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Wrench-closure is an important property of cable-driven
parallel manipulators (CDPMs) representing the ability to
generate wrench in any direction by positive cable forces.
For single link CDPMs, it is well known that m≥ n+1 cables
are necessary for an n degree-of-freedom CDPM to achieve
wrench-closure. However, for multilink cable-driven manip-
ulators (MCDMs), the single link condition is not enough
and the cable routing should also be considered. In this
paper, necessary conditions to achieve wrench-closure for
MCDMs based solely on the cable routing arrangements are
mathematically derived. Since the approach is independent
on the exact attachment locations, the proposed necessary
conditions can be efficiently validated during the design and
synthesis of MCDMs. Analysis is performed on a range of
different MCDM structures to identify cable arrangements
that do not satisfy wrench-closure for an MCDM.

1 Introduction
Multilink cable-driven manipulators (MCDMs) are a

class of cable-driven parallel manipulators (CDPMs) that
possesses a serial multi-body rigid link structure and paral-
lel arrangement of cables to drive the mechanism. MCDMs
[1, 2] have been studied in recent years due to their anthro-
pomorphic structure and unique advantages [3–6].

As with CDPMs, one unique characteristic of MCDMs
is that cables can only be driven unilaterally in tension
and not in compression (positive cable force). This con-
straint results in challenges in control [7–9], cable arrange-
ment optimisation [10–12] and workspace analysis [13–18]
of CDPMs. One key challenge in the study of MCDMs is the
large number of cable routing for increasing number of ca-
bles and links [4]. Cable routing refers to the path in which

a cable is connected to the links of the manipulator.
The ability to achieve a particular workspace criterion is

an important property that describes the feasibility of cables
for the CDPM to produce wrench and motion. Various types
of CDPM specific workspace conditions have been studied,
such as cable-interference workspace [13], static workspace
[14], wrench-feasible workspace [15] and wrench-closure
workspace [16–18].

Amongst the workspace conditions, the wrench-closure
condition (WCC), defined as the ability for the manipula-
tor in a particular pose to sustain any external wrench or to
produce any velocity and acceleration by a set of positive
cable forces, has been of significance. The wrench-closure
workspace (WCW) represents the set of poses in which the
manipulator satisfies the WCC. As a result, the WCW con-
tains the poses in which the manipulator is able to generate
motion in any generalised coordinates direction.

The WCC condition is dependent on both the pose of the
manipulator and the attachment locations of the cables. For
a given set of attachment locations, the generation of poses
that satisfy the WCC is computationally complex, particu-
lary for systems with a high number of degrees-of-freedom
with many cables. As such, the analysis of WCW during
the design process of the manipulator would be computa-
tionally impractical. An alternative approach to understand
the WCW is to study the wrench-closure validity of the sys-
tem, where a CDPM is referred to as wrench-closure valid
if the WCC can be achieved in at least some pose. As such,
wrench-closure validity is a pose independent criterion that
can be used as a requirement in designing CDPMs where its
WCW is not empty.

However, the classification of wrench-closure validity is
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still dependent on the design of cable attachments. As such,
it is possible to consider necessary conditions on the wrench-
closure validity that form a more basic set of criteria that
must be satisfied in the design of an MCDM. Any cable ar-
rangement that do not satisfy the necessary conditions will
result in a manipulator with an empty WCW and hence a
potentially very restricted range of motion. For single link
CDPMs with n degree-of-freedom (DoF) actuated by m ca-
bles, one well-known necessary condition to achieve WCC
is that a minimum of m = n+ 1 cables is required [19, 20].
For MCDMs, it was shown that a minimum requirement of
m = n+ 1 cables is also required to achieve wrench-closure
validity for MCDMs [21]. In [22], the consideration of
the distributions of cables (cable routing) was incorporated.
However, the analysis only considered single segment cable
routings where cables were connected from the base to one
of the manipulator links.

In this paper, necessary conditions on the cable routing
required to achieve wrench-closure for MCDMs with arbi-
trary cable routing are mathematically studied. By deriving
these conditions with respect to the Cable-Routing Matrix
(CRM), it is shown that stricter conditions on the cable rout-
ing than m≥ n+1 should be considered to achieve wrench-
closure. The wrench-closure validity analysis is demon-
strated on different MCDM examples, showing that the pro-
posed conditions result in a reduction in possible valid ca-
ble arrangements that have to be considered when designing
MCDMs. The primary advantages of the proposed method
are that the WCW does not need to be generated and the
conditions are independent to both pose and attachment lo-
cations, resulting in an intuitive and computationally effi-
cient method that is beneficial to determining invalid cable
arrangements for MCDMs.

