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Abstract— Feedback loops have been introduced in iterative
learning control (ILC) to improve the performance in the time
domain. This in turn affects the convergence performance in
the iteration domain. Such an impact on ILC performance
has not been rigorously analysed in the literature. In this
paper, the concept of dynamic influence in the iteration domain
is introduced to characterise the impact of feedback in the
convergence of ILC algorithms. An optimal feedback gain is
thus designed in order to minimise such an impact with the help
of nominal model, leading to an improvement of the transient
response in the iteration domain. The result also reveals a clear
performance trade-off between the robustness of the system in
time domain and the transient response in iteration domain.

I. INTRODUCTION

Iterative learning control (ILC) is a technique used for

systems with repetitive task executions where the control

input is updated in every trial so as to improve the tracking

performance. It finds application in batch manufacturing,

chemical processing, precision motion control, human motor

learning models and robotic rehabilitation [1]–[5]. It is well-

known that the design of ILC has a clear hybrid nature:

a finite time domain (continuous-time/discrete-time) and an

infinite iteration domain. This nature makes ILC analysis

distinct from other control design methodologies in which

stability in time domain is the major consideration. The

various developments of ILC algorithms are summarized in

the survey papers [6]–[8]. In [9], the history of ILC starting

from [10] and the basic analysis tools have been summarized.

Many ILC algorithms depend only on the error from

previous cycles and the direct implementation of such ILC

algorithms has a feed-forward nature as the control input

is pre-calculated before executing a trial. There are many

ILC algorithms that use the current error signal together

with the error from previous trials, leading to so called

feedback-based ILC design as shown in [11]. Normally in

the design of a feedback-based ILC framework, specific

roles are assigned to two controllers without investigating

their interactions [12]–[16]. Usually, a feedback controller is

expected to deal with internal state domain, non-repeating

disturbances, and maintain robustness whereas the ILC im-

proves the performance of tracking in iterations even if the

feedback controller is poorly designed. As both ILC and

feedback control improves tracking performance using the

error information, it is evident that the learning behaviour, in

particular, the transient performance in the iteration domain

will be influenced by the selection of the feedback controller.
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In most of the literature in the analysis of feedback-based

ILC schemes, the design of feedback loop and ILC loop

are decoupled. None of these analyses have addressed the

impact of feedback in the transient response in the iteration

domain, though convergence is always guaranteed. The effect

of the system dynamics, which is either open loop or closed

loop with a feedback controller, is often neglected in the

analysis of ILC. The feedback and ILC interactions were

pointed out in [17] where it is observed that the bandwidth

of feedback controller influences the transient behaviours in

ILC. A design trade-off between convergence in the iteration

domain and robustness in the time domain in frequency

domain analysis was established in [18], [19]. Different

from the literature, in this paper the feedback is utilised to

improve the transient responses of ILC in iteration domain,

instead of using it for robustness. To do so, the interactions

between the design of the feedback controller and ILC will

be investigated.

A new performance index called dynamic influence in

the iteration domain is introduced to capture the transient

behaviour in the iteration domain. It is noted as in Property

1 that the dynamic influence in the iteration domain is related

to the stability margin in the time domain. It is interesting to

show that a large stability margin might not lead to a minimal

dynamic influence in iteration domain, which is consistent

with the observations in literature as [18], [19].

Once the dynamic influence in the iteration domain is

introduced, the role of feedback is thus to minimize this

new cost. Either model-based off-line optimization or on-

line model-free optimization techniques can be used to find

an optimal feedback gain to minimize this dynamic influence.

By using optimal feedback gain, the transient response in the

iteration domain can be greatly improved.

It is worthwhile to highlight, though this paper only

optimises the transient response in the iteration domain by

selecting the feedback gain, the same idea can be extended to

performances in both the time domain and iteration domain

by tuning the feedback gain and the updating gain in ILC

simultaneously. Hence this work presents a new design

framework for incorporating two design freedoms at the same

time to achieve a better performance.

The reminder of this paper is organized as follows. Sec-

tion II provides preliminaries, problem formulation and a

motivating example, followed by main results in Section III.

