Guide: Digital Fabrication CNC milling 05-08-2019

We can't guarantee your files will be successfully fabricated as there are many factors which can affect it.

The guideline will help you understand laser cutting, 3D printing and CNC milling in greater detail to help you achieve a successful result.

*There is usually a queue for fabrication, so make sure you bring in your files early.

(3-4 days for 3d printing and CNC, 1-2 days for laser cutting.)

What is a CNC router?

A CNC (computer Numerical Controlled) router is a computer controlled machine for

cutting different materials along a path, or 3D shape, generated by a software.

There are many advantages to using CNC Machining. The process is more precise than manual machining, and can be repeated in exactly the same manner over and over again.

CNC Machining is used in the production of many complex three dimensional shapes. It is because of these qualities that CNC Machining is used in jobs that need a high level of precision or very repetitive tasks.

Location: Digital Facrication workshop, Level 1 Architecture building

CNC milling

Maximum cutting Sizes

Big machine: 120 x 240 x 20cm

Small machine:

Materials

MDF is very good for 2D cutting, being very flat.

Plywood is very good for 2D cutting. It can be used also for 3D cutting, giving an interesting stripped result.

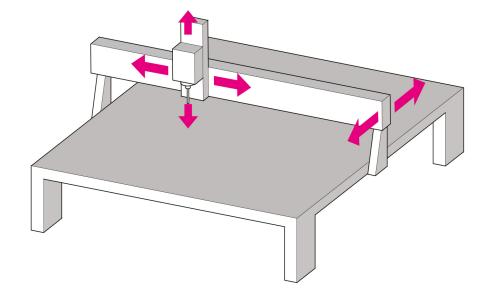
Solid wood is very good for 3D cutting. Wood with a fine grain, like totara, are better for fine details models

Cibatool-chemical wood is perfect for small (high cost) and high detailed 3D cutting.

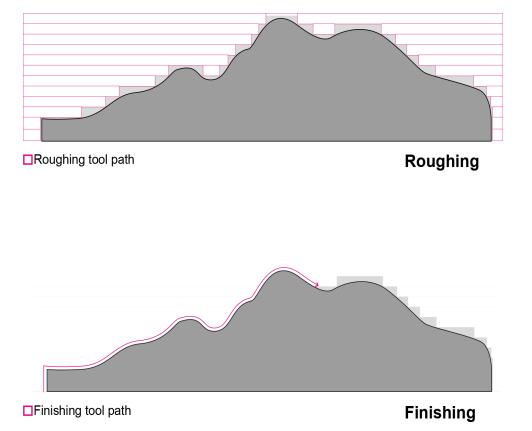
Polystyrene is good for big dimension-low details model. The blue green one gives a better surface finish, but has a maximm height of 50mm, while the white one can be purchased in bigger dimension.

Acrylic produces a reasonable finish but still requires a lot of wet sanding and polishing to get it clear again

Aluminium can be 3D cut or engraved, but not cut through.


*Other materials can be tested.

Stone, concrete, glass and fiberglass CAN NOT be cut.


HOW IT WORKS: 3D Cutting

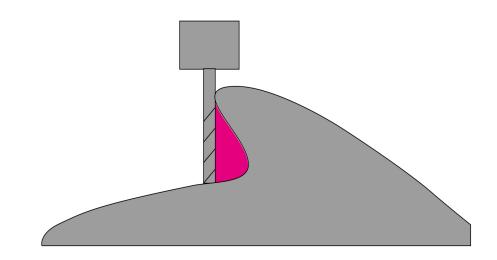
The spindle holds the tool and move along X,Y znd Z azis, following the paths generated by the software. In a 3 axis router, the tool is always vertical, and undercuts are not possible.

What do we need?

- Save your model in Rhinoceros .3DM or .STL format
- Make sure your model has no holes, the volume must be **fully enclosed.**
- Model dimensions must be able to fit in the milling bed constraints (width, height and depth).