The remainder of the paper is organised as follows: Sec-
tion 2 presents the CRM representation for cable routing.
Section 3 formulates conditions on the Jacobian matrix of
MCDMs to achieve wrench-closure. These conditions are
then expressed with respect to the CRM in Section 4, form-
ing the necessary conditions for wrench-closure with respect
to the cable routing. Section 5 illustrates the formulated con-
ditions on several example manipulators. Finally, Section 6
concludes and presents areas of future work.

2 Cable-Routing Matrix Representation
To represent and model the cable routing for MCDMs, a

Cable-Routing Matrix (CRM) was introduced in [4] to allow
arbitrary cable routing to be described. The CRM is a 3-D
matrix representation that describes the path in which cables
route within the MCDM, where the term ci j(k+1) within the
CRM describes the cable routing relationship between seg-
ment j of cable i and link k, where:

1. ci j(k+1) =−1: segment j of cable i begins from link k
2. ci j(k+1) = 1: segment j of cable i ends at link k
3. ci j(k+1) = 0: segment j of cable i not connected to link k

For an m cable system, each cable has a maximum of s seg-
ments and each cable segment can be attached onto a max-

imum of p+ 1 bodies (inertial base and p links). Defining
C = {−1,0,1}, the CRM for an MCDM system C can be re-
garded as a 3-D matrix with dimensions m× s× (p+1) and
C ∈ C m×s×(p+1). Properties 1 to 4 were defined to mathemat-
ically ensure that the CRM cable routings are valid.

Property 1. ∑
p+1
k=1 ci jk = 0 ∀i ∈ {1, . . . ,m} ∀ j ∈ {1, . . . ,s}.

Cable segments have beginning and ending attachments.

Property 2. ∑
p+1
k=1

∣∣ci jk
∣∣ = 2 ∀i, ∀ j ∈ {1, . . . ,si}. Segments

1 to si are attached to different links.

Property 3. ci jk = 0 ∀i, ∀ j ∈ {si +1, . . . ,s}, ∀k. Segments
j > si must not have any attachment points to any links.

Property 4. ∀i, ∀ j ∈ {1, . . . ,si− 1} ∃k ∈ {1, . . . , p+ 1} :
ci jk− ci( j+1)k = 2. Consecutive segments are connected.

The cable segment vector li j for segment j of cable i can
be expressed as

li j =
p

∑
k=0

[
ci j(k+1)rOAi jk

]
, (1)

where O is the origin of the inertial frame and Ai jk is the
attachment location of segment j of cable i on link k. For an
n DoF CDPM, the equations of motion can be expressed as

M(q)q̈+C(q, q̇)+G(q) =−JT (q)f , (2)

where M, C and G represent the mass-inertia matrix, cen-
trifugal and Coriolis vector, and gravitational vector, respec-
tively. The generalised coordinates and set of cable forces
are denoted by q ∈ Rn and f ∈ Rm, respectively. The trans-
pose of the Jacobian matrix JT ∈ Rn×m can be expressed as

JT =

 JT
1q1

. . . JT
mq1

...
...

JT
1qp

. . . JT
mqp

 , JT
iqa =

p

∑
k=a

ST
a

[
I3×3[

rPaAi jk

]× ]V T
ik , (3)

where I3×3 is a 3-by-3 identity matrix, ST
a ∈Rna×6 represents

the projection of forces of link a to its degrees of freedom
(na) and defines the type of joint, rPaAi jk is the position vec-
tor from Pa to Ai jk, and [·]× represents the skew symmetric
matrix. The term V T

ik can be expressed as

V T
ik =

s

∑
j=1

[
ci j(k+1) l̂i j

]
. (4)

3 Jacobian Matrix Analysis of Wrench-Closure
For an m cable n DoF CDPM system in pose q∈Rn, the

WCC is satisfied if any arbitrary wrench can be produced by



a set of positive cable forces. From the equations of motion
(2), the WCC condition is mathematically equivalent to

WCC(q)⇔∀w ∃f≥ 0 : w = JT (q)f , (5)

where w∈Rn represents the wrench produced on the manip-
ulator by the cable forces f∈Rm under the positive force con-
straint f≥ 0. The transpose of the Jacobian matrix JT ∈Rn×m

for MCDMs is that defined in (3).
A CDPM is defined as being wrench-closure valid

(WCV) if the WCC from (5) can be achieved in at least some
pose

WCV ⇔∃q : WCC(q) . (6)

Wrench-closure validity analysis can be performed by study-
ing the transpose of the Jacobian matrix JT from (5). For
single link CDPMs to achieve wrench-closure, JT ∈ Rn×m

must be of full rank and contain more columns than rows.
The wrench-closure validity for single link CDPMs can be
mathematically expressed as

∃q : WCC(q)⇒ m≥ n+1. (7)

MCDMs differ from single link CDPM systems in that
it is possible for cables to provide actuation forces to only a
subset of the manipulator’s links. As introduced in Section 2,
JT

iqa
(q) from (3) represents the effect of the force of cable i on

the wrench exerted on link a in pose q. Property 5 describes
the physical interpretation of zero elements in JT .

