
The impact of Covid-19 vaccination in Aotearoa New

Zealand: a modelling study

Samik Dattaa, Giorgia Vattiatob,c, Oliver J. Maclarend, Ning Huae, Andrew
Sporlef,g, Michael J. Plankb,∗

aPopulation Modelling group, National Institute of Water and Atmospheric
Research, Wellington, New Zealand

bSchool of Mathematics and Statistics, University of Canterbury, Christchurch, New
Zealand

cManaaki Whenua, Lincoln, New Zealand
dDepartment of Engineering Science, University of Auckland, Auckland, New Zealand

ePrecision Driven Health, Auckland, New Zealand
fDepartment of Statistics, University of Auckland, Auckland, New Zealand

giNZight Analytics Ltd., Auckland, New Zealand

∗Corresponding author email address: michael.plank@canterbury.ac.nz

1

ar
X

iv
:2

40
1.

09
67

9v
2 

 [
q-

bi
o.

PE
] 

 2
6 

Ja
n 

20
24



Abstract

Aotearoa New Zealand implemented a Covid-19 elimination strategy in 2020

and 2021, which enabled a large majority of the population to be vaccinated

before being exposed to the virus. This strategy delivered one of the lowest

pandemic mortality rates in the world. However, quantitative estimates of

the population-level health benefits of vaccination are lacking. Here, we use

a validated mathematical model of Covid-19 in New Zealand to investigate

counterfactual scenarios with differing levels of vaccine coverage in different

age and ethnicity groups. The model builds on earlier research by adding age-

and time-dependent case ascertainment, the effect of antiviral medications,

improved hospitalisation rate estimates, and the impact of relaxing control

measures. The model was used for scenario analysis and policy advice for

the New Zealand Government in 2022 and 2023. We compare the number

of Covid-19 hospitalisations, deaths, and years of life lost in each counter-

factual scenario to a baseline scenario that is fitted to epidemiological data

between January 2022 and June 2023. Our results estimate that vaccines

saved 6650 (95% credible interval [4424, 10180]) lives, and prevented 74500

[51000, 115400] years of life lost and 45100 [34400, 55600] hospitalisations

during this 18-month period. Making the same comparison before the ben-

efit of antiviral medications is accounted for, the estimated number of lives

saved by vaccines increases to 7604 [5080, 11942]. Due to inequities in the

vaccine rollout, vaccination rates among Māori were lower than in people

of European ethnicity. Our results show that, if vaccination rates had been

equitable, an estimated 11–26% of the 292 Māori Covid-19 deaths that were
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recorded in this time period could have been prevented. We conclude that

Covid-19 vaccination greatly reduced health burden in New Zealand and that

equity needs to be a key focus of future vaccination programmes.

Keywords: counterfactual modelling, health equity, Māori health,

mathematical model, SARS-CoV-2, vaccine
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1. Introduction

Aotearoa New Zealand used a combination of border and community con-

trol measures to minimise transmission of SARS-CoV-2 until high vaccine

coverage could be achieved [1, 2]. Prior to the introduction of the B.1.1.529

(Omicron) variant into the community in January 2022, New Zealand had

recorded only around 2.5 confirmed community cases per 1000 people and

0.01 Covid-19 deaths per 1000 people [3]. By this time, 77% of the popu-

lation (90% of those aged over 12 years) had received at least two doses of

the Pfizer/BioNTech BNT162b2 vaccine and 27% of the population (35% of

adults) had received a third dose. By 1 April 2022, third dose coverage had

increased to 51% of the population (66% of adults). Children aged 5 to 11

years became eligible for vaccination on 17 January 2022 and by 1 April, 54%

of this age group had received at least one dose and 17% had received two

doses [3].

Following transmission from cases in managed isolation facilities into the

community in January 2022 [4] and subsequent relaxation of border controls,

New Zealand experienced a series of Omicron waves. Between 1 January

2022 and 30 June 2023, there were around 465 confirmed cases, 5.5 hospi-

talisations, and 0.61 Covid-19 deaths per 1000 people [3]. Aotearoa New

Zealand’s cumulative excess all-cause mortality rate, up to the end of 2022,

has been estimated as 0.215 per 1000 people [5], one of the lowest pandemic

excess mortality rates in the world.

Achieving high primary series and booster dose coverage before widespread

transmission occurred was a key pillar of New Zealand’s pandemic response.

Despite good vaccination rates overall, coverage was lower for Māori, partly
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because of inequities in the vaccine rollout [6–8]. On 1 February 2022, pri-

mary series coverage was 76% and 88% for Māori adults under and over 65

years old, respectively. This compares to 88% and 93% for people of Euro-

pean ethnicity (the largest ethnicity group in Aotearoa New Zealand). In

addition, Māori are at higher risk of severe illness and death due to Covid-

19 [9–11]. The age-standardised Covid-19 mortality rate and hospitalisation

rate in 2022-23 were approximately 75% higher for Māori than for people of

European ethnicity (see Supplementary Material sec. S10).

Globally, it has been estimated that vaccines saved 19–20 million lives in

their first year of use [12]. However, international estimates cannot simply be

mapped onto Aotearoa New Zealand’s population because of its elimination

strategy and unique epidemic trajectory. Comparing outcomes with other

countries that also pursued an elimination strategy, but experienced waves of

transmission with lower vaccine coverage (e.g. Hong Kong [13, 14]), suggests

that vaccination saved many lives. However, quantitative estimates of the

reduction in health burden due to vaccination in New Zealand are currently

lacking.

Here, we use a validated mathematical model of SARS-CoV-2 transmis-

sion dynamics and health impact in New Zealand to estimate the number

of hospitalisations and deaths that were prevented by vaccines between Jan-

uary 2022 and June 2023. This corresponds to the time period in which

the Omicron family of variants was dominant [15]. The model uses robust

estimates for the effectiveness of the Pfizer vaccine against infection, severe

disease and death caused by Omicron variants [16–18]. The model builds

on our earlier work [19] by adding several new features. These include age-

5



and time-dependent case ascertainment, the effect of antiviral medications

on fatality rates, improved estimates of the age-dependent infection hospi-

talisation ratio, the effect of relaxing control measures on contact rates, and

the impact of new Omicron sub-variants. The model was used for health

system planning, scenario analysis and policy advice for the New Zealand

Government in 2022 and 2023.

We fit the model to data on Covid-19 cases, hospitalisations and deaths

between January 2022 and June 2023. We then consider counterfactual sce-

narios in which public health measures, behavioural patterns and resulting

time-dependent contact rates were the same as the fitted baseline (factual)

scenario, but vaccine coverage was lower. Our results are important for esti-

mating the population-level health benefits of Covid-19 vaccination, support-

ing evaluation of the cost-effectiveness of Aotearoa New Zealand’s Covid-19

vaccination programme, and for quantifying the impact of inequitable vacci-

nation coverage between population groups. Our findings may be useful in

informing preparedness and response to future respiratory pandemic threats.

2. Methods

Mathematical model

We used an age-structured compartment-based model that includes the

effects of vaccination, waning immunity and changes in community contact

rates over time (see Supplementary Material sec. S1–S4). The population is

stratified into 16 five-year age groups. The model includes different levels of

immunity to infection and immunity to severe disease and death. Immunity

levels depend on the number of vaccine doses received, prior infection status,
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dominant SARS-CoV-2 variant, and time since last immunising event (see

Figure 1). Parameters governing these immunity curves were taken from [19],

based on the model of [16, 20] for the relationship between immunity and

neutralizing antibody titre.

The primary series and booster rollout in Aotearoa New Zealand almost

exclusively used the Pfizer/BioNTech BNT162b2 vaccine and so we do not

attempt to model different effectiveness of different vaccine types. A vaccine

pass system was introduced in December 2021 as part of the Covid-19 Protec-

tion Framework [21]. Under this system, businesses and venues were required

to make proof of vaccination a condition of entry, or to operate with reduced

capacity limits. Vaccine mandates were also were introduced for health, dis-

ability and education workers and other specified public sector roles [22].

The vaccine pass system was ended in April 2022 and employment-related

vaccine mandates were phased out betwen April and September 2022.

Vaccination rates in the model were set according to Ministry of Health

data on the number of 1st, 2nd, 3rd and 4th or subsequent doses given in each

age group between 19 February 2021 and 6 June 2023 (see Supplementary

Figure S2). At the start of the study period in January 2022, everyone aged

over 12 years was eligible for two doses. Eligibility for a third dose was

initially limited to over 65-year-olds, but was extended to all adults from 1

February 2022 and to all over-16-year-olds from 7 April 2022. Children aged

5-11 years became eligible for a two-dose paediatric vaccine series from 17

January 2022. In June 2022, over-50-year-olds became eligible for a fourth

dose. From April 2023, all over-30-year olds became eligible for an additional

dose 6 months after their more recent dose. In all cases, people outside the
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Figure 1: Average immunity under assumed parameter priors against: (a) infection with

BA.2, (b) severe disease or death from BA.2, (c) infection with BA.5 and (d) severe disease

or death from BA.5 as a function of time since most recent immunizing event. Graphs

show immunity following two doses (blue), three doses (red), 0/1 doses and prior infection

with BA.2 (green), two doses and prior infection with BA.2 (magenta) and three doses and

prior infection with BA.2 (cyan). Immunity from two or more prior Omicron infections

also follows the cyan trajectory, regardless of the vaccination status. Immunity against

BA.5 derived from prior infection with BA.5 is assumed to follow the same curves as for

immunity against BA.2 derived from prior infection with BA.2. Curves are the median

and shaded areas are the 5th and 95th percentiles of 500 random draws from the prior.
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age criteria are eligible if they have a specified health condition. In April

2023, the Pfizer bivalent BA.4/5 vaccine replaced the original formulation for

use as a booster dose. However, since this was designed primarily to counter

the effects of antigenic evolution, we assume this had the same effectiveness

parameters as the original vaccine did against earlier Omicron strains.

The model has previously been fitted to Aotearoa New Zealand data on

Covid-19 cases, hospital admissions and deaths, and used to model the im-

pact of the BA.5 subvariant that caused a wave in July 2022 [19]. The model

used in this study additionally included age- and time-dependent case as-

certainment and an adjusted age-dependent infection-hospitalisation ratio to

better match the observed age structure in hospital admissions (see Supple-

mentary Material sec. S8). We also made additions to the model to account

for changes in the public health response and the impact of new Omicron

sub-variants described below.

On 13 September 2022, the New Zealand Government ended the Covid-19

Protection Framework [21], which meant that mask requirements in public

settings such as retail and public transport were lifted, and isolation require-

ments for household contacts were ended. To model the effect of this policy

change, we included an increase in contact rates in the model, with the magni-

tude of the effect fitted to subsequent data (see Supplementary Material sec.

S6). This is in addition to the increase in contact rates and within-age-group

mixing in March-April 2022, representing relaxation of non-pharmaceutical

interventions and associated precautionary behaviour, as previously modelled

[19].

Around the same time the Covid-19 Protection Framework ended, the
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eligibility criteria for antiviral treatments for Covid-19 were broadened to

include everyone aged over 65 years, Māori and Pacific people aged over 50

years, and people with specified comorbidities. This was followed by a signif-

icant increase in the number of prescriptions for antivirals (Supplementary

Figure S5). To model this, we assumed that the infection-fatality ratio at

time t was a linearly decreasing function of the proportion of notified cases at

time t who filled a prescription for either Paxlovid or molnupiravir, the two

Covid-19 antiviral treatments in widespread use in New Zealand during this

time period (see Supplementary Material sec. S8). The effect size was fitted

to subsequent data. We did not attempt to distinguish between different

effect sizes for different antivirals as the data were insufficient for this. We

did not model any effect of antivirals on the infection-hospitalisation rate,

partly because in some cases antiviral prescriptions were only filled on or

after hospital admission.

