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Motivated by the safety requirement of rehabilitation robotic systems for after stroke patients, this paper handles position or output
constraints in robotic manipulators when the patients repeat the same task with the robot. In order to handle output constraints, if all
state information is available, a state feedback controller can ensure that the output constraints are satisfied while iterative learning
control (ILC) is used to learn the desired control input through iterations. By incorporating the feedback control using barrier Lyapunov
function with feed-forward control (ILC) carefully, the convergence of the tracking error, the boundedness of the internal state, the
boundedness of input signals can be guaranteed along with the satisfaction of the output constraints over iterations. The effectiveness of
the proposed controller is demonstrated using simulations from the model of EMU, a rehabilitation robotic system.
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1. Introduction

The idea of iterative learning control (ILC) was proposed in
[1] for improving the tracking performance of robots which
are operated in a repetitive fashion, i.e., the same task, the
same system, and the same initial condition. Last three
decades of extensive research in the domain of ILC has
addressed multitude of challenges in the design, analysis
and synthesis of this control technique. It also finds appli-
cations in batch manufacturing, chemical processing,
modelling human motor learning, robotic rehabilitation and
freeway traffic control (see survey papers [2–5] and refer-
ences therein for more details on various theoretical
developments and applications).

Motivated by the idea of “practice makes perfect”, an
ILC algorithm usually uses the information of past and/or
current performance, for example, the tracking error, and

past control efforts. For a task that is repetitive over a
finite time interval ½0;Tf �, a general form of updating law is
given by

uiþ1ðtÞ ¼ uiðtÞ þ fuðeiðtÞ; eiþ1ðtÞÞ; t 2 ½0; Tf �;
where the subscript i denotes the signal at ith iteration and
t denotes the time. The symbol u denotes the control input
and e denotes the tracking error. As the repetitive features
of the task have been explored, ILC can be considered as a
“data-driven” method, which could relax the requirement
of plant knowledge in the design of the controller [6].

In a standard analysis of stability or attractivity
requirement of dynamic systems, the steady-state (t ! 1)
behaviors are important. The problem formulation of ILC
would consider both finite time-domain and infinite itera-
tion-domain. Mathematically, the convergence analysis is
defined on a some functional space. Under such a situation,
both strong convergence (uniform convergence) and weak
convergence (point-wise convergence) can be used to
characterize the convergence of an ILC algorithm [7]. Next,
a brief literature review of different convergence analyses
will be provided.
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1.1. Literature review

Based on two different convergence conditions, there are
two major analysis tools to check the convergence of closed
loop continuous-time dynamic systems: contraction map-
ping (CM)-based method and “energy”-like function (EF)
based techniques [8].

CM-based methods were motivated from the pioneering
works in [1] and are able to achieve uniform convergence of
the tracking error. In order to obtain this stronger conver-
gence property, the system of interest has to satisfy strong
assumptions. For example, the function in the system
dynamic equation might need to satisfy global Lipschitz
continuity (GLC) condition.

The “energy”-like functions (EFs) have been used in
[9–11]. Usually, EF is defined in L2, leading to point-wise
convergence.

The concept of composite energy function (CEF) is later
introduced by one of pioneers in ILC domain, Professor Xu
and his coauthor in [12], which incorporates a Lyapunov
function and L2 norm (or L2 norm equivalent) of learning
parameters [13–15]. Commonly in CEFs, Lyapunov function
is related to the performance in the finite time-domain while
the L2 norm of learning parameters captures the learning in
the iteration-domain [7]. With the weak convergence con-
dition, the CEF-based design can be easily applied to dy-
namic systems without satisfying GLC. For example, this
technique has been employed to learn parametric uncer-
tainties [12], to handle nonparametric uncertainties [15],
and to handle input saturation [14] as well.

It is worthwhile to highlight that two different approa-
ches (CM-based ILC and EF or CEF-based ILC) can be uni-
fied under CEF-based approach. In [16], a CEF is used to
show the convergence of an ILC algorithm that is designed
by CM-based method.

1.2. Motivation and control objective

The motivation of this work comes from the design of a
rehabilitation robotic system that can provide intelligent
assistance for after stroke patients to recover through re-
petitive rehabilitation exercises. Post-stroke patients often
suffer from movement impairments of their limbs. Therapy
generally involves repetitive exercises of the affected limb
for basic movements with associated functional goals [17].
With the consideration of the safety of patients, there is a
safe region unique to each patient based on his or her
ability to move [18]. Violating this safety region of operation
may overstretch the patient causing injuries, or collision
with face or torso. For a specific patient, for a given tra-
jectory, the safety region becomes time-varying. Moreover,
the assistance coming from robotic systems is generated
by motors with the bounded torque. This motivates the

following control objective: For a given repetitive task, de-
sign an appropriate bounded control input, which can drive
the output to the desired trajectory without violating the
time-varying output constraints.

Most engineered systems are subjected to the input
constraints and/or the state/output constraints due to
physical limitations of the systems. In ILC, input constraints
have been exploited in [14, 16, 19]. On the other hand, in
chemical processes or robotic manipulators, the safety
requirements normally require the output constraints to be
satisfied [20, 21]. Compared with input constraints, there
has been not much work in dealing with output constraints
in the domain of ILC.

It is worthwhile to highlight that barrier Lyapunov
function has been widely used to design other learning
control settings in order to satisfy the state/output con-
straints in [22–24]. In those works, the barrier Lyapunov
function technique has been implemented to handle state/
output constraints for repetitive learning systems, in which
the trajectories are periodic in t. Under such a situation, the
stability analysis tools used [25] can be used as only time-
domain performance is required.