Property 5. If the force of cable i does not contribute to the
generalised force of link a in pose q then JT

iqa
(q) = 0. Hence,

if JT
iqa

(q) 6= 0 then force in cable i contributes to wrench ex-
erted on link a in pose q.

Necessary conditions for wrench-closure validity can be
derived by considering and analysing a p link MCDM system
as p individual subsystems.

Theorem 1. Each link of an MCDM requires a minimum
number of na +1 cables that can be used to actuate the link,
where na denotes the number of degrees of freedom of link a
relative to link a−1. Hence, the wrench-closure validity for
an MCDM system can be expressed as

∃q : WCC(q)⇒ ma(q)≥ na +1 ∀a ∈ {1, . . . , p}, (8)

where ma(q) refers to the number of cables that can be used
to actuate link a in pose q.

Proof. The definition of WCC from (5) for MCDMs requires
that any wrench can be produced by every link simultane-
ously. Hence, if any of the links are unable to independently
generate an arbitrary wrench, the WCC for the entire system

cannot be satisfied at pose q. Extending from the single link
condition from (7), if any link has less than na+1 cables that
can actuate link a, then the manipulator cannot satisfy WCC

∃q ∃a : ma(q)< na +1⇒¬WCC(q). (9)

The negation of (9) completes the proof.

For a single link system the resulting redundancy is m−
n. Property 6 extends this concept to each link for a multilink
manipulator.

Property 6. Given that the system satisfies the WCC from
Theorem 1, the maximum redundancy for link a is ma− na,
where ma is the number of cables that can be used to actuate
link a.

Although the requirement of (8) is a simple extension of
the well-known single link condition, it is important to note
that ma(q) for MCDMs is not simply the number of cables
in the system. At pose q, the effective number of actuating
cables on link a can be expressed as

ma(q) = Aa(q)+Ba(q), (10)

where in pose q:

1. Aa(q) refers to the number of cables that produce a
wrench on link a, but not on links b > a (Lemma 1).

2. Ba(q) refers to the number of cables that produce a
wrench on link a and on some link(s) b > a, but are not
required in actuating links b > a (Lemma 2).

Lemma 1. Aa(q) = ∑i αia(q) represents the number of ca-
bles that produce a wrench on link a at pose q, but not on
links b > a, where

αia(q) =
{

1 , JT
iqa

(q) 6= 0,JT
iqb

(q) = 0 ∀b > a
0 , otherwise

. (11)

Proof. The condition αia(q) = 1 from (11) can be directly
obtained from Property 5.

Property 7. In general, it can be shown that if JT
iqa

(q) 6= 0
and JT

iqb
(q) 6= 0, then JT

iqc
(q) 6= 0 where a < c < b. That is,

if cable i produces a resultant wrench on both joints a and
b, then a resultant wrench is also produced on the joints of
the links in between. This is true due to the propagation of
interaction forces through the joints of the manipulator.

Lemma 2. Ba(q) = min{∑i βia(q),ma+1(q)−na+1} rep-
resents the number of cables that produce a resultant wrench
on link a and on some link(s) b > a, but are not required in
actuating links b > a, where

βia(q) =
{

1 , JT
iqa

(q) 6= 0,JT
iqa+1

(q) 6= 0
0 , otherwise

, (12)



with the boundary conditions np+1 = mp+1 = 0 and βip(q) =
0 ∀q always holds since JT

iqp+1
(q) does not exist.

Proof. At the outermost link, Bp(q) = 0 due to the fact that
there exists no link b > p. For the remaining links a < p,
∑i βia(q) from (12) represents the number of cables that pro-
duce a resultant wrench on both links a and a+ 1 in pose q
(Property 5). The number of cables Ba(q) must also consider
the fact that some cables may be required to actuate link a+
1. From Property 6, the maximum number of redundant ca-
bles that can be inherited from link a+1 is ma+1(q)−na+1.
From Property 7, since cable forces produce wrench over
consecutive joints, ma+1(q)− na+1 not only represents the
number of redundant cables from link a+ 1, but also from
links b≥ a+1. Considering maximum number of redundant
cables from links b≥ a+1, the number of cables Ba(q) can
be expressed as ∑i βia(q) and cannot exceed ma+1(q)−na+1,
resulting in Ba(q) = min{∑i βia(q),ma+1(q)−na+1}.