In November 2022, a mixture of Omicron lineages (most notably CH.1.1

and BQ.1.1) sharing similar sets of genetic mutations displaced BA.5 as the

most common variant [15]. To model the growth advantage of these sub-

variants, we assumed that, on 15 November 2022, a new combination of

functionally equivalent immune evasive subvariants became dominant. This

is a highly simplified model: we did not attempt to model these subvariants

individually, but instead assumed that their net effect can be captured via

a reduction in the level of population immunity. We implemented this via

the same model mechanism as for the BA.5 subvariant that displaced BA.2

as the dominant variant in July 2022 [19], with an effect size parameter that

was manually calibrated using subsequent data (see Supplementary Material,
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sec. S7).

We fitted the model to data on confirmed Covid-19 cases, hospitalisations

and deaths between 1 February 2022 and 13 August 2023. Hospitalisations

were defined to be those categorised by the Ministry of Health as receiving

hospital treatment for Covid-19. Deaths were defined to be those where the

cause of death was classified as “COVID underlying” or “COVID contrib-

utory”. The Ministry of Health also publishes the number of deaths that

occurred within 28 days of a positive Covid-19 test. The definition that we

use is a more accurate estimate of the impact of Covid-19 as it excludes

incidental deaths (i.e. those where the cause of death was found to be not

Covid-19-related). Fitting was done with an approximate Bayesian compu-

tation (ABC) rejection algorithm on a subset of model parameters including

time- and age-dependent contact rates, testing and clinical severity parame-

ters, waning rate, and antiviral effect size. This results in a set of 150 model

realisations, with each one representing a combination of parameter values

sampled from the approximate joint posterior distribution. For all results,

we report 95% credible intervals (CrI) corresponding to the 2.5th and 97.5th

percentiles of the sample (see Supplementary Material sec. S9 for details).

For the main analysis, we used the Ministry of Health’s Health Service

User (HSU) dataset (see Supplementary Table S2) for population size by age

and prioritised ethnicity. However, this dataset underestimates the size of

the Māori population and has a different age profile than official population

counts and estimates [23]. We therefore also ran a sensitivity analysis using

StatsNZ’s annual population estimates [24], in which the Māori population

size is 11% larger than in the HSU data (see Supplementary Material sec. S5
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for details).

Counterfactual scenarios

We ran model simulations with the same set of parameter combinations

produced by the baseline fitting procedure, but with the number of daily

dth vaccine doses vid(t) in age group i at time t modified to represent a

given counterfactual scenario. For each accepted parameter combination,

we considered the following counterfactual scenarios: (1) no vaccination; (2)

vaccination rates set to a proportion pv of actual vaccination rates at all

ages; (3) no vaccination of under-60-year-olds; (4) vaccination rates for all

adults set to actual vaccination rates in the 20-25-year-old group (resulting

in a reduction in coverage particularly for older adults); (5-6) vaccination

rates set to actual vaccination rates for European/other and Māori ethnicities

respectively at all ages (see Figure 2). Where vaccination rates were changed

by a multiplicative factor, or set equal to those of another age or ethnicity

group, this change was applied to the time series of daily 1st, 2nd, 3rd, and

4th or subsequent doses (see Supplementary Table S3 for details). We also

ran the baseline scenario and scenario (1) but with no antiviral medications

in the model. This was to enable a secondary comparison of outcomes with

and without vaccination before the impact of antivirals on the death rate is

accounted for.

In each scenario, we assumed that the time-dependent contact rates, mix-

ing between age groups, timing and characteristics of new variants were the

same as in the fitted factual scenario. In each scenario, we calculated total

number of infections, hospital admissions, deaths and years of life lost (YLL)

due to Covid-19, and the peak hospital occupancy.
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Figure 2: Cumulative number of vaccine doses per capita in the baseline scenario (rep-

resenting actual data up to 6 June 2023, blue) and counterfactual scenarios: vaccination

rates set to a proportion pv = 0.9 of actual vaccination rates at all ages (red); vaccination

rates at all ages set to actual vaccination rates in the 20-25-year-old group (yellow); vac-

cination rates set to actual vaccination rates for the European/other (purple) and Māori

(green) ethnicities. The scenarios with no vaccination and no vaccination in under-60-

year-olds are not shown as they are either zero or equal to the baseline (blue) curves.

Each panel shows a different age group. Graphs only show total number of doses for ease

of visualisation but in the model these are broken down into 1st, 2nd, 3rd, and 4th or

subsequent doses.
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Population-level YLL were calculated using New Zealand cohort life tables

published by StatsNZ [25]. The life tables provide life expectancy estimates

by age, sex and year of birth. We used the model output for the total number

of Covid-19 deaths in each five-year age group and imputed the number of

model deaths in one-year age groups and by sex according to the distribution

of actual Covid-19 deaths. We then multiplied this by the life expectancy

estimate for people of that age and sex in 2022, and calculated total YLL by

summing across all age groups. We only calculated YLL at the population

level and did not attempt to calculate YLL for specific ethnicity groups.

To estimate the number of Māori hospitalisations and deaths that could

have been prevented if Māori vaccination rates had been equal to those of

European/other ethnicity, we first calculated the model death (or hospitalisa-

tion) rates in age group i in the scenarios with European/other vaccination

rates (Ei) and Māori vaccination rates (Mi) aggregated over the modelled

time period. We then applied the relative difference between these rates to

the actual number of Māori deaths (or hospitalisations) that occurred in each

age group in the same time period, and summed over all age groups:

preventable outcomes =
∑

i

(
1− Ei

Mi

)
(actual Māori outcomes in age group i)

The time period considered for counterfactual scenarios was 1 January

2022 to 30 June 2023, which is the first 18 months of the Omicron period.

We did not consider hospitalisations and deaths prior to 1 January 2022

and did not attempt to model the dynamics of the Delta outbreak that

occurred in Auckland between August 2022 and January 2023 [26]. The

national vaccine rollout was still underway during the period and intensive

non-pharmaceutical interventions were used to suppress transmission and
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contain the outbreak to the Auckland metropolitan area up to December

2022. Over 99% of all cases and around 98% of all deaths reported up to 30

June 2023 occurred after 1 January 2022.

Data and fully documented code to reproduce the results in this ar-

ticle is publicly available at https://github.com/SamikDatta/covid19_

vaccination/tree/main.

3. Results

Baseline model fit

The model provided a reasonable fit to the time series of cases, hospital-

isations and deaths between January 2022 and June 2023 at the aggregate

level (Figure 3) and within ten-year age bands (Supplementary Figures S8–

S9). This time period included three distinct waves dominated by different

Omicron subvariants: the BA.1/BA.2 wave that peaked in March 2022, the

BA.5 wave that peaked in July 2022, and the predominantly CH.1.1/BQ.1.1

wave that peaked in December 2022. There was also a smaller wave that

peaked in April 2023 and was dominated by a mixture of recombinant XBB

lineages [15]. However, unlike the two preceding waves, this wave did not

require specific model assumptions about a more transmissible or immune

evasive variant, but was largely captured by the default model assumptions

about continuous background waning of immunity.

The fitted baseline model had 3163 (95% CrI [2169, 4561]) deaths and

28800 [22200, 35600] hospital admissions between 1 January 2022 and 30

June 2023. The actual numbers for this period were 3196 deaths and 28763

admissions. Our model estimated that Covid-19 was responsible for 39900
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[27600, 57300] YLL in this time period, an average of approximately 13 YLL

per Covid-19 fatality.

Counterfactual scenarios

In the counterfactual scenario with no vaccination, there were a total of

9953 [6616, 14824] deaths, 115100 [79500, 174800] YLL, and 74300 [56500,

90900] hospital admissions between 1 January 2022 and 30 June 2023 (see

Table 1). This represents an additional 6650 [4424, 10180] deaths, 74500

[51000, 115400] YLL, and 45100 [34400, 55600] admissions relative to the

baseline scenario (see Supplementary Table S5). An alternative basis for

estimating the effect of vaccination is to compare model outcomes with and

without vaccination in a scenario with no antivirals. Under this comparison,

the scenario with no vaccination had an additional 7604 [5080, 11942] deaths

and 82400 [56100, 129300] YLL (see Supplementary Table S5).

These additional health impacts were concentrated in the first Omicron

wave in February-March 2022 (see Figure 4), which infected around 50% more

people than in the baseline scenario and had higher average severity since all

infections were in immune naive individuals. Peak hospital occupancy in this

wave with no vaccines was 5542 [3695, 7526]. This is around 7 times higher

than in the baseline scenario, a level that would have completely overwhelmed

hospital capacity (see Discussion). Additional health impacts continued to

accumulate over the remainder of the study period, albeit at a slower rate

(Figure 4).

In the no vaccination scenario, the attack rate (proportion of the popula-

tion with at least one infection) in the over-75-year-old group was 52% [43%,

62%]. This was significantly lower than attack rates in younger groups, which
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Figure 3: Results for the baseline (factual) scenario showing: (a) new daily infections

per 10,000 people; (b) new daily cases; (c) new daily hospital admissions; (d) hospital

occupancy; (e) daily deaths. Graphs show the curvewise 95% CrI (grey shaded area) and

a random sample of model trajectories (solid gray lines). Model was fitted to data (blue

points) up to 13 August 2023; solid blue curves show the moving average of the data in

a 7-day window for cases and hospital occupancy, a 14-day window for admissions, and a

21-day window for deaths.
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were over 90% for under-60-year-olds. This means that, in the no vaccination

scenario, there was still as a significant immune naive population in elderly

groups at the end of the simulation period. As a consequence, the health

burden prevented by vaccination will continue to increase over time.

Scenarios (2)–(4) had varying levels of impact intermediate between the

baseline and no vaccination scenarios (Table 1). Of these, scenario (3) with

no vaccination in under-60-year-olds had the biggest impacts, most notably

on hospital admissions and YLL. This is due to shallower age gradient in

hospitalisation risk relative to fatality risk (see Supplementary Table S2) and

an increase in fatalities under-60-year-olds where life expectancy is higher.
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Scenario Infections

(millions)

Admissions

(thousands)

Deaths YLL

(thousands)

Peak occupancy

Actual - 28.8 3196 33.9∗ 1016∗∗

Model scenarios

(0) Baseline 5.83 [5.12, 6.77] 28.8 [22.2, 35.6] 3163 [2169, 4561] 39.9 [27.6, 57.3] 833 [549, 1266]

(0a) No AVs 5.83 [5.12, 6.77] 28.8 [22.2, 35.6] 3818 [2576, 5427] 45.3 [31.0, 64.8] 833 [549, 1266]

(1) No vaccine 7.27 [6.52, 8.29] 74.3 [56.5, 90.9] 9953 [6616, 14824] 115.1 [79.5, 174.8] 5542 [3965, 7256]

(1a) No vaccine or AVs 7.27 [6.52, 8.29] 74.3 [56.5, 90.9] 11457 [7671, 17341] 128.4 [88.4, 194.0] 5542 [3965, 7256]

(2) 10% drop in rates 5.96 [5.25, 6.91] 33.1 [25.6, 40.7] 3788 [2569, 5519] 46.8 [32.2, 68.2] 1036 [693, 1388]

(3) No vaccine in U60s 7.02 [6.27, 8.01] 43.8 [33.2, 52.5] 3937 [2706, 5695] 59.5 [41.0, 87.6] 2845 [2076, 3620]

(4) 20-25-year-old rates 6.03 [5.29, 7.00] 33.2 [25.6, 41.0] 3906 [2660, 5666] 47.2 [32.5, 68.0] 916 [593, 1313]

(5) Euro/other rates 5.80 [5.09, 6.74] 28.4 [21.8, 35.1] 3100 [2127, 4460] 39.2 [27.2, 56.4] 817 [531, 1260]

(6) Māori rates 6.06 [5.33, 7.02] 31.9 [24.7, 39.4] 3522 [2410, 5107] 43.7 [30.3, 63.4] 1011 [681, 1312]

Table 1: Model results (median and 95% CrI) in each scenario for the total number of infections, hospital admissions,

deaths, and years of life lost (YLL), and the peak hospital occupancy, between 1 January 2022 and 30 June 2023.

