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In the study of cable-driven parallel manipulators, the
interference between the cable and the rigid link(s) of
the mechanisms have generally been excluded when
considering the workspace. This leads to the loss of
perfectly feasible and useful regions of workspace. In
this paper, such phenomenon is modelled by allow-
ing the cable to wrap around the rigid link and the
resulting pose to be included in the workspace con-
sideration. A kinematic model of the path of a cable
in a cable-driven parallel manipulator is constructed
to include the segment of the cable wrapped over the
surface of the rigid link, in addition to the conven-
tional modelling of the straight (unwrapped) segments
of the actuation cables. The path described by the ca-
ble wrapping about the rigid link is a function of the
displacement of the rigid link(s). When wrapping oc-
curs, the contact between the cable and the rigid link is
no longer restricted to a stationary point with respect
to the body attached frame, as in the case of a conven-
tional cable-driven parallel manipulator, but is now a
function of the pose of the rigid link. It is assumed
that the cable remains taut at all times, therefore find-
ing the cable configuration is equivalent to finding a
geodesic solution on a convex hull of a rigid body. In
this paper, the analysis is first presented for the basic
case of finding the path of a single cable wrapped over
an arbitrary (convex) rigid body, with specific illus-
tration performed for cylindrical-shaped rigid body.
Modelling and analysis is then applied to the case of a
selected cable-driven parallel manipulator that allows
wrapped cable segments in its operation.

Keywords: cable to rigid link interference, cable wrap-
ping, cable-driven parallel manipulator, cable robotics.

1. Introduction

A cable-driven parallel manipulator (CDPM) is a type
of parallel manipulators in which transmission of mechan-
ical motion is carried out by the use of cables. It carries
with it the advantages associated with the use of cables
over rigid transmission, such as low effective inertia, high
reconfigurability and portability. It also brings with it the

additional complexity associated with the use of cables:
its unilateral nature in the direction of actuation (a cable
can be used only to pull and not push), the sagging of
cables due to their weight and the cable elasticity. Since
the first CDPM was reported over 20 years ago, they have
been developed across many applications, from manufac-
turing (the Robocrane project at the NIST [1]) to rehabil-
itation (such as the CAREX [2] and the Cable-Driven Lo-
comotion Interface (CDLI) for rehabilitation support [3]).
Fundamental studies are also found in the literature, in-
cluding the (wrench closure) workspace analysis of such
mechanisms [4–8], trajectory planning [9, 10] and resolu-
tion of actuation redundancy [11].

During the operation of a CDPM, physical interference
is a common issue in its operation, referring to the colli-
sion between cables (cable to cable) or between the cable
and a rigid link. Of course, external interference with ob-
jects in the environment can also happen. In most of the
conventional studies, the operation of a cable robot was
assumed to be interference free, therefore such collisions
are often avoid, resulting in a reduced workspace. When
interference occurs during the operation of the robot, it
potentially breaks the workspace of the robot into dis-
continuous regions within which the interference free as-
sumption holds.

As a result, the operational strategy of a CDPM up to
this point have been done by either excluding the inter-
ference from consideration or by including it with an ap-
propriate modelling and strategy. The former approach
is often adopted, with rigorous formulation of conditions
for detecting the interference, such as the algorithm con-
structed to exclude the collision between actuating cables
reported in [12]. The resulting condition to detect inter-
ference is useful whether one is attempting to exclude
or to accommodate the interference. There are also al-
gorithms to detect both self collisions and environment
interferences in the 6-DoF workspace of a cable robot
[13]. The latter approach includes the interference af-
fected workspace, introducing an appropriate strategy to
accommodate the resulting effect or even to utilize the
phenomenon with appropriate motion regulation strategy.
Studies reported in [14, 15] present algorithms to deter-
mine and to manage the interference in the Cable-Driven
Locomotion Interface (CDLI) by minimizing the tension
discontinuity in the affected cable(s). In [16] a method

Journal of Robotics and Mechatronics Vol.0 No.0, 200x 1



Man Cheong Lei and Denny Oetomo

was proposed to expand the workspace of the cable robot
by permitting collisions between two cables. The inverse
kinematics of the manipulator cable lengths was derived
and solved numerically.

In all these investigations, however, the collision be-
tween cable and the articulated rigid bodies forming the
manipulator has not been addressed. This is a justifi-
able assumption in the conventional cable robotics where
the only rigid body in the robot is a single piece of the
end-effector, thus occupies a very small portion of the
workspace volume (as shown in the schematic drawing
in Fig. 1a). The interference between the single (mov-
ing) rigid body with the actuating cables therefore forms
only a very small portion of the feasible workspace, if at
all. Recent developments in cable-driven parallel manip-
ulators involving articulated chain(s) of rigid bodies in a
tensegrity setup yield a large range of motion in a com-
pact design due to the serial chain rigid body kinematics
while enjoying the benefits of parallel cable-driven actua-
tion [2,4,17]. An example of CDPM with articulated end-
effector forming by a kinematic chain of two rigid links
is shown in the schematic drawing in Fig. 1b. In these
cases, interference between the actuating cables and rigid
body affects a significant portion of the wrench-closure
workspace. With this view, the work presented in this pa-
per was motivated and thus pursued.

