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Inverse Dynamics of Multilink Cable-Driven
Manipulators with Consideration of Joint

Interaction Forces and Moments

Darwin Lau, Denny Oetomo, and Saman K. Halgamuge

Abstract—Joint interaction forces and moments play a signifi-
cant role within multilink cable-driven manipulators (MCDMs).
In this paper, the consideration of joint interaction forces and
moments in the objective functions and constraints specific
to the inverse dynamics of MCDMs are considered for the
first time. By formulating the relationship between the joint
interactions and cable forces, it is shown that the minimisation
of the joint interactions results in a convex quadratic program
(QP). Furthermore, the inclusion of constraints to maintain the
stability of unilateral spherical joints results in a quadratically
constrained quadratic program (QCQP). Simulation results of
the proposed formulations on 2-link 8-cable and 8-link 76-cable
manipulators are compared with the traditional 2-norm cable
force minimisation. Results show that the formulations are able
to take advantage of the actuation redundancy in considering the
joint interactions within the inverse dynamics of MCDMs.

Index Terms—Multilink cable-driven manipulators, cable
robots, inverse dynamics, redundancy resolution

I. INTRODUCTION

Cable-driven parallel manipulators (CDPMs) are mecha-
nisms actuated by cables that are arranged in parallel configu-
ration. The key advantages of cable-driven systems include:
reduced end-effector weight and inertia compared to tradi-
tional rigid link mechanisms [1], potentially large reachable
workspace [2] and high reconfigurability [3]. Furthermore,
CDPMs have also been regarded as a bio-inspired mechanism
[4]–[6]. The key characteristic of CDPMs is that cables can
only provide forces under tension but not compression (posi-
tive cable force). The positive cable force constraint results in
the necessity of actuation redundancy and creates challenges in
workspace analysis [7]–[9] and manipulator control [10]–[12].

In the force control of CDPMs, it is essential to determine
the set of cable forces required to satisfy a prescribed motion
(inverse dynamics). For redundantly actuated CDPMs, the
inverse dynamics problem has typically been formulated and
solved as an optimisation problem, while considering the pos-
itive cable force constraint. Previous studies on the inverse dy-
namics optimisation of CDPMs have focused on two aspects.
Firstly, the selection of appropriate objective functions; and
secondly, the development of efficient algorithms to determine
the cable forces. Common objective functions include the
linear sum (1-norm) [10]–[12] and the quadratic sum (2-norm)
[12]–[14] of cable forces. In [15], the objective to achieve
“optimally safe” cable force distributions was also studied. In
addition to the formulation of objective functions, methods to

D. Lau is with Sorbonne Universités, UPMC Univ Paris 06, UMR 7222,
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efficiently resolve the cable forces have been studied to allow
real-time implementation of inverse dynamics [14], [16], [17].

Previous analysis on CDPMs have primarily focused on
single link mechanisms. For multilink cable-driven systems
(MCDMs), it was shown that the inverse dynamics problem
could be formulated and solved in the same manner as single
link CDPMs [18]. MCDMs are a class of CDPMs possessing
a multi-body rigid link structure and have been studied due
to its anthropomorphic nature. MCDMs benefit from the com-
pactness of serial mechanisms and the actuation advantages of
cable-driven systems. Practical examples of anthropomorphic
MCDMs include the ECCE robot [19], [20] and the family of
musculoskeletal robots from the Kenta [21] to the Kenshiro
[22]. On the theoretical side, problems related to the modelling
and analysis of MCDMs have been studied [18], [23], [24].

One characteristic of MCDMs is that the actuation of the
cables produces interaction forces and moments onto the
manipulator joints. As a result, it may be desired to minimise
the magnitude of the interactions, providing benefits such
as minimising joint friction and wear during manipulator
motion. Although joint friction is unavoidable in practical
systems, reduction of friction is extremely advantageous for
manipulator control. Minimisation of joint wear prolongs the
lifetime of the joint. Additionally, it may also be desired to
apply constraints on the interactions. For example, consider a
spherical joint where the socket covers less than half of the
ball and hence can be separated from the socket (unilateral
spherical joint). To avoid joint dislocation (unstable joint),
the joint interaction force must act into the socket surface.

In this paper, the inverse dynamics problem specific to
MCDMs considering joint interaction forces and moments is
studied. It is shown that the minimisation of the magnitudes in
interaction forces and moments results in a quadratic program
(QP) with respect to the cable forces. Furthermore, constraints
on the interaction forces is demonstrated by ensuring the
stability of unilateral spherical joints. It is proven that the
resulting problem can be solved as a quadratically constrained
quadratic program (QCQP). The proposed formulations are
simulated on a 2-link 4 degree-of-freedom 8-cable system and
an 8-link 24 degree-of-freedom 76-cable mechanism.

