

Mikhail Anufriev^a Cars Hommes^b

^aUniversity of Technology, Sydney

^bUniversity of Amsterdam

4th CMSS Summer Workshop on Mathematical Economics The University of Auckland Auckland, New Zealand 21 March 2013

UTS, UvA

Mikhail Anufriev

Introduction		Conclusion	

Expectations in Economic Theory

- economy is an expectation feedback system
 - expectations affect our decisions and realizations
 - expectations are affected by past experience
- expectations play the key role in most economic models

30s-60s naive and adaptive expectations

70s-90s rational expectations

- 90s- models of learning and bounded rationality
 - adaptive learning (OLS-learning)

< □ > < 同 > < 回 >

UTS, UvA

- belief-based learning
- reinforcement learning

Introduction Experiments Model Conclusion Extra

Example 1: Model of Financial Market

• demand for the risky asset (available in zero supply)

$$D_h(p_t) = \frac{\mathrm{E}_{h,t}[p_{t+1} + y_{t+1}] - (1+r)p_t}{a \, \mathrm{V}_{h,t}[p_{t+1} + y_{t+1}]}$$

solving market clearing eq. at time t find the equilibrium price

$$\sum_{h} D_h(p_t) = 0 \quad \rightsquigarrow \quad p_t = \frac{1}{1+r} \sum_{h} \mathbf{E}_{h,t}[p_{t+1} + y_{t+1}]$$

rational expectations

$$p_t = \frac{1}{1+r} \operatorname{E}_t[p_{t+1} + y_{t+1}] \quad \rightsquigarrow \text{ (for i.i.d. dividends) } p_t = \frac{\overline{y}}{r}$$

heterogeneous expectations (Brian Arthur, 1991)

$$p_{t} = \frac{1}{1+r} \sum_{h} E_{h,t} \left[\frac{1}{1+r} \sum_{h'} E_{h',t+1} [p_{t+2} + y_{t+2}] + y_{t+1} \right]$$

UTS, UvA

Mikhail Anufriev

Introduction		Conclusion	
This paper:			

- Heuristic Switching Model with heterogeneous expectations
- model is inspired by and tested on the experimental data

Key features:

in forecasting agents use simple rules of thumb, heuristics (Tversky and Kahneman, 1974)

in learning agents switch between different forecasting rules on the basis of their performances (Brock and Hommes, 1997)

イロト イ理ト イヨト イヨト

UTS, UvA

Experiments	Conclusion	

Experiments about expectations

- Earlier experiments: indirect focus / expectations on exogenous time series: Schmalensee (1976), Hey (1994), Marimon and Sunder (1994)
- Learning-to-forecast experiments: Hommes et al (2005, RFS; 2008, JEBO), Adam (2009, EJ), Heemeijer et al (2009, JEDC)

Model of asset-pricing (Campbell, Lo and MacKinlay, 1997)

- riskless asset with interest r = 0.05
- ► risky asset with price p_t and i.i.d. dividend y_t with mean $\bar{y} = 3$ $p_t = \frac{1}{1+r} \left(\bar{p}_{t+1}^e + \bar{y} + \varepsilon_t \right) = \frac{1}{1+r} \left(\frac{p_{t+1,1}^e + \dots + p_{t+1,6}^e}{6} + \bar{y} + \varepsilon_t \right)$

Experiment: 6 human subjects know only qualitative features

• submit forecasts $p_{t+1,h}^e$ and are paid according to the precision

UTS, UvA

• observe past prices (up to p_{t-1}), own forecasts and payoffs

Mikhail Anufriev

Experiments	Conclusion	

earnings per period:
$$e_{t,h} = \max\left(1 - \frac{1}{49}(p_t - p^e_{t,h})^2, 0\right) \times \frac{1}{2}$$
 euro

・ロト ・聞 ト ・ ヨト ・ ヨト

3

UTS, UvA

Mikhail Anufriev

Rational Benchmark

If everybody predicts fundamental price $p^f = \frac{\bar{y}}{r} = 60$, then $p_t = p^f + \frac{\varepsilon_t}{1+r}$