(a) Single rigid body (b) Multi-link

Fig. 1. : CDPMs: (a)conventional; (b)multi-link with
articulated end-effector

The interference between cable and the rigid link does
not always affect the operation of a cable robot in an ad-
verse manner. In fact, in addition to the recovery of useful
workspace, allowing the interference to take place will re-
sult in segments of the actuating cables wrapping over the
rigid bodies which assists in producing actuation moment
(and motion) about the rigid link which would not have
existed without the wrapping phenomenon.

In [18], the authors reported the initial work in this
study of a single cable wrapping about a single rigid body.
It is demonstrated the shortest path of the segment of a ca-
ble over the surface of a cylinder which was derived using
the Lagrange’s method. The boundary condition between
the wrapping segment of the cable and its non-wrapping
segment was enforced using a condition requiring contin-
uous path and matching tangential gradient which allowed

us to obtain a unique solution for the path of the cable.
The analysis was performed on a specific shape of the
rigid body, which was the cylindrical shape (as it is one
of the most common shapes in the design of manipulator
links).

In [19], the authors presented the incorporation of ini-
tial conditions: ie. the cable wrapping direction and the
number of revolutions of the cable wrapping, to the cable
wrapping phenomenon on a cylindrical rigid link. This
further narrows the kinematic solution of the cable path
presented in [18] to unique solutions, eliminating multi-
ple possibilities introduced by these key factors in a ca-
ble wrapping phenomenon. For the practical application
in the kinematics relationship in a manipulator, a unique
solution is essential. It should be stated that overlapping
wrapped cables were not considered in the study.

In this paper, a differentiable curve is found and proved
to be a necessary and sufficient condition towards a
unique inverse kinematic solution of the cable lengths
subject to the pose of the rigid link that it wraps on, re-
specting the no-slack condition on each cable during the
operation of the cable robot. In other words, any point
along the cable has to obey both C0 (non-breakable) and
C1 (smooth) continuity. Then, an overall algorithm of
incorporating the wrapping phenomenon between cables
and rigid links into the cable-driven parallel manipulator
is presented. The complete framework for the kinematic
modelling of the cable wrapping phenomenon is formu-
lated and presented, as well as the proof that the shortest
path is obtained once the appropriate conditions are im-
posed. The role of the initial conditions in determining
the resulting cable path is presented as part of the com-
plete formulation. Furthermore, the kinematic modelling
is extended from that of a single cable path wrapping over
a rigid body to the formulation of kinematics of a cable-
driven parallel manipulator which permits wrapping of its
(multiple) cables on its rigid body.

The rest of the paper is organized as follows: Section
2 introduces the modelling of a cable wrapping on a rigid
body with a convex surface profile and the problem de-
scription. The smoothness along the entire cable is also
proved to be a necessary and sufficient condition towards
a unique solution of the cable configuration respecting the
“no slack” condition (the shortest path). Section 3 pro-
vides the kinematic model and the parametric expressions
of the wrapping segment of the cable on a cylindrical rigid
link. This is a brief summary of findings reported in the
initial work in [18] but necessary for the readability of
this paper. Section 4 extends the modelling with geomet-
ric analysis to take into account the direction of wrapping
and multiple revolutions of the cable around the rigid link.
Section 5 takes into account the transition from straight to
wrapped and vice versa. Section 6 validates the kinematic
models against a physical robot.
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2. Modelling of a single cable wrapping on a
rigid body

In a conventional cable robot, a cable is fixed rigidly to
a rigid link, thus the cable applies a force onto the rigid
link always on the same point with respect to a reference
frame attached to the rigid link. If the rigid link in a cable
robot is allowed to collide with an actuating cable such
that a segment of the cable wraps on the rigid link, then
the cable applies its actuating force on the point where the
cable leaves the rigid link, whose location with respect to
a reference frame attached to the body varies as a function
of manipulator pose. In the study of cable-driven paral-
lel manipulators, the relationship between the motion of
the end-effector and the forces of the cables are critical
variables of interest. When wrapping is considered, the
direction of the force of each cable cannot be calculated
simply as the vector from one end of the cable to the other
since it depends on the path taken by the cable, which can
vary with the displacement of the rigid link(s) of the robot.
Therefore, the identification of the cable configuration be-
comes necessary and important.