Simulations are presented in Section IV while Section V

concludes the paper.
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II. PRELIMINARIES, PROBLEM FORMULATION

AND MOTIVATION

The following notations are used in this paper. The nota-

tion R denotes a set containing real numbers and N stands

for the set containing the non-negative integers. The notation

C[0, T ] represents the set of all continuous functions defined

on [0, T ], while C1[0, T ] represents the set of all continu-

ous and differentiable functions with derivatives defined on

C[0, T ]. Let f(t) ∈ C[0, T ], then |f(t)| denotes its Euclidean

norm at the time instance t, and ‖f‖s denotes its supremum

norm, i.e., ‖f‖s = max
t∈[0, T ]

|f(t)|. Let λ be a positive constant.

The λ-norm of f is defined as ‖f‖λ = maxt∈[0, T ] e
−λt|f(t)|.

For simplicity, for any matrix A ∈ Rn×n, we denote

λR(A) = max
i=1,...,n

{Re(λi)}, (1)

where λi is the ith eigenvalue of A and Re(·) denotes the

real part of the complex number.

Let µ > 0 be any positive constant. Let AJ be the Jordan

form of a square matrix A. A modified Jordan form AJ,µ

with respect to µ is defined as a matrix which is identical

to AJ except that each off diagonal element “1” is replaced

by 1
µ

or off diagonal I is replaced by 1
µ
I [20, P43,Theorem

2.2.7].

Lemma 1 is needed to estimate the upper bound of

trajectories of ILC algorithms in time domain.

Lemma 1: Let µ > 0, for any matrix A ∈ Rn×n there

exists a non-singular matrix Tµ ∈ Rn×n such that

Tµe
AtT−1

µ = eAJ,µt, ∀t ≥ 0. (2)

Moreover,
∣

∣Tµe
AtT−1

µ

∣

∣ =
∣

∣eJµt
∣

∣ ≤ e(λR(A)+ 1

µ
)t, ∀t ≥ 0. (3)

where λR(A) +
1
µ
< 0

Proof: The proof is given in [21, Lemma-1]

A. Plant Model

For simplicity of presentation, this paper considers a

single-input-single-output (SISO) plant that can be repre-

sented in state space as:

ẋ = Ax+Bu

y = Cx ; (4)

where x ∈ Rn, u ∈ R and y ∈ R are the state, input and

output vectors respectively. The state matrices (A,B,C) are

of appropriate dimensions. Even though the system under

consideration is SISO, the analysis presented in this paper

can be easily extended to multiple -input -multiple-output

(MIMO) square system1.

Assumption 1: It is assumed that the system (A,B) is

controllable and (A,C) is observable.

The condition (A,B) is controllable indicates that the feed-

back has enough design freedom such that the closed loop

eigenvalues can be arbitrarily designed. (A,C) is observable

1A MIMO square system is defined as the system which has the same
dimension for input and output vectors

Plant Model

ILC  Memory

Closed loop system

Fig. 1. A feedback-based ILC system

indicates that the state can be estimated from appropriately

designed observer. For simplicity of presentation, it is as-

sumed that the state of the system (4) is measurable.

Assumption 2: For every reference trajectory yr ∈
C1[0, T ], there exist xr ∈ C1[0, T ] and ur ∈ C[0, T ] that

satisfy the following dynamics:

ẋr = Axr +Bur

yr = Cxr . (5)

Assumption 2 is a matching condition to ensure that the

desired trajectory is reachable for the given systems. This is

a typical setting in model reference tracking.

The tracking error, e(t) is defined as:

e(t) = yr(t)− y(t), ∀t ∈ [0, T ]. (6)

Assumption 3: The system has a relative degree one such

that CB > 0.

Assumption 3 can be relaxed. The same analysis can be

applied to systems with a higher relative degree.

The control objective is to track the desired reference yr
perfectly when the tracking task is repeated and the iteration

number tends to infinity, i.e.,

lim
i→∞

|ei(t)| = 0 ∀t ∈ [0, T ], (7)

where ei(t) = r(t) − yi(t). Here the subscript (·)i is used

to indicate the iteration number. For example, yi(t) is the

output of the plant (4) at the ith iteration.