In our previous work [26], the time-invariant output
constraints were handled by using a full state-feedback
designed using barrier-function based CEF. It has been
shown that the output constraints can be satisfied with the
bounded energy of feed-forward control input, leading to
the possibility of having unbounded input signals.

This work extends our previous work [26] to address
time-varying output constraints. A soft constraint of ILC has
been added to ensure that the control input is uniformly
bounded over the iteration-domain. Hence, both hard out-
put constraints and soft input constraints are addressed in
this paper.

1.3. Contributions

The contribution of this paper is two-fold:

(i) A new fictitious velocity is introduced in feedback-
based ILC scheme to satisfy the time varying output
constraints in robotic manipulators.

(ii) A soft constraint has been added in the ILC design to
ensure that the control input is uniformly bounded over
iterations.

The paper is organized as follows. The preliminaries are
introduced in Sec. 2. Section 3 provides the plant model,
required assumptions, and the control objective. The pro-
posed control scheme and the main result are given in
Sec. 4. The proof of the main result is given in Appendix B.
The effectiveness of proposed control architecture is dem-
onstrated in Sec. 5 using a simulation on a three degrees of
freedom model of robot.
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2. Preliminaries

The following notations are used in this paper. R denotes
the set of real numbers. N denotes the set of natural
numbers. The set of all continuous functions in ½0; Tf � that
are differentiable up to jth order is denoted by C j½0; Tf � for
any j 2 N .

For a vector x 2 Rn, jxj denotes the Euclidean norm as
jxj2 ¼ x|x. For a given matrix A 2 Rn�m, jAj indicates the
induced matrix norm. A square matrix A ¼ A| > ð�Þ0
indicates that this matrix is symmetric and positive definite
(positive semi-definite). For a square matrix, the notion of
�minðAÞ stands for the minimum eigenvalue of A. If matrix
A 2 Rn�n is skew-symmetric, then A| ¼ �A. The identity
matrix of dimension n is denoted by In.

The following definitions will be used later.

Definition 1. A function fð�; �Þ is said to be locally Lipschitz
continuous on a domain (open and connected set) D � Rn if
for each point in D, it has a neighborhood D0 such that
there exists L0 ¼ L0ðD0Þ such that the following inequality
holds:

jfðx1; y1Þ � fðx2; y2Þj � L0ðjx1 � x2j þ jy1 � y2jÞ; ð1Þ
for all points x1, x2, y1, y2 2 D0.

Definition 2. Let u� be a positive constant. The saturation
function is defined as satðu; u�Þ, signðuÞminfu�; jujg for
any u 2 R.

Let u� 2 Rm be a positive vector with every element
positive. For any u 2 Rm, satðu;u�Þ ¼ ½satðu1

; u1� Þ; � � � ;
satðum

; um � Þ�|.
Definition 3. For any xð�Þ 2 C½0; Tf �, the supremum norm
is defined as kxsk, maxt2½0;Tf �jxðtÞj1; where jxj1 ¼
maxj2½1; n�jxjj and x j denotes jth element of x.

Definition 4. For any xð�Þ 2 C½0; Tf � the L2 norm is

defined as kxkL2 , ðR Tf

0 jxð�Þj2d�Þ 1
2 where as the L2

e norm

is defined as kxkL 2
e
, ðR Tf0 e��� jxð�Þj2d�Þ 1

2 , for any � > 0.

Lemma 1 will be used to facilitate the proof of the main
result.

Lemma 1 ([14, Property-3]). For any given ur; u and u�

2 Rm satisfying satður;u�Þ ¼ ur then the following inequal-
ity holds true: jur � satðu;u�Þj2 � jur � uj2.

3. Problem Formulation

A lumped parametric model of robotic systems is intro-
duced in this Section, followed by the assumptions required
and the control objective.

3.1. Plant model

The equations of motion of a revolute, direct-drive robotic
manipulator with n rigid links is given by [27]

MðµÞµ::þ Cðµ; µ:Þµ: þ fðµ:Þ þ gðµÞ ¼ u; ð2Þ
where µ; µ

:
and µ

:: 2 Rn are the vector of joint angles, ve-
locities and accelerations respectively. u 2 Rn is the vector
of joint torque. Mð�Þ 2 Rn�n is the inertial matrix, Cð�; �Þ 2
Rn�n represents the total Coriolis and centripetal terms,
fð�Þ 2 Rn is the friction component and gð�Þ 2 Rn is the
gravity force vector.

Remark 1. The problem formulation is based on robotic
manipulators. This is motivated from the rehabilitation
robotic systems as indicated in Introduction. However, the
proposed control design methods can be equally applicable
to more general nonlinear systems.

It is assumed that the exact model parameters are un-
known to the designer, however, the system (2) exhibits the
following properties [27]. These properties will be used in
the proof of the main result.

Property 1. For any µ 2 Rn, the inertial matrix MðµÞ ¼
M|ðµÞ > 0. Moreover, there exist positive constants �1 > 0
and �2 > 0, such that 0 < �1 In � MðµÞ � �2 In .

Property 2. For any µ 2 Rn, ðM: ðµÞ � 2Cðµ; µ:ÞÞ is a skew
symmetric matrix. Therefore, µ|ðM: � 2CÞµ ¼ 0.

Property 3. There exist three positive constants: Cb,
Fb, and Gb such that: jCðµ; µ:Þj � Cbjµ

:j, jfðµ:Þj � Fbjµ
:j and

jGðµÞj � Gb.