UTS, UvA

Mikhail Anufriev

Mikhail Anufriev

UTS, UvA

글 🖌 🖌 글 🕽

UTS, UvA

Experiment with stabilizing fundamentalists

pricing equation

$$p_t = \frac{1}{1+r} \left((1-n_t) \bar{p}_{t+1}^e + n_t p^f + \bar{y} + \varepsilon_t \right)$$

fraction of fundamental traders

$$n_t = 1 - \exp\left(-\frac{1}{200}|p_{t-1} - p^f|\right)$$

Mikhail Anufriev

Mikhail Anufriev

Results (individual predictions)

< □ > < 同

UTS, UvA

Mikhail Anufriev

Experiments	Conclusion	

Estimation of individual prediction rules

OLS regression of predictions on the lagged prices and predictions

$$p_{i,t+1}^{e} = \alpha + \sum_{k=1}^{5} \beta_{k} p_{t-k} + \sum_{k=0}^{5} \gamma_{k} p_{i,t-k}^{e} + \epsilon_{i,t}$$

leaving insignificant coefficients out

adaptive expectations

$$p_{t+1,h}^e = w p_{t-1} + (1 - w) p_{t,h}^e$$

trend-extrapolating rules

$$p_{t+1,h}^{e} = p_{t-1} + \gamma \left(p_{t-1} - p_{t-2} \right)$$

anchoring and adjustment rule

$$p_{t+1,h}^{e} = \frac{1}{2} (60 + p_{t-1}) + (p_{t-1} - p_{t-2})$$

UTS, UvA

Mikhail Anufriev

Experiments	Conclusion	

Learning-to-forecast experiments: Summary

"Stylized facts"

- large bubbles in the absence of fundamentalists
- qualitatively different patterns in the same environment
 - (almost) monotonic convergence
 - constant oscillations
 - damping oscillations
- coordination of individual predictions
- forecasting rules with behavioral interpretation are used

イロト イポト イヨト イヨ

UTS, UvA

Expe	riments r	Model	Conclusion	

Model: four forecasting heuristics

adaptive rule

ADA
$$p_{1,t+1}^e = 0.65 p_{t-1} + 0.35 p_{1,t}^e$$

weak trend-following rule

WTR
$$p_{2,t+1}^e = p_{t-1} + 0.4 (p_{t-1} - p_{t-2})$$

strong trend-following rule

STR
$$p_{3,t+1}^e = p_{t-1} + 1.3 (p_{t-1} - p_{t-2})$$

anchoring and adjustment heuristics with learnable anchor

LAA
$$p_{4,t+1}^e = \frac{1}{2} (p_{t-1}^{av} + p_{t-1}) + (p_{t-1} - p_{t-2})$$

price dynamics

$$p_t = \frac{1}{1+r} \left(\left(n_{1,t} p_{1,t+1}^e + n_{2,t} p_{2,t+1}^e + n_{3,t} p_{3,t+1}^e + n_{4,t} p_{4,t+1}^e \right) + \bar{y} + \varepsilon_t \right)$$

< □ > < / →

Mikhail Anufriev

Dynamics converge to fundamental price.

 $\gamma = 0.4$ $\gamma = 0.99$

UTS, UvA

Price under weak trend following heuristic

Mikhail Anufriev

Dynamics diverge from fundamental price...

Price under strong trend following heuristic

...and settles on the quasi-periodic attractor.