2.1. Problem Description
As the cable is assumed to remain taut during the op-

eration of the cable-driven mechanism, finding the cable
configuration is equivalent to finding the shortest path be-
tween the two ends of a cable. A general description of
the problem can be defined as follow:

Given the displacement of the two points
(points Ai and Pi) representing the two ends of
a cable (cable i) in a 3-dimensional Cartesian
space and the convex surface profile of a rigid
body, and assuming that one end of the cable is
attached on the rigid body (point Ai), what is the
curve with the shortest path connecting these
two points when part of the cable is wrapped
on the rigid body?

Fig. 2. : Schematic illustration of cable wrapping

Fig. 2 graphically illustrates the situation in the
problem description. In order to consider the use of
multiple cables in a CDPM, the subscript i is used to

denote the properties or features of cable i in the system.
The two end points of cable i are denoted as Pi and Ai
and the point separating the wrapping and non-wrapping
segments of the cable is denoted as Bi. Note that point
Bi is the point where the cable “leaves” the surface of
the rigid body. The proposed solution to this problem is
subject to some constraints, such as the convexity of the
rigid body and the slack-free assumption of the cable at
all time. Hence, a spatial curve, which comprises two
parts, is a geometric representation of cable i:

1. BiPi: non-wrapping segment, a spatial curve con-
necting one end of cable i (Pi) to a point on the sur-
face of the rigid body (Bi);

2. AiBi: wrapping segment, a spatial curve on the
convex hull of the rigid body.

As slack is not allowed in the cable, the resulting curves
are the shortest paths between each of these two points.
It is apparent that the non-wrapping segment BiPi is a
straight line. Hence the problem reduces to solving for
the curve BiAi.

Let lsi and lwi be the lengths of segments BiPi and AiBi.
This results in an optimization problem which find the lo-
cations of Bi and the length of the wrapping segment lwi
such that the length of the entire curve li = lsi + lwi is the
shortest from Pi to Ai under the additional constraint of a
given number of complete wraps.

2.2. Parametric expression of the curve
This problem is posed in a 3-dimensional Cartesian

space where a global coordinate frame {O} is defined.
The frame {G} is attached to the center of gravity of the
rigid body, as defined in Fig. (2). The wrapping segment
AiBi is a curve on the convex hull of the rigid body and
can be expressed parametrically as (1).

αo(r) = [xo(r), yo(r), zo(r)]
T ∈ R3, r ∈ [rAi ,rBi ] ,(1)

where αo(r) is the parametric expression of the curve AiBi
defined in frame {G}. The positions of Ai and Bi are
αo(rAi) and αo(rBi), respectively. The location of point
Ai is known because it is the cable end attached on the
rigid body. The location of Bi is an unknown until both
αo(r) and the domain of r are found.

We expect to find the parametric expression of a curve
representing the path taken by the cable such that its
length is the shortest under the assumption that it is
wrapped around the convex hull of the rigid body. In order
to derive that expression, let us consider a small variation
of any part of that curve:

‖∆αo(r)‖ '
√

∆x2
o +∆y2

o +∆z2
o ∆r =

∥∥α
′
o(r)

∥∥∆r (2)

where (′) denotes the differential operator d
dr . Hence,

the length of the wrapping segment AiBi can be calculated
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as

lwi =

ˆ rBi

rAi

∥∥α
′
o(r)

∥∥dr =
ˆ rBi

rAi

L(x′o(r),y
′
o(r),z

′
o(r))dr (3)

where L(x′o(r),y
′
o(r),z

′
o(r)) is the length function and is

defined by:

L(x′o(r),y
′
o(r),z

′
o(r)) =

√
x′o(r)2 + y′o(r)2 + z′o(r)2. . (4)

It has been demonstrated that αo(r) is the geodesic
solution between the points Ai and Bi on the convex hull
of the rigid body [18]. The expression of αo(r) can be
found by solving the following Lagrangian Equations
(5)-(7).

∂L(r,αo,α
′
o)

∂xo
− d

dr

(
∂L(r,αo,α

′
o)

∂x′o

)
= 0. . . (5)

∂L(r,αo,α
′
o)

∂yo
− d

dr

(
∂L(r,αo,α

′
o)

∂y′o

)
= 0, . . (6)

∂L(r,αo,α
′
o)

∂ zo
− d

dr

(
∂L(r,αo,α

′
o)

∂ z′o

)
= 0. . . (7)

There may be multiple solutions to αo(r). Each
solution of αo(r) describes a different shape of the cable
path. Finding the location of Bi is equivalent to finding
the optimal solution to the problem (8), which is expected
to result in the optimal values for αo(r) and rBi such that
the length of a cable is the shortest.