Comparing with the traditional minimisation of the 2-
norm of cable forces, the results show that it is possible
to redistribute the cable forces to satisfy the desired ob-
jective functions and constraints on the interaction forces
and moments. This allows the joint interactions of MCDMs
to be considered within the inverse dynamics formulation.
Additionally, the measured the computational time for the
traditional and proposed formulations show the feasibility of
using the proposed formulations on practical systems.

The remainder of the paper is organised as follows: Section
II introduces the MCDM model and the inverse dynamics
problem. Section III derives the expressions for the interaction
forces and moments of MCDMs. Section IV formulates the
inverse dynamics problem with the objective to minimise
the interaction forces and moments. Section V extends this
to apply constraints on the interaction forces. Section VI
presents and discusses the simulation results. Finally, Section
VII concludes the paper and presents areas of future work.
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II. SYSTEM MODEL AND INVERSE DYNAMICS PROBLEM

A. Multilink Cable-Driven Manipulator Model

Consider the rigid body structure for a p link cable-driven
manipulator shown in Figure 1. The inertial base is represented
by body 0 and bodies 1 to p are the links of the manipulator,
where link p is the outermost link. The locations Gk and Pk
for k = 1, . . . , p represent the centre of gravity of link k and
the joint location between links k and k − 1, respectively.

Fig. 1. Rigid body structure of MCDMs showing the coordinate frames {Fk},
centre of gravity for each link Gk , and the joint locations Pk .

In [18], a generalised model for MCDMs allowing for
arbitrary cable-routing was derived through introducing the
Cable-Routing Matrix C. The dynamics for an n degree-of-
freedom MCDM actuated by m cables can be expressed as

M(q)q̈ + η(q̇,q) = −L(q, C)T f , (1)

where M ∈ Rn×n and η(q̇,q) ∈ Rn represent the mass-
inertia matrix and the vector containing the centrifugal, Cori-
olis and gravitational terms, respectively, and q ∈ Rn is
the system’s generalised coordinates. The cable force vector
f = [f1 f2 . . . fm]T ∈ Rm represents the set of cable
forces, where fi ≥ 0 denotes the force in cable i. The matrix
LT ∈ Rn×m is the transpose of the Jacobian that relates the
cable force vector and the resultant wrench on the manipulator.

B. Traditional Inverse Dynamics Problem

The inverse dynamics problem refers to the determination
of the cable forces f required to achieve the desired motion de-
fined by q, q̇ and q̈. Due to the actuation redundancy in cable-
driven systems with m ≥ n+ 1 cables, the inverse dynamics
problem has been typically formulated as an optimisation
problem. Considering the positive cable force constraints, the
optimal set of cable forces f∗ can be determined by solving

f∗ = arg min
f

Q(f)

s. t. M(q)q̈ + η(q̇,q) = −LT f
fmin ≤ f ≤ fmax . (2)

The constraints for (2) are the equations of motion (1) and
bounds on the cable forces. The minimum and maximum
bounds on the cable forces are represented by the vectors
fmin ≥ 0 and fmax > 0, respectively. The objective function
Q(f) is selected to achieve a desired goal, common objec-
tives that have been studied include Q(f) =

∑m
i=1 fi and

Q(f) =
∑m
i=1 f

2
i , where (2) results in a linear program (LP)

and a quadratic program (QP), respectively.

III. INTERACTION FORCES AND MOMENTS OF MCDMS

Considering the free body diagram of link k within an
MCDM as shown in Figure 2, the forces and moments acting
on link k is comprised of: the interaction at joints Pk and
Pk+1, the cable forces and the gravity force.
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Fig. 2. Free body diagram of link k showing the forces acting on the body.

The interaction force FPk
and moment MPk

acting on
joint Pk can be denoted by the interaction wrench pk =
[FTPk

MT
Pk

]T , expressed with respect to frame {Fk}. The
gravity wrench acting on link k in frame {Fk} can be denoted
by wGk

= [GT
k 0]T , where Gk is the gravity force acting

on link k. Denoting the wrench exerted by cable i on link
k in frame {Fk} as wTik

, the resultant wrench exerted by all
cables is wTk

=
∑m
i=1 wTik

. From Figure 2, Newton’s second
law for link k can be expressed as

ak = wGk
+ wTk

+

[
I3 03[

krGkPk

]×
I3

]
pk

−
[ k

k+1R 03[
krGkPk+1

]× k
k+1R

k
k+1R

]
pk+1 , (3)

where I3 and 03 are 3 × 3 identity and zero matrices,
respectively. The vector ak contains the derivatives of the
linear and angular momentums of link k in frame {Fk}. The
notation krAB represents the vector from point A to point B in
frame {Fk} and a

kR represents the rotation matrix from {Fk}
to {Fa}.