UTS, UvA

Attractor under strong trend following heuristic

Mikhail Anufriev

Price under anchoring and adjustment heuristic

UTS, UvA

with learning of anchor: $p_{t+1}^e = \frac{p_{t-1}^{av} + p_{t-1}}{2} + (p_{t-1} - p_{t-2})$

Mikhail Anufriev

Model with Homogeneous Expectations

- pattern of monotonic convergence can be easily reproduced adaptive rule, weak trend extrapolation
- pattern of constant oscillations can be reproduced anchoring and adjustment rule without learning
- pattern of damping oscillations is reproduced (very imperfectly) strong-trend extrapolations

< □ > < 同 > < 回 >

Stability conditions

 $p_{t+1}^e = \alpha + \beta_1 p_{t-1} + \beta_2 p_{t-2}$

イロト イロト イモト イモト

UTS, UvA

Mikhail Anufriev

Evidence for switching I

Group 6, participant 1

UTS, UvA

Mikhail Anufriev

Evidence for switching II

Group 1, participant 3

Introduction Experiments Model Conclusion Extra

Modelling switching behavior

impacts of heuristics $n_{i,t}$ are evolving

• performance measure of heuristic *i* is

$$U_{i,t-1} = -(p_{t-1} - p_{i,t-1}^{e})^{2} + \eta U_{i,t-2}$$

parameter $\eta \in [0,1]$ – the strength of the agents' memory

discrete choice model with asynchronous updating

$$n_{i,t} = \delta n_{i,t-1} + (1-\delta) \frac{\exp(\beta U_{i,t-1})}{\sum_{i=1}^{4} \exp(\beta U_{i,t-1})}$$

イロト イ理ト イヨト イヨト

UTS, UvA

parameter $\delta \in [0, 1]$ – the inertia of the traders parameter $\beta \ge 0$ – the intensity of choice

Mikhail Anufriev

Stability and Instability of the model

Stability region for model with fixed fractions

-

UTS, UvA

• • • • • • • • • •

Mikhail Anufriev

	Model	Conclusion	

Deterministic path: Monotonic convergence

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

< □ > < 同

UTS, UvA

Mikhail Anufriev

	Model	Conclusion	

Deterministic path: Constant oscillations

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

A D > <
 A P >
 A

- E

UTS, UvA

Mikhail Anufriev

	Model	Conclusion	

Deterministic path: Damping oscillations

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

イロト イポト イヨト イヨ

UTS, UvA

Mikhail Anufriev

Evolution of instability

Largest modulus of eigenvalue of HSM

A D > <
 A P >
 A

UTS, UvA

One-period ahead prediction: gr. 6 (constant oscillations)

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

< □ > < 同

UTS, UvA

Mikhail Anufriev

One-period ahead prediction: gr. 4 (damping oscillations)

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

< □ > < / →

UTS, UvA

Mikhail Anufriev

	Model	Conclusion	

One-period ahead prediction: gr. 5 (convergence)

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

A D > <
 A P >
 A

UTS, UvA

Mikhail Anufriev

	Model	Conclusion	

In-sample performance

MSE over 47 periods for 8 different models

Specification	Group 2	Group 5	Group 1	Group 6	Group 4	Group 7
Fundamental	16.6231	10.8238	15.7581	9.3245	300.9936	21.9123
ADA	0.0712	0.0378	5.6734	4.6095	210.3313	19.5158
WTR	0.0862	0.1419	2.0905	1.1339	92.2163	9.2932
STR	0.5001	0.6605	2.9071	0.8131	124.3494	14.7224
LAA	0.4588	0.4756	0.456	0.6591	66.2637	5.8635
constant weights	0.0814	0.1698	1.2417	0.6618	70.8516	7.0956
HSM	0.0646	0.1108	0.4672	0.2917	47.2492	4.3154
HSM (fitted)	0.0493	0.0353	0.4423	0.1655	34.4932	2.9358
$\beta \in [0, 10]$	10	10	0.1	10	3	0.2
$\eta \in [0,1]$	0.4	0.9	1	0.1	0.8	0.5
$\delta \in [0,1]$	0.9	0.6	0.5	0.7	0.6	0.4

