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Abstract In this paper, the software platform CASPR-ROS is introduced to ex-
tend the author’s recently developed simulation platform CASPR. To the authors’
knowledge, no single software framework exists to implement different types of
analyses onto different hardware platforms. This new platform therefore takes the
advantages of CASPR, including its generalised CDPR model and library of differ-
ent analysis tools, and combines them with the modular and flexible hardware inter-
facing of ROS. Using CASPR-ROS, hardware based experiments can be performed
on arbitrarily CDPR types and structures, for a wide range of analyses, including
kinematics, dynamics and control. The case studies demonstrate the potential to
perform experiments on CDPRs, directly compare algorithms and conveniently add
new models and analyses. Two robots are considered, a spatial cable robot actuated
by PoCaBot units and an anthropomorphic arm actuated by MYO-muscle units.

1 Introduction

Cable-driven parallel robots (CDPRs) are a class of mechanisms in which actuation
is transmitted through cables in place of rigid links. CDPRs possess a range applica-
tions including payload manipulation [1, 2, 3], motion simulation [4], exoskeletons
[5] and musculoskeletal robots [6, 7, 8, 9]. An important feature of cable actuation
is that cables can only transmit forces in tension. This creates many unique chal-
lenges in CDPR modelling [6], design [10], inverse dynamics [11, 12, 13], forward
kinematics [14, 15, 16] and motion control [17, 18].

Jonathan Eden∗ · Ying Tan · Denny Oetomo
The University of Melbourne, Melbourne, Australia
e-mail: jpeden@student.unimelb.edu.au, yingt@unimelb.edu.au, doetomo@unimelb.edu.au

Jonathan Eden · Chen Song · Darwin Lau
The Chinese University of Hong Kong, Hong Kong
e-mail: chensong@link.cuhk.edu.hk, darwinlau@mae.cuhk.edu.hk

1



2 Jonathan Eden, Chen Song, Ying Tan, Denny Oetomo and Darwin Lau

Most CDPR algorithms can be applied onto different classes of CDPR. However,
CDPR research typically either validates algorithms in simulation or through imple-
mentation only on the research group’s robots. This inhibits CDPR development and
research in a number of ways: 1) The evaluation of new techniques often neglects
the effect of CDPR structures such that the impact of varying attachments/degrees
of freedom/cables may be unknown. 2) There are no benchmarking algorithms for
performance comparison. 3) There is a significant cost in implementing new results
on hardware, where researchers often re-implement existing models and algorithms.

To address these concerns, different software platforms have been developed for
the study of CDPRs. In [19], a MATLAB/Simulink control simulation software
interfaced to the dynamics simulator XDE was presented. This platform was de-
veloped for single link CDPRs, where the addition of other CDPRs is not simple.
For planar and spatial CDPRs, the ARACHNIS [20] and WireCenter [3] software
platforms were developed. These platforms were not designed for algorithm bench-
marking and additional algorithms cannot be added. Recently, CASPR [21], a MAT-
LAB based simulation platform for the study of CDPRs, was developed. This plat-
form addresses the previous issues by allowing the analysis of arbitrary CDPRs with
the possibility to accommodate different algorithms.

CASPR is primarily a simulation platform and does not favour online hardware
control and analysis due to its object oriented MATLAB implementation. The ex-
tension of CASPR for hardware implementation would allow the operation of arbi-
trary CDPR hardware to benefit from the flexibility, robustness and extendibility of
CASPR. ROS represents one existing means of interfacing robotics hardware which
provides a modular and well supported interface for extension and integration [22].

In this paper, CASPR-ROS is introduced as a software platform for CDPR hard-
ware implementation. This platform implements the generalised and object-oriented
principles of CASPR into ROS to take advantage of ROS’s flexible and modular
hardware interfacing capabilities. Through the addition of a new extendible hard-
ware interfacing layer, it is shown that hardware implementations can be performed
onto arbitrary CDPRs using arbitrary hardware units. The convenience and effi-
ciency of benchmarking and online implementation in CASPR-ROS is then demon-
strated through experimental results obtained on different hardware platforms.