From Lemma 1, Lemma 2 and (10), the condition (8)
from Theorem 1 can be expressed as

∃q : WCC(q)⇒ Aa(q)+Ba(q)≥ na +1 ∀a. (13)

The necessary condition (13) for the WCC at a particular
pose can be evaluated from the terms of the JT matrix. It
should be noted that the necessary condition (13) is depen-
dent on both the manipulator pose and cable attachment lo-
cations, requiring the determination of JT at q.

4 Conditions on the Cable-Routing Matrix
Necessary conditions independent to the exact attach-

ment locations are now formulated in this section.

4.1 Relationship With the Jacobian Matrix
Theorem 2 presents the necessary condition for the Jaco-

bian matrix vectors Jiqa(q) are zero dependent on the CRM.

Theorem 2. ∑
p
k=a ci j(k+1) = 0 ∀ j⇒ JT

iqa
(q) = 0 ∀q. Cable

i has no effect on the motion of link a for all manipulator
poses and cable attachment locations if all segments of cable
i begin and end on, or are not attached to, links a or above.

Proof. From the definitions (3) and (4), the term JT
iqa

(q) can
be expressed as

JT
iqa(q) = ST

a

s

∑
j=1

p

∑
k=a

[[
I3×3[

rPaAi jk

]× ]ci j(k+1) l̂i j

]
, (14)

where p and s represent the number of links of the system and
the maximum number of segments for a cable, respectively.
Denoting

JT
ia j
(q) =

p

∑
k=a

[[
I3×3[

rPaAi jk

]× ]ci j(k+1) l̂i j

]
, (15)

the statement JT
iqa

(q) = 0 from (14) for all poses q is true if

JT
ia j
(q) = 0 ∀ j ∀q⇒ JT

iqa(q) = 0 ∀q, (16)

Using (1), the expression from (15) can be expressed as

JT
ia j

=
p

∑
k=a

p

∑
b=0

[
I3×3[

rPaAi jk

]× ]ci j(k+1)ci j(b+1)rOAi jb . (17)

The conditions for JT
ia j
(q) = 0 ∀ j ∀q in (16) can be expressed

with respect to the CRM terms for the cable segments j ≤ si
and j > si, and are described in Conditions 1 and 2, respec-
tively. The number of segments for cable i is denoted by si.

Condition 1. For cable segments j > si, JT
ia j
(q) =

0 ∀q, ∀ j > si is true by Property 3 as ci jk = 0 ∀ j > si .

Condition 2. For segments j ≤ si, JT
ia j
(q) = 0 ∀q is true if

and only if the beginning and ending attachments for segment
j are either both below or both on and above link a.

For segments j ≤ si, assuming that segment j of cable i
begins on link x and ends on link y, then ci j(x+1) = −1,
ci j(y+1) = 1 and ci j(k+1) = 0 ∀k 6= x,y. Consider the following
scenarios for links x and y:

1. x,y < a: both beginning and ending attachments are
below link a, hence ci j(k+1) = 0 ∀k ≥ a, resulting in
JT

ia j
(q) = 0 ∀q.

2. x,y≥ a: both beginning and ending attachments are on
link a or above, substituting ci j(x+1) =−1 and ci j(y+1) =

1 into (17), then JT
ia j

= 0 ∀q is always true.
3. x < a,y ≥ a or x ≥ a,y < a: one of the attachments is

below link a and the other is on or above link a, then
there would always exist some q such that JT

ia j
(q) 6= 0 in

general. For example, if x < a,y≥ a then

JT
ia j
(q) =

[
I3×3[

rPaAi jy

]× ](rOAi jy(q)− rOAi jx(q)).

It can be observed that Conditions 1 and 2 are satisfied for
∑

p
k=a ci j(k+1) = 0, and hence

p

∑
k=a

ci j(k+1) = 0⇔ JT
ia j
(q) = 0 ∀q. (18)

Combining (18) and (16) results in ∑
p
k=a ci j(k+1) = 0 ∀ j⇔

JT
iqa

(q) = 0 ∀q to complete the proof.

The physical interpretation of ∑
p
k=a ci j(k+1) = 0 ∀ j is that

all segments of cable i are either not attached to, or both be-
gin and end on link a and above. When a cable begins and
ends above link a, the equal and opposite forces on both ends



of the cable produce a zero resultant wrench on link a. On
the other hand, if ∃ j : ∑

p
k=a ci j(k+1) 6= 0, then there is some

segment of cable i where one of its end is attached to link a
or above and the other end is attached to a link below link a.
In such a scenario, then cable i has the potential to produce a
resultant wrench on the motion of link a.

Since from Property 4 consecutive segments of a cable
must be connected, the condition ∃ j : ∑

p
k=a ci j(k+1) 6= 0 ap-

plies to all links between links kil and kiu, where kil and kiu
refer to the lowest and highest link number that the cable i is
attached to, respectively. Property 8 describes the set of links
in which Theorem 2 holds for any particular cable.