The system dynamics (2) can be represented by a
multiple-input–multiple-output (MIMO) squarea system:

x
:
1;i

x
:
2;i

 !
¼ x2;i

hðx1;i; x2;iÞ
� �

þ 0

M�1ðx1;iÞ
� �

ui

yi ¼ x1;i;

ð3Þ

where

hðx1;i; x2;iÞ, �M�1ðx1;iÞCðx1;i; x2;iÞx2;i
�M�1ðfðx2;iÞ þ gðx1;iÞÞ:

Here, ð�Þi represents the variable at the ith iteration, x1;i ¼
µi and x2;i ¼ µ

:
i. It is noted that the system (3) has a relative

degree two. As pointed out in [7, 28], this information is
needed in the design of ILC.

Assumption 1. There exists reference output yr ¼
x1;r 2 C2½0; Tf �, with reference state x2;r 2 C1½0; Tf � and

aA square system has same the dimension for input and output vectors.
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reference input ur 2 C½0; Tf � that satisfy
x
:
1;r

x
:
2;r

 !
¼ x2;r

hðx1;r; x2;rÞ
� �

þ 0

M�1ðx1;rÞ
� �

ur;

yr ¼ x1;r:

ð4Þ

Moreover, there exists a known positive vector u� such that
satður;u�Þ ¼ ur , 8t 2 ½0; Tf � is satisfied.

Remark 2. It is noted that an ILC algorithm usually serves
as an integrator in the iteration-domain (see the general
form of ILC in Introduction). Hence, the control input might
become unbounded as the number of iterations goes to
infinity. In order to avoid unbounded control input, a soft
input constraint is introduced. Our future work will
consider hard constraints on input (actuator constraint)
and output signals.

The tracking error is defined as eiðtÞ, yrðtÞ � yiðtÞ; 8t 2
½0; Tf � for any iteration i.

Assumption 2. The system (3) executes repetitive tracking
over a fixed time interval ½0; Tf �, satisfying the identical
initial condition at every iteration, where eið0Þ ¼ e

:
ið0Þ ¼

e
::
ið0Þ ¼ 0; 8i 2 N .

Remark 3. Assumption 2 is a standard assumption in the
ILC as indicated in [7]. It is possible to relax this
assumption by compensating the perfect tracking perfor-
mance. Apart from identical initial condition, five different
resetting conditions are discussed with different perfor-
mance observed in [29]. Moreover for robotic manipula-
tors, it is often feasible to reset position, velocity and
acceleration.

3.2. Control objective

The control objective is to find a sequence of control input
fuigi2N such that the tracking error ei converges to zero
uniformly and the output at each iteration i satisfies the
constraint, i.e., ðyiðtÞÞ|yiðtÞ � k 2

bðtÞ; 8t 2 ½0;Tf �; 8i 2 N .
For a given task space, the safety region is defined

a priori. For each given task, in order to ensure that the
output trajectories will stay in the safety region, a time-
varying output constraint is obtained. That is for a given
yr 2 C2½0;Tf �, there exists a kbð�Þ 2 C½0;Tf � such that
jyðtÞj � kbðtÞ, where kbðtÞ > 0 defines the bound for output
trajectories. For any given kbðtÞ and desired reference tra-
jectory yrðtÞ, there exists a time-varying error bound "bðtÞ
> 0 such that if e|

i ðtÞeiðtÞ � "2bðtÞ is satisfied, the output
constraints at the joint level will not be transgressed.

Hence, the control objective can be redefined as
achieving the perfect tracking performance without violat-
ing the time-varying output error bound. More precisely, the
control objective is to design a sequence of control input

fuigi2N such that e|
i ðtÞeiðtÞ � "2bðtÞ; 8i 2 N and limi!1

jeðtÞj ¼ 0 point-wisely.

Remark 4. It is noted that a time-invariant output
constraint at joint space will also result in a time-varying
output error bound for a given time-varying reference
trajectory. For example, when a constant kb is selected, i.e.,
kb > jyrðtÞj1 for all t 2 ½0; Tf �, it leads to a time-varying
error bound "bðtÞ, i.e., "bðtÞ ¼ kb � jyrðtÞj1.

4. Controller Design

The proposed control architecture is shown in Fig. 1. It
consists of a feedback control coupled with a feed-forward
ILC. The role of feedback controller is to cope with time-
varying output constraints while the feed-forward ILC
“learns” the desired input signal. The feedback controller is
designed using a barrier function like Lyapunov function
(BF-LF), similar to [24, 23]. As far as the finite time-domain
is considered, the proposed BF-LF will lead to the satis-
faction of hard output constraints. But it is not sufficient to
ensure the perfect tracking performance. Once the output
constraints are satisfied within the bounded state, the feed-
forward ILC ensures the convergence of tracking error.

It is noted that though a special form of BF-LF is used,
the analysis tool presented can be applied when other de-
sign techniques or other BF-LFs are used.

The overall control input can be calculated as:

uiðtÞ ¼ ~u ff
i ðtÞ þ u fb

i ðtÞ; 8t 2 ½0; Tf �; i 2 N ; ð5Þ

where ~u ff
i ðtÞ ¼ satðu ff

i ðtÞ;u�Þ represents a modified feed-

forward control input and u fb
i ðtÞ represents a stabilizing

feedback control based on BF-LF.
Next subsections will provide more details on ILC design

and feedback design.

Fig. 1. Block diagram of proposed control architecture.
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4.1. Design of ILC

The proposed ILC is given by

u ff
iþ1ðtÞ ¼ ~u ff

i ðtÞ þ q¡ðtÞe:: iðtÞ; u ff
1 ðtÞ ¼ 0; ð6Þ

where ¡ðtÞ 2 Rn�n is a positive definite matrix and q > 0 is
the learning rate.