Assumption 4: For a given yr(t) ∈ C1[0, T ], the system

(4) satisfies the identical initial condition (i.i.c) represented

by xi(0) = xr(0), ∀i ∈ N .

Assumption 4 is needed in order to achieve perfect track-

ing performance [22].

B. Controller Design

This subsection summarizes the typical design strategies

for the feedback-based ILC algorithm. The block diagram of

the feedback-based ILC design is shown in Fig.1. It consists

of a dual controller design which is composed of a stabilising

feedback controller (not tracking) and an ILC system based

on the output tracking error.

The control law is defined as:

ui(t) = u
fb
i (t) + u

ff
i (t), ∀t ∈ [0, T ], (8)
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where u
fb
i (t) is a stabilising feedback controller given in

(9) and u
ff
i is the ILC control input (also refereed as feed-

forward input) given in (10)

Without the loss of generality, we assume a state feedback

stabilisation of the form:

u
fb
i = K(xr − x) (9)

where the feedback gain, K is designed to stabilize the

system (4). In other words, the stabilizing controller will

ensure that the state stays close to the desired state xr.We

denote the set S as the set containing all stabilizing K

matrices.

We use a standard D-type ILC represented by:

u
ff
i+1(t) = u

ff
i (t) + γėi(t), u

ff
1 (t) = 0, ∀t ∈ [0, T ]. (10)

where γ represents the learning gain.

For such a dual controller design, the error dynamics for

the closed loop system can be written in the form:

δẋ = (A−BK) δx+Bδuff

δy = Cδx (11)

where δx = xr − x and δuff = ur − uff .

For any reference signal yr(t), if Assumptions 2-4 hold

and the following convergence condition is satisfied [22]

|1− γCB| ≤ ρ < 1, (12)

then lim
i→∞

‖ei‖λ = lim
i→∞

‖ei‖s = 0.

Remark 1: It is noted that the ILC updating law (10)

can be applied to a large family of systems that satisfy the

convergence condition. As it only requires the “sign” and

bounds of CB in the design, it is a kind of model-free

controller. If the upper and lower bounds of CB are known,

the learning gain γ can be designed accordingly. If CB = 0,

higher order derivatives of the tracking error are needed in

the updating law [2] and a slightly different convergence

condition is needed to ensure the convergence. ◦

Remark 2: In the proof of the convergence [22], the

time-weighted norm or λ-norm is used with the help of

Gronwall Lemma. The key idea in the proof is to ignore the

dynamics of the system by using a λ-norm with a very large

constant λ. No matter whether the matrix A is stable or not,

when a finite-time interval is considered, the trajectories

of the system (4) are always bounded provided that the

control input is bounded. Thus by designing the updating

law (10), a contraction mapping in terms of ‖ėi‖λ will be

ensured provided that the convergence condition (12) is

satisfied with the resetting condition given in Assumption

4. However, even though the convergence of a simple ILC

(10) can be guaranteed, the transient performance along

iteration domain might be very bad as noted in [22]. ◦

TABLE I

FEEDBACK GAINS AND POLE PLACEMENT LOCATIONS

Case-1 Case-2 Case-3 Case-4

Closed loop Poles −2± j −3± j −4± j −5± j

K [6 3.99] [11 5.99] [18 7.99] [27 9.99]
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Fig. 2. Typical example of variation of supremum error in feedback-based

ILC system where ui = u
fb
i

+ u
ff
i

C. A Motivating Example

It seems intuitively clear that a stabilising feedback control

will improve the transient response in the time domain as

well as in the iteration domain [23]. However, this is not

always the case as illustrated in the following example.

Consider a linear time invariant plant model:

[

ẋ1

ẋ2

]

=

[

0 1
1 −0.01

] [

x1

x2

]

+

[

0
1

]

u

y =
[

0 1
]

[

x1

x2

]

(13)

It can be verified that the system satisfies the Assumption-1

and the reference state, xr(t) = [0.4 sin(2πt
T

), 0.8π
T

cos(2πt
T
)]

is as per Assumption-2.