(
αo(rBi)

∗,r∗Bi

)
= argmin

αo(r)∈R3, r∈R
li . . . . . . (8)

2.3. Solving for the point Bi

Given the convex surface hull of the rigid body, the
rigid body pose (position and orientation) and the location
of the two end points of the cable, the problem of solving
for the location of point Bi can be solved based on the
quasi-static assumption.

As BiPi is known as a straight line,
−−→
BiPi can be found

when the position of Bi is known. In practical cases, the
C0 continuity along the entire curve (the entire length of
the cable) is a necessary condition to ensure the validity of
the mathematical model of the cable. Physically, it means
that we assume the cable is continuous, i.e. the cable is not
broken part way through its length. This additional con-
straint of maintaining C0 continuity provides us with the
necessary but not sufficient condition to obtain a unique
solution to the location of point Bi. An example of two
configurations satisfying C0 continuity is shown in Fig-
ure 3, where the one on the right hand does not represent
a typical behaviour of a physical cable. The smoothness
of the curve is therefore taken into account such that the
curve with the shortest path from Ai to Pi is not only C0

but also C1 continuous at Bi.
The C1 continuity condition can be described mathe-

matically as equation (9).

(a) Solution 1 (b) Solution 2

Fig. 3. : Curves satisfy C0 continuity

〈−−→
BiPi, α

′
o(rBi)

〉
=
∥∥∥−−→BiPi

∥∥∥∥∥α
′
o(rBi)

∥∥ . . . . (9)

such that the length of cable i (li) is the shortest
where αo(r) is defined as equation (1). The proof of the
equivalence between the shortest path statement and the
tangency condition (9) is shown as below.

Proof:

Firstly, lsi , lwi can be calculated respectively as follows:

lsi =
∥∥∥−−→BiPi

∥∥∥
=

√
(xPi − xo(rBi))

2 +(yPi − yo(rBi))
2 +(zPi − zo(rBi))

2

lwi =

ˆ rBi

rAi

∥∥αo
′(r)
∥∥dr

=

ˆ rBi

rAi

√
(x′o(r))

2 +(y′o(r))
2 +(z′o(r))

2dr

Then the length of the entire curve is

li(rBi) = lsi(rBi)+ lwi(rBi). . . . . . . . . (10)

The minimum li occurs when ∇li = 0. That is,

dli
drBi

=
dlsi

drBi

+
dlwi

drBi

= 0 . . . . . . . . (11)

From equation (11):

∂ lsi

∂ rBi

=
1
lsi

[
−(xP1 − xo(rBi))x′o(rBi)

−(yP1 − yo(rBi))y′o(rBi)− (zP1 − zo(rBi))z′o(rBi)
]

= − 1
lsi

〈−−→
BiPi, α

′
o(rBi)

〉
∂ lwi

∂ rBi

=
∂

∂ rBi

ˆ rBi

rAi

∥∥αo
′(r)
∥∥dr =

∥∥αo
′(rBi)

∥∥
Note that lsi(rBi) =

∥∥∥−−→BiPi

∥∥∥,
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0 =
∂ lsi

∂ rBi

+
∂ lwi

∂ rBi

0 =
1∥∥∥−−→BiPi

∥∥∥
〈−−→

BiPi, αo
′(rBi)

〉
−
∥∥αo

′(rBi)
∥∥

∴
〈−−→

BiPi, α
′
o(rBi)

〉
=
∥∥∥−−→BiPi

∥∥∥∥∥αo
′(rBi)

∥∥
The above proof demonstrated that the C1 continuity

also applies at the connection points of the wrapping seg-
ment and non-wrapping segments. Thus the entire path is
C1 continuous. Geometrically it means that

−−→
BiPi is tan-

gential to the surface of the rigid body at Bi. It can be
expressed as (12)

−−→
BiPi∥∥∥−−→BiPi

∥∥∥ =
αo
′(rBi)

‖αo′(rBi)‖
. . . . . . . . . . . (12)

To this end, given the configuration of the cable and the
rigid body, point Bi can be found by solving the equation
(12).

3. Modelling of a cable wrapping on a cylinder

The general case of a cable wrapping on a rigid body
with a convex shape has been given in the previous sec-
tion. In the rest of this paper, we focus on the modelling
of the cable wrapping phenomenon for a shape commonly
used for a manipulator link: a cylinder. Fig.4 shows a ca-
ble wrapping around a cylindrical bar. One end of the
cable i is attached on the rigid link at point Ai (which is
assumed to be stationary with respect to the coordinate
frame attached to the rigid link) while the other end passes
through point Pi, which is assumed to be stationary in the
inertial frame. Each cable is actuated by the adjustment
of its length.