Remark 5. The proposed ILC (6) is a modified form of
standard ILC proposed in [28] for a MIMO square system
with a relative degree of two. With an appropriate
convergence condition (see Theorem 1), it is possible to
show that the proposed feed-forward ILC can ensure the
perfect tracking performance as iteration goes to infinity as
well as the boundedness of input signals over iterations.
The role of introducing the saturation function is to force
the feed-forward control input to remain in a bounded set
for any iteration. Similar updating law has been previously
proposed in [30]. In most of the practical implementations,
these bounds on control input are known a priori as it is
directly related to the physical limits of actuators.

4.2. Design of feedback control

A new fictitious tracking error is introduced in this section
to facilitate the design and analysis of feedback controller.
The fictitious velocity error ¾ is given by

¾ , e
: þ cos2

�e|e
2"2b

� �
K1e�

"
:
b

"b
eþ "

:
b"b
�e|e

sin
�e|e
"2b

� �
e;

for all t > 0; ¾ð0Þ ¼ 0;

ð7Þ
where the matrix K1 2 Rn�n is symmetric positive definite.
Note that "bð�Þ 6¼ 0, the new velocity error ¾ is well-defined.

Remark 6. It can be shown that

lim
e!0

� "
:
b

"b
eþ "

:
b"b
�e|e

sin
�e|e
2"2b

� �
e

� �
¼ 0; ð8Þ

which indicates that the singularity will not happen when
e approaches zero. However, when computing this signal
numerically, it is possible that some numerical error will
lead to a very large value of ¾. In order to avoid this from
happening, it is possible to set ¾ as zero when the tracking
error is sufficiently small. For example, ¾ ¼ 0 if jej < �o
where �0 is a sufficiently small positive number.

The proposed feedback control u fb has the following
form:

u fb ¼ K2¾þ sec2
�e|e
2"2b

� �
e; ð9Þ

where K2 2 Rn�n is also a symmetric positive definite ma-
trix satisfying �minðK2Þ > 1.

Remark 7. If no output constraint is considered in the
analysis, then kbðtÞ ! 1 leads to "bðtÞ ! 1 for all t. It is
not difficult to show lim"b!1u fb ¼ K2K1eþ eþ K2e

:
. This

indicates that one major role of the feedback law (9) is to
stabilize the system as it is equivalent to a PD-type control
when there is no output constraint.

Remark 8. In the proof of the main result, it will show that
the main role of the feedback law (9) is to ensure that the
output constraints are satisfied. It is designed based on the
concept of barrier function, which will approach to infinity
when the output approaches the constraints. The barrier
function will drive the trajectories of the dynamic systems
away when they are going to hit the constraints [31].

Remark 9. The design of feedback is based on the choice of
a barrier function. This work adopts a tan-type barrier
function proposed by Professor Xu in [22], and the BF-LF is
given by

Vðe;¾Þ, "2b
�

tan
�e|e
2"2b

� �
þ 1

2
¾|Mðx1Þ¾;

jeð0Þj � max
t2½0; Tf �

j"bðtÞj: ð10Þ

Other barrier functions (for example, a log barrier function
proposed in [32]) can be used in the design of a feedback
controller. The similar analysis procedure can be directly
applied to show the convergence and the satisfaction of the
output constraints.

Remark 10. Using L’Hospital’s rule, it can be shown that:

lim"b!1
" 2b
� tan �e|e

2" 2
b

� �
¼ 1

2 e
|e. Therefore, BF-LF is equiva-

lent to a quadratic function in e and e
:
, when the constraints

are neglected.

When only the feedback (9) is used, Proposition 1 shows
that the output constraints are satisfied.

Proposition 1. For the system (3) satisfying Assumption 2
with the feedback control law (9); the constraints jeðtÞj �
"bðtÞ are always satisfied for any t � 0 when u ff ¼ 0

Proof. The proof of Proposition 1 is presented in
Appendix A.

Due to existence of feed-forward ILC, it is possible that in
some iterations, the output constraints might be violated.
On the other hand, the existence of feedback control law
might cause trouble in the convergence analysis in the it-
eration-domain. How to ensure the convergence of the
tracking error as well as the satisfaction of the output
constraints? Next subsection will present the main result of
this paper to show convergence.
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4.3. Convergence of proposed learning control

The main result of this paper present the convergence
condition to show that the proposed controller (5) can
achieve the perfect tracking performance as i ! 1. More-
over, the hard output constraints are satisfied and the
control input is bounded for all iterations.

Theorem 1. The system (3) with the control laws (5); (9)
and (6) under the Assumptions 1 and 2:

(i) Satisfies the output constraints jeiðtÞj � "bðtÞ for all t 2
½0; Tf � and i 2 N ;

(ii) Can achieve zero output tracking error; i.e., limi!1
eiðtÞ ! 0 uniformly;

(iii) The feed-forward control input u ff
i converges to the

reference input ur in L2 norm sense;
(iv) and the control input ui defined in (5) is uniformly

bounded for any i;

if the convergence condition:

jIn � q¡ðtÞM�1ðx1ðtÞÞj < 1; 8t 2 ½0; Tf � ð11Þ

is satisfied.

Proof. The proof of Theorem 1 is presented in Appendix B.

A composite energy function, motivated from the works of
Professor Xu [12], will be used to show the convergence of
tracking error.

The proof of Theorem 1 uses induction. Clearly at the
first iteration, there is no feed-forward ILC. Under such a
situation, the feedback control law will ensure that the
output constraints are satisfied.

At the second iteration, it will show that the proposed
control law (5) will be lead to nonincreasing CEF along
iteration-domain.

It is noted that the novelty of this induction is to show
that the needed state will be in a compact set, which is
iteration invariant. Finding such a compact set plays an
important role in the analysis.

By using induction technique, it can be shown that the
proposed control law (5) ensures the convergence of
tracking error in iteration-domain without violating the
output constraints.

