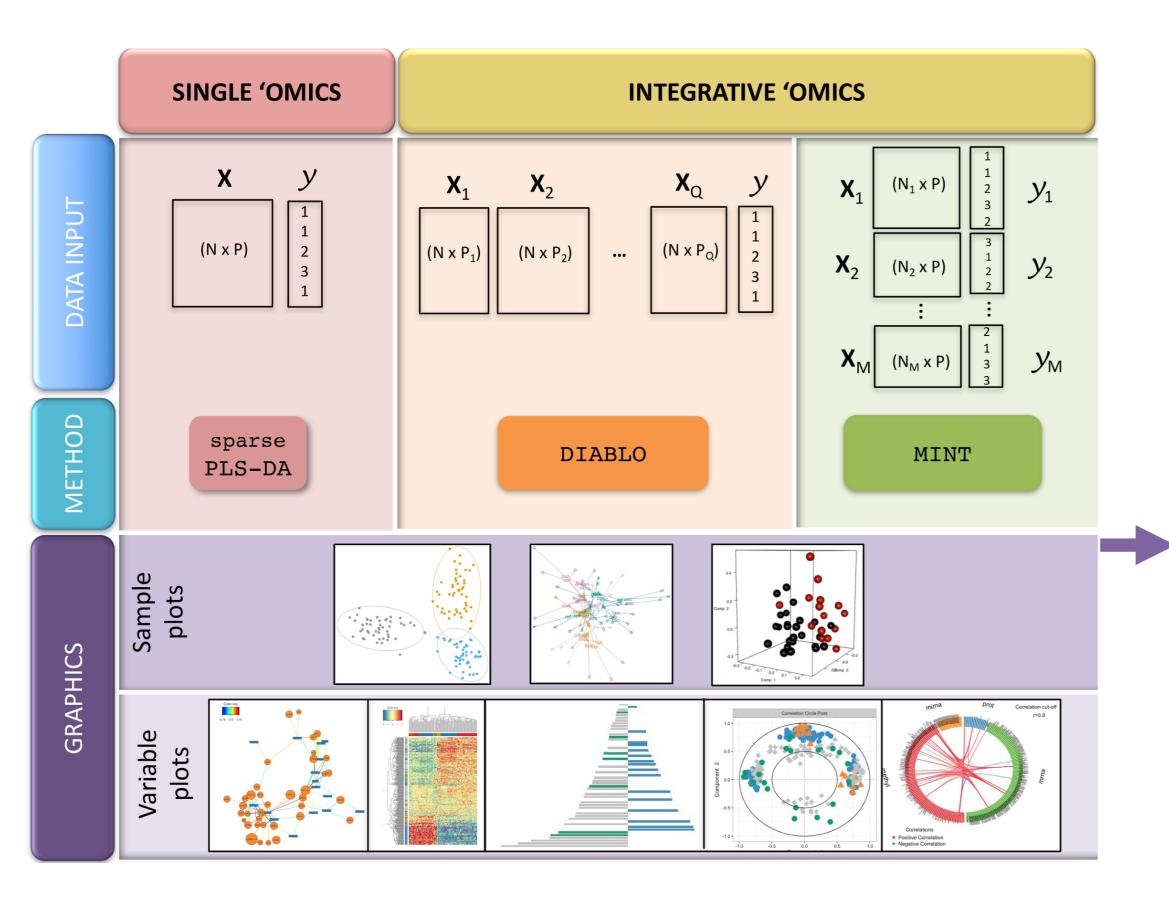


mixOmics: an R package for 'omics feature selection and multiple data integration