Property 8. Denoting the lowest and highest link num-
ber that cable i is attached to as kil and kiu, respectively,
then ∃ j : ∑

p
k=a ci j(k+1) 6= 0 holds for links kil < a≤ kiu and

∑
p
k=a ci j(k+1) = 0 ∀ j for links a≤ kil and a > kiu.

4.2 Cable-Routing Matrix Terms
From the relationship between the CRM and Jacobian

matrix terms introduced in Section 4.1, necessary conditions
on the CRM to achieve wrench-closure validity can be de-
rived in a similar manner to the analysis in Section 3.

Definition 1. ∑i α∗ia represents the number of cables that
are attached to link a and not to any link b > a,

α
∗
ia =

1,∃ j :
p

∑
k=a

ci j(k+1) 6= 0,∀ j
p

∑
k=a+1

ci j(k+1) = 0

0, otherwise
. (19)

From Property 8, ∃ j :
p

∑
k=a

ci j(k+1) 6= 0 and ∀ j
p

∑
k=a+1

ci jk = 0

imply that a = kiu for cable number i.

Definition 2. ∑i β∗ia represents the number of cables where
some segments are connected to links both above and below
link a, where

β
∗
ia =

1,∃ j :
p

∑
k=a

ci j(k+1) 6= 0,∃ j :
p

∑
k=a+1

ci j(k+1) 6= 0

0,otherwise
,

(20)
with the boundary condition β∗ip = 0 since at a = p, ci j(p+2)
does not exist.

Definitions 1 and 2 allow necessary conditions on
wrench-closure validity to be expressed in a similar manner
to (13). The resulting conditions are described with respect
to the CRM and are independent of both manipulator pose
and attachment locations.

In the same manner as Section 3, the number of cables
m∗a that have the potential to actuate joint a consists of:

1. Cables that are connected to link a, where link a is the
highest numbered link to which the cable is attached to.

2. Cables that are connected to links both above and below
link a.

Lemma 3 introduces the effective number of cables m∗a that
have the potential to actuate link a based from the CRM.

Lemma 3.

m∗a = ∑
i

α
∗
ia +min

{
∑

i
β
∗
ia,m

∗
a+1−na+1

}
, (21)

with the boundary conditions m∗p+1 = np+1 = 0.

Proof. The negation of Theorem 2 suggests that ∃ j :
∑

p
k=a ci j(k+1) 6= 0 is true if cable i has an effect on joint a,

where

∃q : JT
iqa(q) 6= 0⇒∃ j :

p

∑
k=a

ci j(k+1) 6= 0. (22)

Hence Definitions 1 and 2 not only provide knowledge on
how cables are attached to link a, but also whether the cables
have the potential to actuate link a.

Firstly, since ∑i α∗ia cables are attached to link a but not
to the links above a, all of these cables can be potentially
used to actuate joint a. However, from the number of cables
∑i β∗ia that are attached to both links a and a+1, it is possible
that only a subset of the cables can be used to actuate joint
a as they may be required to actuate joint a+ 1 or above.
From Property 6, the maximum number of redundant cables
from link a+1 is hence m∗a+1−na+1. In a similar manner to
Lemma 2, the number of redundant cables that can actuate
link a is hence min

{
∑i β∗ia,m

∗
a+1−na+1

}
. From Property 8,

since β∗ia = 1 applies to links kil to kiu−1, m∗a represents the
number of redundant cables from links b > a.

Theorem 3 represents the relationship between ma intro-
duced in Section 3 and m∗a from (21). The theorem states that
the number of cables that have the potential to actuate link a
as observed from the cable routing must be greater than the
number of cables that actually produces a resultant wrench
on link a. Using Theorem 3, the necessary conditions on
WCC in some pose q from (13) can then be extended to the
necessary conditions on wrench-closure validity expressed
with respect to the CRM. The following properties (Proper-
ties 9, 10 and 11) and lemmas (Lemmas 4 and 5) that relate
the terms αia and βia to α∗ia and β∗ia will be required in prov-
ing Theorem 3.

Property 9. From the definitions of αia and βia presented in
Lemmas 1 and 2, respectively, it is not possible for αia(q)= 1
and βia(q) = 1 simultaneously. Mathematically, this can be
expressed as

αia(q) = 1⇒ βia(q) = 0, βia(q) = 1⇒ αia(q) = 0. (23)

Similarly, from Definitions 1 and 2, it is not possible for α∗ia =



1 and β∗ia = 1 simultaneously. Hence, this can be expressed
as

α
∗
ia = 1⇒ β

∗
ia = 0, β

∗
ia = 1⇒ α

∗
ia = 0. (24)

However, note that it is possible for both αia(q) = 0 and
βia(q) = 0 simultaneously. Similarly, it is possible for α∗ia =
0 and β∗ia = 0 simultaneously.