5. An Illustrative Example

The model of a three degree of freedom rehabilitation robot
EMU, (The University of Melbourne, Australia [33]) is used
for the simulation. The schematics of the robot is shown in
Fig. 2.

The patient’s forearm is attached to the robot end effector,
fEg with a passive spherical joint, simulating a point of
contact between the robot and the human arm. For the
purpose of simulation and to illustrate the main idea pre-
sented in this paper, the robotic manipulator model of EMU
with the actuated degrees of freedom is considered in this
section.

Assume the vector of joint angles are given by µ ¼
½�1; �2; �3�|. The inertial matrix, the Coriolis and Centrip-
etal force vector and the gravitational force vector are
given by

MðµÞ ¼
m1 0 0

0 P5 P4 sinð�2 � �3Þ
0 P4 sinð�2 � �3Þ P6

2
64

3
75; ð12Þ

Cðµ; µ:Þµ: ¼

2�1
:
�2
:
cosð�2Þ P4 cosð�3Þ � P3 sinð�2Þð Þ

�2�1
:
�3
:
sinð�3Þ P2 cosð�3Þ þ P4 sinð�2Þð Þ

P3
2
�
:2
1 sinð2�2Þ � P4�

:2
3 cosð�2 � �3Þ

�P4�
:2
1 cosð�2Þ cosð�3Þ

P4�2
: 2

cosð�2 � �3Þ
þ�1
: 2

sinð�3ÞðP2 cosð�3Þ þ P4 sinð�2ÞÞ

2
666666666666664

3
777777777777775

;

ð13Þ

gðµÞ ¼
0

P7 sinð�2Þ
P8 cosð�3Þ;

2
64

3
75; ð14Þ

where m1 ¼ P1 þ P2cos2ð�3Þ þ P3cos2ð�2Þ þ 2P4 cosð�3Þ
sinð�2Þ.

The frictional force vector is given by f ¼ Fcµ
:
, where Fc is

a diagonal matrix with elements ½P9; P10; P11�.
The system identification has been performed to esti-

mate the nominal parameters of the model. For more details
on lumped mass modeling and system identification,

Fig. 2. EMU — a rehabilitation robot with �1, �2, �3 are the
actuated degrees of freedom with a passive spherical wrist.
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refer [34] and references therein. The model parameters are
identified from experiments as P1 ¼ 0:66, P2 ¼ 0:42,
P3 ¼ �0:63, P4 ¼ 0:34, P5 ¼ 0:44, P6 ¼ 0:38, P7 ¼ �6:36,
P8 ¼ �3:66, P9 ¼ 4:67, P10 ¼ 1:63, P11 ¼ 3:75.

The magnitude of joint angles are desired to be less than
1:5 radians, therefore kb ¼ 1:5 is taken as the output
constraint.

For the simulation, the desired trajectories are taken as
yrðtÞ ¼ ½yr1ðtÞ; yr2ðtÞ; yr3ðtÞ�|; where yr1ðtÞ ¼ 0:5sin3ð� t

3Þ
cosð� t

3Þ, yr2ðtÞ ¼ 0:4sin3ð� t
3Þ þ 0:7, yr3ðtÞ ¼ 0:4sin3ð� t

3Þþ
0:6. It is verified that the reference trajectory satisfies
Assumption 1. For the given reference trajectory, the error
bound is taken as per Remark 4. The simulation is performed
with sampling time of 1 millisecond, i.e., Δ t ¼ 0:001 s.

In order to demonstrate the theoretical findings of this
paper, the following simulations are performed. Firstly,
ILC is designed and its performance in the iteration do-
main is investigated without considering the output con-
straints. Secondly, the performance of feedback controller
is discussed to verify Proposition 1. Thirdly, the effec-
tiveness of proposed control structure is discussed in
detail.

5.1. Convergence of ILC without feedback

Tracking with ILC is performed without the feedback con-
trol where a finite time interval, Tf is selected as 3.

The soft constraint on input is taken as u� ¼
½12; 12; 12�. The convergence condition (11) is satisfied
if the updated rate, q ¼ 0:5 and learning gain ¡ ¼
0:504 0 0
0 0:394 �0:124
0 �0:124 0:342

2
4

3
5 are used for the ILC law. For

calculating the derivative from the output error e, the
backward difference method is used followed by passing
through a butter-worth filter of order-4 and cut-off fre-
quency 275Hz. A high cut-off frequency has been selected
for filter design to avoid distortion of signals in numerical
calculation. The simulation is performed for 250 iterations
without a feedback control. The supremum norm of the
error keiks is plotted in Fig. 3 to show the convergence. It is
observed that the output constraints are not satisfied for
the first 40 iterations, even though convergence of tracking
error can be achieved by an ILC law.

5.2. Time-domain performance of feedback control

The simulation is performed using the proposed feedback
controller without any ILC controller. The intention is to
show that the constraints are satisfied and there exists a
lower bound � > 0 such that limt!1jej1 � � (for more
details on boundedness of Ã, refer Appendix A).

The feedback gains K1 and K2 are chosen as diagonal
matrices with element ½9; 6; 6� and ½3; 3; 4:8�, respec-
tively. The simulation is performed for Tf ¼ 20. The output
trajectories are plotted in Fig. 4. It can be observed that the
trajectories satisfy the time varying error bound "bðtÞ.
However, the perfect tracking performance cannot be
obtained. The variation of feedback control input is shown
in Fig. 5. Clearly, the feedback control input is bounded in
the time domain.

Fig. 3. Supremum norm of the output tracking error, keiks with-
out feedback.

Fig. 4. Variation of tracking error in time for the proposed
feedback.