Mikhail Anufriev

UTS, UvA

Out-of-sample performance

The Heuristic Switching Model vs. AR(2) model

	Group 2	Group 5	Group 1	Group 6	Group 4	Group 7
HSM						
1 p ahead	0.0122	0.0321	0.479	0.1921	15.0395	0.7857
2 p ahead	0.0122	0.0901	1.8599	1.0792	57.5144	1.5543
AR(2) Mod	lel					
1 p ahead	0.3732	0.4431	0.9981	0.5568	13.4616	0.6682
2 p ahead	0.5052	0.4045	3.5823	1.4944	44.6453	2.0098

イロン イ理 とく ヨン イヨン

UTS, UvA

	Conclusion	

Conclusion

- ► the model with evolutionary switching between simple heuristics
- dynamics of the model is path-depended (different patterns of the experiments have been reproduced)

イロト イ理ト イヨト イヨト

UTS, UvA

- good in-sample and out-of-sample performance
- Anufriev and Hommes (2012, AEJ-Micro and 2012, KER)

Model applications

- macroeconomics
- financial bubbles and crashes
- agent-based modelling

	Conclusion	

Conclusion

- ► the model with evolutionary switching between simple heuristics
- dynamics of the model is path-depended (different patterns of the experiments have been reproduced)

イロト イポト イヨト

UTS, UvA

- good in-sample and out-of-sample performance
- Anufriev and Hommes (2012, AEJ-Micro and 2012, KER)

Model applications

- macroeconomics
- financial bubbles and crashes
- agent-based modelling

		Conclusion	
Further Wo	rk		

- FUILIEI WOIK
 - theoretical relation of an outcome with Restricted Perception Equilibrium
 - further analysis (other experiments, other methods)
 - comparison with other learning methods (e.g., with GA)
 - direct experiment on switching to estimate switching parameters
 - classification of behavioral types on the basis of individual predictions

イロト イ理ト イヨト イヨト

Learning in a Complex Environment

Mailath (JEL, 1998) *Do people play Nash equilibrium? Lessons from evolutionary game theory*, p. 1349-1350:

The typical agent is not like Gary Kasparov, the world champion chess player who knows the rules of chess, but also knows that he doesn't know the winning strategy.

In most situations, people do not know they are playing a game. Rather, people have some (perhaps imprecise) notion of the environment they are in, their possible opponents, the actions they and their opponents have available, and the possible payoff implications of different actions.

These people use heuristics and rules of thumb (generated from experience) to guide behavior; sometimes these heuristics work well and sometimes they don't. These heuristics can generate behavior that is inconsistent with straightforward maximization.

イロト 不得 とくほ とくほう

Dynamics for Individual Rules: Converging Groups

$$p_{t+1}^{e} = \alpha + \beta_1 \, p_{t-1} + \beta_2 \, p_{t-2}$$

-

э

UTS, UvA

Mikhail Anufriev

Dynamics for Individual Rules: Oscillating Groups

$$p_{t+1}^{e} = \alpha + \beta_1 \, p_{t-1} + \beta_2 \, p_{t-2}$$

-

э

UTS, UvA

Mikhail Anufriev

Dynamics for Individual Rules: Damping Groups

$$p_{t+1}^{e} = \alpha + \beta_1 \, p_{t-1} + \beta_2 \, p_{t-2}$$

-

э

UTS, UvA

Mikhail Anufriev

Stability for the Model with Fixed Impacts

Stability region for model with fixed fractions

▲□▶ ▲□▶ ▲ □▶

-≣->

UTS, UvA

Mikhail Anufriev

	Conclusion	Extra

Comparison with Homogeneous Expectations: MSE "Direct fit" with parameters $\beta = 0.4$, $\eta = 0.7$, $\delta = 0.9$

