (p > 0.5 for
all subjects). Considering that the visual environment was
the same in both groups, this suggest that subjects of group
1 attempt to move to the other direction of the visual field
and the movement is significantly corrected online, compared
to subjects of group 2 who try to move along a significantly
straighter trajectory.
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Discussion

This study examined how training with task-relevant feed-
back affects the behavior in learning of task-irrelevant environ-
ment. Two groups of subjects learned target reaching move-
ments in task-irrelevant environment VE1 while group 2 had
previously trained in task-relevant environment VE2.

In the task-irrelevant environment VE1, subjects from
group 1 moved in the opposite direction to the lateral vi-
sual deformation as observed in previous works (Flash, 1987;
Latash et al., 1999; Feldman and Latash, 2005; Franklin et al.,
2008, 2012), possibly due their visual reflexes. Over trials, the
subjects drifted further away from the target. Such drifting
was also observed when visual feedback was not available dur-
ing the movement (Brown et al., 2003; Salaün et al., 2009).
According to the study reported in (Tseng et al., 2007), this
would correspond to a “motor correction” using the error be-
tween the cursor and the straight line to adjust motor com-
mands across trials. In VE1, this strategy does not decrease
the task-irrelevant errors, but accumulates them in the motor
commands, resulting in the drift that prevented the cursor
from reaching the target.

Humans prioritize errors

When subjects of group 2 use the same strategy to correct
for the task-irrelevant errors in VE2, the endpoint cursor de-
viates from the target. Therefore, they use visual reflexes and
voluntary visual corrections to adjust the movement online
and ensure that the hand reaches the target. Over trials, these
subjects learn to ignore the task-irrelevant errors and maintain
a relatively straight trajectory in order to perform the task, as
was observed in (Franklin and Wolpert, 2008). In this light,
reaching the target is higher priority (the primary task) than
correcting task-irrelevant errors (the secondary task), which
is ignored if it conflicts with the primary task.

Sensory prediction strategy

Although the subjects from group 2 ignore the task-
irrelevant errors in VE2, they tend to subsequently follow the
cursor in VE1. Furthermore, they maintain a low initial di-
rection error for all trials. Considering that changes in ini-
tial direction angle is associated with adjustment of human’s
feed-forward commands (Wang, 2005; Sarlegna and Sainburg,
2007; Scheidt and Ghez, 2007; Shabbott and Sainburg, 2010),
this suggests that the subjects learn to minimise the difference
between the cursor and the hand trajectory. This corresponds
to adjusting sensory prediction, the difference between the ob-
served states (vision) and the predicted states (hand), across
trials (Wolpert et al., 1995; Miall and Wolpert, 1996; Tseng
et al., 2007; Shadmehr et al., 2010; Wolpert et al., 2011; Schae-
fer et al., 2012). This strategy results in an internal forward
model of the environment, enabling the subjects to compen-
sate for the deformations in VE1.

Note that it is possible that the same strategy was also
employed by group 2’s subjects in VE2. However, due to the
presence of task-relevant error, such strategy was considered
as a secondary task and consequently had less influence on the
subject’s movement. A closer observation in Figure 4B shows
that the initial angle made by subject 2 in the last 10 move-
ments of VE2 is significantly different from the corresponding
final angle (p < 0.003). This would not have been the case if
subjects had learned to ignore the task-irrelevant errors.

Control strategies are affected by previous experience

The different strategies employed by subjects of groups 1
and 2 in VE1 suggest that task-relevant errors can affect the

6 Journal of Neurophysiology
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strategy used by a subject for learning and for maintaining
movements in visual fields (Figures 5 and 7).

Previous investigations have found that human subjects
change their reliance on feed-forward or feedback information
for learning and for motion depending on their previous ex-
periences (Kagerer et al., 1997; Saijo and Gomi, 2012). The
current results show that experience can also change the strat-
egy which humans use for learning. In particular, subjects
use different learning strategies depending on whether they
have previously been trained in environments involving task-
relevant errors.