Fig. 5. Variation of control input in time for the proposed feed-
back.
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5.3. Convergence in the proposed control structure

The proposed controller (5) with the feedback controller
(9) and feed-forward ILC (6) is applied to the simulation
model with the controller parameters given in Secs. 5.1
and 5.2.

It is observed that the tracking error converges in
iteration-domain and the output constraints are satisfied for
any iteration as shown in Fig. 6. Figure 7 also shows that the
feedback control approaches zero and feed-forward control
input is bounded within the soft input constraints. This
simulation shows the effectiveness of the proposed control
algorithm.

6. Conclusion

A new feedback-based ILC scheme is proposed in this paper
to handle the output constraints and soft input constraints
for robotic manipulators and track the desired trajectory.
The feedback in time-domain is designed with the help of a

barrier function like Lyapunov function, which can ensure
the satisfaction of the output constraints in time-domain. By
incorporating this barrier function like Lyapunov function
into the composite energy function, it is shown that the
proposed control law is able to track the desired trajectory
perfectly and satisfy the output constraints with the
bounded control input. The future work aims at extending
the proposed ILC architecture to include both position
constraints and the hard input constraints (from the actu-
ator limits) with experimental validation on EMU.
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Appendix A. Proof of Proposition 1

The intention of this proof is to show that if VðtÞ is bounded
for all t � 0, then the constraints are satisfied. In this Ap-
pendix, the subscript i for iteration is omitted for all vari-
ables as the satisfaction of constraint is investigated for the
first iteration where the feed-forward control input is zero:

Define Ã as follows:

Ã, ½e|
e
: |�|: ðA:1Þ

Then, ¾ from (7) can be re-written in terms of Ã as

¾ ¼ �Ã; ðA:2Þ
where

� ¼ ½� In�Ã; ðA:3Þ

� ¼ cos2
�e|e
2"2b

� �
K1 �

"
:
b

"b
In

þ "
:
b"b
�e|e

sin
�e|e
"2b

� �
In: ðA:4Þ

For the sake of brevity, a variable ³ðeÞ,�e is introduced,
where � is defined in (A.4). Therefore, ¾ can be redefined

Fig. 6. Supremum norm of the output tracking error, keiks for the
proposed controller.

Fig. 7. Supremum norm of the error in control input, ku fb
i ks and

k~u ff
i ks for the proposed controller.
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as

¾ ¼ e
: þ ³: ðA:5Þ

Finally, a fictitious reference signal is defined as

ur ¼ Mðx1ÞM�1ðx1;rÞur: ðA:6Þ
Let us first find the second derivative of e using (4), it

leads to the following dynamics:

e
:: ¼ x

:
2;r � x

:
2

¼ hðx1;r; x2;rÞ þM�1ðx1;rÞur � hðx1; x2Þ
�M�1ðx1Þu: ðA:7Þ

Multiplying Mðx1Þ with the time derivative of (A.5) yields

Mðx1Þ¾: ¼ Mðx1Þðe:: þ ³
: Þ

¼ Mðx1Þ�hðx1; x2Þ þMðx1ÞM�1ðx1;rÞur

� uþMðx1Þ³
:

¼ Mðx1Þ�hðx1; x2Þ þ �uþMðx1Þ	
:

¼ �u� Cðx1; x2Þ¾þ !; ðA:8Þ
where �u, ur � u, �hðx1; x2ÞÞ,hðx1;r; x2;rÞ � hðx1; x2Þ,
and ! ¼ Mðx1Þ�hðx1; x2Þ þ Cðx1; x2Þ¾þMðx1Þ³

:
:

Fact 1 is established in this section to facilitate the proof.

Fact 1. For x1, x2, x1;r , x2;r and ¾ 2 D, there exist positive
constants Cs and Ct such that j!j � CtjÃj þ CsjÃj2, i.e., the
value of j!j is bounded in the compact set, D.

Proof. For the proof of Fact 1, consider the following
relationships:

j!j � jMðx1Þðhðx1;r; x2;rÞ � hðx1; x2ÞÞj
þ jCðx1; x2Þ¾j þ jMðx11Þ³

: ðe; e: Þj: ðA:9Þ
Following Remark 6, it can be shown that there exists Cs >
0 such that

j¾j � CsjÃj: ðA:10Þ
Again jej � jÃj and je: j � jÃj. Using the Lipschitz continuity
of hð�; �Þ, ³

: ð�; �Þ with the Properties 1, 3, and the
boundedness of ¾ from (A.10), it can be shown that there
exist positive constants 1

2 Chz and Cs such that the following
inequality holds:

j!j � 1
2
Chzjej þ

1
2
ðChz þ CbÞje: j þ CrjÃj þ Csje: jjÃj

� CtjÃj þ CsjÃj2; ðA:11Þ
where Ct ¼ Chz þ Cb. Moreover, when Ã ! 0, then !! 0.
This completes the Fact 1.

Fact 2. When the initial condition of BF-LF V is in a compact
set, there exist an invariant set such that 8t > 0, V stays in
this invariant set.