Four different cases of feedback gains for the controller

(9) are used in the motivation example as tabulated in Table

I. A time step of 5× 10−4 is used for simulation with initial

ILC input u
ff
1 (t) = 0 and learning rate γ = 0.9 in which the

convergence condition is satisfied. The time derivative of er-

0 1 2 3 4 5
Time,t (seconds)

-1

-0.5

0

0.5

1

O
ut

pu
t, 

y(
t)

Case-1
Case-2
Case-3
Case-4
reference

Fig. 3. Output response when u
ff
1

= 0
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ror is calculated by using a backward difference method and

using a butter-worth filter of order-3 with cut off frequency of

300Hz. The location of closed loop poles (as per Table I) are

used to find the feedback gains that affect the performance

in iteration domain, though the convergence condition is not

affected by the feedback.

It can be seen in Fig.2 that all four cases have different

iteration domain performance. Case-1 has the fastest con-

vergence speed in terms of number of iterations to reach

the lowest possible value of error in simulations where the

initial error for Case-1 in the first iteration is more than

that of other cases considered.This shows that a less robust

feedback will lead to a faster convergence in the iteration

domain. This also indicates that there might exist an optimal

feedback gain that can achieve the best transient response in

terms of convergence. Thus a random choice of pole location

has larger effect in the iteration domain performance of the

combined system. Clearly, it is also a trade-off between the

time domain performance and iteration domain performance.

It can be seen in Fig.3 that the different feedback choices

have different time domain performance and that a high

gain feedback system cannot always improve the learning

performance.

A good feedback controller can achieve a reasonably good

performance in time domain. However, it may take more

iterations for the ILC controller to converge. The improved

transient performance in the iteration domain is always

critical in industrial applications. It is therefore interesting to

understand how these feedback and ILC interact with each

other and how these interactions have to be considered in

the design process.

III. MAIN RESULTS

From the closed loop system (11) we can show that

ėi+1(t) =ėi(t) + C (δẋi+1(t)− δẋi(t))

=ėi(t) + C(A−BK) (δxi+1(t)− δxi(t))

+ CB
(

u
ff
i+1(t)− u

ff
i (t)

)

=(1− γCB) ėi(t) + C(A−BK)∆xi+1(t) (14)

where ∆xi+1(t) = δxi+1(t)− δxi(t) = xi(t)− xi+1(t).
Remark 3: It is obvious that, for a given feedback control

algorithm, the feedback gain does not affect the convergence

condition. That is, the convergence of the D-type ILC is

independent of the choice of the feedback gains. However,

as shown in the motivating example, the choice of the

feedback will affect the transient response of the tracking

error in iteration domain. Next will discuss how to choose

an optimal feedback gain such that an optimal transient

response in iteration domain is obtained. ◦

From equation (14), it follows that

ėi+1(t) = ρėi(t) + di(t), (15)

where ρ = (1− γCB) and di(t) = C(A − BK)∆xi+1(t).
When the convergence condition (12) is satisfied by selecting

the value of γ, the ILC algorithm (10) can ensure the

convergence. In the proof of the convergence, the term di(t)
is made sufficiently small by using Gronwall Lemma and the

standard time-weighted norm or a λ norm.

It is noted that the term di(t) reflects the influence of

dynamic systems in the convergence of tracking error in

iteration domain. In order to evaluate this influence, the upper

bound of di over the finite time interval is estimated. First,

the upper bound of |∆xi(t)| is estimated.

δxi = e(A−BK)tδx(0) +

∫ t

0

e(A−BK)(t−τ)Bδu
ff
i dτ (16)

As δx(0) = 0 as per i.i.c, we can subsequently show from

(16) that

∆xi+1(t) =

∫ t

0

e(A−BK)(t−τ)B
(

δu
ff
i+1 − δu

ff
i

)

dτ

|∆xi+1(t)| ≤

∫ t

0

∣

∣

∣
e(A−BK)(t−τ)

∣

∣

∣
dτ |B| |γ| ‖ėi‖s . (17)

By applying Lemma 1, e(A−BK)(t−τ) = T−1
µ eJµ(t−τ)Tµ,

it follows that
∫ t

0

∣

∣

∣
e(A−BK)(t−τ)

∣

∣

∣
dτ

≤
1

∣

∣

∣
λR(A−BK) + 1

µ

∣

∣

∣

|Tµ|
∣

∣T−1
µ

∣

∣

(

1− e(λR(A−BK)+ 1

µ )t
)

≤
1

∣

∣

∣
λR(A−BK) + 1

µ

∣

∣

∣

|Tµ|
∣

∣T−1
µ

∣

∣ , (18)

as λR(A−BK) + 1
µ
< 0.