Scenarios are: (0) baseline (actual vaccination rates); (0a) no antivirals (actual vaccination rates); (1) no vaccination;

(1a) no vaccination or antivirals; (2) vaccination rates set to a proportion pv = 0.9 of actual vaccination rates at

all ages; (3) no vaccination of under-60-year-olds; (4) vaccination rates at all ages set to actual vaccination rates

in the 20-25-year-old group; (5-6) vaccination rates set to actual vaccination rates for European/other and Māori

ethnicities respectively at all ages. ∗Estimated from actual deaths using cohort life tables via the same method as for

model YLL calculations. ∗∗Includes some incidental hospitalisations (i.e. patients who were positive for Covid-19

but not receiving treatment for Covid-19).
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Scenario (2), which was a 10% reduction in vaccination rates at all ages,

and scenario (4), in which vaccination rates at all ages were set to those of

20-25-year-olds had very similar outcomes. The reduction in vaccination in

older groups in scenario (4) was partially offset by the fact that 20-25-year-

olds generally received their primary series and third dose somewhat later

than older groups (see Figure 2). The timing of the first wave in February-

March 2022 therefore meant that older groups were less affected by waning

immunity in scenario (4) than in the baseline scenario. With different timing,

the additional health impact in this scenario could have been even larger,

emphasising the importance of achieving high vaccine coverage in older age

groups.

Relative differences among scenarios in the number of infections were

smaller (<25% above baseline in all scenarios). This shows that, over the

18-month time period considered, the primary benefit of vaccination in the

model was to reduce the risk of severe disease and death rather than to

prevent transmission. The relative differences in hospital admissions and

deaths of all scenarios compared to baseline are shown in Figure 4.

Scenario (5) in which European/other vaccination rates were applied to

the whole population had 64 [43, 91] fewer deaths and 500 [400, 600] fewer

hospitalisations than baseline (Figure 4 and Supplementary Table S5). Sce-

nario (6) in which Māori vaccination rates were applied to the whole pop-

ulation had a death rate that was 8.0 [5.4 12.2] per 100,000 higher and a

hospitalisation rate 68.7 [52.1, 82.7] per 100,000 higher than scenario (5).

These differences account for 13–29% and 14–23% of the observed differences

in age-standardised Covid-19 mortality and hospitalisation rates respectively
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Figure 4: Cumulative number of infections, hospital admissions and deaths over time in

the baseline scenario (red) and the scenarios with no vaccination (green), no vaccination

or antivirals (purple), and no vaccination of under 60-year-olds (yellow). Graphs show the

median (solid curves) and 95% CrI (shaded areas) for each scenario. Results for the other

scenarios considered are not shown here as they are relatively close the baseline scenario

(see Supplementary Figure S10). Note that, for infections and admissions, the results for

the ‘No vaccine’ and ‘No vaccine or antivirals’ scenarios are identical as the model assumes

that antivirals only affect the fatality rate.
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(see Supplementary Table S4).

Applying the relative differences in age-specific death and hospitalisation

rates between scenarios (5) and (6) to the actual number of Māori deaths and

hospitalisations suggests that if Māori vaccine uptake had been at the same

level as European/other, 32 [30, 36] deaths and 457 [412, 505] hospitalisations

could have been prevented.

In the sensitivity analysis using StatsNZ projections instead of the HSU

dataset for population denominators, the results for scenarios (0)–(4) (Sup-

plementary Table S6) were similar to the main analysis shown in Table 1.

However, scenario (6) in which Māori vaccination rates were applied had sig-

nificantly worse outcomes than in the main analysis. The estimated numbers

of preventable Māori deaths and hospitalisations in the sensitivity analysis

were 77 [72, 84] and 998 [914, 1104] respectively.

Considering both the main and the sensitivity analysis, our results suggest

that 11–26% of the 292 Māori Covid-19 deaths and 10–22% of the 4616 Māori

hospitalisations that were recorded during the time period could have been

prevented had vaccination rates been equitable.

4. Discussion

We have used a validated mechanistic model of Covid-19 transmission dy-

namics and health impact in Aotearoa New Zealand to explore outcomes in

a range of counterfactual scenarios where public health measures and time-

varying contact rates were the same as the baseline (factual) scenario, but

vaccine coverage was lower. Our results showed that vaccines saved an esti-

mated 4600–9500 lives and prevented 34000–58000 hospitalisations between
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January 2022 and June 2023, the first 18 months of widespread commu-

nity transmission. These estimates will continue to increase over time as

the model estimated that a significant proportion of the elderly population

remained uninfected in June 2023.

Benefits cannot always be attributed exclusively to a single intervention

such as vaccines, particularly when interventions act multiplicatively to re-

duce risk. In our model, this applies to the benefits of antiviral medications

and vaccines. To address this, we compared scenarios with and without vac-

cination and antivirals. When the comparison of outcomes with and without

vaccination was made before the benefit of antivirals on the death rate is

taken into account, the estimated number of lives saved by vaccines increased

to 5300–10800.

These estimates only include direct health impacts of Covid-19 and do not

account for indirect effects, such as a potential increase in the death rate from

Covid-19 or other causes due to an overloaded healthcare system. Similarly,

the modelled hospital occupancy does not take account of any change in

admission thresholds that may have occurred due to capacity constraints. It

should therefore be interpreted as an estimate of the demand for hospital

treatment rather than a prediction of realised occupancy.

Vaccination may have prevented other adverse outcomes, such as symp-

tomatic disease leading to attendance at primary care, lost productivity, and

incidence of Long Covid [27, 28]. However, we only focused on hospitalisa-

tions and deaths and did not consider other outcomes in the model due to a

lack of relevant data.

Adverse events following immunisation with COVID-19 vaccines in Aotearoa
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New Zealand are monitored by the statutory regulator Medsafe. Detailed re-

ports are available at [29]. Serious adverse events are extremely rare; however

we have not attempted a formal risk-benefit analysis here.

A global modelling study estimated that vaccines prevented approxi-

mately 20 million deaths up to December 2021 [12], which equates to around

2.5 deaths prevented per 1000 primary series doses. Another analysis esti-

mated that vaccines prevented 105,900 deaths in England up to August 2021

[30], equivalent to 1.4 per 1000 primary series doses. By comparison our

results equate to between 0.54 and 1.28 deaths prevented per 1000 primary

series doses (of which there were 8.45 million during the simulation period).

There are several reasons why the number of deaths prevented per dose

would be lower in the context of our study. In most countries, the initial vac-

cine rollout prioritised high-risk groups and took place during a period of high

global community transmission of the Alpha, Beta and Delta variants. It is to

be expected that there are diminishing returns from expanding the rollout to

lower-risk groups, even though these are almost certainly still net beneficial.

The Omicron variant is less pathogenic than earlier variants of concern [31]

and effective treatments have improved over time. Finally, although vaccine

effectiveness against severe disease caused by Omicron has remained high,

effectiveness against transmission is significantly reduced. Globally, as well

as in Aotearoa New Zealand, cumulative attack rates were far higher by June

2023 than in December 2021.

Counterfactual modelling is a valuable tool to understand and learn from

the potential consequences of alternative scenarios with the benefit of hind-

sight provided by subsequent data [32–34]. However, it has important limi-
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tations.

In reality, in a scenario with low vaccine coverage, the occurrence of higher

hospitalisation and death rates would have prompted different policy actions

and behavioural responses [35], which would have altered the transmission

dynamics compared to the counterfactual scenarios presented here. There-

fore our results should not be interpreted as predictions of what would have

happened if Aotearoa New Zealand had not achieved as high a vaccine cover-

age as it did. Nevertheless, in the absence of vaccination, non-pharmaceutical

interventions would only have delayed rather than prevented infections. It is

likely that the large majority of unvaccinated individuals would eventually

have been infected, meaning a comparable number of hospitalisations and

deaths as in the modelled counterfactual would have accrued, albeit over a

longer time period. Our results are therefore a valid estimate of the reduc-

tion in health burden that is directly attributable to vaccines. We also note

that the need for a more stringent policy or behavioural response would have

incurred additional direct and indirect costs.

The model for transmission dynamics does not include ethnicity as a

variable. In estimating the number of Māori deaths that could have been

prevented if vaccination rates had been equitable, we assumed that the per

capita death rate for a subgroup with a given vaccination rate would be equal

to the per capita death rate if that vaccination rate was applied to the whole

population. This is a simplistic assumption that ignores the differential effect

of vaccination on transmission between and within ethnicities. Our estimates

apply only to the period from 1 January 2022 to 30 June 2023. They do not

include vaccine-preventable health impacts that disproportionately affected
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Māori during the 2021 Delta outbreak [13, 36, 37].

We found that estimates for the number of preventable Māori hospitalisa-

tions and deaths were larger when using StatsNZ population estimates than

when using the HSU data for population denominators. It is recognised that

the HSU data underestimates total Māori population size and has biases in

the age and sex structure as it only includes those with recent engagement

with health services [23]. Therefore the results that use the StatsNZ popu-

lation estimates may be more accurate for Māori impacts. The significant

gap between these point to the need for consistent collection of high-quality

ethnicity data, accurate population size estimates, and explicit consideration

of the uncertainty due to the differences in key data sources.

Our results show that inequitable vaccine coverage is one contributing

factor to the higher Covid-19 hospitalisation and mortality rates experi-

enced by Māori. Other factors likely include increased exposure to infection

due to high rates of employment in high-contact occupations, larger average

household size and lower-quality housing [38, 39], high rates of comorbidi-

ties [9, 40, 41], poor access to healthcare [7], and a health system that has

historically underserved Māori [8]. All these factors are worthy of attention

and further study. Including the effects of ethnicity in dynamic epidemiolog-

ical models is challenging due to the paucity of data and need for modelling

assumptions about contact rates between and within ethnic groups. This a

key area needing further research in Aotearoa New Zealand.

Our results cannot be used to estimate outcomes if there had been widespread

transmission of SARS-CoV-2 in Aotearoa New Zealand earlier in the pan-

demic when fewer effective treatments were available. Some pre-Omicron
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variants were more pathogenic [31, 42] and it is likely that health impacts

would have been larger if uncontrolled transmission of these variants had

occurred in an unvaccinated population. We did not attempt to model coun-

terfactual scenarios based on alternative vaccination policies, such as absence

of the vaccine pass system and employment-related vaccine mandates. This

is because there is no quantitative or qualitative data to inform modelling

assumptions about the effect these policies would have had on vaccine update

or on contact rates of unvaccinated individuals.

Our analysis is retrospective and cannot be used to predict the health

benefits of future booster rollouts or changes to vaccine eligibility. These

will depend on the future prevalence and clinical severity of SARS-CoV-

2 variants, the marginal increase in protection offered by additional doses

relative to existing levels of hybrid immunity, and how well matched the

vaccines are to dominant circulating strains [43, 44].

The uncertainty estimates we have provided arise from the range of pa-

rameter values for which model outputs are approximately consistent with

epidemiological data in the baseline scenario. There may be additional un-

certainty arising from potential model misspecification, omission of relevant

mechanisms, or population heterogeneity, which were not accounted for.