2 Background

2.1 System Model

Consider the general single (SCDR) and multi-link (MCDR) CDPRs depicted in
Figure 1. The n degree of freedom robot configuration (joint space) is represented by
the pose vector q ∈ Rn. The m cable actuation can be described by the cable length
and force (cable space) vectors l = [l1 . . . lm] ∈ Rm and f = [ f1 . . . fm] ∈ Rm,
respectively, where li, fi ≥ 0 denote the length and force of cable i.



CASPR-ROS: A Generalised Cable Robot Software in ROS for Hardware 3

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

cable i

cable 1

cable m

cable 2
End e®ector

(a) Single-link Cable-Driven Robot

Cable i

10iA

1 2i p i pA A

2 3i k i kA A

1G

2G

kG

pG

32iA

Cable 1

Cable 2

Cable 3
Cable 4

1il

1if

2if

2il
3if

3il

110A

111A

211A

212A

310A

311A

410A

41pA

segment 1

segment 2

segment 3

(b) Multi-link Cable-Driven Robot

Fig. 1: General Single-link and Multi-link CDPRS

The kinodynamic equations for the CDPRs depicted in Figure 1 are given by

l̇ = L(q)q̇ (1)
M(q)q̈+C(q̇,q)+G(q)+we =−LT (q)f

0≤ fmin(q)≤ f≤ fmax(q) , (2)

where L ∈ Rn×m is the cable Jacobian matrix, M ∈ Rn×n is inertia matrix and
C, G, we ∈ Rn are the Coriolis/centrifugal vector, the gravitational vector and the
external wrench, respectively. The vectors fmin, fmax ∈ Rm are the minimum and
maximum cable force bounds. They are constant for ideal cables and pose depen-
dent for spring, variable stiffness [10, 23] and muscle inspired cables [24, 25].

2.2 Models in CASPR

CASPR is a software platform for the simulation and analysis of CDPRs [21].
CASPR models CDPRs with fundamental equations (1) and (2) using the cable rout-
ing matrix based model [6]. This model can represent SCDRs and MCDRs provided
that it is given the inertia and joint properties of each link as well as the actuation
and attachment specifications of each cable. These specifications are provided in an
easily reconfigurable manner through the use of XML scripts1.

The model representation used by CASPR provides a generic form from which
any new CDPR can be added. As such, CASPR-ROS makes use of this same rep-
resentation allowing for new models to be easily added in addition to the existing
CASPR supported models including: NIST RoboCrane [1], CoGiRo [2], IPAnema
family [3], the MyoArm [9], and CAREX [5]. To use these models on hardware it
is necessary that the algorithms are made suitably computationally efficient and that

1 A detailed explanation of CASPR models and the use of XML scripts is provided in [21].



4 Jonathan Eden, Chen Song, Ying Tan, Denny Oetomo and Darwin Lau

interfaces are provided to connect the computational component of CASPR with the
hardware.

2.3 Analysis in CASPR

CASPR supports CDPR analysis using an inheritance based object oriented ap-
proach. For each analysis problem, an abstract based class is created to represent the
problem. New algorithms are then generated by inheriting the base class and imple-
menting abstract methods which map the input to the appropriate outputs. Using this
approach, different algorithms for a range of problems including inverse dynamics,
forward kinematics, control and workspace analysis are supported in CASPR[21].

In hardware implementation, the resolution of joint space wrench into cable
forces, conversion of cable lengths into joint space pose and the tracking of reference
trajectories must be considered. CASPR-ROS therefore uses the generalised inheri-
tance based paradigm of CASPR [21] for the inverse dynamics, forward kinematics
and control problems. CASPR-ROS currently contains the following algorithms:

• Inverse Dynamics - The computationally efficient closed form method [11] and
the quadratic programming method using the qpOASES solver [26].

• Forward Kinematics - The Jacobian pseudo-inverse method [14] and the non-
linear least squares method [15].