We denote that φ(A−BK) := |A−BK|

|λR(A−BK)+ 1

µ |
|Tµ|

∣

∣T−1
µ

∣

∣.

Taking the supremum norm for both sides of (14), by

combining (17), (18) and the convergence condition (12),

it follows that

|ėi+1‖s ≤ ρ‖ėi‖s + |γ| |C| |B|φ(A−BK)‖ėi‖s. (19)

Note that the feedback only affects φ(A − BK), which

is also an iteration irrelevant function. Thus the term φ(A−
BK) represents the dynamic influence in the iteration do-

main. If φ(A − BK) is minimized, the upper bound of the

supremum norm in iteration domain will be smaller, leading

to a better transient response.

However, it can be seen that the choice of µ also affects

the performance. But µ is not a system parameter. It only

provides a simplification used for estimating the upper bound

of the matrix exponential. Intuitively, a smaller µ is preferred.

Thus it is desirable to design an optimal feedback gain,

for example, feedback gain K in the problem formulation to

minimize this term. The following optimization problem is

thus formulated.

min
K∈S

φ(A −BK). (20)

In general, finding an optimal solution for (20) is quite

hard even if the plant model is completely known as it
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might be a non-convex optimization problem. The following

property shows that in order to minimize φ(A − BK), the

value of λR(A−BK) can not be arbitrarily large.

Property 1: Let ǫ be an arbitrarily small positive constant

and µ is a positive constant. Assume that A−BK ∈ Rn×n is

a Hurwitz and satisfies 1
µ|λR(A−BK)| < 1. Then minimum of

|A−BK|

|λR(A−BK)+ 1

µ |
is a function of λR(A−BK). When λR(A−

BK) = 1−ǫ
ǫµ

, this function reaches its minimal at 1− ǫ.

Proof: It is noted that |A−BK| ≥ |λR(A−BK)|. In par-

ticular, if λs(A−BK) = λR(A−BK), ∀s = 1, . . . , n, the

equality holds. Since A−BK is a Hurwitz, λR(A−BK) 6=
0. For any given µ > 0, if |A−BK| = |λR(A−BK)|,

|A−BK|

|λR(A−BK)+ 1

µ |
reaches its minimum at

|λR(A−BK)|

|λR(A−BK)+ 1

µ |
.

Moreover, it has

|λR(A−BK)|
∣

∣

∣
λR(A−BK) + 1

µ

∣

∣

∣

= −
|λR(A−BK)|

λR(A−BK) + 1
µ

= −
1

λR(A−BK)+ 1

µ

|λR(A−BK)|

= −
1

−1 + 1
µ|λR(A−BK)|

=
1

1− 1
µ|λR(A−BK)|

where 1
µ|λR(A−BK)| < 1. A simple calculation shows that

|λR(A−BK)|

|λR(A−BK)+ 1

µ |
≤ 1− ǫ. This completes the proof. �

Remark 4: Property 1 shows that the dynamic influence in

the iteration domain φ(A−BK) is related to λR(A−BK).
In order to minimize φ(A−BK), the value of λR(A−BK)
cannot be arbitrarily large. It is note that the value of λR(A−
BK) also represents the stability margin or robustness of the

feedback control law in the time domain. Property 1 clearly

shows that there is a design trade-off between robustness in

time domain and the transient response in iteration domain

as observed in [18], [19]. ◦
Remark 5: It is noted that the value of φ(A − BK) also