The findings can explain the absence of the learning be-
haviour of group 1 for visual-related experiments in the lit-
erature (Krakauer et al., 2000; Baraduc et al., 2001; Mistry
and Contreras-Vidal, 2004; Scheidt et al., 2005; Izawa et al.,
2008; Wolpert et al., 2011). Current visual experiments in-
volve environments containing task relevant visual errors, trig-
gering the CNS to use modification of sensory prediction for
learning. This may explain why such experiments emphasised
forward models to interpret human motion in visual environ-
ments (Wolpert et al., 2003; Izawa et al., 2008; Krakauer and
Mazzoni, 2011).

Modification of reliance on estimation and vision

The observed behaviour in the experiments exhibits how
task-relevant errors affect human’s strategy in learning and
in motion control. A plausible explanation is that the strat-
egy change is a result of the subject changing their reliance on
sensory feedback. This is motivated by the different strategies
employed by two groups in VE1. Spontaneously, the subjects
from group 1 would rely mainly on vision to correct for per-
ceived error. This is evidenced in Figures 4A and 5 in which
subjects learn to move to the opposite direction to the cursor
movement. On the other hand the subjects who had previous
training in task relevant environment seem to rely mostly on
an estimation of motion obtained from an efferent copy of the
motor command, as evident from subjects learning to move
in the same direction as the cursor (Figures 4C and 6).

It is possible that during training in VE2, subjects be-
come aware that their vision is not sufficient, and consequently
use estimation to control their arm instead, resulting in the
changes in strategies. While modifications of reliance on vi-
sion and estimation relative to the knowledge of the sensor
noise distribution has been observed previously in human mo-
tor control under the Bayesian framework (Ernst and Banks,
2002; Körding and Wolpert, 2004), here it is observed how
previous experience has a decisive effect on learning. In par-
ticular, the results show how task-relevant errors modify the
reliance between vision and estimation, which in turn deter-
mines the strategy employed for learning.

Roles of vision and estimation

In the experiment, subjects from group 2 use in the task-
irrelevant environment a control strategy relying on estima-
tion, and are able to succeed with the strategy in learning to
perform movements in both task relevant environment VE1
and in task irrelevant environment VE2. If so, why do hu-
mans usually rely mainly on vision for their learning of novel
environments (i.e. group 1’s strategy in VE1)?

Under the Bayesian framework (Körding and Wolpert,
2004, 2006; Wolpert et al., 2011), humans tend to use feed-
back with the least amount of noise. A possible explanation
is therefore that humans use vision for moving and learning
because it generally has less uncertainty compared to estima-
tion. This is evident in that vision is necessary for movement

calibration to ensure that human movement starts and finishes
at suitable locations (Brown et al., 2003).

On the other hand, reliance on vision results in task-
relevant errors in visual environments such as VE2. It is
possible that the task-relevant errors decrease the human’s
trust in visual feedback, resulting in the human relying more
on estimation of motion from an efferent copy of the motor
command as the main source of feedback for motor control
and learning.

An alternative or complementary explanation is that the
use of vision for motor corrections presents a more simple
method of learning compared to using estimations. This is
because the latter strategy incorporates an internal model of
the environment in the forward model, which is not required
in the former strategy. Therefore, it appears that humans
use an occam’s razor approach for learning (MacKay, 2003):
they do not attempt to learn the environment unless it is nec-
essary to perform the task, since such learning requires more
cognitive effort than learning using motor corrections through
visual reflexes.

Current computational frameworks (Wolpert et al., 2003;
Franklin et al., 2008; Haith et al., 2009; Zhou et al., 2012)
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presents a single controller scheme to model human motor
learning. They do not consider human’s ability to change
their learning strategies according to their prior sensory expe-
riences. Such ability needs to be considered in order to yield
a more accurate model of human motor learning.
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