• Control - The computed torque [17] and Lyapunov based static [18] controllers.

3 Interfacing Hardware in CASPR-ROS

3.1 Integrating CASPR with ROS

Using the reconfigurable model representation and inheritance based object ori-
ented paradigm discussed in Section 2, CASPR-ROS users can apply a range of
CDPR analysis techniques onto different CDPR models. To connect this generic
CASPR-ROS computational module to hardware it is necessary for the module to
be interfaced with hardware specific sensors and actuators. ROS is chosen for this
connection due to its widespread usage, existing hardware support capabilities and
open source nature. ROS messaging is then used to translate between the cable space
variables and the actuator and sensor information.

Figure 2 shows two different ROS-based hardware communication schemes sup-
ported in CASPR-ROS: the centralised method and the distributed method. It can be
seen that the centralised method (Figure 2(a)) connects hardware to CASPR-ROS
through a single experiment node. This node facilitates all possible CASPR-ROS
operations including forward kinematics, trajectory generation, control and inverse
dynamics. In addition, the node is also responsible for translating the generic cable
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space information into hardware specific feedback and setpoint ROS messages. As
a result, the centralised method allows for a more direct process of porting CASPR
code into ROS. However, the method prevents common operations, such as forward
kinematics, from being continuously operated while the hardware is active and lim-
its algorithm changes to only occur in between experiments. This approach is there-
fore best used for single experiments that are not repeated such as calibration.

(a) Centralised Communication Scheme (b) Distributed Communication Scheme

Fig. 2: ROS based Hardware Communication Methods used in CASPR-ROS

In contrast, the distributed method (Figure 2(b)) distributes the common CASPR-
ROS operations across a number of ROS nodes thereby allowing for the nodes to be
run independently if desired. As a result, this method can allow for nodes and anal-
ysis algorithms to be changed within single experiments and is best used for repeti-
tive operation of experiments. In addition to having ROS publishers and subscribers
associated with the feedback and setpoint messages, the distributed method also
requires CASPR-ROS messages to be defined for communication between CASPR-
ROS nodes. The following messages are provided:

• joint kinematics - Contains the kinematic vectors q, q̇ and q̈.
• master command - Contains the current operation and timing information.
• model update command - Provides the command variables qcmd , q̇cmd ,

q̈cmd and wcmd for updating the equation of motion (2).

3.2 Hardware Interfaces

Common to all CASPR-ROS communication is the need to translate between
generic cable space variables and hardware specific ROS messages. CASPR-ROS
does this by providing an abstract hardware interfacing class. This class therefore
contains all of the basic ROS messaging publisher and subscriber objects in addi-
tion to providing the rules for cable space-hardware translation. In this manner, the
CASPR-ROS computational core remains generic and need not consider hardware
specific requirements such as filtering and relative/absolute data conversion.



6 Jonathan Eden, Chen Song, Ying Tan, Denny Oetomo and Darwin Lau

The abstract class HardwareInterfaceBase therefore sits between the
hardware and the CASPR-ROS computational core. Implementations of this class
are responsible for translating the hardware specific contents of the feedback mes-
sage into the associated cable space variables and in writing the actuator specific
commands given knowledge of the command cable space variables. This is achieved
by implementing the abstract methods updateFeedback(..),
publishForceSetpoint(..), publishLengthSetpoint(..) and
publishVelocitySetpoint(..). To show CASPR-ROS’s use of hardware
interfaces, the FlexrayInterface and PoCaBotInterface classes have
been constructed for MYO-muscle modules [27] and PoCaBot units2.

4 Experiments in CASPR-ROS

4.1 Adding new Experiments

Experiments in CASPR-ROS represent executables which define the operation of a
CDPR using the analysis techniques and hardware interfaces discussed in Sections
2 and 3. New experiments can be added into CASPR-ROS through the addition of
new master ROS nodes. A single master node is therefore responsible for generating
a reference in addition to possibly specifying the CDPR model, hardware interface
and analysis algorithm when the centralised scheme is used.