For the outermost link p, it can be assumed that FPp+1 =
MPp+1 = 0. Hence, the interaction wrench for joint a can be
derived recursively from the relationship (3) and expressed as

pa =

p∑
k=a

PTka(ak −wGk
−wTk

) , (4)

where

PTka =

[ a
kR 03

a
kR
[
krPaGk

]× a
kR

]
. (5)

In [18], it was shown for MCDMs that the resultant
wrench exerted by the cable forces on the system wT =
[wT

T1
. . . wT

Tp
]T can be expressed in the form wT = V T f ,

where V T ∈ R6p×m is a Jacobian matrix relating the cable
forces to the wrenches acting on the rigid bodies of the system.
From (4), the set of interaction forces and moments for the
system p = [pT1 . . . pTp ]T can be expressed in the form

p = u +RT f , (6)

where RT = PTV T , u = [uT1 . . . uTp ]T and

ua =

p∑
k=a

PTka(ak −wGk
) .
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The matrix PT ∈ R6p×6p is comprised of the terms from (5)
and can be expressed as

PT =


PT11 PT21 . . . PTp1
03 PT22 . . . PTp2
...

...
03 03 . . . PTpp

 .

From (6), it is shown that the interaction wrench can be
expressed linearly with respect to the cable forces.

IV. MINIMISATION OF INTERACTION FORCES/MOMENTS

For MCDMs, the objective function to achieve the minimi-
sation of interaction forces and moments can be expressed as

Q(f) =

p∑
a=1

αa |FPa
|2 + βa |MPa

|2 , (7)

where αa, βa ≥ 0 are weights that prioritise the different joints
of the system. The weights can be normalised by ensuring that∑

αa +
∑

βa = 1 . (8)

Expressing RT ∈ R6p×m from (6) in the form

RT =

 RT11 . . . RTm1
...

...
RT1p . . . RTmp

 , (9)

the vector RTia ∈ R6 represents the relationship between the
force of cable i and the interaction wrench of joint a, where[

FPa

MPa

]
= ua +

m∑
i=1

RTiafi . (10)

From (10), the interaction force FPa
= [FPax

FPay
FPaz

]T

and moment MPa
= [MPax

MPay
MPaz

]T of joint a can be
expressed as

FPax = uax + rTaxf , FPay = uay + rTayf

FPaz
= uaz + rTazf , MPax

= uaθ + rTaθf

MPay
= uaφ + rTaφf , MPaz

= uaψ + rTaψf , (11)

where ua = [uax uay uaz uaθ uaφ uaψ]T , and the vectors
rax, ray, raz, raθ, raφ, raψ ∈ Rm can be determined from
RTia ∀i.

From (11), the magnitude of the interaction force and
moment at joint a can be expressed as

|FPa
|2 = fTΛaf + λTa f + wa

|MPa |
2

= fTΓaf + γTa f + va , (12)

where

Λa = raxr
T
ax + rayr

T
ay + razr

T
az

λa = 2uaxrax + 2uayray + 2uazraz

wa = u2ax + u2ay + u2az

Γa = raθr
T
aθ + raφr

T
aφ + raψr

T
aψ

γa = 2uaθraθ + 2uaφraφ + 2uaψraψ

va = u2aθ + u2aφ + u2aψ .

From (12), the objective function in (7) can be expressed in
the quadratic form

Q(f) = fTHf + cT f + y , (13)

where

H =
∑

αaΛa + βaΓa

c =
∑

αaλa + βaγa

y =
∑

αawa + βava .

Using (13), the inverse dynamics problem for MCDMs with
the objective to minimise the interaction forces and moments
within the joints can be expressed in the form (2) as

f∗ = arg min
f

fTHf + cT f

s. t. M(q)q̈ + η(q̇,q) = −LT f
fmin ≤ f ≤ fmax . (14)

From (14), it is observed that the minimisation of interaction
forces and moments results in a quadratic programming (QP)
problem. It will now be shown that the problem is convex.

Lemma 1. Given any vector r = [r1 . . . rm] ∈ Rm, the
matrix Ω = r rT ∈ Rm×m is a positive semidefinite Hermitian
matrix.