In order to find the configuration of the wrapping seg-
ment AiBi, three coordinate frames are defined as follows:
Frame {O} which is the inertial frame with origin at the
base of the cylinder; Frame {Oc} which is attached to
the cylindrical rigid body with the same origin as Frame
{O}; and Frame {Oi} which translates and rotates with
the cylinder. The z axis of Frame {Oc} is aligned with the
axis of the cylinder in the positive direction. Frame {Oi}
is obtained by translating Frame {Oc} along the axis of
the cylinder and rotating about its z-axis by a constant an-
gle rAi such that point Ai always lies on the x-axis of frame
{Oi} as shown in Fig. 4.

The optimal solution of α(r) can be found by solving
the Lagrangian equation of the function L with respect to
α(r). In this case, we know that such curve on the cylin-
drical surface with radius a can be expressed parametri-
cally as (13) defined in frame {Oc}, that is,

α(r) = [acosu(r), asinu(r), z(r)] , r ∈ [rA,rB] .(13)

Note that α(r) only describes the shape of any curve
wrapping on the cylindrical surface. Each curve will have

(a) {O}, {Oc} & {Oi}

y
i

x
i

x
c

y
c

O
i
O

c

r
A

i

B
i

P
i

A
i

(b) From {Oc} to {Oi}

Fig. 4. : The coordinate frames of the single cable wrap-
ping system

its own coefficients and boundary conditions. With the
expression of α(r) in (13), the Lagrangian equations be-
come:

∂L
∂u
− ∂

∂ r

(
∂L
∂ u̇

)
= 0, . . . . . . . . . . . (14)

∂L
∂ z
− ∂

∂ r

(
∂L
∂ ż

)
= 0, . . . . . . . . . . . (15)

where L is the arc-length function in (4):

L(u′(r),z′(r)) =
√
(au′(r))2 + z′(r)2. . . . . (16)

Hence, the solution of α i(r) for the wrapping segment
AiBi of cable i can be expressed as

α i(r) = [acos(r), asin(r), bir] . . . . . . (17)

with r ∈ [rAi ,rBi ]. rAi is a known constant because the
position of Ai is given but the values of rBi and b will
need to be solved by using the constraint in (12). The
expression in (17) represents a helix (which captures the
shape of a cable path wrapped tautly around cylindrical
body) and r represents its the angular displacement. The
details of this solutions can be found in [18].

4. Enhanced Modelling by Geometric Analysis

The segment of a cable wrapping on a cylindrical link
has been found to be in the form of (17). To better capture
the phenomenon of a cable wrapping on the cylindrical
surface, two parameters, namely, the wrapping direction
(λi) and the number of revolutions (ni) of cable wrapping
are introduced in the parametric expression. Thus the ex-
pression of the wrapping segment of cable i becomes:

αi(r) = [acos(λir) ,asin(λir) ,bir] , r ∈ [rAi , rBi ] . (18)

Here λi = ±1 represents the cable wrapping about the
positive and negative zi direction, respectively, as shown
in Fig.5. In (18), the total angular displacement of r (de-
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noted as rAiBi) and the coefficient bi will need to be deter-
mined subject to the pose of the cylindrical link and the
setting of the mechanism. The coordinate of Pi is known
through the rigid body motion of the cylinder in frame
{Oi}, i.e. iPi = [ixPi ,

iyPi ,
izPi ].

(a) λi = 1 and ni = 2 (b) λi =−1 and ni = 2

Fig. 5. : The wrapping direction (λi) and the number of
revolution (ni)

4.1. Wrapping Direction
At the initialisation of the problem, the wrapping direc-

tion (λi) and the number of revolutions (ni) of the path of
each cable in the cable driven parallel manipulator need to
be set to match the initial conditions of the physical sys-
tem. Given these initial conditions, these parameters can
then be determined, and kept track throughout the opera-
tion of the manipulator, as presented in Section 4.2.

To find the unique solution of rAiBi with initially speci-
fied or calculated λi and ni, we can consider the projection
of the cable on the xiyi-plane because rAiBi is directly pro-
portional to ni. The analysis is conducted mainly based
on the wrapping direction of the cable and the position of
point Pi. The wrapping phenomenon can be analyzed in
each quadrant of xiyi-plane. Here Ii, IIi, IIIi and IVi denote
the four quadrants of xiyi-plane where Ai is always located
at (a,0,0) in {Oi}. QPi and QBi are the quadrants that Pi
and Bi are located in, respectively. As BiPi is tangent to
the cylinder, so is the projection of the vector on the plane
to the corresponding section. This implies that the posi-
tion of point Bi for the case of cable wrapping over a rigid
cylindrical body, will only appear in the same or the ad-
jacent quadrant of point Pi’s. The operator “−” and “+”
in the first columns of Table 1 and Table 2 are adopted
to illustrate the quadrant before or after QPi while Ii also
means one “unit” of quadrant in a quantitative manner.