Aotearoa New Zealand’s Covid-19 pandemic response used a combination

of border controls, physical distancing measures including periods of stay-at-

home orders, financial support for those unable to work, testing and contact

tracing, mass masking, vaccination, and antiviral treatments [1, 45, 46]. This

response delivered one of the lowest pandemic mortality rates of any country

in the world [47]. Given that non-pharmaceutical interventions could only
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delay rather than prevent widespread transmission, it is clear that vaccination

was an essential component of this response that saved thousands of lives.

Immunity provided by existing vaccine coverage and future vaccination will

continue to be an important factor in reducing the Covid-19 health burden.

This means the number of lives saved by Covid-19 vaccines in Aotearoa

New Zealand will further increase over time. Ensuring equitable access to

vaccination and vaccine coverage should be a priority for future public health

or pandemic responses.
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and hospitalisations for Māori and Pacific people in Te Manawa Taki

Midland region, New Zealand, Epidemiology and Infection 151 (2023)

e74.

[12] O. J. Watson, G. Barnsley, J. Toor, A. B. Hogan, P. Winskill, A. C.

Ghani, Global impact of the first year of COVID-19 vaccination: a

mathematical modelling study, Lancet Infectious Diseases 22 (9) (2022)

1293–1302.

[13] D. J. Smith, A. J. Hakim, G. M. Leung, W. Xu, W. W. Schluter, R. T.

Novak, B. Marston, B. S. Hersh, COVID-19 mortality and vaccine cov-

erage – Hong Kong special administrative region, China, January 6,

30



2022–March 21, 2022, Morbidity and Mortality Weekly Report 71 (15)

(2022) 545.

[14] R. Xie, K. M. Edwards, D. C. Adam, K. S. Leung, T. K. Tsang, S. Gu-

rung, W. Xiong, X. Wei, D. Y. Ng, G. Y. Liu, et al., Resurgence of

Omicron BA.2 in SARS-CoV-2 infection-naive Hong Kong, Nature Com-

munications 14 (1) (2023) 2422.

[15] ESR, Genomics insights dashboard (2023).

URL https://www.esr.cri.nz/our-expertise/

covid-19-response/covid19-insights/genomics-insights

[16] D. S. Khoury, D. Cromer, A. Reynaldi, T. E. Schlub, A. K. Wheatley,

J. A. Juno, K. Subbarao, S. J. Kent, J. A. Triccas, M. P. Davenport,

Neutralizing antibody levels are highly predictive of immune protec-

tion from symptomatic SARS-CoV-2 infection, Nature Medicine 27 (7)

(2021) 1205–1211.

[17] D. Cromer, M. Steain, A. Reynaldi, T. E. Schlub, S. R. Khan, S. C.

Sasson, S. J. Kent, D. S. Khoury, M. P. Davenport, Predicting vaccine

effectiveness against severe COVID-19 over time and against variants:

a meta-analysis, Nature Communications 14 (2023) 1633.

[18] N. Andrews, J. Stowe, F. Kirsebom, S. Toffa, T. Rickeard, E. Gallagher,

C. Gower, M. Kall, N. Groves, A.-M. O’Connell, et al., Covid-19 vac-

cine effectiveness against the Omicron (B.1.1.529) variant, New England

Journal of Medicine 386 (16) (2022) 1532–1546.

31



[19] A. Lustig, G. Vattiato, O. Maclaren, L. M. Watson, S. Datta, M. J.

Plank, Modelling the impact of the Omicron BA.5 subvariant in

New Zealand, Journal of the Royal Society Interface 20 (199) (2023)

20220698.

[20] D. Cromer, M. Steain, A. Reynaldi, T. E. Schlub, A. K. Wheatley,

J. A. Juno, S. J. Kent, J. A. Triccas, D. S. Khoury, M. P. Davenport,

Neutralising antibody titres as predictors of protection against SARS-

CoV-2 variants and the impact of boosting: a meta-analysis, Lancet

Microbe 3 (1) (2022) e52–e61.

[21] New Zealand Government, Covid-19 public health response (protection

framework) order. New Zealand legislation 2021;(sl 2021/386) (2021).

URL https://www.legislation.govt.nz/regulation/public/

2021/0386/latest/LMS563461.html

[22] New Zealand Government, Expanded vaccination order for health and

disability, education and prison workers (2021).

URL https://www.beehive.govt.nz/release/

expanded-vaccination-order-health-and-disability-education-and-prison-workers

[23] StatsNZ, Review of health service user population methodology (2022).

URL https://www.stats.govt.nz/reports/

review-of-health-service-user-population-methodology

[24] Te Pou, District Health Board population profiles, 2021-2031: Statistics

New Zealand projections 2020 update (2021).

32



URL https://www.tepou.co.nz/resources/

dhb-population-profiles-2021-2031-pdf

[25] StatsNZ, New Zealand cohort life tables: March 2023 update (2023).

URL https://www.stats.govt.nz/information-releases/

new-zealand-cohort-life-tables-march-2023-update/

[26] M. J. Plank, S. C. Hendy, R. N. Binny, G. Vattiato, A. Lustig, O. J.

Maclaren, Using mechanistic model-based inference to understand and

project epidemic dynamics with time-varying contact and vaccination

rates, Scientific Reports 12 (1) (2022) 20451.

[27] K. I. Notarte, J. A. Catahay, J. V. Velasco, A. Pastrana, A. T. Ver, F. C.

Pangilinan, P. J. Peligro, M. Casimiro, J. J. Guerrero, M. M. L. Gellaco,

et al., Impact of COVID-19 vaccination on the risk of developing long-

COVID and on existing long-COVID symptoms: A systematic review,

eClinicalMedicine 53 (2022).

[28] V.-T. Tran, E. Perrodeau, J. Saldanha, I. Pane, P. Ravaud, Efficacy

of first dose of covid-19 vaccine versus no vaccination on symptoms of

patients with long covid: target trial emulation based on ComPaRe e-

cohort, BMJ Medicine 2 (2023) e000229.

[29] Medsafe, COVID-19 overview of vaccine reports (2023).

URL https://www.medsafe.govt.nz/COVID-19/

vaccine-report-overview.asp

[30] United Kingdon Health Security Agency, COVID-19 vaccine surveil-

lance report week 34 (2021).

33



URL https://assets.publishing.service.gov.uk/media/

612753ddd3bf7f63ab6dff7e/Vaccine_surveillance_report_-_

week_34.pdf

[31] T. Nyberg, N. M. Ferguson, S. G. Nash, H. H. Webster, S. Flaxman,

N. Andrews, W. Hinsley, J. L. Bernal, M. Kall, S. Bhatt, et al., Com-

parative analysis of the risks of hospitalisation and death associated

with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants

in England: a cohort study, Lancet 339 (10332) (2022) 1303–1312.

[32] S. Mishra, J. A. Scott, D. J. Laydon, S. Flaxman, A. Gandy, T. A. Mel-

lan, H. J. T. Unwin, M. Vollmer, H. Coupland, O. Ratmann, M. Monod,

H. H. Zhu, A. Cori, K. A. M. Gaythorpe, L. K. Whittles, C. Whittaker,

C. A. Donnelly, N. M. Ferguson, S. Bhatt, Comparing the responses

of the UK, Sweden and Denmark to COVID-19 using counterfactual

modelling, Scientific Reports 11 (1) (2021) 16342.

[33] R. N. Binny, M. G. Baker, S. C. Hendy, A. James, A. Lustig, M. J.

Plank, K. M. Ridings, N. Steyn, Early intervention is the key to success

in COVID-19 control, Royal Society Open Science 8 (11) (2021) 210488.

[34] N. Imai, T. Rawson, E. S. Knock, R. Sonabend, Y. Elmaci, P. N. Perez-

Guzman, L. K. Whittles, D. T. Kanapram, K. A. Gaythorpe, W. Hins-

ley, et al., Quantifying the effect of delaying the second COVID-19 vac-

cine dose in England: a mathematical modelling study, Lancet Public

Health 8 (3) (2023) e174–e183.

[35] A. Gimma, J. D. Munday, K. L. Wong, P. Coletti, K. van Zandvoort,

34



K. Prem, CMMID COVID-19 working group, P. Klepac, G. J. Rubin,

S. Funk, W. J. Edmunds, C. I. Jarvis, Changes in social contacts in eng-

land during the COVID-19 pandemic between March 2020 and March

2021 as measured by the CoMix survey: A repeated cross-sectional

study, PLoS medicine 19 (3) (2022) e1003907.

[36] Te Whatu Ora, COVID-19 Trends and Insights dashboard (2023).

URL https://tewhatuora.shinyapps.io/covid19/

[37] J. Summers, A. Kvalsvig, L. T. Barnard, J. Bennett, M. Harwood,

N. Wilson, M. G. Baker, Improvements and persisting challenges in

COVID-19 response compared with 1918–19 influenza pandemic re-

sponse, New Zealand (Aotearoa), Emerging Infectious Diseases 29 (9)

(2023) 1827.

[38] M. McLeod, J. Gurney, R. Harris, D. Cormack, P. King, COVID-19:

we must not forget about Indigenous health and equity, Australian and

New Zealand Journal of Public Health (2020).

[39] E. Harvey, M. Hobbs, A. Kvalsvig, F. Mackenzie, D. O’Neale,

S. Turnbull, A summary of risk factors for Covid-19 infec-

tion in Aotearoa New Zealand, Covid-19 Modelling Aotearoa pre-

print https://www.covid19modelling.ac.nz/a-summary-of-risk-factors-

for-covid-19-infection-in-aotearoa-new-zealand/ (2023).

[40] Y. Yon, E. M. Crimmins, Cohort morbidity hypothesis: health inequal-
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S1 Transmission dynamics

The susceptible population is divided into nA = 16 five-year age groups and nS = 14 sus-

ceptibility classes depending on the number of vaccine doses received, prior infection status,

and the degree of waning (see Figure S1). Infected individuals progress through a series of

disease states specific to the susceptibility class from which they were infected. Transitions

between compartments are governed by a set of ordinary differential equations for the sus-

ceptible (S), exposed (E), clinical infectious (I), subclinical infectious (A) and recovered (R)

compartments for each age group i = 1, . . . , nA and susceptibility class k = 1, . . . , nS:

dSik

dt
= −λi(1− eI,k)Sik +Wik +Gik (S1)

dEik

dt
= λi(1− eI,k)Sik − 1/tEEik (S2)

dIik
dt

= 1/tEpclin,i(1− eS,k)Eik − 1/tIIik (S3)

dAik

dt
= 1/tE (1− pclin,i(1− eS,k))Eik − 1/tIAik (S4)

dRik

dt
= 1/tI(Iik + Aik)− rwr̂Rik, (S5)

where eO,k is the immunity against outcome O for people in susceptible compartment k (see

Sec. S3), tE and tI are the latent and infectious periods, respectively, pclin,i is the probability

of infection causing clinical symptoms in age group i, rw is the waning rate, and r̂ is the

relative rate of moving from recovered (R) to susceptible (S).

For each susceptible compartment, there are associated compartments for people who were

infected whilst in that susceptible compartment and are currently: exposed but not yet

infectious (E); infectious and with clinical symptoms (I); infectious and subclinical (A);

recovered and temporarily immune (R). Note that subclinical refers to people who never

develop symptoms. For simplicity we do not distinguish between the pre-symptomatic and

symptomatic stages of the infectious period for clinical individuals, although it would be

possible to do this, for example to model symptom-based interventions. Parameter values

are shown in Tables S1–S2. The assumed values for the mean latent and infectious peri-

ods correspond to a mean generation interval of 3.3 days, which is similar to estimates of

[abbott2022estimation, wu2022incubation] for the Omicron variant and shorter than

that of previous variants of SARS-CoV-2.

The Wik and Gik terms represent waning and vaccination dynamics (see Sec. S2). The force

of infection λi acting on age group i is:

λi =
UREI(t)ui

tINi

nA∑

j=1

Mji

[
nS∑

k=1

(1− eT,k)(Ijk + τAjk) + tInseed,j(t)

]
(S6)

2



where REI(t) is the time-varying reproduction number excluding effects of immunity (see Sec.