Specification	Group 2	Group 5	Group 1	Group 6	Group 4	Group 7
Fundamental Prediction	18.037	11.797	15.226	8.959	291.376	22.047
ADA – exp prices	0.841	0.200	7.676	8.401	330.101	51.526
WTR - exp prices	4.419	1.983	8.868	6.252	308.549	30.298
STR - exp prices	585.789	478.525	638.344	509.266	1231.064	698.361
AA – exp prices	39.308	21.760	17.933	17.345	289.134	87.878
LAA – exp prices	5.475	3.534	5.405	14.404	307.605	69.749
ADA – fitted prices	0.514	0.199	6.832	7.431	312.564	36.436
WTR - fitted prices	4.222	1.844	8.670	6.228	292.150	19.764
STR - fitted prices	413.435	42.488	182.284	29.200	580.543	579.141
AA- fitted prices	26.507	13.228	11.117	13.981	258.010	63.777
LAA – fitted prices	2.055	1.859	4.236	13.433	284.880	45.153
4 heuristics (plots)	0.449	0.302	8.627	14.755	526.417	29.520
4 heuristics (fitted)	0.313	0.245	7.227	7.679	235.900	18.662

▲ロト▲御▶▲臣▶▲臣▶ 臣 の

Mikhail Anufriev

UTS, UvA

	Conclusion	Extra

Comparison with Homogeneous Expectations: AR2 "Indirect fit" with parameters $\beta = 0.4, \eta = 0.7, \delta = 0.9$

Specification	Group 2	Group 5	Group 1	Group 6	Group 4	Group 7
Fundamental Prediction	0.946	0.671	2.673	3.610	2.311	2.002
ADA – exp prices	0.239	0.006	2.182	2.898	1.691	1.494
WTR – exp prices	0.066	0.529	0.383	0.627	0.203	0.165
STR – exp prices	1.494	2.583	0.112	0.020	0.240	0.342
AA – exp prices	1.095	1.848	0.010	0.038	0.045	0.094
LAA – exp prices	0.747	1.544	0.003	0.050	0.003	0.013
ADA – fitted prices	0.100	0.000	1.584	2.159	1.385	1.157
WTR - fitted prices	0.068	0.343	0.262	0.435	0.174	0.139
STR - fitted prices	1.358	2.192	0.078	0.001	0.147	0.242
AA- fitted prices	1.036	1.755	0.005	0.029	0.038	0.083
LAA – fitted prices	0.640	1.277	0.000	0.033	0.000	0.004
4 heuristics (plots)	0.383	0.744	0.011	0.008	0.157	0.239
4 heuristics (fitted)	0.144	0.499	0.009	0.003	0.121	0.048

ヘロト A倒 とく ヨト く ヨトー

UTS. UvA

Mikhail Anufriev

Measure of coordination

average prediction error =

average dispersion + common prediction error

▶ in the experiment

$$\frac{1}{6}\sum_{i=1}^{6} \left(p_{i,t}^{e} - p_{t}\right)^{2} = \frac{1}{6}\sum_{i=1}^{6} \left(p_{i,t}^{e} - \bar{p}_{t}^{e}\right)^{2} + \left(\bar{p}_{t}^{e} - p_{t}\right)^{2},$$

where
$$\bar{p}_{t}^{e} = \frac{1}{6} \sum_{i=1}^{6} p_{i,t}^{e}$$

in simulations

$$\sum_{h=1}^{4} n_{h,t-1} \left(p_{h,t}^{e} - p_{t} \right)^{2} = \sum_{h=1}^{4} n_{h,t-1} \left(p_{h,t}^{e} - \bar{p}_{t}^{e} \right)^{2} + \left(\bar{p}_{t}^{e} - p_{t} \right)^{2},$$

イロン イ理 とく ヨン イヨン

UTS, UvA

where
$$\bar{p}_{t}^{e} = \sum_{h=1}^{4} n_{h,t-1} p_{h,t}^{e}$$

Mikhail Anufriev

	Conclusion	Extra

Coordination

Table: Coordination in the experiment and over the simulations.