depends on |Tµ|
∣

∣T−1
µ

∣

∣. For a given µ, Tµ is related to the

matrix A− BK . It can be shown that |Tµ|
∣

∣T−1
µ

∣

∣ is related

to locations of the poles of the matrix A−BK . Through a

large number of simulations, it is observed that the optimal

A − BK always has poles that have the same real parts

(possibly to be complex conjugate pairs), which are quite

closed to the imaginary axis. Our future work will focus on

providing a systematic design in selecting the eigenvalues

of A − BK with a rigorous proof. Intuitively, when there

are complex conjugate pairs, the closed loop system exhibits

oscillations, which will provide richer information to learn

over iterations. ◦
Remark 6: This optimization problem is quite difficult to

solve. Firstly, φ(A −BK) is a conservative estimate of the

trajectories of the system in the closed-loop. Secondly, the

standing assumption of ILC is that the plant of the system is

not completely known. Thirdly, even if the nominal model of

the plant is known, it is hard to show that the optimization

problem (20) is convex. Last but not least, the parameters

are constrained in set S to ensure the stability of the closed-

loop in time domain. Thus in this paper, a simplified, but a

practical algorithm is proposed to solve this problem.

Step 1 It is assumed that the nominal model of the system

is obtained as (4). The nominal model is assumed to

have enough accuracy.

Step 2 Under such a situation, an off-line optimization tech-

nique can be used to find the optimal feedback gain

K̂∗ either locally or globally.

Step 3 An on-line tuning algorithm is used to find K̂∗ with

appropriate choices of the cost function over iterations

in order to handle the modeling uncertainties and

disturbances.

It is possible to estimate the optimal feedback gains on-

line in order to get the better transient response in the

iteration domain without requiring the precise knowledge of

the system. Moreover, the off-line optimal solutions from the

nominal model can serve as a good initial guess to speed up

the convergence. ◦
Remark 7: As noted, there is a design trade-off between

the robustness in time domain and the transient response in

iteration domain, a cost function can be designed as a linear

combination of two costs (robustness and φ(A −BK)). By

choosing different weights for different applications, we can

get a unified design for tuning feedback gains that can well

balance these two performance indices. ◦
Remark 8: Our current problem formulation fixes the de-

sign of ILC while updating the feedback gain. It is possible

to update the design of ILC in a similar way. Thus the

problem formulation provides a unified framework to obtain

an optimal performance in both iteration domain and time

domain by selecting the parameters for ILC and feedback.

Future work will extend this framework to more general

systems such as nonlinear time-varying systems. ◦

IV. SIMULATION RESULTS

The simulation is performed to investigate the effect of

optimal feedback gain to the transient response in iteration

domain. A constrained offline optimisation using the inbuilt

function ’fmincon’ in MATLAB software (MATLAB and

Statistics Toolbox Release R2014b,The MathWorks Inc, MA)

is performed.

The optimisation is performed for the system (13) for 1
µ
=

0.01, resulted in optimal feedback gain, K = [2.01, 0.93].
The performance in the iteration domain for this feedback

gain is then compared with other four cases used in the

motivating example (Section II-C).

It can be observed that the optimized feedback parameters

improve the transients in the iteration domain when com-

pared with the choice of feedback gains considered in Section

II-C. The supremum error converged to the minimum vale

in least number of iterations. The time-domain performance

in the first iteration when u
ff
1 = 0 is shown in Fig.5. Even

though the supremum error norm is larger in the first iteration

compared to other cases,the current design allows a faster

convergence of error.
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V. CONCLUSION AND FUTURE WORK

A unified framework for an optimal design of a feedback

controller to improve the transient performance in iterative

domain is developed in this paper. A dynamic influence

in the iteration domain is introduced which captures the

effect of feedback controller in the convergence of error

in the iteration domain. Optimal feedback control gains are

selected to minimize this dynamic influence. It is observed

that there is a clear trade-off between robustness in the time

domain and transient performance in the iteration domain.

The future work is to extend the framework to optimize

the feedback controller parameters using an on-line gradient

based optimization. Moreover, design optimal parameters

for both ILC and feedback to balance the robustness in

time domain and convergence in iteration domain will be

explored.
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