Lemma 4. ∃q : αia(q) + βia(q) = 1 ⇒ α∗ia + β∗ia = 1. If
there exists some pose such that cable i produces a wrench
on link a then it implies that there is some segment of cable
i where one end is attached onto link a and above, and the
other end is attached to some link below link a.

Proof. Properties 7 and 8 state that resultant wrenches are
produced on consecutive links. Furthermore, since it is not
possible for αia(q) = 1 and βia(q) = 1 simultaneously (Prop-
erty 9), then by the definitions of αia and βia in (11) and (12),
respectively,

αia(q)+βia(q) = 1⇔ JT
iqa(q) 6= 0 . (25)

Similarly, by using the definitions of α∗ia and β∗ia in (19) and
(20), respectively,

α
∗
ia +β

∗
ia = 1⇔∃ j :

p

∑
k=a

ci j(k+1) 6= 0 . (26)

Combining the relationships (25) and (26) with the implica-
tion in (22) completes the proof.

Property 10. αia(q) = 1⇒ αib(q) = 0 ∀b > a. By the def-
inition of αia(q) from (11), if αia(q) = 1 then JT

iqb
= 0 ∀b > a

and hence αib(q) = 0.

Property 11. αia(q) = 1⇒ βib(q) = 0 ∀b > a. By the defi-
nition of αia(q) from (11), if αia(q) = 1 then JT

iqb
= 0 ∀b > a

and hence βib(q) = 0.

Lemma 5. ∃q : αia(q) = 1 ⇒ ∃kiu ≥ a : α∗iku
= 1,β∗ib =

1,a ≤ b < kiu. If ∃q : αia(q) = 1 then it implies that cable
i is attached to some link(s) below link a and also to link a
or above. Note that link kiu denotes the highest link number
that cable i is attached to.

Proof. By definition αia(q) from (11), if ∃q : αia(q) = 1
then it implies that ∃q : JT

iqa
(q) 6= 0. Hence by (22) and

(26), the implication can be expressed as ∃q : αia(q) = 1⇒
α∗ia +β∗ia = 1. By Property 8, β∗ib = 1 holds for consecutive
links from a≤ b < kiu and α∗iku

= 1.

Theorem 3. The number of cables m∗a based on the CRM
from (21) is always larger than the effective number of cables
ma from (10) that can be used to actuate link a

∀a ∀q : m∗a ≥ ma(q) . (27)

Proof. For link a, ma(q) from (10) and m∗a from (21) can be
expressed as

ma = min{∑
i

αia +βia,∑
i

αia +ma+1−na+1}

m∗a = min{∑
i

α
∗
ia +β

∗
ia,∑

i
α
∗
ia +m∗a+1−na+1} . (28)

From (28), it can be observed that the implication (27) is
satisfied if both of the following statements are true

∀a ∀q : ∑
i

α
∗
ia +β

∗
ia ≥∑

i
αia(q)+βia(q) (29)

∀a ∀q : ∑
i

α
∗
ia +m∗a+1 ≥∑

i
αia(q)+ma+1(q) . (30)

The relationship (29) is true as a direct result from
Lemma 4 since if there exists a pose q that αia(q)+βia(q) =
1 then α∗ia +β∗ia = 1 is also true. The implication (30) can be
shown by induction.

Base case: At the outer most link a = p, since mp+1 =
m∗p+1 = 0 is true by definition, then ∀q : m∗p ≥ mp(q) is true.

Inductive step: By Property 10, Property 11 and Lemma
5, ∃q : αia(q) = 1 implies that αib(q) = βib(q) = 0 for links
b > a and α∗ib + β∗ib = 1 for links a≤ b≤ kiu, and the base
step of ∀q : m∗p ≥ mp(q), (30) is true for all links.

By Theorem 3, the necessary condition for the wrench-
closure validity from (6) and (8) can be expressed as

WCV ⇒ m∗a ≥ na +1 ∀a. (31)

The interpretation of (31) is that if there exists some
pose in which the WCC is satisfied for an MCDM, then
it is necessary that m∗a ≥ na +1 ∀a.

The necessary condition from (31) has two important
characteristics. Firstly, it only provides a necessary condi-
tion for the wrench-closure validity of MCDMs expressed
with respect to only the CRM and hence cable routing. Sec-
ondly, it is independent of manipulator pose and attachment
locations of the cables.

5 Analysis of Example Manipulators
In this section, simple and intuitive examples have been

included to assist the explanation of the physical meaning
of the mathematical formulations. It should be noted that
the proposed conditions be used on systems with arbitrary
number of links and joint types.