S6), Ni is the total population size in each age group, nseed,j(t) is the number of daily seed

infections in age group j at time t, τ is the relative infectiousness of subclinical individuals,

ui is the susceptibility of age group i relative to the 60-65 year age group, and Mji is the

average number of daily contacts in age group i by someone in age group j. The normalising

constant U is set to be

U = ρ [(pclin,j + τ(1− pclin,j))uiMji]
−1

where ρ[.] denotes dominant eigenvalue. This normalisation ensures that the reproduction

number at time t would be REI(t) for a fully susceptible population. REI(t) represents the

value the reproduction number would take if there was no immunity in the population, and

hence is unaffected by vaccination, infection and waning dynamics. It therefore provides

a way to model time-dependence in contact rates, for example as a result of behavioural

change or policy response (see Sec. S6).

S2 Vaccination and waning

As indicated above, the Gik term in Eq. (S1) represents transitions between susceptible

compartments that occur as a result of vaccination (green arrows in Figure S1). For the

purposes of calculating this, we define five groups of susceptible compartments Sg:

0 doses and not previously infected: Sg
i0 = Si1 (S7)

1 dose and not previously infected: Sg
i1 = Si2 (S8)

2 doses and not previously infected: Sg
i2 =

6∑

k=3

Sik (S9)

≥ 3 doses and not previously infected: Sg
i3 =

10∑

k=7

Sik (S10)

previously infected: Sg
ip =

14∑

k=11

Sik (S11)

We assumed that all vaccine doses are given to people who are in a susceptible compartment

(which is reasonable given the recommendation to wait at least 3 months after testing positive

before getting vaccinated).

The total number of people Vid(t) in each age group who have received at least d doses of

the vaccine at time t is:
dVid

dt
= vid(t) (S12)

3



where vid(t) is the number of dth doses per day given to people in age group i at time t (see

Figure S2).

We assumed that the vid dth doses (d = 1, 2, 3) given to people in age group i at time t

are split pro rata between people who have not been previously infected and people who

have. This implies that the daily proportion of those not previously infected in age group i

receiving their dth dose at time t is

pui,d =
vi,d

Vi,d−1 − Vi,d

(S13)

noting that Vi,0 = Ni, i.e. the total population size in age group i. This accounts for pui,dS
g
i,d−1

of the vi,d doses. The remainder of these doses, vi,d−pui,dS
g
i,d−1, are given to previously infected

people. This implies that the daily proportion of those previously infected in age group i

receiving their dth dose at time t is

ppi,d = vi,d
Vi,d−1 − Vi,d − Sg

i,d−1

(Vi,d−1 − Vi,d)S
g
i,p

(S14)

The corresponding equations for 4th or subsequent doses are

pui,4+ =
vi,4+
Vi,3

(S15)

ppi,4+ = vi,4+
Vi,3 − Sg

i,3

Vi,3S
g
i,p

(S16)

We may then write the proportion of compartment Sik receiving a vaccine dose per day as:

Pi,k =





pui,1, if k = 1

pui,2, if k = 2

pui,3, if 3 ≤ k ≤ 6

pui,4+, if 7 ≤ k ≤ 10∑4+
d=1 p

p
i,d, if 11 ≤ k ≤ 14

(S17)

We assumed that receiving a vaccine dose following prior infection has the effect of moving

people back to the first post-infection compartment (Si,11) and that receiving a 4th dose

without any prior infection has the effect of moving people back to the first 3-dose compart-

ment (Si,7) – see Figure S1. This is a model simplification to avoid having to keep track of

too many different immunity histories

The term Gik appearing in Eq. (S1) is now defined as:

Gik =

nS∑

l=1

PilSilQ
V
lk (S18)
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where QV
lk is the flux into susceptible compartment k from susceptible compartment l as a

result of vaccine doses given to people in susceptible compartment l, such that the row sums

of the matrix QV are all 0.

The term Wik in Eq. (S1) represents transitions between susceptible compartments and

transitions from recovered to susceptible compartments that occur as a result of waning

(red, yellow and black arrows in Figure S1) and is defined as:

Wik = rw

(
nS∑

l=1

SilQ
S
lk + r̂

nS∑

l=1

RilQ
R
lk

)
(S19)

where QS
lk is the flux into susceptible compartment k from susceptible compartment l (with

QS
kk ≤ 0 representing the flux out of compartment k) such that the row sums of the matrix QS

are all 0; and QR
kl ≥ 0 is the flux into susceptible compartment k from recovered compartment

l such that the row sums of QR are all 1.

S3 Immunity model

The model includes parameters representing the level of immunity against infection (eI,k),

symptomatic disease (eS,k), transmission (eT,k), hospitalisation (eH,k) and death (eF,k) for

people in susceptible compartment k. In principle, this means there are a total of up

to 70 age-independent immunity parameters in the model (14 susceptible compartments

times 5 endpoints). To provide a parsimonious parameterisation, we used the model of

[khoury2021neutralizing] and [cromer2022neutralising] for the relationship between

level of immunity and neutralising antibody titre. The antibody titre is assumed to be a

correlate of protection and a given titre is generally more protective against more severe

clinical endpoints, in line with the findings of [cromer2023neutralising].

For simplicity, we set eTk = 0 and eSk = eIk, i.e. we assumed that immunity reduced the

risk of infection but, conditional on infection, did not change the likelihood of symptomatic

disease or transmission. We also assumed that immunity against hospitalisation and death

never wanes below esev,min = 0.5. This assumption captured a more durable component of

the immune response, for example cellular immunity as opposed to neutralising antibodies,

which maintains immunity against severe disease at some baseline long-term level. We

also assumed immunity for people who are transiently in the one-dose compartment was

negligible. Hence eO1 = eO2 = 0 for all outcomes O [lustig2023modelling].

To model waning immunity, we assumed that the log antibody titre decreases by a fixed

amount for each successive susceptible compartment in the same category (i.e. through

compartments k = 3, . . . , 6, k = 7, . . . , 10 and k = 11, . . . , 14). We then mapped the log
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antibody titre nk for compartment k to immunity eOk against outcome O via a logistic

function with an outcome-specific midpoint parameter nO,50 [khoury2021neutralizing]:

eOk =
1

1 + e−κ(nk−nO,50)
. (S20)

This framework meant the immunity model could be parameterised with one parameter

nl,0 for each source of immunity l, one parameter for each outcome O and two additional

independent parameters: the logistic slope κ; and the transition rate rw between successive

susceptible compartments, which represents the speed of waning (see Table S1).

For the post-infection susceptible states, we did not include separate sets of susceptible com-

partments for people with different vaccination status. Instead, we modelled vaccination-

dependent levels of post-infection immunity by moving people to different susceptible com-

partments dependent on their vaccination status. Following recovery from a first infection,

we assumed that people who had 3 doses of the vaccine (i.e. those in recovered compartments

k = 7, . . . , 10) all moved initially to the highest immunity compartment k = 11. This was

encoded by the matrix QR in Sec. S2: QR
k,11 = 1 for k = 7, . . . 10.

Following recovery from a first infection, we assumed that people who had 2 doses of the

vaccine (i.e. those in recovered k = 3, . . . , 6) moved to one of the lower-immunity compart-

ments k = 12, 13, 14 in fixed proportions. To determine what these proportions should be

note that, absent any subsequent immunising events, the proportion qk(t) of a cohort of in-

dividuals that entered susceptible compartment k = 11 at time t = 0 that is in compartment

k at time t satisfies

q̇k =





−rwqk, k = 11,

rw(qk−1 − qk), k = 12, 13,

rwqk−1, k = 14,

(S21)

where q11(0) = 1 and qk(0) = 0 for k = 12, 13, 14. The average log antibody titre of the

cohort at time t is n̄(t) =
∑

k nkqk(t). We therefore set QR
kl = ql(t

∗) where t∗ is such that

n̄(t∗) − n̄(0) = np2d,0 − np3d,0, the estimated difference in initial log titre between prior

infection plus 2 doses and prior infection plus 3 doses [lustig2023modelling].

A similar approach was applied to those moving out of recovered compartments k = 1, 2 (i.e.

people with 0 or 1 vaccine doses following recovery from a first infection): we set QR
kl = ql(t

∗)

where t∗ is such that n̄(t∗)− n̄(0) = np,0 − np3d,0.

Following recovery from a second or subsequent infection, we assumed that everyone moved

initially to the highest-immunity compartment k = 11 regardless of vaccination status:

QR
k,11 = 1 for k = 11, . . . , 14 (see Figure S1).

Immunity from infections that occurred prior to the model seeding date in January 2022

was ignored. This is reasonable as there had only been around 2.5 confirmed community
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cases per 1000 people up to the end of 2021 [vattiato2022assessment]. Although no

representative seroprevalence data is available for New Zealand to estimate the true number

of infections, the public health strategy of intensive testing, case finding, contact tracing and

source investigation meant that case ascertainment up to the end of 2021 was likely relatively

high. Even if case ascertainment during this period were as low as 25%, that would mean

that only around 1% of the population had been infected prior to the arrival of Omicron and

the impact of this on epidemic dynamics during the Omicron period would still be negligible.

To ensure the model correctly captured waning of vaccine-derived immunity before the start

of the first Omicron wave, we ran the model from a start date of 5 March 2021 (the beginning

of the vaccine roll out in New Zealand) with vaccinations administered as per Ministry of

Health data, but with no infections prior to the seeding date in January 2022.

S4 Population dynamics

The dynamics of birth, death and ageing are incorporated into the model via additional

terms in Eqs. (S1)–(S12) of the form:

dX1,k

dt
= b− raX1,k − µ1X1,k (S22)

dXi,k

dt
= ra(Xi−1,k −Xi,k)− µiXi,k (S23)

dXnA,k

dt
= raXnA−1,k − µnA

XnA,k (S24)

where b is the birth rate per unit time, ra is ageing rate per unit time (equal to the reciprocal

of the size of the age bands, in this case 5 years) and µi is the per capita death rate per unit

time in age group i. Here X may be any one of the infection states (S, E, I, A, R) or V .

For simplicity we assume that the the aggregate population death rate is independent of the

transmission dynamics.

The total number of annual births and the annual death rate in 5-year age bands up to age

75 were taken from StatsNZ data for 2019 [statsnz2022infoshare]. The annual death rate

for the over-75-years age group was set to give a similar equilibrium age distribution to the

StatsNZ 2022 estimated resident population [statsnz2022infoshare].

S5 Population size and ethnicity data

For the main analysis, we used the Health Service User (HSU) population dataset supplied

by the Ministry of Health in August 2022 (see Table S2). This contains population size in
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five-year age groups and for the following prioritised ethnicity groups: Māori, Pacific Peoples,

Asian, European or Other. The main model only requires total population size in each age

group. The age-specific Māori and European/other population sizes were used to calculate

vaccination rates in the relevant counterfactual scenarios (5 and 6).

The HSU data includes people who use health services (including births and deaths) in

the reference period, or are enrolled in a primary health organisation during the reference

period [statsnz˙hsu]. In relation to calculating vaccination rates, the HSU dataset has

the advantage of consistent reporting of Māori and other ethnic groups in the numerator

compared with the population denominator. However, it may underestimate the Māori

population size [statsnz˙hsu].

We therefore ran a sensitivity analysis using population projections (for 2022) by prioritised

ethnicity group, produced by StatsNZ according to assumptions agreed to by the Ministry

of Health [tepou2021dhb]. The total population size is very similar in the HSU dataset

(5,233,646) and the StatsNZ projection (5,153,500). The total population in each five-year

age group is also generally within ±5%. However, the Māori population size is 11% larger

in the StatsNZ projection (892,130) than in the HSU (801,903), with the discrepancy con-

centrated in older age groups (see Supplementary Table S7).