	Gro	up 5	Gro	up 1	Gro	up 7
period	exp	sim	exp	sim	exp	sim
3-10	44.91	94.23	79.16	71.04	61.30	79.43
11-20	81.54	84.42	78.03	91.28	72.72	90.35
21-30	71.75	80.50	78.62	89.48	66.14	94.27
31-40	81.83	84.14	81.98	97.98	67.01	94.74
41-50	84.85	86.51	94.90	93.84	21.95	74.38
	Gro	up 2	Gro	up 6	Gro	up 4
period	exp	sim	exp	sim	exp	sim
3-10	40.88	69.98	58.59	77.00	76.44	87.45
11-20	67.25	86.48	78.94	80.96	90.41	88.44
21-30	75.73	80.53	76.16	79.69	83.41	96.70
31-40	83.88	80.51	79.33	88.72	48.47	88.03
41-50	91.44	84.66	72.09	92.26	31.74	65.78

Mikhail Anufriev

UTS, UvA

The same experiment: group 3

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

イロン イ理 とく ヨン イヨン

UTS, UvA

Mikhail Anufriev

Other Experiments

$$p_t = \frac{1}{1+r} \left(\bar{p}_{t+1}^e + \bar{y} + \varepsilon_t \right)$$

Mikhail Anufriev

UTS, UvA

Bubbles in Experiment I

 $p_t = \frac{1}{1+r} \left(\bar{p}_{t+1} + \bar{y} \right)$

O > <
 O >

- (E)

-

UTS, UvA

Bubbles in Experiment II

 $p_t = \frac{1}{1+r} \left(\bar{p}_{t+1} + \bar{y} \right)$

イロン イ理 とく ヨン イヨン

UTS, UvA

	Conclusion	Extra

Other Experiments: Smaller Fundamental Price

$$\bar{y} = 3 \rightarrow \bar{y} = 2$$

Mikhail Anufriev

UTS, UvA

	Conclusion	Extra

Other Experiments: One-period ahead forecast

$$p_t = \frac{1}{1+r} \left(p_{t+1}^{AE} + \bar{y} \right) \quad \rightarrow \quad p_t = \frac{1}{1+r} \left(p_t^{AE} + \bar{y} + \varepsilon_t \right)$$

Mikhail Anufriev

UTS, UvA

	Conclusion	Extra

Other Experiments: Negative Feedback

$$p_t = a + bp_{t+1}^{AE} + \varepsilon_t \quad \rightarrow \quad p_t = a' - bp_{t+1}^{AE} + \varepsilon_t$$

Mikhail Anufriev

	Conclusion	Extra

Other Experiments: Smaller Fundamental Price I

 $\bar{y} = 3 \rightarrow \bar{y} = 2$

イロト イポト イヨト イヨ

UTS, UvA

Mikhail Anufriev

	Conclusion	Extra

Other Experiments: Smaller Fundamental Price II

 $\bar{y} = 3 \rightarrow \bar{y} = 2$

イロト イポト イヨト

-

UTS, UvA

Mikhail Anufriev

		Conclusion	Extra

Other Experiments: No Robots

$$p_{t} = \frac{1}{1+r} \left((1-n_{t})p_{t+1}^{AE} + n_{t}p^{f} + \bar{y} + \varepsilon_{t} \right) \rightarrow p_{t} = \frac{1}{1+r} \left(p_{t+1}^{AE} + \bar{y} \right)$$

A D > <
 A P >
 A

э

UTS, UvA

Mikhail Anufriev

	Conclusion	Extra

Other Experiments: One-period ahead forecast

$$p_t = \frac{1}{1+r} \left(p_{t+1}^{AE} + \bar{y} \right) \quad \rightarrow \quad p_t = \frac{1}{1+r} \left(p_t^{AE} + \bar{y} + \varepsilon_t \right)$$

UTS, UvA

Mikhail Anufriev

	Conclusion	Extra

Other Experiments: Negative Feedback

$$p_t = a + bp_{t+1}^{AE} + \varepsilon_t \quad \rightarrow \quad p_t = a' - bp_{t+1}^{AE} + \varepsilon_t$$

・ロト ・聞 ト ・言 ト ・言 ト 三国

UTS, UvA

Mikhail Anufriev