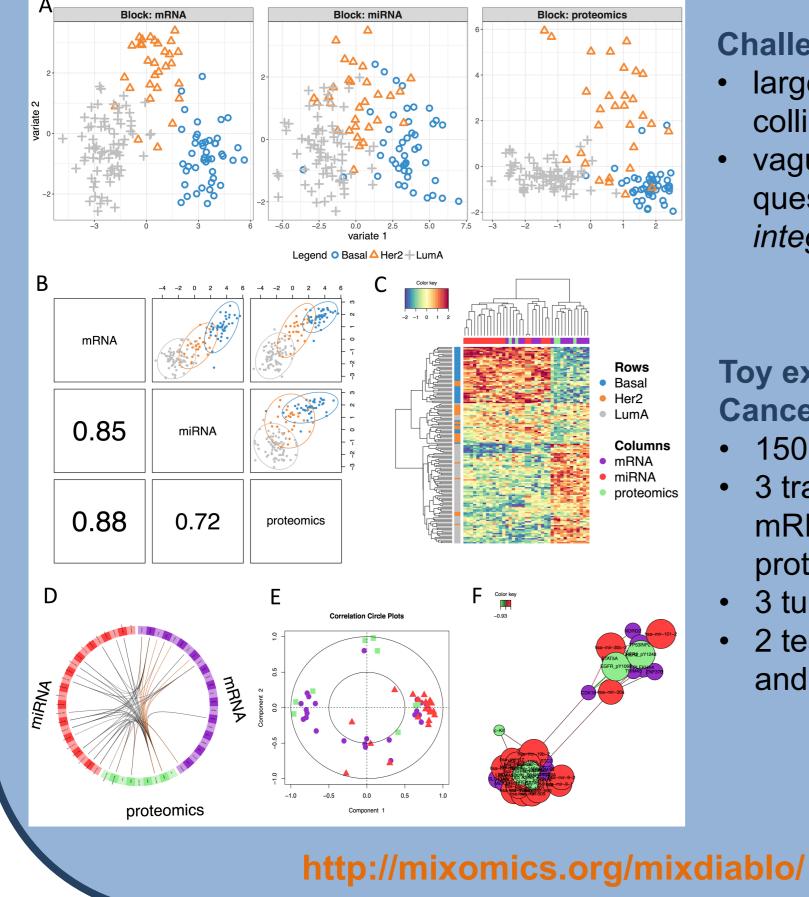
Core team: Florian ROHART², Sébastien DÉJEAN³, <u>Kim-Anh LÊ CAO^{1,2}</u> Key contributors: Benoît GAUTIER², Amrit SINGH⁴, François BARTOLO³

¹ Integrative Genomics & School of Mathematics and Statistics, University of Melbourne, Australia; ² The University of Queensland Diamantina Institute, Translational Research Institute, Australia ³ Institut de Mathématiques, UMR5219 CNRS, Université Toulouse 3 Paul Sabatier, Toulouse, France; ⁴ Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada.

www.mixomics.org | mixomics@math.univ-toulouse.fr | @mixOmics team

is an R package dedicated to the multivariate analysis of biological data sets with a specific focus on data exploration, dimension reduction and visualisation. By adopting a systems biology approach, the toolkit provides a wide range of methods that statistically integrate several data sets at once to probe relationships between heterogeneous 'omics data sets. Our recent methods¹⁻³ extend Projection to Latent Structure (PLS) models for discriminant analysis, for data integration across multiple 'omics data or across independent studies, and for the identification of molecular signatures.

Methods based on Projection to Latent Structures (PLS) models⁵

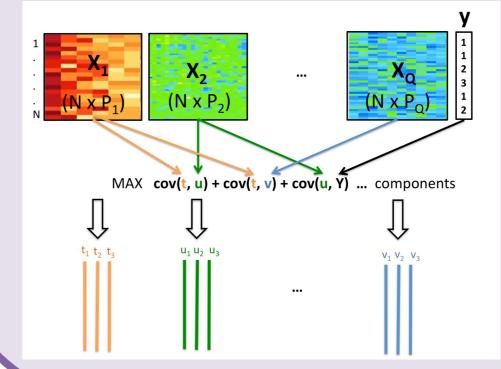

Nineteen multivariate methods (13 are novel)