S6 Time-varying transmission effects

The time-varying function REI(t) was assumed to increase in two separate phases during

2022, with each change happening as a result of either a behavioural change, a policy change,

or a combination of both (see Figure S3). REI(t) was assumed to increase linearly from

REI,1 ∈ U [1.9, 2.5] to REI,2 ∈ U [2.9, 4.3] over a 35–75 day time window from the end of

period 1 (around 10 March 2022, see Table S1). This reflects the relaxation of public health

measures and associated behaviour change following the peak of the first Omicron wave in

early March 2022 (isolation period reduced from 14 days to 10 days on 4 March and to 7

days on 18 March; gathering restrictions eased from 26 March; vaccine pass requirements and

most employment-related vaccine mandates lifted from 5 April; gathering restrictions lifted

and mask requirements eased from 14 April). REI(t) was assumed to subsequently increase

linearly again from REI,2 by a factor of 10-30% to REI,3 over a 1–19 day time window from

the end of period 2 (around 15 September 2022). This represents a further relaxation of

public health measures, with isolation requirements for household contacts and remaining

mask requirements lifted from 13 September. The values of REI,1, REI,2, REI,3, as well as

the starting dates and time windows over which the transmission increase took place were

all fitted with the approximate Bayesian computation (ABC) algorithm as described in Sec.

S9.
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In addition to variations in REI(t), the contact matrix M , defining relative contact rates

between age groups, was allowed to vary over time. The contact matrix at time t was

defined as

M(t) = (1− β(t))M0 + β(t)M1 (S25)

where M1 is the pre-pandemic contact matrix estimated by [prem2017projecting] and

adjusted for the New Zealand population by [steyn2022covid], and M0 is a modified form

of this contact matrix with lower contact rates in older groups and higher contact rates in

younger groups (see Figure S4). The matrix M0 was used by [vattiato2022modelling] to

model an age-dependent behavioural response and to reproduce the age distribution of cases,

admissions and deaths observed in the first Omicron wave in March 2022. The time-varying

function β(t) was defined to be 0 in period 1 (i.e. up to around mid-March 2022 - see Table

S1), to increase linearly to αM over a 50–90 day time window after the end of period 1, and

to remain constant at a constant value of αM subsequently. Thus, Eq. (S25) represents an

assumption that contact rates for older groups were significantly reduced in the first Omicron

wave in March 2022, but progressively relaxed towards more normal levels between April

and June 2022. The value of αM ∈ [0, 1] was fitted with the ABC algorithm as described in

Sec. S9.

S7 Variant model

To model the effect of new Omicron sub-variants, we used a simplified approach that can

capture potential changes in intrinsic transmissibility and/or immune escape. This does not

encompass the full dynamics of two or more variants spreading simultaneously with par-

tial cross-immunity [kucharski2016capturing], but captured the key effects by changing

relevant model parameters around a specified time point tV OC when the new variant (or

mixutre of functionally equivalent variants) becomes dominant. For simplicity, we assume

that all infections before tV OC are the resident variant and all infections after tV OC are the

new variant (see Table S1).

A variant that has different intrinsic transmissibility can be modelled by a change in the

parameter REI(t) at t = tV OC . However, we assumed that the sub-variants considered in the

simulation had the same intrinsic transmissibility as the first dominant variant BA.2, and

derived their growth advantage solely from immune escape.

A variant that evades vaccine-derived immunity can be modelled by reducing the initial

antibody titre levels e2d,0 and e3d,0 for vaccinated but not previously infected states by an

amount ∆n0,V OC at t = tV OC . This is equivalent to a reduction in vaccine effectiveness.

Reducing the initial antibody titre for previously infected states (k = 11, . . . , 14) would result
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in a permanent reduction in infected-induced immunity, including against future reinfection

with the same variant. To avoid this, we instead modelled reduction in infection-derived

antibody titre to the new variant by moving individuals in the previously infected states

(k = 11, 12 or 13) at t = tV OC to a lower immunity state (k = 12, 13 or 14). This meant

that a reduction in average titre was applied to people infected before t = tV OC (assumed

to be infection with the resident variant), but people infected after t = tV OC (assumed to

be infection with the new variant) started with the same initial antibody titre following

recovery as before the new variant arrived. Thus, the model assumed an equally high level

of homologous immunity against reinfection with the same variant, but a relatively lower

level of cross-reactive immunity to reinfection with a new variant.

We implemented the loss of immunity due to the new variant by applying a time-limited

increase in the magnitude of the waning fluxes in Eq. (S19) for the post-infection compart-

ments:

Wik =

(
rw + rV OCϕ

(
t− tV OC

σV OC

))( nS∑

l=1

SilQ
S
lk + r̂

nS∑

l=1

RilQ
R
lk

)
, k = 11, 12, 13, 14

(S26)

where ϕ(.) is the standard normal probability density function. The magnitude of the drop in

infection-derived immunity to the new variant was determined by a dimensionless parameter

rV OC (see Table S1). Under this formulation, previously infected people moved to a lower

post-infection immunity compartment in a short time window around t = tV OC , of duration

determined by the parameter σV OC . In the limit σV OC → 0, this movement would occur as

an instantaneous pulse; larger values of σ correspond to a more gradual change. We chose an

arbitrary value of σV OC = 2 days, representing a relatively rapid takeover of the new variant

from the previously dominant variant; larger values of σV OC would result in a more gradual

change in the epidemic growth rate.

We assumed that the intrinsic disease severity was the same for all Omicron sub-variants

(although changes in time-dependent realised severity could occur due the immune evasion

process described above).

S8 Testing and clinical pathways

The process of testing and progress to different clinical endpoints (hospital admission, hos-

pital discharge, and death) can be modelled downstream of the transmission dynamics. We

model the number of newly infectious people in each age group who will eventually become
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a confirmed case (C), be hospitalised (H), and die (F ) via the differential equations.

dCi1

dt
= 1/tE

nS∑

k=1

(
ptest,clin,ipclin,i

1− eS,k
1− eI,k

+ ptest,sub,i

(
1− pclin,i

1− eS,k
1− eI,k

))
Eik

−α1Ci1 (S27)

dHi1

dt
= 1/tEIHRi

nS∑

k=1

1− eH,k

1− eI,k
Eik − α1Hi1 (S28)

dFi1

dt
= 1/tEIFRi

nS∑

k=1

1− eF,k
1− eI,k

Eik − α1Fi1 (S29)

where IHRi and IFRi are respectively the infection hospitalisation ratio and the infection

fatality ratio for immune naive individuals in age group i (see Table S2).

The probability of testing positive for clinical and subclinical cases in age group i is ptest,clin,i
and ptest,sub,i respectively (see Table S1). We model a time- and age-dependent probability of

testing, with different values of the testing probability ptest,clin,i in the three broad age bands:

0–30 years, 30–60 years and over 60 years. We assumed a constant value within each age

band up to 30 April 2022, followed by a linear decline for the 0–30 years and 30–60 years

age bands between the 1 May and 31 December 2022, followed by a constant value from 1

January 2023 onwards (Table S1). We assumed that the testing probability remains constant

for over-60-year-olds. The values chosen for the testing probabilities and time window for

their decline were manually tuned to reflect the observed age-structure of reported cases

and the observed case hospitalisation ratio in each age group. We also apply a single fitted

multiplier αT ∈ U [0.8, 1.2] to all testing probabilities. The probability of testing positive for

subclinical cases in age group i is defined to be ptest,sub,i = 0.4ptest,clin,i.

The age distribution of hospitalisations in a previous version of this model had a significant

discrepancy with the observed data [lustig2023modelling]. This may have been because

the age profile of immune naive IHR values assumed by the previous model was based

on international data from pre-Omicron variants [herrera2022age]. To better model the

observed age-distribution of hospitalisations in New Zealand during the Omicron waves, we

calculated age-dependent adjustment factors to the previously assumed values of IHR. We

did this by calculating the ratio of actual cumulative hospital admissions for the period 25

January 2022 to 18 March 2023 to modelled cumulative hospital admissions for the same

period under the previous model [lustig2023modelling] (see Figure S6). These show that

the previous model underestimated hospitalisations in the 0–5 years, 10–35 years, and over

75 years age groups, and overestimated hospitalisations in the 5–9 years and 40–75 years age

groups. The IHR values shown in Table S2 are the adjusted immune naive IHR values used

for the results shown in this study. Note that these IHR values are subsequently scaled by

as single multiplier in each model run, which enables the overall IHR to be fitted to data
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using the ABC method (see Sec. S9). We did not attempt to fit all 16 age-specific IHR

values independently within the ABC routine as this would have resulted in too many free

parameters.

The model also includes the effect of antiviral treatments on the infection-fatality rate (IFR)

based on the proportion of cases prescribed antivirals in each age group. In New Zealand,

eligiblity criteria for antiviral medications were widened in stages between July and Septem-

ber 2022. From September 2022 onwards, people aged over 65 years, Māori or Pacific people

aged over 50 years, and other high-risk groups are eligible for free antivirals. This is one

possible contributing factor to the observed reduction in age-specific case fatality ratios over

time (after the modelled effect of vaccine and infection-derived immunity), consistent with

an increase in antiviral eligibility and uptake over time.

To account for this, we modelled the IFR for immune naive individuals in age group i infected

on day t as a decreasing linear reduction of the proportion of cases prescribed antivirals:

IFRpost−antiviralsi(t) = IFRi

(
1− αAÂi(t)

Ĉi(t)

)
, (S30)

with Âi(t) being the number of cases in age group i reported on day t who received antivirals,

Ĉi(t) being the number of reported cases in age group i at time t, and αA ∼ U [0.4, 0.6] being a

fitted parameter quantifying the effect size (Table S1). This range of effect sizes is consistent

with Ministry of Health analysis of the effect of Paxlovid and molnupiravir (the main two

antiviral treatments used in New Zealand) on mortality risk [MOH2023]. Note Eq. (S30) is

the IFR for immune naive individuals. The IFR for individuals with vaccine-derived and/or

infection-derived immunity is further reduced from Eq. (S30) according to the immunity

model described in Sec. S3. For scenarios (0a) and (1a) with no effect of antivirals, we set

the parameter αA to 0.

We used linked Ministry of Health prescribing data to calculate the number of cases Âi(t) in

age group i reported on day t who filled a prescription for either Paxlovid or molnupiravir

within 7 days of report date or hospital admission date (see Figure S5). The most recent

week of data were discarded to account for reporting lags. Data were then smoothed using a

8-week rolling average. The proportion of cases receiving antivirals Âi(t)/Ĉi(t) was assumed

to remain constant after the last date for which data was available.

The effect of antiviral prescribing on the risk of hospitalisation is harder to estimate because

in some cases antivirals are prescribed after onset of severe illness or hospital admission. We

assumed there was no effect of antiviral treatments on the hospitalisation rate.

The time lag from onset of infectiousness to each endpoint was modelled via transition
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through a series of compartments:

dCi,2

dt
= α1Ci1 − α2Ci2,

dHi,2

dt
= α1Hi1 − α2Hi2,

dFi,2

dt
= α1Fi1 − α2Fi2,

dCi,3

dt
= α2Ci2,

dHi,3

dt
= α2Hi2 − α3Hi3,

dFi,3

dt
= α2Fi2 − α3Fi3,

dHi,4

dt
= α3Hi3 − α4,iHi4,

dFi,4

dt
= α3Fi3 − α′

4Fi4,
dHi,5

dt
= α4,iHi4,

dFi,5

dt
= α′

4Fi4 − α5Fi5,
dFi,6

dt
= α5Fi5.