Proof. The matrix Ω is Hermitian since the vector r is real
and the product r rT results in a symmetric matrix. The value
of fTΩf is non-negative since

fT r rT f = (rT f)T (rT f) ≥ 0

Since Ω is Hermitian and fTΩf ≥ 0, then Ω is a positive
semidefinite matrix.

Theorem 1. The matrix H from the problem (14) is positive
semidefinite.

Proof. By Lemma 1, the matrices Λax = raxr
T
ax, Λay =

rayr
T
ay , Λaz = razr

T
az , Γaθ = raθr

T
aθ, Γaφ = raφr

T
aφ and

Γaψ = raψr
T
aψ are also positive semidefinite. Hence, the

matrices Λa and Γa from (12) are positive semidefinite since

fTΛaf = fTΛaxf + fTΛayf + fTΛazf ≥ 0

fTΓaf = fTΓaθf + fTΓaφf + fTΓaψf ≥ 0 . (15)

As a result, H is positive semidefinite for nonnegative con-
stants αa, βa ≥ 0 ∀a, since

fTHf =
∑
a

αaf
TΛaf + βaf

TΓaf ≥ 0

is true as a result of (15).

The inverse dynamics problem (14) is convex since H is
positive semidefinite (Theorem 1). Compared with the well
studied objective Q(f) = fT f , the terms H and c distribute the
weighting of cable forces such that the actuation of cables that
produces larger interaction forces and moments are penalised.
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V. CONSTRAINTS TO MAINTAIN STABILITY OF
UNILATERAL SPHERICAL JOINTS

Section IV introduced the minimisation of joint interactions
within the inverse dynamics objective function. In this section,
the consideration of constraints with respect to the interaction
forces and moments is formulated. For example, consider
the unilateral spherical joint shown in Figure 3. The key
characteristic of unilateral joints is that the socket covers less
than half of the surface of the ball, and hence it is possible
for the ball to dislocate from the socket.

TexPoint fonts used in EMF.  
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Fig. 3. Unilateral spherical joint showing the interaction force angle ρa and
the region of joint stability. The joint is considered stable if the interaction
force is within the shaded region.

Unilateral joints appear in both engineered and biological
systems. For example, the glenohumeral joint of the human
shoulder complex is a type of such joint, where the joint can
dislocate depending on the direction of the interaction force.
For joint a, the angle between the direction of the interaction
force and the joint can be described as the interaction force
angle ρa, as shown in Figure 3. For unilateral spherical joints,
if the interaction force angle exceeds ρ∗a, the joint would
dislocate and can be considered as unstable.

Mathematically, joint a can be regarded as stable if: 1) the
contact force is applied to the area of the ball joint that is
covered by the socket

ρa = tan−1


√
F 2
Pax

+ F 2
Pay

FPaz

 ≤ ρ∗a , (16)

and 2) the ball of the joint is pushed into the socket

FPaz
> 0 . (17)

The joint angle constraint (16) can be alternatively expressed
as

F 2
Pax

+ F 2
Pay
≤ µaF 2

Paz
, (18)

where µa = tan2 ρ∗a. Substituting the expressions from (11)
into (18), the condition for the stability of joint a results in
the quadratic form

fTGaf + bTa f + ga ≤ 0 , (19)

where

Ga = rTaxrax + rTayray − µarTazraz
ba = 2(uaxrax + uayray − µauazraz)
ga = u2ax + u2ay − µau2az .

Incorporating the constraints (17) and (19) into the inverse

dynamics problem (2) results in the optimisation problem

f∗ = arg min
f

Q(f)

s. t. M(q)q̈ + η(q̇,q) = −LT f
fmin ≤ f ≤ fmax

fTGaf + bTa f + ga ≤ 0 ∀a
uaz + rTazf > 0 ∀a . (20)

Compared with (2) and (14), the problem in (20) consists of
both linear and quadratic constraints. Hence, if the objective
function Q(f) is either linear or quadratic, the resulting inverse
dynamics problem is a quadratically constrained quadratic
program (QCQP). The QCQP problem is convex if and only if
the objective function is convex and also the matrices Ga are
all positive semidefinite. Due to the subtraction of µarTazraz in
Ga, the convexity of (20) cannot be guaranteed. Finally, note
that the additional constraints on the interaction forces in (20)
may lead to no solutions to the inverse dynamics problem.