The angles θi and γi are graphically shown in Table
1 and Table 2 and are defined as θi = ∠OiPiBi and
γi = ∠OiPiCi. Both θi and γi can be calculated by using
(19) and (20). Their ranges are defined as θi ∈

[
0, π

2

]
and

γi ∈
[
−π

2 ,
π

2

]
. By defining the ranges of the two angles,

there exists a unique pair of solutions to (19) and (20).
Hence, rAiBi for each case in Table 1 and Table 2 can be
determined in terms of θi, γi and ni.

θi = sin−1

 a√
(ixPi)

2 +(iyPi)
2

 , θi ∈
[
0,

π

2

]
(19)

γi = tan−1
( ixPi

iyPi

)
, γi ∈

[
−π

2
,

π

2

]
. . . . (20)

Table 1 illustrates the cases where the cable wraps
about the positive zi−axis, i.e. λi = 1. When Pi is in
quadrant Ii and IIi, i.e. iyPi ≥ 0, rAiBi can be expressed
as

rAiBi = (θi− γi)+2niπ. . . . . . . . . . (21)

When Pi is in quadrant IIIi and IVi, i.e. iyPi < 0, rAiBi
can be expressed as

rAiBi = π +(θi− γi)+2niπ. . . . . . . . (22)

Table 2 illustrates the cases that the cable wraps about
the negative zi−axis, i.e. λi =−1. When Pi is in quadrant
Ii and IIi, i.e. iyPi ≥ 0, rAiBi can be expressed as

rAiBi = π +(θi + γi)+2niπ. . . . . . . . (23)

When Pi is in quadrant IIIi and IVi, i.e. iyPi < 0, rAiBi
can be expressed as

rAiBi = (θi + γi)+2niπ. . . . . . . . . . (24)

Note that γi calculated by (20) is negative in quadrant
II and IV for both wrapping directions as ixPi/

iyPi is neg-
ative. Therefore, from (21)-(24), it can be shown that for
any λi,

rAiBi = (θi−λiγi)+2niπ; for λi
iyPi ≥ 0 . . . (25)

rAiBi = π +(θi−λiγi)+2niπ; for λi
iyPi < 0. . (26)

(25) and (26) can be expressed in a compact expression
that accommodates both cases (λi

iyPi ≥ 0 and λi
iyPi < 0),

rAiBi = φi +2niπ . . . . . . . . . . . . (27)

φi =
π

2

(
1−λi

iyPi

| iyPi |

)
+(θi−λiγi). . . . . (28)

One last case is the coincidence of the projections of
Ai and Pi. In this situation, multiple cable configurations
can be obtained with different values of rAiBi . Hence, rAiBi
needs to be recomputed subject to the change of the wrap-
ping state. This case is discussed in Section 4.2.

4.2. Number of Revolutions of Cable Wrapping
The number of revolutions of the cable i changes when

point Bi crosses the positive xi- axis. This can be indi-
cated by the value of rAiBi as it represents the location of
point Bi: the φi part of rAiBi calculated from (28) deter-
mines QBi, for rAiBi ∈ [−2π,2π] while the 2niπ part of
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Table 1. : Positive wrapping λi = 1

QPi Ii IIi IIIi IVi
Q

B
i
=

Q
P

i−
I i

Q
B

i
=

Q
P

i

rAiBi (θi− γi)+2niπ (θi− γi)+2niπ π +(θi− γi)+2niπ π +(θi− γi)+2niπ

Table 2. : Negative wrapping λi =−1

QPi Ii IIi IIIi IVi

Q
B

i
=

Q
P

i
Q

B
i
=

Q
P

i+
I i

rAiBi π +(θi + γi)+2niπ π +(θi + γi)+2niπ (θi + γi)+2niπ (θi + γi)+2niπ

rAiBi relates to the number of revolutions. Moreover, two
situations trigger the update of ni and they both require the
comparison of values of rAiBi for two subsequent sampling
instances. rAiBi and ni of the previous sampling instance
are denoted as rip and nip, respectively. The first update
condition occurs when rAiBi changes from quadrant IVi to
quadrant Ii. The number of revolution then changes by
λi, i.e. ni = nip +λi. The second condition is when rAiBi
changes from quadrant Ii to quadrant IVi, where the num-
ber of revolution changes by−λi, i.e. ni = nip−λi. When
ni is determined, rAiBi can be calculated by (27). The al-
gorithm can be summarized in the flowchart in Fig 6.