Like the modelling and hardware interface classes described in [21] and Section
3, respectively, CASPR-ROS master nodes use an inheritance based object oriented
design principle. The abstract classes ScriptBase and MasterNodeBase are
classes which comprise of a single mainLoop function which is to be implemented
by all new centralised and distributed experiments, respectively. Code Sample 1
illustrates the mainLoop function used in CASPR-ROS.

Code Sample 1: mainLoop function used in ScriptBase class.
/ / V a r i a b l e I n i t i a l i s a t i o n
bool i s i n i t i a l i s e d = 0 , f i r s t t i m e = 1 ;
/ / G e n e r a l O p e r a t i o n
whi le ( ( r o s : : ok ( ) ) && ( ! t e r m i n a t i n g c o n d i t i o n ( t ) ) ) {

/ / Only p r o c e e d once t h e ha rdware i s r e a d y
i f ( h a r d w a r e i n t e r f a c e . hardwareReady ( ) ) {

/ / Check t h e i n i t i a l i s a t i o n s t a t u s o f t h e e x p e r i m e n t
i f ( ! i s i n i t i a l i s e d ) {

/ / Run t h e i n i t i a l i s a t i o n p r o c e d u r e
i s i n i t i a l i s e d = i n i t i a l i s i n g f u n c t i o n ( f i r s t t i m e ) ;
i f ( f i r s t t i m e ) { f i r s t t i m e = f a l s e ; }

} e l s e {
/ / Run t h e main p r o c e d u r e
m a i n f u n c t i o n ( t ) ; t += SYSTEM PERIOD ;

2 PoCaBot unit specifications can be found at https://github.com/darwinlau/CASPR/wiki
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}
}
/ / ROS management
r o s : : sp inOnce ( ) ; l o o p R a t e . s l e e p ( ) ;

}
/ / T e r m i n a t e t h e s c r i p t
t e r m i n a t i n g f u n c t i o n ( ) ;

It can be seen that the mainLoop function represents a single function that de-
fines the behaviour of the robot throughout operation. This behaviour is defined for
each particular experiment through the implementations of four abstract methods:
terminating condition(..) which defines the terminating condition for
the main function, initialising function(..) which initialises the hard-
ware, main function(..) which defines the desired general CDPR behaviour
and terminating function(..) which safely terminates the experiment.

4.2 Operating Procedure

To run experiments in CASPR-ROS the following procedure is required: 1) Con-
figure the model parameters and trajectories using CASPR XML scripting. 2) Con-
figure the experiment settings using the roslaunch files associated with the desired
experiments. 3) Run the relevant ROS nodes using the appropriate ROS launch files.

5 Experimental Results

Two case studies are presented using the CDPRs depicted in Figure 3. These stud-
ies show the application of CASPR-ROS on arbitrary CDPRs and CASPR-ROS’s
potential application for benchmarking different analysis algorithms on hardware3.

5.1 Case Study: Spatial Cable Robots using PoCaBot Units

This case study shows the use of CASPR-ROS in the online length control of the
spatial CDPR driven by PoCaBot units (depicted in Figure 3(a)) with the units
attached on the corners of a 84× 54× 80cm frame. Figure 4 depicts the per-
formance of the system for each of the trajectories depicted in Figure 5, where[
q1 q2 q3 q4 q5 q6

]T
=
[
x y z α β γ

]T and the orientation
[
α β γ

]T is represented
by the XYZ Euler angle convention. It can be seen from Figure 4 that the robot

3 The case study specifications can be found in the folder data/model config/models at the
repository https://github.com/darwinlau/CASPR. Case Studies 1 and 2 are contained
in the folders PoCaBot spatial and BM arm, respectively.
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(a) Spatial PoCaBot
CDPR