VI. SIMULATION RESULTS AND DISCUSSION

Two example systems were selected to demonstrate the
proposed inverse dynamics schemes formulated in Sections
IV and V. Section VI-A presents the simulation for a simple
2-link 4 degree-of-freedom system actuated by 8 cables and
in Section VI-B a more complex 8-link 24 degree-of-freedom
mechanism actuated by 76 cables.

For each example trajectory, simulations using three differ-
ent inverse dynamics formulations were performed:

1) Case 1: Minimisation of the well studied 2-norm of
cable forces, Q(f) = fT f , from Section II-B (QP
problem) to serve as a comparison baseline.

2) Case 2: Minimisation of interaction forces using (14)
formulated in Section IV (QP problem).

3) Case 3: Minimisation of interaction forces with con-
straints on the interaction angle using (20) formulated in
Section V to maintain joint stability (QCQP problem).

Case 1 is a well studied method in the literature and is used
as a baseline to compare against the proposed approaches.

A. 2-link 4-DoF Spherical-Revolute Manipulator

The rigid body structure and cable attachments for the 2-
link example are shown in Figure 4. The system consists of a
unilateral spherical joint connecting link 1 to the base and a
revolute joint connecting links 2 and 1. The generalised coor-
dinates for the system can be denoted by q = [q1 q2 q3 q4]T ,
where q1, q2 and q3 represent the xyz-Euler angle rotations
of the spherical joint and q4 represents the relative rotation
in the x axis between links 2 and 1. The mass and principal
moments of inertia are m = 0.1 kg and Ix = Iy = Iz = 1
kg·m2, respectively, for both of the links.

The cables 1 to 4 were connected from the base link to link 1
symmetrically about the ball joint. Cables 5 to 8 were similarly
connected from the base link to link 2. The minimum and
maximum cable forces for all cables were set at fmin = 0.001
N and fmax = 1000 N, respectively. Details of the inverse
dynamics cases for the 2-link example are as follows:
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Fig. 4. Model of the 2-link 4 degree-of-freedom SR system.

1) Minimisation of Q(f) = fT f subject to fmin ≤ f ≤
fmax (traditional method).

2) Minimisation of the magnitude of the interaction force at
the spherical joint Q(f) = |FP1 |

2, where α1 = 1, α2 =
β1 = β2 = 0 from (7), subject to fmin ≤ f ≤ fmax.

3) Minimisation of the magnitude of the interaction force
at the spherical joint Q(f) = |FP1

|2, subject to fmin ≤
f ≤ fmax and a constraint of ρ1 ≤ 30◦ on the interaction
angle of the spherical joint.

The constraint on the interaction angle of the unilateral
spherical joint is required to avoid large interaction angles
that may lead to instability and dislocation of the joint. Two
trajectories were chosen to illustrate the proposed inverse
dynamics approaches.

1) Trajectory 1: A simple trajectory was first chosen to
illustrate the inverse dynamics for the 2-link manipulator. The
motion of the manipulator was purely in the YZ-plane with
rotations in X for both the spherical and revolute joints. The 1
second trajectory q(t) was generated by fitting a quintic spline
to the initial conditions q(0) = [π6 0 0 − π

10 ]T , q̇(0) =
q̈(0) = 0 and final conditions q(1) = [−π6 0 0 π

10 ]T , q̇(1) =
q̈(1) = 0. The generated trajectory q(t) and its derivative q̇(t)
are shown in Figure 5.
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Fig. 5. Trajectory 1 for the 2-link manipulator example.

The inverse dynamics solutions to trajectory 1 are shown in
Figure 6. For this example, it was found that the minimisations
of 2-norm of cable forces Q(f) = fT f and the interaction
force on the spherical joint Q(f) = |FP1

|2 produced the same
resulting cable forces. This is due to the fact that since the
trajectory motion is purely in the YZ-plane, cables 1, 3, 5 and
7 were not used in generating the motion. As a result, there
is less actuation redundancy available for the minimisation

of the joint interaction force. Furthermore, it should be noted
that the minimisation of the 2-norm of cable forces also has an
indirect impact to minimise the interaction forces. As such, the
magnitude of interaction forces that can be further minimised
depends on the manipulator, cable arrangement and trajectory.
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Fig. 6. Force profiles f(t) of different inverse dynamics problems for
trajectory 1 of the 2-link manipulator example.