5.1 Two Link Manipulators
For two link MCDMs, the number of degrees of free-

dom for the system can be denoted by n = n1 +n2, where n1



Table 1. Analysis of cable routing for two link MCDMs

Type Description α∗i1 β∗i1 α∗i2

C1 base→ link 1 1 0 0

C5 base→ link 2→ link 1 0 1 1

represents the number of degrees of freedom between link 1
and the base, and subsequently n2 represents the number of
degrees of freedom between link 2 and link 1. The number
of cables m∗1 and m∗2 that have the potential to actuate link
1 and link 2, respectively, can be determined by (19), (20),
(21) and expressed as

m∗2 = ∑
i

α
∗
i2

m∗1 = ∑
i

α
∗
i1 +min

{
∑

i
β
∗
i1,m

∗
2−n2

}
, (32)

where

α
∗
i1 =

{
1 , ∃ j : ci j2 6= 0,ci j3 = 0 ∀ j
0 , otherwise

β
∗
i1 =

{
1 , ∃ j : ci j2 + ci j3 6= 0,∃ j : ci j3 6= 0
0 , otherwise

α
∗
i2 =

{
1 , ∃ j : ci j3 6= 0
0 , otherwise . (33)

For example, consider cables 1 and 5 in Figure 1(a), the
cable routing C1 and C6, respectively, can be expressed by

C1 =

[
−1 1 0
0 0 0

]
, C5 =

[
−1 0 1
0 1 −1

]
.

The element in the j-th row and k-th column of Ci corre-
sponds to the element ci jk of the CRM for the system. Using
the CRM, the terms α∗ia and β∗ia from (33) could be deter-
mined and are shown in Table 1.

For the Spherical-Revolute (SR) manipulator, link 1 is
constrained to the base by a spherical joint n1 = 3 and link 2
is constrained to link 1 by a revolute joint n2 = 1. Using (32)
and (31), the wrench-closure validity conditions are

m∗1 ≥ 4, m∗2 ≥ 2 . (34)

If either of the conditions from (34) is not satisfied, then the
arrangement of cables are unable to satisfy the WCC for all
of the manipulator poses. Table 2 shows the values of m∗1 and
m∗2 for the various example manipulator cable arrangements.

Example 1 : The condition m∗2 ≥ 2 is satisfied if there
are at least two cables where α∗i2 = 1. For example, the SR
manipulator shown in Figure 1(a) has only one such cable

1 
2 3 4 

5 

(a) Example 1 : m∗2 = 1� 2

1 
2 3 

5 4 

(b) Example 2 : m∗1 = 3� 4

Fig. 1. Examples of cable arrangement for the two link SR MCDM
that do not satisfy wrench-closure validity. (a) and (b) are examples
where link 2 and link 1 do not satisfy the WCC, respectively.

Table 2. Analysis Results for SR Manipulator Examples

Example m∗1 m∗2 WCV

1 (shown in Figure 1(a)) 4 1 Invalid

2 (shown in Figure 1(b)) 3 2 Invalid

3 (shown in Figure 2(a)) 4 2 Valid

4 (shown in Figure 2(b)) 4 2 Valid

(cable number 5 in the figure). As a result, m∗2 = 1 and hence
it can be observed that wrench-closure could not be produced
on link 2 regardless of the manipulator pose.

Example 2 : Consider the cable arrangement shown in
Figure 1(b). For cables 4 and 5, m∗2 = ∑i α∗i2 = 2 and hence
the manipulator satisfies the necessary condition for wrench-
closure validity for link 2. However, as cables 4 and 5 from
Figure 1(b) produce no resultant wrench on the spherical
joint β∗i1 = 0, i = 4,5, only cables 1, 2 and 3 are capable
of producing a resultant wrench on the spherical joint. As
a result, the wrench-closure validity cannot be achieved for
link 1 since m∗1 = ∑i α∗i1 = 3.

1 
2 3 

5 4 

(a) Example 3 : Valid

1 
2 3 

5 

4 

(b) Example 4 : Invalid due to cable
attachments

Fig. 2. Cable arrangement for the two link SR MCDM that satisfy
the necessary conditions of wrench-closure validity.



Example 3 : Figure 2(a) is an example of cable rout-
ing that satisfies the necessary conditions for wrench-closure
validity. The wrench-closure validity for link 2 is satisfied
since m∗2 = ∑i α∗i2 = 2. The number of cables that are at-
tached to link 2 and have the potential to actuate link 1 can be
expressed as min{∑i β∗i1,m

∗
2−1} = min{2,1} = 1. Hence,

m∗1 = 4 due to the three cables attached to link 1 and the ac-
tuation redundancy inherited from link 2.

Example 4 : It should be noted that since the conditions
are only necessary and not sufficient for wrench-closure va-
lidity. Figure 2(b) shows an example that satisfies (34) but
clearly results in an empty wrench-closure workspace.