(b) 2 Link BioMuscular-Arm

Fig. 3: Case Study CDPRs

tracks the desired lengths with only a small lag and tracking error. In addition it
can be seen from Figure 4 that the obtained length feedback is provided within the
PoCaBot operating frequency of 20Hz (for 8 motors) indicating the capability of
CASPR-ROS to be configured for this online constraint.
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Fig. 4: Cable Length Command (Dashed) and Feedback (Solid)
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Fig. 5: Reference Joint Space Trajectory



CASPR-ROS: A Generalised Cable Robot Software in ROS for Hardware 9

From this case study it can be seen that online kinematic length control can be
achieved using CASPR-ROS. Furthermore, by using XML scripts and modular ROS
nodes, the resulting code is flexible to changes in the experimental set-up, such as
different experimental trajectories, without the need for separate experiment scripts.

5.2 Case Study: BioMuscular Arm using MYO-muscles

This case study illustrates the use of CASPR-ROS in benchmarking two different in-
verse dynamics algorithms over a range of cable sets. The experiment is performed
using the 2 link BioMuscular Arm (BM-Arm) with Myomuscle units, depicted in
Figure 3(b). The performance of the closed form [11] and minimum force norm
quadratic program (QP) based inverse dynamics algorithms are compared by track-
ing the reference joint space trajectories (shown with dashed lines) in Figure 6 with
the cable sets CS1 and CS2, where

[
q1 q2 q3 q4

]T
=

[
α β γ θ

]T . To ensure accu-
rate tracking, a computed torque controller is also implemented.
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Fig. 6: Joint Space Command (dashed) and Forward Kinematics (solid) - CS1

Figure 7 shows the cable force solutions for each algorithm using cable set CS1.
It can be seen that the QP solver (due to its solving objectives) requires typically
lower forces and that in both cases the closed loop control has resulted in oscillating
cable forces. The resulting tracking performance (obtained using the pseudo-inverse
forward kinematics method) of each inverse dynamics solver is shown in Figure 6.
In this case, the closed form solver results in a slightly larger lag and steady state
error particularly in the twist axis β and revolute θ axes. This is likely the result of
the discretised MYO-muscle sensor resolution, where the resolution is larger over
smaller force values.

Figures 8 and 9 depict the cable forces and tracking performance for cable set
CS2, respectively. It can be seen that the resulting solutions for both methods are
different to that observed using cable set CS1, however the tracking performance
is quite similar. The relative performance of the two solvers is however similar in
which the use of lower cable forces leads to more reliable tracking performance.
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Fig. 7: Closed Loop Inverse Dynamics Solutions for CS1
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Fig. 8: Closed Loop Inverse Dynamics Solutions for CS2
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Fig. 9: Joint Space Command (dashed) and Forward Kinematics (solid) - CS2

Table 1 shows the computational time used in solving the inverse dynamics, for-
ward kinematics and control for each experiment. It can be seen that the closed
form method is on average slightly faster and possesses a lower maximum time. It
is also noted that the period of operation was less than that required by the 150Hz
frequency of the BM-Arm in all cases for both algorithms.

From this case study the use of CASPR-ROS in comparing different analysis
techniques can be observed. This case study also displays the flexibility of CASPR-
ROS to consider arbitrary cables sets without the need for system model derivation.
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Closed Form - CS1 QP - CS1 Closed Form - CS2 QP - CS2
Maximum time (ms) 5.20 4.79 2.12 5.14
Average Time (ms) 1.33 1.41 1.27 1.38

Table 1: Computational Time Specifications
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7 Conclusion

CASPR-ROS was presented as a tool for the hardware implementation of algorithms
onto arbitrary CDPRs. The platform aims to address the lack of a comprehensive
CDPR hardware implementation software by integrating the hardware connectiv-
ity of ROS with the generic and flexible qualities of CASPR. The modular design
of CASPR-ROS makes it convenient to develop new models, analysis algorithms,
hardware interfaces and executable scripts. The presented case studies illustrate the
flexibility of using CASPR-ROS on different hardware platforms. Future work for
CASPR-ROS will look to increase the types of analyses provided and to broaden
the cable models considered to include sagging cables and other actuator dynamics.
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