The resulting interaction angle of the spherical joint pro-
duced by cable force profile from Figure 6(a) is shown in
Figure 7(a). It can be observed that the interaction angle ρ1
exceeded the limit of ρ∗1 = 30◦ for nearly the entire trajectory.
The cable forces solution to the inverse dynamics problem
considering the interaction angle constraint (case 3) are shown
in Figure 6(b). The constraint of ρ1 ≤ 30◦ was satisfied, as
shown in Figure 7(b), through a redistribution of the cable
forces. As only cables 6 and 8 is able to produce motion on
link 2 for trajectory 1, the force profiles for cables 6 and 8
as shown in Figures 6(a) and 6(b) are the same. However,
for 0 ≤ t ≤ 0.5 it can be observed that cable 4 was used to
lower the interaction angle such that the constraint is satisfied,
resulting in an increased force in cable 2. This effect is similar
in the second part of the trajectory 0.5 ≤ t ≤ 1.
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(a) Minimisation of fT f and inter-
action forces at the spherical joint
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(b) Minimisation of interaction
forces at the spherical joint with
constraint ρ1 ≤ 30◦

Fig. 7. Profiles of interaction angles ρ1(t) for the spherical joint of different
inverse dynamics problems for trajectory 1 of the 2-link manipulator example.

2) Trajectory 2: A more general spatial trajectory was
selected for this example. In the same manner as the first
trajectory, the 1 second trajectory was generated by fitting
a quintic spline to the initial conditions q(0) = [0.2 −
0.2 − 0.1 0.2]T , q̇(0) = q̈(0) = 0 and final conditions
q(1) = [−0.5 0.5 0.2 − 0.2]T , q̇(1) = q̈(1) = 0.
The generated trajectory q(t) and its derivative q̇(t) for
this scenario are shown in Figure 8. For the described the
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trajectory, the solution forces for the three inverse dynamics
cases are shown in Figure 9.
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Fig. 8. Trajectory 2 for the 2-link manipulator example.

One known characteristic of the minimisation of Q(f) =
fT f , as observed in Figure 9(a), is that it aims to distribute
the use of cables more evenly as the quadratic sum penalises
excessive force in a single cable. However, this resulted in
high interaction forces at the joint as shown in Figure 10(a).

By performing minimisation of the interaction force |FP1
|,

the cable forces solution from Figure 9(b) produced a lower
interaction force at the spherical joint (Figure 10(b)). This
is most significant at t ≈ 0.5 s where the peak magnitude
decreased from 572 N to 392 N. Comparing f(t) for case
1 (Figure 9(a)) and case 2 (Figure 9(b)) in more detail, it
can be observed that the reduction in interaction force at the
spherical joint is achieved by decreasing the forces in cables
5 to 8 attached to link 2 of the manipulator. At t ≈ 0.5 s
and 0.6 ≤ t ≤ 1 s, the forces in cables 1 to 4 were increased
while the forces in cables 5 to 8 significantly lowered. This
can explained by the fact that the moment arms produced by
the cables attached to link 2 are larger than that of link 1,
and hence producing higher interaction forces at the spherical
joint.

The interaction angle at the spherical joint for cases 1 to 3
are shown in Figure 11. It can be seen in Figures 11(a) and
11(b) that for both cases 1 and 2, respectively, the interaction
angle exceeded the maximum angle ρ∗1 = 30◦. With the
inclusion of the interaction angle constraint (case 3), it is
shown in Figure 11(c) that the constraint was satisfied. For
the time period 0 ≤ t ≤ 0.6 s, the cable forces for case 3
(Figure 9(c)) were the same as that with case 2 (Figure 9(b))
as the interaction angle constraint was not violated. However,
for 0.6 < t ≤ 1 s it can be observed that the cable forces were
redistributed in order to satisfy the interaction angle constraint.
Compared with case 2, the solution to case 3 resulted in both
higher cable and interaction forces, as seen by Figures 9(c)
and 10(c), respectively.

B. 8-link 24-DoF 8-Spherical Neck-Inspired Manipulator

To demonstrate the scalability of the proposed inverse
dynamics formulations, the analysis was performed on the
human neck inspired 8-link 24 degree-of-freedom mechanism
actuated by 76 cables [18], [25] as shown in Figure 12.

As displayed in Figure 12(a), the 8-link system is connected
by unilateral spherical joints. The joint location Pk denotes
the location that link k is connected to link k − 1. The
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Fig. 12. Model of the 8-link 24 degree-of-freedom system.

generalised coordinates for the system q = [qT1 . . . qT8 ]T

can be represented by 8 sets of Euler angles, where qk =[
θk φk ψk

]T
are the xyz-Euler angles of joint k. The

cable-routing and attachment locations were obtained from
that of a human neck described in [25] and are visualised
in Figure 12(b).