5.2 Three Link Manipulators
The number of cables m∗1, m∗2 and m∗3 that have the po-

tential to actuate link 1, link 2 and link 3, respectively, can
be determined by (19), (20), (21) and expressed as

m∗3 = ∑
i

α
∗
i3

m∗2 = ∑
i

α
∗
i2 +min

{
∑

i
β
∗
i2,m

∗
3−n3

}

m∗1 = ∑
i

α
∗
i1 +min

{
∑

i
β
∗
i1,m

∗
2−n2

}
, (35)

where

α
∗
i1 =

{
1 , ∃ j : ci j2 6= 0,ci j3 = ci j4 = 0 ∀ j
0 , otherwise

β
∗
i1 =

1 , ∃ j : ci j2 + ci j3 + ci j4 6= 0,
∃ j : ci j3 + ci j4 6= 0

0 , otherwise

α
∗
i2 =

{
1 , ∃ j : ci j3 6= 0,ci j4 = 0 ∀ j
0 , otherwise

β
∗
i2 =

{
1 , ∃ j : ci j3 + ci j4 6= 0,∃ j : ci j4 6= 0
0 , otherwise

α
∗
i3 =

{
1 , ∃ j : ci j4 6= 0
0 , otherwise . (36)

Figure 3 show example cable routing arrangements for
the 3 link revolute joint (3R) manipulator that will be anal-
ysed. The manipulator possesses 3 DoF, where the number
of DoF for each link is na = 1. Hence, the necessary condi-
tions (31) for wrench-closure can be expressed as

m∗1 ≥ 2, m∗2 ≥ 2, m∗3 ≥ 2 . (37)

Table 3 shows the computed values of (35) for the examples
in Figure 3.

Example 1 : Figure 3(a) shows an example of cable
arrangement where cables number 1, 2 and 4 produce no
wrench on link 3. Since only cable 3 is attached to link 3,

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: A 
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4 

(a) Example 1 : m∗3 � 2 TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: A 
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3 

(b) Example 2 : m∗2 � 2 TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: A 
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(c) Example 3 : Valid

Fig. 3. Examples of cable arrangement for the three link 3R MCDM.
(a) and (b) are examples where link 3 and link 2 do not satisfy the
WCC, respectively. (c) an example of a valid arrangement.

Table 3. Analysis Results for 3R Manipulator Examples

Example m∗1 m∗2 m∗3 WCV

1 (shown in Figure 3(a)) 2 1 1 Invalid

2 (shown in Figure 3(b)) 2 1 2 Invalid

3 (shown in Figure 3(c)) 2 3 2 Valid

m∗3 = 1 and hence the condition (34) is not satisfied.
Example 2 : In Figure 3(b), cable number 4 is attached

from the base to link 3. As a result, m∗3 = 2 and hence the
necessary conditions for wrench-closure of link 3 is satisfied.
Since cables 1 and 2 are connected from the base to link 1,
m∗2 = 1 and hence the WCC of link 2 is not satisfied.

Example 3 : Figure 3(c) shows an example of cable
routing that satisfies (37).

5.3 Discussion
Through the examples shown in Section 5, it can be ob-

served that the proposed necessary conditions can be used to
reject cable arrangements that result in a manipulator with an
empty WCW. In this section, the advantages in having such
necessary conditions will be discussed.

Firstly, the proposed analysis approach uses the gener-
alised model introduced in [4] and hence (31) can be applied
for all types of MCDMs with any kinematic structure and ar-
bitrary cable routing. As such, the necessary conditions do
not have to be derived for different manipulator designs and
(31) can form as a desired property on the CRM.

Secondly, the necessary conditions are expressed only
with respect to cable routing and are independent to the exact
attachment locations of the cables. This is particularly useful
in the early stages of the design and synthesis of MCDMs,
where appropriate cable routing could be first selected.

Finally, since only the cable routing is considered, the
verification of valid cable routing from condition (31) is
a very computationally efficient process. This means that
arrangements in cable routing that will result in an empty
WCW can be quickly determined without the need to per-
forming WCW analysis.



6 Conclusion
Necessary conditions on the cable routing to achieve

wrench-closure for multilink cable-driven manipulators
(MCDMs) were derived. The conditions were mathemati-
cally derived with respect to the generalised Cable-Routing
Matrix (CRM). It was shown through the examples on differ-
ent manipulators that the proposed conditions were effective
in identifying MCDM cable arrangements that cannot sat-
isfy wrench-closure regardless of manipulator pose. Further-
more, it was shown that a significant number invalid cable ar-
rangement combinations was identified using the necessary
conditions. Future work will focus on extending the neces-
sary conditions to consider the types of joints and consider
both necessary and sufficient conditions.
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