Framework		Function name	Sparse	Prediction
Single 'omics		pca	-	-
	unsupervised	ipca	-	-
		sipca	✓	-
		spca	✓	-
	supervised	plsda	-	✓
		splsda	✓	✓
<i>N</i> -integration	unsupervised (2 'omics)	rcca	-	-
		pls	-	 ✓
		spls	✓	✓
	unsupervised	wrapper.rgcca	-	-
		wrapper.sgcca	1	 ✓
		block.pls	-	 ✓
		block.spls	✓	✓
	supervised	block.plsda	-	✓
	(DIABLO)	block.splsda	1	 ✓
P-integration (MINT)	unsupervised	mint.pls	-	 ✓
		mint.spls	✓	✓
	supervised	mint.plsda	-	 ✓
	supervised	mint.splsda	✓	 ✓

N-integration of multiple 'omics measured on the same biological samples²

Aims:

- identify a multi 'omics signature that explains a phenotype
- achieve maximal correlation between molecular features of different types for greater biological insights



Challenges:

- large number of highly collinear variables
- vague biological question ('I want to integrate my data')

Toy example on Breast Cancer from TCGA:

Integrative 'omics

- Matrix decomposition into latent components:
 - dimension reduction
 - visualisation (projection of large datasets into the components subspace)
- Covariance between components is maximised
- Feature selection via LASSO (sparse methods)

Other frameworks: Single 'omics⁴ and *P*-integration³

mixMC⁴: multivariate analysis to characterise and compare microbial communities (16S, metagenomics)

Motivation: first multivariate method for beta diversity analyses to identify bacteria driving changes in microbial community. http://mixomics.org/mixmc

MINT³: multivariate P-integration of independent studies on the same variables (genes)

Motivation: Combining several independent transcriptomics datasets increases sample size, avoids data obsolescence, and identifies a platform agnostic signature.

- 150 samples
- 3 training datasets: mRNA, miRNA, proteomics
- 3 tumor subtypes
- 2 test datasets: mRNA and miRNA

http://mixomics.org/mixmint

Example of computational time cluster with 10 cpus and 50 Gb RAM

Framework	Single 'omics		N-integration		<i>P</i> -integration	
Framework	sPLS-DA		DIABLO		MINT	
Data	HNSCC		Asthma (2 omics)		Stem Cell (8 studies)	
N	60		194		210	
P	82, 132		30,000;30,000		13,313	
function	tune	perf	tune	perf	tune	perf
#fold CV (repeated)	5(10)	5(10)	5(1)	5(10)	LOGOCV	LOGOCV
ncomp	5	3	2	2	2	2
grid length per component	40	-	22^{2}	-	100	-
#cpu	10	10	10	10	1	1
runtime	15 min	6min	19min	$3\min$	17min	12 sec
L						

Latest publications

- 1. Rohart F, Gautier B, Singh A, Lê Cao K-A (2017). mixOmics: an R package for 'omics feature selection and multiple data integration. PLoS Comp Biol, in press
- Singh A, Gautier B, Shannon C, Vacher M, Rohart F, Tebbutt S, Lê Cao K-A. DIABLO an integrative, multi-omics, multivariate method for multi-group classification. bioRxiv 067611
- 3. Rohart F, Eslami A, Matigian, N, Bougeard S, Lê Cao K-A (2017). MINT: A multivariate integrative approach to identify a reproducible biomarker signature across multiple experiments and platforms. BMC Bioinformatics **18**:128.
- 4. Lê Cao K-A[&], Costello ME[&], Lakis VA, Bartolo F, Chua XY, Brazeilles R and P Rondeau P (2016). mixMC: A Multivariate Statistical Framework to Gain Insight into Microbial Communities. PLoS ONE, 11(8):
- 5. Tenenhaus A, Phillipe C, Guillemot V, Lê Cao K-A, Grill J, Frouin V (2014). Variable selection for generalized canonical correlation analysis, Biostatistics, 15(3):569-83