Fig. 6. : Steps to calculate rAiBi
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5. Switching between wrapping and non-
wrapping states

The wrapping phenomenon is one of the circumstances
that may occur when a cable interacts with one or more
rigid bodies during the operation of the mechanism.
Therefore, the general interaction between a cable and a
rigid body should be treated as a combination of wrap-
ping and non-wrapping phenomenon. Moreover, from the
point of view of the wrapping direction, there are three
possible states, namely, positive wrapping (λi = 1), neg-
ative wrapping (λi = −1) and non-wrapping (λi = 0).
Transitions occur between wrapping and non-wrapping
states. Each change of wrapping direction from λi = 1
to λi = −1 and vice versa has to pass through the non-
wrapping state λi = 0. The following expression summa-
rizes the transitions among the three states:

(λi = 1) 
 (λi = 0) 
 (λi =−1).

The operator “
” indicates the bidirectional transition
between the wrapping and the non-wrapping states of
the cables. In this section, a method is introduced to
determine the “trigger” condition of the switch among
these three states. Such condition is defined by the
intersection of Ai and Bi. When the two points intersect,
the switch will be triggered. This circumstance happens
when the length of the wrapping segment becomes zero
and the non-wrapping segment is tangential to the surface
at point Ai.

Fig. 7. : Determination of the wrapping state

An algorithm is constructed to determine the occur-
rence of wrapping as well as its direction. Firstly, rAiBi is
calculated by (27). When the transition occurs, the num-
ber of revolutions of the cable must be zero (ni = 0). In or-
der to judge whether the cable is under positive wrapping,
negative wrapping or non-wrapping, different ranges of
rAiBi will need to be considered. From (27) and the do-
mains of θi and γi (given in (19) and (20), respectively),

the full range of rAiBi is equal to the domain of φi which is[
−π

2 , 2π
]

when state transition occurs (i.e. ni = 0). Here
the range is divided into three parts, namely,

[
−π

2 , 0
]
,[

0, π

2

]
and

[
π

2 , 2π
]
. Each of the first two sub-ranges re-

sults in one case each while the last sub-range results in
two cases. The values of rAiBi and λi in the previous sam-
pling instance (denoted as rip and λip, respectively) are
employed in making the decision. The flowchart in Fig.
7 illustrates how the algorithm determines the appropriate
rAiBi with respect to the pose of the cylinder when wrap-
ping condition is considered. Note that rAiBi = 0 in the
non-wrapping state since the wrapping segment does not
exist. The four cases are given as follows:

Case 1. a rAiBi value within
[
−π

2 , 0
]

represents a ca-
ble configuration such as shown in Fig. 8(a)
which cannot happen in a practical situation.
In fact, it implies that in this circumstance the
cable does not wrap. Furthermore, the cable is
assumed to be always under tension(taut). In
practice, Fig. 8(b) would result from this case.
Thus rAiBi = 0.

(a) rAiBi ∈
[
− π

2 , 0
]

(b) rAiBi = 0

Fig. 8. : Entering non-wrapping state when λi = 1: (a)
invalid configuration, (b) actual configuration

Case 2. if rAiBi is within
[
0, π

2

]
, the cable wraps

without changing its direction, i.e. the value of
rAiBi remains. Otherwise, rAiBi must be within
the range of

[
π

2 , 2π
]

and rip will need to be
used to classify Cases 3 and 4.

Case 3. if rip 6= 0, it implies that the cable was wrap-
ping in the previous sampling instance. Thus
the cable continues to wrap in the same direc-
tion and rAiBi remains unchanged.

Case 4. if rip = 0, it indicates that the cable was not
wrapping originally but it has a wrapping seg-
ment in IIi, IIIi,or IVi in the current sampling
instance. However, with a practical assump-
tion that the cable should always start to wrap
from Ii, rAiBi ∈

[
π

2 , 2π
]

implies the need of
a change in the wrapping direction in real-
ity. Thus the wrapping direction reverses, i.e.
λi =−λip, and rAiBi will need to be recomputed
by (27) with the updated λi according to (27).
Fig. 9 illustrates this circumstance.
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(a) (b) (c)

Fig. 9. : Changing wrapping direction (λi): (a) from non-
wrapping state: rip = 0, (b) invalid wrapping: λi = λip , (c)
reverse wrapping: λi =−λip ,rAiBi ∈

(
0, π

2

)

At this stage, the values of λi, ni and rAiBi are finalised.
The coefficient bi, in (18) can be calculated by (29) such
that the position of point Bi is found.

bi =
izpi/ [rAiBi + cot(λirAiBi + γi)] . . . . . (29)

After bi is calculated, the unique configuration of cable i
is found.

6. Validation of kinematic model for Cable-
driven Parallel Manipulatorwith wrapping

A 3-DOF (1 moving rigid link) manipulator with 4 ca-
bles, such as shown in Fig. 10, is considered for the ex-
perimental validation. The cylindrical rigid link with 2cm
diameter is articulated by a spherical joint at its base, with
its centre located at the origin of Frame {Oc}.