Using the generalised model presented in [18], the inter-
action forces acting on the system joints were determined by
(11). The simulated trajectory for this example was a roll mo-
tion trajectory (left to right tilting of the head). The trajectory
(pure rotation in the x axis) was generated by interpolating
from the initial pose q1 = · · · = q7 = [− π

45 0 0]T , qT8 =
[− π

30 0 0]T to the final pose q1 = · · · = q7 = [ π45 0 0]T ,
qT8 = [ π30 0 0]T with zero initial velocities and accelerations.
The trajectories were generated in the same manner as that for
the 2-link manipulator example in Section VI-A.
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Fig. 13. Trajectory for the 8-link manipulator example.

Details for the three inverse dynamics cases that were
described at the beginning of Section VI are:

1) Minimisation of Q(f) = fT f subject to fmin ≤ f ≤
fmax (traditional method).

2) Minimisation of the magnitudes of the interaction forces
Q(f) =

∑8
a=1 |FPa |

2, where αa = 1
8 , βa = 0 satisfies

(8), subject to fmin ≤ f ≤ fmax.
3) Minimisation of the magnitude of the interaction forces,

subject to fmin ≤ f ≤ fmax and a joint interaction angle
constraint of ρa ≤ 15◦ ∀a on all joints.

Figure 14 shows the resulting cable forces for the three
different inverse dynamics problems. Similar to the 2-link
examples in Section VI-A, it can be clearly observed that a
redistribution of cable forces occurred to satisfy the objective
and constraints. The resulting interaction forces at the joints
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(a) Case 1: minQ(f) = fT f
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(c) Case 3: Constraint ρ1 ≤ 30◦

Fig. 9. Profiles of the cable forces f(t) of different inverse dynamics problems for trajectory 2 of the 2-link manipulator example. Compared with the forces
shown in (a) for Q(f) = fT f , (b) and (b) show a redistribution of cable forces in order to minimise the interaction forces at the spherical joint. From t = 0.6
s to t = 1 s, the cable forces in (c) are redistributed from (b) to ensure that the interaction angle constraint is satisfied.
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(c) Case 3: Constraint ρ1 ≤ 30◦

Fig. 10. Profiles of the interaction force on the spherical joint
∣∣FP1

∣∣ of different inverse dynamics problems for trajectory 2 of the 2-link manipulator
example.
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(c) Case 3: Constraint ρ1 ≤ 30◦

Fig. 11. Profiles of the interaction angle on the spherical joint ρ1(t) of different inverse dynamics problems for trajectory 2 of the 2-link manipulator example.

from cases 1 and 2 are shown in Figure 15. Comparing Figure
15(b) with Figure 15(a), it can be seen that the increased
cable forces in Figure 14(b) resulted in lower magnitudes of
interaction forces across all of the joints.
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(a) Minimise Q(f) = fT f (case 1)
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(b) Minimise interactions (case 2)

Fig. 15. Profiles of the interaction forces |FPa | ∀a = 1, . . . , 8 at the joints
of the 8-link manipulator example.

For both cases 1 and 2, Figures 16(a) and 16(b) show that

the interaction angle constraint of ρa ≤ 15◦ was violated by at
least some of the manipulator joints. However, if the constraint
was incorporated (case 3), it could be observed in Figure 16(c)
that it was possible satisfy the constraint by the redistribution
of the cable forces. However, as with the 2-link example, the
magnitude of the cable forces required to generate the motion
(Figure 14(c)) significantly increased.

From the cable force profiles for cases 2 and 3 in Figures
14(a) and 14(b), respectively, abrupt changes in cable forces
∂fi
∂t ≈ 0 can be observed in the solution. This is due to

the fact that the minimisation of interaction forces (14) is a
convex problem and is not strictly convex, since the matrix
H is positive semidefinite and not positive definite. As such,
multiple global minima may exist resulting in possible abrupt
changes in cable forces. In practical implementation, one
possible approach to resolve this issue is to minimise or
constrain the change in cable forces.
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(c) Case 3: Constraint ρa ≤ 15◦ ∀a

Fig. 14. Profiles of the cable forces f(t) of different inverse dynamics problems for the 8-link manipulator example. Compared with the forces shown in (a)
for Q(f) = fT f , (b) and (b) show a redistribution of cable forces in order to minimise the interaction forces. Furthermore, (c) shows that increased cable
forces have been used to ensure that the interaction angle constraint is satisfied.
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(c) Case 3: Constraint ρa ≤ 15◦ ∀a

Fig. 16. Profile of the interaction angles on the joints for different inverse dynamics formulations. Compared with the interaction angles for Q(f) = fT f as
shown in (a), the interaction angles in (b) increased when minimising for the joint interaction forces. (c) shows the interaction angles when a constraint of
ρa ≤ 15◦ ∀a was applied. Without the constraint, the interaction angles exceeded 15◦ as shown in (a) and (b).