(S31)

where αk are a set of rate constants determining the time lags. We set α1 = α2 = 2/tT where

tT is the mean time from onset of infectiousness to return of a positive test result. The mean

time from positive test result to hospital admission is tH = α−1
3 , and the mean length of

hospital stay for non-fatal cases in age group i is tLOS,i = α−1
4,i . We set α′

4 = α5 = 2/tF where

tF is the mean time from hospital admission to death.

The compartment Ci3 represents the observed cumulative number of cases, Hi4 the number

of cases currently in hospital, Hi5 the cumulative number of hospital discharges and Fi6 the

cumulative number of fatalities in age group i at time t. The other C, H and F variables

above represent latent (unobservable) states.

S9 Fitting to data

The variables in Eqs. (S31) were used to define a number of key model outputs for model

fitting and/or comparison with data:

1. Total new cases per day: α2

∑
i Ci2(t)

2. Proportion of new cases in age group i: Ci2(t)/
∑

j Cj2(t)

3. Total new admissions per day: α3

∑
i Hi3(t)

4. Proportion of new admission in age group i: Hi3(t)/
∑

j Hj3(t)

5. New deaths per day: α5

∑
i Fi5(t)

6. New infections per capita per day: 1/tE
∑

i,k Eik(t)/
∑

i Ni(t)

Outputs (1)–(2) were fitted to data from the Ministry of Health on total and age-stratified

new daily Covid-19 cases smoothed using a 7-day rolling average. The start date of 1 March

2022 was chosen to avoid using data from a period at the start of the first Omicron wave

when case ascertainment was likely significantly lower due to a lack of testing availability.

Ten year age bands were used for age stratification.
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Output (3)–(4) were fitted to data on total and age-stratified new daily Covid-19 hospital

admissions from 1 February 2022, smoothed using a 7-day rolling average. Only hospital

admissions categorised by the Ministry of Health as a “Covid-related hospitalisation” were

included. Ten year age bands were used for age stratification.

Output (5) was fitted to daily Covid-19 deaths 1 February 2022, smoothed using a 7-day

rolling average. Deaths were defined to be cases that were recording as having died and where

the cause-of-death summary was “COVID as underlying”, “COVID as contributory”, or “Not

available”; deaths where the cause-of-death summary was “Not COVID” were excluded.

Output (6) was fitted to data on the weekly incidence of new cases per 1000 people in a

routinely tested cohort of approximately 20,000 border workers from 13 February to 3 July

2022. This may not be a representative sample of the population but we included it because,

unlike outputs (1–5), it provides longitudinal surveillance data that is less sensitive to either

case ascertainment levels or disease severity.

For each fitted time series (1), (3), (5) and (6), we defined the error function as

d(x, y) =
1

n

n∑

t=1

(ln(xt + ϵ)− ln(yt + ϵ))2 , (S32)

where xt and yt are the model output and data respectively for day t, and ϵ is a fixed value

that is small relative to typical values of the variable being fitted. The error function for

outputs (2) and (4) was defined similarly, but with the summation being over age bands i

as well as time t. We set ϵ = 1 for outputs (1), (3) and (5), ϵ = 0.01 for outputs (2) and (4),

and ϵ = 10−4 for output (6).

The total model error was defined as the sum of the error for outputs (1)–(6). To implement

ABC rejection, we solved the model forN = 15, 000 parameter combinations drawn randomly

from the prior and retained the 1% of simulations with the smallest error. We report 95%

credible intervals (CrI) for each model output across the retained simulations. For time

series graphs, we display the 95% curvewise credible interval (CrI), i.e. the envelope that

contains the curves corresponding to the best-fitting 95% of accepted simulations across the

simulated time period. This is a better indicator of model fit and model uncertainty than

using fixed-time statistics, such as the interval containing 95% of accepted simulations at

each time t [juul2021fixed].

S10 Mortality and hospitalisation rates by ethnicity

In order to compare Covid-19 mortality and hospitalisation rates across ethnic groups, we

extracted the number of deaths where the cause of death was classified as “COVID un-
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derlying” or “COVID contributory” and the number of hospital admissions classified as

Covid-19-related in the following ethnicities: Māori, Pacific Peoples, Asian, European/other.

Prioritised ethnicity data was available.

Māori and Pacific populations have a substantially younger age structure compared to the

European population, so we calculated age-standardised rates. For population denominators,

we used the 2022 HSU population [statsnz˙hsu]. Population size data was available in the

same ethnic groups as above and in five-year age bands up to 90 years and over. Age-

standardised Covid-19 mortality and hospitalisation rates for the period from 1 January

2022 and 30 June 2023 are shown in Table S4.
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Parameter Value Source

Epidemiological parameters

Latent period tE = 1 day [wu2022incubation]
Infectious period tI = 2.3 days [abbott2022estimation]
Mean time from onset of infectiousness to positive test result tT = 4 days [vattiato2022assessment]
Mean time from test result to hospital admission tH = 1 days Assumed
Mean time from admission to death tF = 14 days Assumed
Relative infectiousness of subclinical individuals τ = 0.5 [davies2020age]

Date-specific parameters

Date of seeding with infectious cases 19 Jan 2022 +U [−3, 3] Fitted
Number of seed cases in age group i 0.0001Ni Assumed
REI(t) in period 1 REI,1 ∼ U [1.9, 2.5] Fitted
REI(t) in period 2 REI,2 ∼ U [2.9, 4.3] Fitted
REI(t) in period 3 REI,2 ∗ U [1.1, 1.3] Fitted
End of period 1 10 Mar 2022 +U [−5, 5] Fitted
End of period 2 15 Sep 2022 +U [−5, 5] Fitted
Period 1 – period 2 ramp window U [35, 75] days Fitted
Period 2 – period 3 ramp window U [1, 19] days Fitted
Relaxation of contact matrix αM ∼ U [0, 0.8] Fitted
Contact matrix ramp window U [50, 90] days Fitted
Testing prob. before 1 May 2022 (clinical, 0-30 yrs) ptest1,clin,0−30 = 0.5 Manually tuned
Testing prob. after 1 Jan 2023 (clinical, 0-30 yrs) ptest2,clin,0−30 = 0.25 Manually tuned
Testing prob. before 1 May 2022 (clinical, 30-60 yrs) ptest1,clin,30−60 = 0.6 Manually tuned
Testing prob. after 1 Jan 2023 (clinical, 30-60 yrs) ptest2,clin,30−60 = 0.4 Manually tuned
Testing prob. (clinical, 60+ yrs) ptest,clin,60+ = 0.75 Manually tuned
Testing prob. (subclinical, age group i) ptest,sub,i = 0.4ptest,clin,i Assumed
Testing prob. global multiplier αT ∼ U [0.8, 1.2] Fitted

Variant model

BA.5 escape from infection-derived immunity rV OC1 ∼ U [0.1, 0.7] Fitted
BA.5 change in vaccine-derived log antibody titre relative to BA.2 ∆n0,V OC1 = −0.92 [khan2022omicron]

[hachmann2022neutralization]
BA.5 dominance date tV OC1 = 20 Jun 2022 Manually tuned
CH.1.1/BQ.1.1 escape from infection-derived immunity rV OC2 = 0.25 Manually tuned
CH.1.1/BQ.1.1 change in vaccine-derived log antibody titre relative to BA.5 ∆n0,V OC2 = 0 Assumed
CH.1.1/BQ.1.1 dominance date tV OC2 = 15 Nov 2022 Manually tuned
Variant transition window σV OC = 2 days Assumed

Immunity model

Initial log antibody titre
- 2 doses n2d,0 = −1.61 [golding2022analyses]
- 3 doses n3d,0 = −0.92 [golding2022analyses]
- prior infection with 0/1 doses np,0 = 1.39 Manually tuned
- prior infection with 2 doses np2d,0 = 2.71 Manually tuned
- prior infection with 3 doses np3d,0 = 3.56 Manually tuned
Log antibody titre providing 50% immunity:
- against infection ninf,50 = −1.61 [khoury2021neutralizing]
- against hospitalisation nhosp,50 = −3.51 [khoury2021neutralizing]
- against death ndeath,50 = −3.51 [khoury2021neutralizing]
Waning rate rw ∼ U [0.0027, 0.0063] day−1 Fitted
Relative rate of moving from R to S r̂ = 1.85 Assumed
Drop in log titre in subsequent compartment ndrop = 2.30 Assumed
Slope of logistic function κ = 1.28 [khoury2021neutralizing]
Minimum long-term immunity to hospitalisation and death esev,min = 0.5 Assumed
Global IHR multiplier αIHR ∼ U [0.5, 1.5] Fitted
Global IFR multiplier αIFR ∼ U [0.5, 1.5] Fitted
Antiviral effect on IFR αA ∼ U [0.4, 0.6] Fitted

Table S1: Model parameter values and prior distributions.



Age

(yrs)

Popn

Ni(0)

ui pclin,i IHRi per

1000

IFRi per

1000

tLOS,i

(days)

µi (per 1000

per yr)

0-5 310660 0.46 54% 7.12 0.0034 2.0 1.07

5-10 332944 0.46 55% 1.15 0.0034 2.0 0.08

10-15 345479 0.45 58% 1.19 0.0034 2.0 0.17

15-20 318994 0.56 60% 2.42 0.0062 2.0 0.41

20-25 334793 0.79 62% 3.48 0.012 2.0 0.60

25-30 382666 0.93 64% 3.54 0.024 2.0 0.56

30-35 404515 0.97 66% 3.69 0.048 2.7 0.73

35-40 358897 0.98 68% 3.99 0.091 3.3 0.83

40-45 324200 0.94 70% 4.36 0.180 4.0 1.21

45-50 325381 0.93 71% 5.49 0.360 4.7 1.95

50-55 336644 0.94 73% 6.68 0.697 5.4 3.07

55-60 324299 0.97 74% 9.18 1.35 6.0 4.45

60-65 303456 1.00 76% 13.48 2.65 6.7 6.49

65-70 258073 0.98 77% 21.44 5.08 7.4 10.27

70-75 220811 0.90 78% 36.31 9.74 8.0 16.69

75+ 351834 0.86 80% 130.03 54.7 8.7 136.0

Table S2: Age-dependent model parameters. ‘Popn’ is the initial population size in each age

group, as of October 2022; ui is the susceptibility of age group i relative to the 60-65 year

age group; pclin,i, IHRi and IFRi are respectively the proportion of infections causing clinical

disease, hospitalisation and death respectively for individuals with no immunity (i.e. unvac-

cinated and no prior infection); tLOS,i is the average length of hospital stay estimated from

MOH data on duration of patients receiving hospital treatment for Covid-19; µi is the all-

cause death rate per 1000 people per year. Values of pclin,i are from [hinch2021openabm].

The age-dependence in IFRi is based on the results of [herrera2022age] but values are

scaled down for consistency with observed death rates, reflecting reduced virulence of Omi-

cron relative to earlier variants. Values of IHRi were set as described in section S8. The

values of IHRi and IFRi in the Table are the mean of the prior distribution for these param-

eters. In each model simulation, the vectors of IHRi values and IFRi values are multiplied

by fitted global adjustment factors αIHR and αIFR ∼ U [0.5, 1.5] (Table S1). Total birth rate

assumed to be b = 59637 yr−1.
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Scenario type Definition

A. Vaccination rates reduced by factor of pv vid(t) = pvv̂id(t)

B. No vaccination in age groups 1 to k vid(t) = 0 for i = 1, . . . , k and vid(t) = v̂id(t)

for i = k + 1, . . . , 16

C. Adult vaccination rates as for age group k vid(t) = v̂kd(t)Ni/Nk for i = 4, . . . , 12 and

vid(t) = v̂id(t) for i = 1, . . . , 3

D. Vaccination rates as for ethnic group G vid(t) = v̂
(G)
id (t)Ni/N

(G)
i

Table S3: Definition of the counterfactual scenarios considered. Each scenario is defined by

the number of dth does given in age group i at time t, denoted vid(t), which is set relative to

the actual number of doses, denoted v̂id(t). Four types of method (A–D) are used for setting

vid(t). Scenarios (0), (1) and (2) in Table 1 are of Type A with pv = 1, pv = 0 and pv = 0.9

respectively. Scenario (3) is of Type B with k = 12 (representing the 55-60-year-old group).