Fig. 10. : A 3DoF manipulator with 4 cables

The cylinder is considered to be long enough such that
the cables would never leave the surface during wrapping.
Here cooridinate of Pi is given in the inertial frame {O}.
(a,rAi ,hi) denotes the polar coordinate of the location of
point Ai with respect to the frame attached to the cylin-
drical rigid link {Oc}. {Oi} is defined by rotating {Oc}
about zc by the angle of rAi and is originated at (0,0,hi)
defined in {Oc}. Then the coordinate of Ai is (a,0,0) in
Oi. oPi and hi are constants and are given in Table 3. The
initial conditions of the operation are listed in Table 4.

Cable i 1 2 3 4
oPi [39,0,0] [0,39,0] [−39,0,0] [0,−39,0]

rAi(rad) 0 π

3 π
3π

2
hi (cm) 14.2 16.2 20.2 24.2

Table 3. : The parameters of the 3DoF-4-cable-1-
cylinder mechanism in the example

Cable i 1 2 3 4
λi -1 0 1 0

ni (rev) 0 0 1 0
rBi (rad) 4.7380 0 4.7380 0

Table 4. : Initial cable robot configuration (θz = 0◦)

(a) θz = 0◦

(b) θz = 540◦

Fig. 11. : The cylinder rotates for 540◦ about Z-axis

Fig. 11(a) shows the initial cable configuration of
the cable-driven parallel manipulator. The rigid-link
then undergoes a motion trajectory that sees it rotated
about Z-axis from θz = 0◦(initial) to θz = 540◦. The
inverse kinematics of the mechanism was calculated to
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Fig. 12. : Cable lengths of the manipulator for 0◦ ≤ θz ≤
540◦ rotatiing about Z-axis.

obtain the resulting cable configurations over the duration
of the rotation. Fig. 11(b) shows the configuration at
the completion of the 540◦ rotation. The properties of
the wrapping segment at θz = 540◦ are listed in Table
5. Fig. 12 shows the resulting kinematic relationship
between cable length and one of the robot’s end-effector
coordinates (θz). It can also be seen that the cable lengths
calculated from the kinematic model matches the cable
length measurements from the physical robot for the
range of values of θz.

Cable i 1 2 3 4
λi -1 -1 -1 -1

ni (rev) 2 1 0 1
rBi (rad) 14.1628 7.3560 1.5964 7.3560

Table 5. : Final cable robot configurations (θz = 540◦)

It can be observed in this example that:
1. Initially at θz = 0◦, both cable 2 and 4 are in the non-

wrapping state while cable 1 and 3 are already wrapping
about the cylinder in opposite directions.

2. When θz = 120◦, cable 2 and 4 enter the wrapping
state and start to wrap till the end of the motion.

3. When θz = 300◦, cable 3 enters the non-wrapping
state and wraps again in an opposite direction when θz =
420◦.

4. During the motion, cable 1 remained in negative
wrapping (λ1 =−1) for 0◦ ≤ θz ≤ 540◦ while cable 3 ex-
perienced all the three states.

5. For this trajectory of the end-effector, cable lengths
vary linearly with respect to θz when wrapping is in effect.

Fig. 13. : Cable lengths of the manipulator for 0◦ ≤ θz ≤
270◦ rotating about Z-axis.
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Fig. 14. : Cable lengths of the manipulator for 0◦ ≤ θz ≤
270◦ rotating about Z-axis.

In the previous example, the axis of the cylinder re-
mains vertical during the operation. Another example
could be the axis of cylinder with a constant deflection
by 30◦ from Z− axis and it rotates about Z− axis at the
center of the ball joint from 0◦ to 270◦ as shown in Fig.
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13, the cable lengths change during the motion as shown
in Fig. 14.

7. Conclusion and Future Work

The inverse kinematic modelling for a cable driven par-
allel manipulator which accounts for its cables wrapping
(about its rigid link) is presented. It includes a proce-
dure to find the cable configuration (wrapped and/or non-
wrapped) which results in the shortest cable path, given
the no-slack condition at all time. The conditions required
to find such a configuration are provided and justified with
a proof to ensure the shortest path is found. The algorithm
also takes into consideration the wrapping direction and
number of revolutions of cable wrapping about the rigid
link to account for the initial conditions when matching
with a physical scenario of a manipulator. The validity
of the proposed algorithms was also demonstrated with
measurements against a physical cable robot.

Future work will consider the incorporation of this
modelling strategy into the motion control strategy of a
cable driven manipulator of such characteristics. Inspired
by the biomechanics of human (and animal) bodies, the
framework can be utilised to provide a more accurate
kinematics estimation for some musculoskeletal biome-
chanics that involve muscle wrapping about skeletal sys-
tems.
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