

ArcGIS PRO DRH Advanced Tutorial

Add Data | Explore Analysis Tools | 3D Map on Local Scene

March 2023

Data Acquisition

The dataset used in this tutorial:

- Hawke's Bay Regional Council https://hbrcopendata-hbrc.opendata.arcgis.com/
- Koordinates https://koordinates.com/

Dataset folder is available in **Scratch** on lab computers

Note: Copy the whole data folder from Scratch into your ArcGIS project folder.

Coastline
cyclone-gabrielle-flood-areas-14-feb-2023
DEM
Hawke_s_Bay_Bus_Routes
Hawke_s_Bay_Flood_Risk_Areas
kx-nz-road-centrelines-topo-150k-SHP
Icdb-v50-land-cover-database-version-50-main...
nz-building-outlines-all-sources
nz-building-points-topo-150k
nz-river-polygons-topo-1500k
vegetative-cover-map-of-new-zealand
Hawke's Bay Regional Council Open Data Site

1. Compare the area that was predicted and actually flooded in the January flood event Add Data and Change Symbology

Change the Primary Symbology for the *Hawkes Bay Flood Risk Areas* layer **Symbology** – **Graduated Colors** – Select "**FloodLevel**" in Field

Compare the area that was predicted and actually flooded in the January flood event

- Click Analysis on the top ribbon
- Find Pairwise Intersect tool

- Select the *Input Feature* layers as below
- Click Run

Outcome Layer - Open Attribute Table for further analysis

2. Find out bus routes that affected by the flood

- Add Hawkes Bay Bus Routes Data onto the map
- Click Analysis on the top ribbon
- Find **Near** tool

To find the bus routes that were affected:

- **Parameters** as below search area 50m near the bus routes
- Click Run

Note: the Near tool will be only shown as Fields in the attribute table

Find out bus routes that affected by the flood

- Change the bus routes
 Symbology to Graduated Colors
- Make sure select "NEAR_DIST" in Field
- Change Classes to 3
- Double click the numbers to change the *Upper values*
- Click icons for each class under Symbol to change the properties

Find out bus routes that affected by the flood

- Change **Symbol** to make the map more legible
- o Upper value less than -0.5m to show bus routes that were not affected
- Upper Value up to 5m shows the bus routes that were seriously affected

Label the bus routes

- Right Click the Hawkes Bay Bus Routes layer
- Click Label to enable labelling
- Click Labelling Properties

- Select the Bus_Route field
- Click Apply
- Customize the label appearances by changing its Symbol and Position

Outcome map of bus routes that affected by the flood

3. Find out Schools and the surrounding areas that affected by the flood

- · Add building points data onto the map
- Open Attribute Table
- Click Select By Attributes

- Select building points layer as Input Rows
- Filter out the building use as school by entering the following expression
- Click Apply and OK

Create a School layer

- Right click the layer
- Click Selection Make Layer From Selected Features
- A new layer with Schools point data only will be created

- · Rename the layer to Schools
- · Change its appearances by selecting Symbology

Create a 500m buffer around Schools

- Find the **Pairwise Buffer** tool under **Analysis**
- Enter the Parameters as shown at right
- · Click Run

Outcome map:

Find out the area within 500m distance from school buildings that were affected by the flood

- Find the Pairwise Intersect tool under Analysis
- Enter the **Parameters** as shown at right
- Click Run

Outcome map of school buildings and the surrounding areas that affected by the flood

4. Create a 3D Map on Local Scene

- On the Map tab, click the Add Data arrow
- Click *Elevation Source Layer*
- On the Add Elevation
 Source Layer dialog box,
 browse to the elevation
 source DEM Folder and
 click OK.
- The source is added to the ground.
- A new *Elevation Surfaces* layer will be created under
 Contents pane

- Under the View tab, click the Convert
- Select To Local Scene
- A new Map_3D tab will be created

Generate 3D elements by using Analysis Tools

- In the *Map_3D* viewport
- Click **Analysis Tools**
- Search Hillshade under Geoprocessing pane
- Select the NZDEM Napier data as Input raster
- Click Run

Outcome map of the 3D map

Helpdesk

Architecture Building Level 4, Room 423 (421-423).

drh022@aucklanduni.ac.nz

Opening Hours:

Mon-Fri: 9:30am-4:30pm

We do not open during public holiday

Appointments only during school breaks

<u>drh.nz</u>

drh

drh.nz