Proof. Taking the time derivative of V yields,

V
: ¼ sec2

�e|e
2"2b

� �
e|e
: � "

:
b

"b
sec2

�e|e
2"2b

� �
e|e

þ 2"b"
:
b

�
tan

�e|e
2"2b

� �
þ 1

2
¾|M

: ðx1Þ¾

þ ¾|Mðx1Þ¾: : ðA:12Þ

Substituting e
:
from (7) into (A.12) results in canceling "

:
b
"b

sec2 �e|e
2" 2b

� �
e|e and 2"b "

:
b

� tan �e|e
2" 2b

� �
, followed by substituting

(A.8) yields:

V
: ¼ sec2

�e|e
2"2b

� �
e|¾� e|K1e� ¾|u fb þ ¾|�~u ff

þ ¾|!þ 1
2
¾| M

: ðx1Þ � 2Cðx1; x2Þ
� �

¾; ðA:13Þ

where �~u ff ¼ ur � ~u ff . Again substituting u fb from (9) into

(A.13), results in canceling sec2 �e|e
2" 2b

� �
e|¾. Because of

Property 2, the last term in (A.13) is zero. Therefore,
(A.13) can be written as

V
: ¼ �e|K1e� ¾|K2¾þ ¾|�~u ff þ ¾|!: ðA:14Þ

Let 
1 ¼ �minðK1Þ, 
2 ¼ �minð� |K2�Þ. Substituting (A.2)
and (A.10) into (A.14) yields:

V
: � �
1jej2 � 
2jÃj2 þ CsjÃjj�~u ff j

þ CsCtjÃj2 þ C 2
s jÃj3: ðA:15Þ

By considering the positiveness of jej2, (A.15) can be
written as

V
: � � 
2jÃj2 þ CsjÃjj�~u ff j þ C 2

s jÃj3; ðA:16Þ
where 
2 ¼ 
2 � CsCt .

When there is no feed-forward control input, i.e., u ff ¼ 0,
(A.16) leads to

V
: � � 
2jÃj2 þ Ĉ sjÃj þ C 2

s jÃj3; ðA:17Þ
where Ĉ s ¼ Cs maxt2½0;Tf �j urðtÞj.

For any positive constants � and � , there exists 
2, Ĉ s

and C 2
s , such that � � j j � � .

This completes the Fact 2.
Notice that Vð0Þ ¼ Vðeð0Þ;¾ð0ÞÞ ¼ 0. VðtÞ is positive

definite and uniformly bounded for any Vð0Þ within the
same compact set D. Hence, it can be concluded that
the output constraints are satisfied when there is no feed-
forward control input.

This completes the proof.
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Appendix B. Proof of Theorem 1

Consider the following barrier composite energy function
(BCEF)

EiðtÞ ¼ e��tVi�1ðtÞ þ
Z t

0
e��� �u ff

i |ð�Þ�u ff
i ð�Þd�

8t 2 ½0;Tf �; i 2 N ; � > 0; and V0ðtÞ ¼ 0: ðB:1Þ
Note that �u ff

i ¼ ur � u ff
i , where ur is defined in (A.6).

The BCEF (B.1) is composed of a time weighted function
of BF-LF (10) and the L2

e norm of the error in the feed-
forward control input. A novel induction-based proof tech-
nique is employed to show that the constraints are not
violated in any iterations.

It can be shown that for a given Δ0 > 0 and� > 0, ifEðtÞ �
Δ0 thenÃðtÞ belongs to a compact setD such that there exists
Δ1 > 0 satisfying kÃk2

s � Δ1. The following proof technique
is based on induction, which has two main steps.

The first step is to show that the constraints are satisfied
at the first iteration. Hence, E1 is bounded and uniformly
continuous. Using Proposition 1, the output trajectories
at first iteration satisfy the constraints. Therefore, assume
Ã1ðtÞ belongs to the compact set D.

The next step in the proof is to show that Ejþ1ðtÞ � EjðtÞ
and is bounded for any bounded Ej . A bounded Ej with a
bounded Vj�1 indicates that u ff

j belongs to L2
e .

Assume that at the jth iteration, maxt2½0;Tf �EjðtÞ � Δ0

and kÃj�1k2
s � Δ1. We will show that at the ðj þ 1Þth

iteration, maxt2½0;Tf �Ejþ1ðtÞ � Δ0 and kÃjk2
s � Δ1. The

construction of the compact set D will ensure that for all
t 2 ½0;Tf �, the constraints are satisfied for all iterations.

For the sake of brevity, the variable t is omitted wher-
ever appropriate.

At the ðj þ 1Þth iteration, the difference of the BCEF
between two consecutive iterations is given by ΔEjþ1 ¼
Ejþ1 � Ej . Consequently, it has

ΔEjþ1 ¼ e��tðVj � Vj�1Þ

þ
Z t

0
e��� j�u ff

jþ1j2 � j�u ff
j j2

� �
d�: ðB:2Þ

The first term in (B.2) can be expanded to an integral form,
followed by substituting for Vj from (10) resulting in

e��tVj ¼ ��
Z t

0
e���Vjd� þ

Z t

0
e���V

:
jd�

� ��
�

Z t

0
e���"2b tan

�e|
j ej

2"2b

� �
d�

� �

Z t

0
e���¾|

j MðxjÞ¾jd�

þ
Z t

0
e���V

:
jd�: ðB:3Þ

For the proof by induction, it is assumed that the con-
straints are satisfied for jth iteration. Convergence of Ã is
equivalent to the convergence in e and e

:
. Therefore, by

considering the positiveness of tan
�e |

j ej
2" 2b

� �
and substituting

for (A.2) in (B.3) yields

e��tVj � ��
Z t

0
e
���

�j jj2d� þ
Z t

0
e���V

:
jd�; ðB:4Þ

where �ðtÞ ¼ �minð� |MðxjÞ�Þ � �0ðtÞ. It can be shown
that for any given "bðtÞ and yrðtÞ, there exists a K1 such that
there exists a positive constant � where �ðtÞ � � > 0.

