

Right time, right place: bioactive delivery systems

Zhigao Niu, Alejandra Acevedo-Fani & Ali Rashidinejad Science of Food Team Riddet Institute, Massey University

Host Institution

Developing High-Value Foods

Food Systems & Bioactive Compounds

Selection criteria of Food Systems

- Healthy
- 'Fit for purpose'
- Ready-to-eat
- Shelf life

Bioactive compounds

- Rutin (Metabolic Health)
- Probiotics/kiwifruit fibre (Digestive Health)
- Short chain fatty acids (Immune Health)

Rutin: a Case Study

Metabolic Health Platform identified a bioactive of interest (rutin) for formulating model food products for a human clinical trial in 2018

Evaluated the state of art with regards to the delivery of rutin *via* food using the decision support system database

Tested 5 types of delivery systems for compatibility with rutin and begun formulating model food products

Ko Ngā Kai Whai Painga

Rutin

Flavonoid composed of a molecule of **quercetin** and a disaccharide **rutinose**

Formulation challenges:

 Poor solubility in both water (≈ 0.05 mg/mL, 70°C) and oil (≈ 1 mg/mL above 90°C)

Nationa

Challenges

<u>?</u>=

HIGH-VALUE

NUTRITION

Ko Ngā Kai

Whai Painga

- Low bioavailability due to its poor solubility

Encapsulation systems		
Emulsions		
Liposomes		
Cyclodextrins		
Whey protein complexes		
Casein complexes		

Novel Delivery System for Rutin Encapsulation

Co-assembly of casein and rutin molecules

Casein and Rutin

(Soluble Complexes)

(Co-precipitated complexes)

Rational Formulation of Food Prototypes for Metabolic Health Platform

Formulation suitable for pre-diabetic participants

- Low sugar
- Low fat
- High protein

Bioactive dose

• 500 mg of rutin / serve

Main challenges in product development:

- Achieve palatable products under these conditions
- Overcome changes in the original food properties due to the presence of rutin

Available in the market

hallenges

Food Prototypes for Rutin Delivery

Low-fat Yoghurts

Protein beverages

Protein bars

HIGH-VALUE

NUTRITION

Ko Ngā Kai

Whai Painga

Nationa

SCIENCE

Challenges

Target: 500mg Rutin/Serve

Rutin-fortified Set-type Yoghurts

• Informal sensorial test (10 panellists)

Sample	Overall acceptability	
Control	Acceptable	Undesired texture Unpleasant taste
Free rutin 500 mg	Not acceptable	
Encapsulated rutin 500 mg	Acceptable	

Changes in taste compared with control, but can improve with flavourings:

- Lemon
- Passion fruit
- Cappuccino

Rutin-fortified Set-type Yoghurts: Effect on the Quality Attributes

• Appearance

HIGH-VALUE

NUTRITION

PNCE

Challenges

Ko Ngā Kai

Whai Painga

Schematic Representation of Rutin-fortified Yoghurt Network

Summary

- A new technology was developed for improving the dispersibility of rutin
- Three food prototypes were developed and tested for delivering high levels of rutin in an acceptable form for human consumption
- In discussion with the Metabolic Platform, low-fat yoghurts were selected for human trials
- Free rutin compromises the quality and sensorial attributes of yoghurts. This could be avoided using a delivery system

Future directions

- Investigate bioaccessibility and bioavailability of rutin in fortified foods
- Apply a similar approach with the other bioactive compounds

Gastric Protection & Targeted Delivery

- Growing demand for healthy foods
- Oral delivery technology
- Chance to learn from Pharma
 - Solubility
 - Stability
 - Permeability

Esophagus

Strategies for Targeted Release: Delivery Systems

Bioactive Compounds

Hydrophobic

Emulsion

UNIVERSITY OF NEW ZEALAND

Some examples:

- Polyphenol
- Vitamin
- Coenzyme (eg. CoQ10)
- Therapeutic peptide
- Omega-3 fatty acid
- Short chain fatty acid

Hydrophilic

Polyelectrolyte complex

HIGH-VALUE

NUTRITION

Ko Ngā Kai

Whai Painga

Nationa

SCIPNCE

Challenges

Strategies to Improve Bioavailability

Step 1 (accomplished):

- Solubilisation
- Gastric protection

Step 2 (upcoming):

Mucodiffusion Enhanced cell penetration

Non muco-diffusive particles

Muco-diffusive particles

K Maisel, et al., Nanomedicine, 2016

WASSEY UNIVERSITY TE RUNINGA KI PÖRBILURGA UNIVERSITY OF NEW ZEALAND

Mouse intestinal tissue cryosections Blue: Cell nuclei Green: Drug

Green: Drug delivery system

National SCIENCE Challenges

HIGH-VALUE Ko Ngā Kai NUTRITION Whai Painga

Crossing Mucus Barrier

Approach 1 (common in pharmaceutical area)

Mucolytic enzyme

Surface PEGylation of nanoparticles

Non-modified

UNIVERSITY OF NEW ZEALAND

Approach 2 (new emerging)

Mucolysis by fruit-derived enzymes

ሮፑ

Challenges

HIGH-VALUE

NUTRITION

Ko Ngā Kai

Whai Painga

Cell Permeability Enhancement

ASSEY

UNIVERSITY OF NEW ZEALAND

Food derived permeation enhancers:

- Mid-chain fatty acids
- Arginine rich peptides
- Lysine rich peptides
- Chitosan

CNCE HIGH-VALUE NUTRITION

Nationa

Challenges

Ko Ngā Kai Whai Painga

Emulsions: From Trial-and-error to Rational Design

Preliminary screening

Rational design & optimization

Optimal systems identified for:

- 1. Targeted release (Gastric stable)
- Improved interaction with intestinal membrane (Multilayer coating)

Microstructures in Gastric/intestinal Conditions

Emulsions based on

Whey protein

Modified starch

Tween 80

delivery

Ko Ngā Kai Whai Painga

Emulsion Droplets Coated by Biopolymers

Chitosan-coated emulsion droplets (1% lecithin + 1% Tween 80)

Polyelectrolyte Complexes: Preparation

Polysaccharides: Pectin (-), Gum Arabic (-), Chitosan (+), etc.

Materials – Proteins/polypeptides: Whey protein (-), Lactoferrin (+), Polylysine (+), etc. Salts: Tripolyphosphate (-), cyclodextrin salts (-), etc.

* Charge: at neutral pH (in water)

Screening: Lactoferrin - Pectin Complexes

Multi-biopolymer Layer Stabilized Lactoferrin

Chitosan enveloped lactoferrin - pectin complexes (Lf: pectin mass ratio 4:1)

Summary

Accomplished work:

- A literature review on Pharma-inspired delivery systems & potential for food delivery
- Screening & rational design of delivery systems
- Gastric protection and intestinal targeted release

Upcoming work (Collaborating with Digestive Health):

- Interactions between delivery systems and intestinal mucus and enterocytes
- Bioavailability & biodistribution *in vivo*