HOW IT WORKS: 3D Cutting

The machine runs different cutting paths:

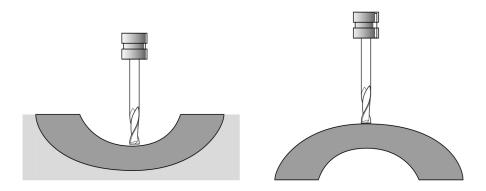

- Roughing cut, removing successive layers of material around the model
- **Finishing** cut, along the surface of the model

Note:

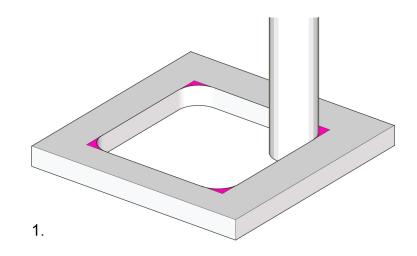
Other cutting paths can be eventually performed:

- for refining concave edges that have been cut rounded with a rounded tool,

- for adding an engraving on the surface of the model (a road on a site model, for example).

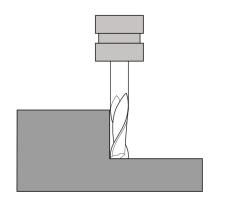


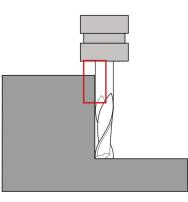
FLIPPING THE MODEL


1. Since the tool is in a vertical position, undercuts are not possible.

2. However, in some cases the model can be flipped and machined on different faces, provided that it has a stable face to lay on.

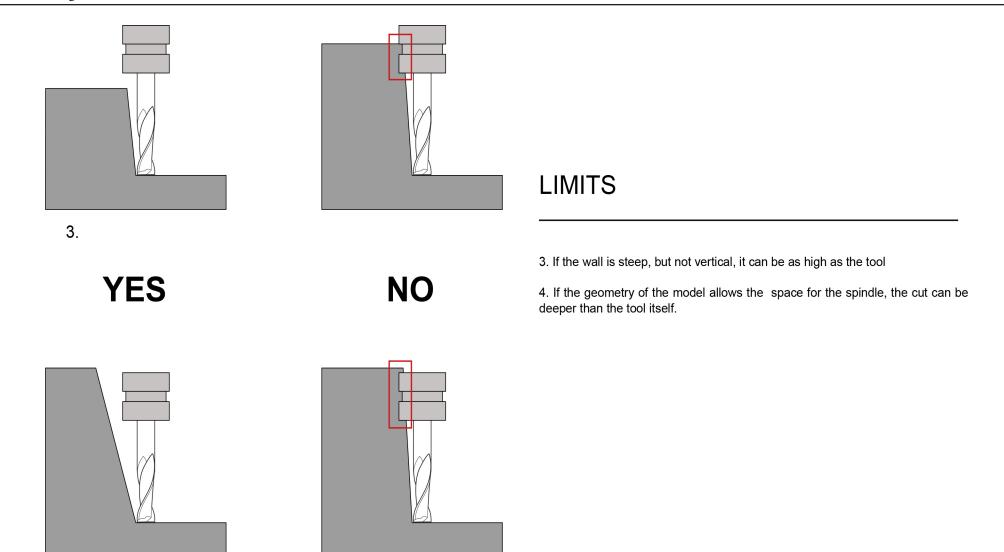
In this case it is extremely important to center the piece properly.

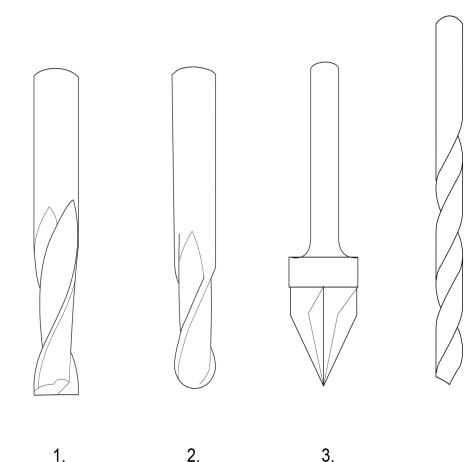

1.



LIMITS

1. the tools have a circular section, it means that the internal corners, seen by the top, are always rounded, only the radius can change.


2. Vertical walls can only be as high as the cutting part of the tool, not as the tool itself.



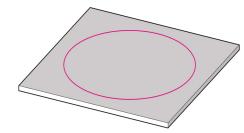
2.

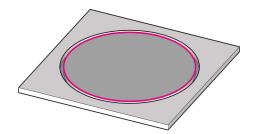
YES

TOOLS

The tools used for cutting are many different kinds.