Substituting V
:
j from (A.16) into (B.4) yields

e��tVj � ��
Z t

0
e
���

�jÃjj2d� � 
2

Z t

0
e��� jÃjj2d�

þ C 2
s

Z t

0
e��� jÃjj3d�

þ Cs

Z t

0
e��� jÃjjj�~u ff

j jd�: ðB:5Þ

By using completion of squares, we can show that there
exists a � > 0 such that

jÃjjj�~u ff
j j

¼
ffiffiffi
�

p
jÃjj

1ffiffiffi
�

p j�~u ff
j j �

�

2
jÃjj2 þ

1
2�

j�~u ff
j j2: ðB:6Þ

Substituting (B.6) back into (B.5) yields

e��tVj � ��
Z t

0
e����jÃjj2d� þ

Z t

0
e���NðjÃjjÞd�

þ Cs
2�

Z t

0
e��� j�~u ff

j j2d�; ðB:7Þ

where NðjÃjjÞ ¼ � 
2 þ Cs�
2

� �
jÃjj2 þ C 2

s jÃjj3 is a polyno-

mial function in Ã.
Secondly, the ILC update law (6) can be expressed as

ur � u ff
jþ1 ¼ ur � ~u ff

j � q¡e
::
j: ðB:8Þ

From (A.7), using the relationM�1ðx1;rÞur ¼ M�1ðx1;jÞ ur , e
::
j

can be expressed as

e
:: ¼ �hðx1;j; x2;jÞ þM�1ðx1;rÞur �M�1ðx1;jÞu
¼ �hðx1;j; x2;jÞ þM�1ðx1;jÞ�u: ðB:9Þ

Substituting (B.9) into (B.8) yields

�u ff
jþ1 ¼ Pðx1;jÞ�~u ff

j þwj; ðB:10Þ
where Pðx1;jÞ ¼ In � q¡M�1ðx1;jÞ and
wj ¼ �q¡�hðx1;j; x2;jÞ þ q¡M�1ðx1;jÞ �~u ff

j � �uj

� �
: ðB:11Þ
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It is possible to find ¡ > 0 and q > 0 such that jPðx1;jÞj <

 < 1. This leads to the satisfaction of convergence condi-
tion (11) in Theorem 1.

Using the assumption that the constraints are satisfied
on jth iteration, there exists Ub > 0 such that ju fb

j j � UbjÃjj.
It can be further assumed that q¡hð�; �Þ are Lipschitz con-
tinuous with Lipschitz constants 1

2 Ch > 0 and using Prop-
erty 1, there exists a �3 such that

jq¡�hðx1;j; x2;jÞj �
1

2
Chðje: jj þ jejjÞ � ChjÃjj ðB:12Þ
jq¡M�1ðx1;jÞj � �3: ðB:13Þ

Substituting (B.12) and (B.13) in (B.11) yields

jwjj � ChbjÃjj; ðB:14Þ
where Chb ¼ Ch þ �3Ub. Using Lemma 1 and substituting
(B.10) on the expression ð�u ff

jþ1
|
�u ff

jþ1 � �u ff
j

|�u ff
j Þ, fol-

lowed by (B.6) and (B.14) gives:

�u ff
jþ1

|
�u ff

jþ1 � �u ff
j
|
�u ff

j

� �u ff
jþ1

|
�u ff

jþ1 � �~u ff
j
|
�~u ff

j

� �ðIn � jPðx1;jÞj2Þj�~u ff
j j2 þ jwjj2 þ 2
jwjjj�~u ff

j j
� �ð�p � CuÞj�~u ff

j j2 þ QðjÃjjÞ; ðB:15Þ
where �p¼jIn�jPðx1;jÞj2j, Cu¼ 
Chb

� , QðjÃjjÞ¼ ðC 2
hbþ
Chb�Þ

jÃjj2. Moreover, jPðxjÞj<
<1, leads to �p>0.
Finally, substituting (B.7) and (B.15) back into (B.2) and

considering the positiveness of Vj�1 yields

ΔEjþ1 � ��
Z t

0
e����jÃjj2d� þ

Z t

0
e���RðjÃjjÞd�

� ð�p � CluÞ
Z t

0
e��� j�~u ff

j j2d�; ðB:16Þ

where RðjÃjjÞ ¼NðjÃjjÞþQðjÃjjÞ, Clu ¼ Cuþ Cs
2� and RðjÃjjÞ ¼

r0jÃjj2þC 2
s jÃjj3 with r0 ¼� 
2þ�ðCs2 þ
ChbÞþC 2

hb.
For any given jÃjj 2 D, it is possible to show there exists

a � > 1
� ðr0 þ C 2

s Δ1Þ and �p > Clu, such that ΔEjþ1 � 0.
Therefore, there exists N� > 0 and N� > 0 such that

ΔEjþ1 � �
Z t

0
e��� ½N�jÃjj2 þ N�j�~u ff

j j2�d�: ðB:17Þ

Hence, it is possible to conclude Ejþ1 � Δ0 and belongs to
the compact set D. By using induction, all the trajectories
Ãjþ1 satisfies the constraints for all j ¼ 1; 2;3; . . ..

Moreover Ejþ1 is nonincreasing along the iteration axis
and satisfies (B.17). Hence,

lim
j!1

Z Tf

0
e��� ½N�jÃjj2 þ N�j�~u ff

j j2�d� ¼ 0;

lim
j!1

kÃjkL 2
e
¼ 0 and lim

j!1
k�~u ff

j kL 2
e
¼ 0: ðB:18Þ

Thus, point-wise convergence is achieved. In addition, the
convergence in the sense of L2

e norm can be shown as an
equivalent to L2 norm.

The uniformly continuity and boundedness of Ãi can be
ensured. Hence, uniform convergence of Ãi is ensured when
i ! 1. Hence, the total control input, ui is uniformly
bounded for all iterations. Similarly, when i ! 1, ur ! ur

as x1;i ! x1;r . Therefore, ~u
ff
j ! ur in L2 norm. Hence, it can

be concluded that limi!1u ! ur as the feedback dis-
appears when tracking error goes to zero. This completes
the proof.
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