Scenario (4) is of Type C and sets vid(t) so that the number of vaccine doses per capita in

age group i, vid(t)/Ni, is equal to the actual number of doses per capita in age group k,

v̂kd(t)/Nk, with k = 5 (representing 20-25-year-olds). Scenarios (5) and (6) are of Type D

and set vid(t) so that the number of vaccine doses per capita in age group i, vid(t)/Ni is

equal to the actual number of doses per capita in age group i for ethnic group G. Here Ni

and N
(G)
i denote the number of people in age group i at time t = 0 in the whole population

and in ethnic group G respectively.

Mortality rate Hospitalisation rate

Māori 100 850

Pacific Peoples 109 1190

Asian 38 460

European/other 58 490

Overall 61 550

Table S4: Age-standardised Covid-19 mortality and hospitalisation rates per 100,000 people

by prioritised ethnicity for the period 1 January 2022 to 30 June 2023. Covid-19 deaths were

defined to be those where the cause of death summary was either ‘COVID as underlying”

or “COVID as contributory”; Covid-19 hospitalisations were defined to be those Rates are

standardised to the total New Zealand population according to the HSU dataset in 2022.
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Scenario ∆ infections

(millions)

∆ admissions

(thousands)

∆ deaths ∆ YLL

(thousands)

(0) Baseline - - - -

(1) No vaccine 1.45 [1.33, 1.55] 45.1 [34.4, 55.6] 6650 [4424, 10180] 74.5 [51.0, 115.4]

(2) 10% drop in rates 0.13 [0.12, 0.14] 4.2 [3.2, 5.2] 603 [395, 924] 6.8 [4.6, 10.7]

(3) No vaccine in U60s 1.19 [1.11, 1.25] 14.5 [10.9, 17.1] 773 [526, 1144] 20.2 [13.5, 30.4]

(4) 20-25-year-old rates 0.20 [0.15, 0.24] 4.2 [3.1, 5.4] 733 [491, 1098] 7.2 [4.8, 10.7]

(5) Euro/other rates -0.03 [-0.04, -0.03] -0.5 [-0.6, -0.4] -64 [-99, -42] -0.6 [-1.0, -0.4]

(0a) No AVs - - - -

(1a) No vaccine or AVs 1.45 [1.33, 1.55] 45.1 [34.4, 55.6] 7604 [5080, 11942] 82.4 [56.1, 129.3]

(5) Euro/other rates - - - -

(6) Māori rates 0.26 [0.23, 0.28] 3.6 [2.7, 4.3] 419 [284, 639] 4.6 [3.1, 7.0]

Table S5: Model results (median and 95% CrI) in each scenario for the difference (∆) in the total number of infections, hospital

admissions, deaths, and years of life lost (YLL), between 1 January 2022 and 30 June 2023 relative to a comparison scenario.

Scenarios (1)–(5) are compared against scenario (0) which is the baseline (factual) scenario. Scenario (1a) with no vaccination and

no antivirals is compared against scenario (0a) with no antivirals (and actual vaccination rates). Scenario (6) with Māori vaccination

rates is compared against scenario (5) with European/other vaccination rates. Note: differences (∆) are always calculated between

two scenarios run with the same set of fitted parameters {θi}; results in the Table show the median and 95% CrI of ∆ across the

150 accepted parameter combinations.
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Scenario Infections

(millions)

Admissions

(thousands)

Deaths YLL

(thousands)

Peak occupancy

Actual - 28.8 3196 33.9∗ 1016∗∗

Model scenarios

(0) Baseline 5.67 [4.96, 6.59] 28.8 [22.1, 36.3] 3217 [2221, 4466] 39.7 [27.2, 54.4] 859 [573, 1299]

(0a) No AVs 5.67 [4.96, 6.59] 28.8 [22.1, 36.3] 3901 [2617, 5298] 45.4 [31.1, 62.0] 859 [573, 1299]

(1) No vaccine 7.11 [6.28, 8.12] 74.2 [56.1, 91.4] 9657 [6637, 13396] 112.0 [77.6, 154.8] 5583 [4041, 7319]

(1a) No vaccine or AVs 7.11 [6.28, 8.12] 74.2 [56.1, 91.4] 11146 [7639, 15813] 125.7 [85.5, 175.8] 5583 [4041, 7319]

(2) 10% drop in rates 5.81 [5.08, 6.73] 33.0 [25.1, 41.4] 3799 [2635, 5282] 46.3 [31.7, 63.3] 1051 [717, 1428]

(3) No vaccine in U60s 6.86 [6.06, 7.82] 43.1 [32.9, 53.2] 3988 [2748, 5488] 58.8 [40.8, 80.6] 2877 [2096, 3704]

(4) 20-25-year-old rates 5.87 [5.09, 6.81] 31.9 [24.3, 40.3] 3684 [2551, 5136] 44.6 [30.5, 61.2] 879 [600, 1305]

(5) Euro/other rates 5.59 [4.88, 6.50] 27.5 [21.1, 34.6] 3082 [2126, 4270] 38.0 [26.1, 52.1] 789 [507, 1258]

(6) Māori rates 6.04 [5.29, 6.97] 37.0 [28.1, 46.1] 4301 [2991, 5981] 51.1 [35.0, 69.8] 1368 [973, 1841]

Table S6: Model results (median and 95% CrI) in each scenario for the total number of infections, hospital admissions, deaths, and

years of life lost (YLL), and the peak hospital occupancy, between 1 January 2022 and 30 June 2023, in the sensitivity analysis using

StatsNZ population projections instead of HSU population data (see Section S5). Scenarios are: (0) baseline (actual vaccination

rates); (0a) no antivirals (actual vaccination rates); (1) no vaccination; (1a) no vaccination or antivirals; (2) vaccination rates set

to a proportion pv = 0.9 of actual vaccination rates at all ages; (3) no vaccination of under-60-year-olds; (4) vaccination rates

at all ages set to actual vaccination rates in the 20-25-year-old group; (5-6) vaccination rates set to actual vaccination rates for

European/other and Māori ethnicities respectively at all ages. ∗Estimated using cohort life tables via the same method as for

model YLL calculations. ∗∗Includes some incidental hospitalisations (i.e. patients who were positive for Covid-19 but not receiving

treatment for Covid-19).
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Figure S1: Schematic diagram of the model structure showing the 14 susceptible compart-

ments for age group i, indexed as compartments Sik for k = 1, . . . , 14. Vertical downward

arrows represent transition to a susceptible compartment with lower immunity as a result

of waning immunity. Green arrows represent transition to a susceptible compartment with

higher immunity as a result of vaccination. Horizontal arrows represent infection, which

initiates transition through a series of disease states ending in recovery. Following recovery

from first infection, individuals who have had at least three vaccine doses (yellow) transition

to the highest immunity post-infection compartment Si,11; individuals who have had fewer

than three vaccine doses (blue and red) transition to a mixture of compartments Si,11 to

Si,14 (dashed purple arrows), representing lower post-infection immunity for these groups.

Following recovery from a second or subsequent infection (black), all individuals transition

to Si,11 regardless of vaccination status.
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Figure S2: Cumulative number of 1st, 2nd, 3rd and 4th or subsequent vaccine doses as a

proportion of Aotearoa New Zealand’s total population size, based on Ministry of Health

data on actual doses administered up to 6 June 2023 aggregated across all age groups. To

assist interpretation, the horizontal dashed lines show (in order from top to bottom), the

approximate proportion of the population that is aged over 5 years (eligible for 2 doses as

of January 2022), aged over 16 years (eligible for 3 doses as of April 2022), and aged over

50 years (eligible for a 4th dose as of June 2022). Note these are indicative only as they do

not include people who were outside the age criteria but who were eligible on the basis of

specified health conditions or healthcare worker status. The purple curve combines 4th and

subsequent doses and so cannot be interpreted as the proportion of people who have had at

least 4 doses. Up to 31 March 2023, this curve is predominantly 4th doses as eligibility for a

5th dose was restricted to small groups; from 1 April 2023 onwards, the curve represents a

combination of 4th and 5th doses as the criteria changed at this time so that everyone aged

over 30 years became eligible for an additional dose 6 months after their most recent dose.

For a age breakdown of vaccination rates see Figure 2 of the main article.
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Figure S3: Prior distribution for the time-varying reproduction number excluding immunity

REI(t): ten example time series (solid curves) and 95% CrI (gray shaded area) calculated

from 10,000 random draws of the relevant parameters from the assumed prior (see Table

S1). The graph shows the two transmission ramp-up periods (corresponding to behavioural

and/or policy changes) starting in March 2022 and September 2022.

Figure S4: Contact matrices showing the average number of contacts between age groups:

(a) during period 1 of the simulation (M0); (b) during periods 2 and 3 of the simulation

(M1). The matrix M0 was taken from [vattiato2022modelling] and the matrix M1 was

taken from [steyn2022covid] based on [prem2017projecting].
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Figure S5: Proportion of reported cases that filled a prescription for either Paxlovid or

molnupiravir within 7 days of report date or hospital admission date, calculated using a

28-day moving window.

Figure S6: Ratio (median and 95% CrI) of cumulative actual hospital admissions

to cumulative modelled hospital admissions using a previous set of assumed values

[lustig2023modelling] for the age-dependent infection hospitalisation ratio. The model

IHR was subsequently adjusted by multiplying by the median ratio in each age band result-

ing in the IHR values shown in Table S2 that were used in this study. Cumulative modelled

hospital admissions were calculated for the period 25 January 2022 to 18 March 2023 from

model simulations run on 22 March 2023, using parameters fitted to data up until 25 Febru-

ary 2023 and vaccination data until 13 February 2023.
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Figure S7: Violin plots showing the approximate marginal posterior distributions of each

fitted parameter across the 150 accepted realisations of the model with the best fit to the

data out of 15,000 random draws from the prior. Each parameter θi has a uniform prior

θi ∼ U [ai, bi] (see Table S1) and for the purposes of plotting, each parameter is transformed

to the [0, 1] scale via zi = (θi − ai)/(bi − ai).
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Figure S8: Age-specific case hospitalisation ratio (CHR) and case fatality ratio (CFR) be-

tween for model output in the baseline scenario (blue circles show median and error bars

show 95% CrI for the accepted model realisations) and data (red), for the period 25 January

2022 to 30 June 2023. Upper plots show results on a linear scale; lower plots show results

on a log scale.
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Figure S9: Age-stratified results for the baseline (factual) scenario showing: new daily cases; new daily hospital admissions;

daily deaths; ratio of admissions to cases; ratio of cases to infections (case ascertainment rate, CAR); and cumulative

infections relative to population size (solid line is first infections only; dashed line is all infections). Graphs show the

curvewise 95% credible interval (grey shaded area). Model was fitted to data (blue) up to 13 August 2023. Note: model

results were calculated in five-year age bands but plotted in ten-year age bands for ease of display.
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Figure S10: Cumulative number of infections, hospital admissions and deaths over time in the

baseline scenario (red) and the scenarios with a 10% reduction in vaccination rates (orange),

vaccination rates for all adults set to actual vaccination rates in the 20-25-year-old group

(brown), vaccination rates set to actual vaccination rates for European/other (pink) and

Māori (grey). Graphs show the median (solid curves) and 95% CrI (shaded areas) for each

scenario. See Figure 4 of the main article for corresponding results for the other scenarios

considered.
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