The most commonly used are:

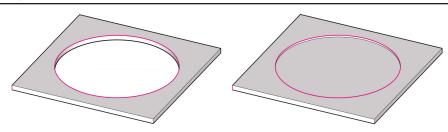

1. endmill, with the flat edge, are mainly used for the roughing cut, and for refining flat orizontal surfaces and sharpe corners;

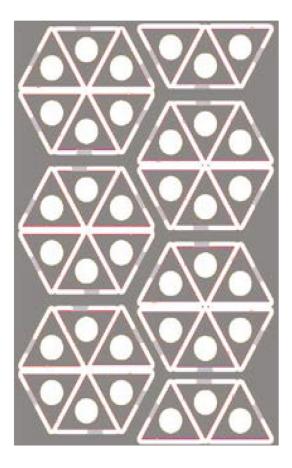

2. ballnose, with a rounded edge, mainly used for finishing smooth surfaces;

3. veemill, used for engraving and for tapering edges; -drill bits, for making holes.

Some features to keep in mind:

- a big tool can usually be longer then a small one;
- a big tool can cut faster than a small one;
- a big ball-nose tool can't reach small valleys, but makes a smoother finish.

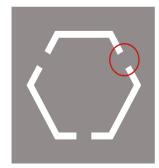




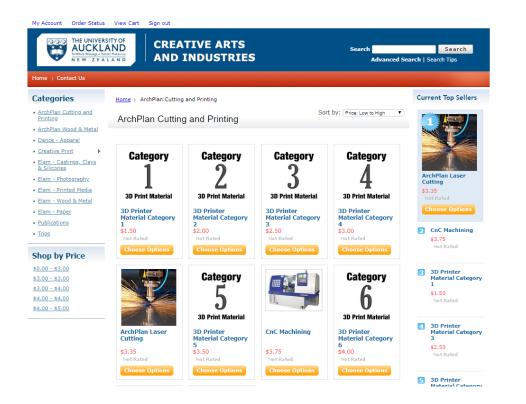
2D CUTTING

The drill cuts along a path, through the material or with a given depth (in this case the depth must be added as note to the drawing).

Profiling: the tool follows a line, on either one or other side of the line and inside or outside a continuous closed shape. The width of the cut depends on the tool used.



Pocketing: the tool removes all material inside an outline, to a specified depth. Pocketing tool paths only work within **closed** shapes, all lines must be **joined without any overlaps**.


When cutting several pieces within one sheet of material, you must allow space for the tool, the thicker the material, the bigger the tool.

If there are many small pieces, they must be arranged on the board so that all of them are connected with a solid frame, in order to leave a small part uncut (keep them in position).

If the model is to be cut out entirely from the material, remember to add tabs around the model to keep it in place while milling.

Payments

How to pay for a job through NICAI creative store

*Ask the staff for a estimated cost before the job processes

1.Go to https://store.creative.auckland.ac.nz/

2.Log on or create an account

3. Choose the ArchPlan Cutting and Printing category

Laser Cut Jobs: Select the number of minutes

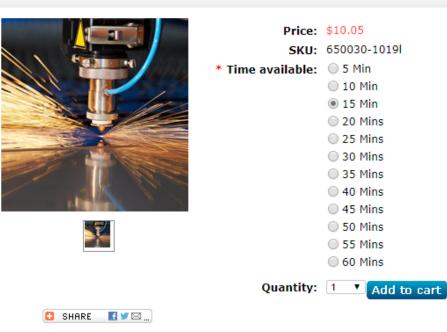
3D printing: Select the category

Each unit represents 10 grams of material

Category 1 Includes 0.2 (Fast) printing of PLA and ABS materials

Category 2 Includes 0.15 (Good) printing of PLA and ABS materials

Category 3 Includes


- 0.1 (Fine) printing of PLA and ABS materials.
- 0.2 (Fast) printing of Nylon & Polycarbonate

Breakaway support. (All qualities)

If you are not sure, ask a DRH staff for help.

Payments

ArchPlan Laser Cutting

4. Select "add to cart", then select "proceed to checkout".

5. Comfirm the billing address and shipping detail, tick " Pick Up from Student Centre \$0.00 "

6. Fill in payment details. You will recieve a confirmation email from NICAI for your puirchase

* All jobs has to be paid before collection, otherwise a receipt must be forwarded to **digitalresearchhub@gmail.com**

OK, 1 item was added to your cart. What next?

ArchPlan Laser Cutting (Time available: 15 Min) \$10.05 Quantity added: 1 Proceed to checkout Order Subtotal: S11.55 Your cart contains 3 items <u>Continue Shopping</u> or <u>View or edit your cart</u>