C. Computational Speed

A comparison of the computational speed for the pro-
posed formulations with the traditional 2-norm minimisation
was performed to assess the viability for implementation
in practical applications. All cases of the inverse dynamics
problems were performed on the same hardware with the CPU
Intel R©CoreTM i7-3520M @ 2.90Hz and 8 GB of RAM. Two
different QP solvers, object orientated quadratic programming
(OOQP) [26] and interior point optimiser (IPOPT) [27], were
used through the OPTI Toolbox [28] software running on
MATLAB 2014a 64-bit version. Table I displays the compu-
tational times used to resolve one instance of the problem for
the different trajectories and inverse dynamics formulations.

The mean computational time µtime for each example
trajectory was computed by taking the average time required
to compute the inverse dynamics problem at each instance in
time for the trajectory over 5 repeated trajectory runs, a total of
505 instances of the inverse dynamics problem. The table also
includes the standard deviation of the computational time and
average number of iterations for each problem. Since cases
1 and 2 are convex, as shown in Section IV, OOQP could
be applied to such problems. However, only IPOPT could be
applied to case 3 as the quadratic constraint had the possibility
to be non-convex.

From the resulting computational times, it can be observed
that the OOQP solver was able to resolve the cable forces
much faster than IPOPT for the same problem. For cases 1 and
2 for the 2-link example with 8 cables, the mean time µtime for
OOQP was less than 1 ms and for IPOPT was approximately

5 ms. As expected, no observable difference in computational
time was found in the minimisation of the magnitudes of
interaction forces and moments (case 2) compared with the 2-
norm minimisation (case 1) as both problems are convex QPs.
However, since the consideration of interaction constraints
(case 3) results in a possibly non-convex problem, IPOPT was
needed to be used. This resulted in longer computational times
to resolve the inverse dynamics at approximately 5 ms, similar
to the time required to resolve cases 1 and 2 using IPOPT.

For the complex 8-link example with 76 cables, the com-
putational times were significantly higher. The mean compu-
tational times for cases 1 and 2 using OOQP increased from
less than 1 ms to approximately 6 and 9 ms, respectively.
Furthermore, IPOPT for cases 1 and 2 required an average of
approximately 9 and 16 ms, respectively. For this example,
the interaction angle constraint QCQP problem using IPOPT
increased the computational effort to an average of 39 ms.
From the measured computational times, for simpler problems
of lower dimensions the proposed approaches could be used in
practical applications. As the number of cables and number of
degrees of freedom increases, both the proposed formulations
and the traditional QP approach suffer from increased com-
putational costs. However, the computational effort required
for the proposed approaches are comparable to that of the
traditional minimisation of the 2-norm of cable forces.

VII. CONCLUSION

The inverse dynamics problem for MCDMs with the consid-
eration of interaction forces and moments was formulated. The
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TABLE I
COMPUTATIONAL COSTS FOR THE DIFFERENT INVERSE DYNAMICS PROBLEMS AND EXAMPLES

Example
Case 1 Case 2 Case 3

OOQP [26] IPOPT [27] OOQP [26] IPOPT [27] IPOPT [27]
µtime [s] σtime [s] µiter µtime [s] σtime [s] µiter µtime [s] σtime [s] µiter µtime [s] σtime [s] µiter µtime [s] σtime [s] µiter

2-link trajectory 1 0.00043 0.00043 17 0.00576 0.00072 12 0.00044 0.00046 17 0.00375 0.00044 6 0.00578 0.00137 8
2-link trajectory 2 0.00041 0.00065 11 0.00464 0.00316 10 0.00074 0.00339 23 0.00981 0.05007 25 0.00662 0.00317 9

8-link example 0.00592 0.00078 15 0.00935 0.00186 13 0.00993 0.00133 13 0.01586 0.00297 20 0.03867 0.03170 21

minimisation in the magnitude of the interaction forces and
moments was shown to result in a convex quadratic program.
Furthermore, the inclusion of interaction force constraints
was formulated. These formulations were simulated for two
MCDM examples: a 2-link 8-cable system and an 8-link 76
cable system. It was shown that the redistribution of cable
forces can result in the minimisation or constraint satisfaction
on the joint interaction forces and moments. Future work
would focus on increasing the computational efficiency in
resolving the inverse dynamics of MCDMs.
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