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Introduction

Candidates running in an election must decide where they
stand on the ideological spectrum in order to maximise the
support of the voters measured by some voting rule.



Questions

• What positions should the candidates choose?

• How do the optimal strategies depend on the voting
system in use?

• Do equilibrium situations exist?

• What kind of equilibria?



Questions

• What positions should the candidates choose?

• How do the optimal strategies depend on the voting
system in use?

• Do equilibrium situations exist?

• What kind of equilibria?



Questions

• What positions should the candidates choose?

• How do the optimal strategies depend on the voting
system in use?

• Do equilibrium situations exist?

• What kind of equilibria?



Questions

• What positions should the candidates choose?

• How do the optimal strategies depend on the voting
system in use?

• Do equilibrium situations exist?

• What kind of equilibria?



The model

Spatial model introduced by Hotelling in 1929:

• The issue space is the interval [0,1].

• Voters have ideal positions uniformly distributed along the
interval. Voters rank all candidates by their ideological
distance.

• There are m candidates. A profile is an m vector
x = (x1, . . . , xm) ∈ [0,1]m that specifies each candidate’s
position: xi is candidate i ’s position.
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Broadening the options

• Most of the literature on competitive determinants of
political policy positions has focused on just one electoral
system: plurality voting.

• Cox (1987a, 1990) gave us the first model that
systematically considered different electoral systems, and
he showed that incentives for diversity may differ
systematically across voting rules.

• The basic theme of Myerson’s Schumpeter Lecture (1998,
Berlin meetings of the European Economic Association) is
the importance of explicitly comparing different electoral
systems in Hotelling type models.

• Myerson concentrated on positional scoring rules, we
follow him in this.
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Positional scoring rule

• Each voter ranks the candidates. The candidate ranked
i-th receives si points.

• Specified by an m-vector s = (s1, s2, . . . , sm) of scores with
s̄ = 1

m
∑m

i=1 si being the average score.

• Require that s1 ≥ · · · ≥ sm and s1 > sm, i.e., the scores are
nonincreasing and first is better than last. For example:

• Plurality: s = (1,0,0, . . . ,0,0),
• Borda: s = (m − 1,m − 2, . . . ,1,0),
• Antiplurality: s = (1,1,1, . . . ,1,0).

• The candidates’ overall scores are then calculated by
integrating across all voters.

• Candidates are score (share) maximisers.
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Positional scoring rules with ties

• If two or more candidates occupy the same policy position
the voters will be indifferent between them.

• A candidate ranked by a voter in an indifference group that
is ranked from i+1-th to j th in his ranking receives

1
j−i (si+1 + . . . + sj) points from this voter.

• For example, if Borda rule is used:

Ranking Points received
A 6
B 5

C ∼ D ∼ E 3 = 1
3(4 + 3 + 2)

F 1
G 0
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Workings of a positional scoring rule

The score of a candidate positioned at x1 would be

s1 + s2

2
x1 + x2

2
+

s2 + s3

2
x3 − x2

2
+

s4 + s5

2

(
1− x1 + x3

2

)
.



Nash equilibrium

• We look for profiles (vectors of candidate positions) that
are in Nash equilibrium.

• This is a situation in which no candidate has an incentive
to change position. Each candidate’s position is a best
response to positions of the other candidates.

Two kinds of Nash equilibria exist:

• A convergent Nash equilibrium (CNE) occurs when all
candidates adopt the same ideological position.

• A non-convergent Nash equilibrium (NCNE) is when not all
candidate positions are the same.
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Convergent equilibria
Theorem (Cox, 1987). For m candidates and scoring rule s, a
profile x = (x∗, . . . , x∗) is a CNE if and only if

c(s,m) ≤ x∗ ≤ 1− c(s,m), (1)

where c(s,m) =
s1 − s̄

s1 − sm
is the c-value (with s̄ = 1

m
∑m

i=1 si ) .

The c-value is always between 0 and 1. It is a measure of the
dominating incentives.

• If c(s,m) > 1/2 (best rewarding rule), the inequality (1)
cannot hold. So no CNE exist.

• If c(s,m) ≤ 1/2 (worst punishing rule), any x∗ in
[c(s,m),1− c(s,m)] is a CNE.



Convergent equilibria
Theorem (Cox, 1987). For m candidates and scoring rule s, a
profile x = (x∗, . . . , x∗) is a CNE if and only if

c(s,m) ≤ x∗ ≤ 1− c(s,m), (1)

where c(s,m) =
s1 − s̄

s1 − sm
is the c-value (with s̄ = 1

m
∑m

i=1 si ) .

The c-value is always between 0 and 1. It is a measure of the
dominating incentives.

• If c(s,m) > 1/2 (best rewarding rule), the inequality (1)
cannot hold. So no CNE exist.

• If c(s,m) ≤ 1/2 (worst punishing rule), any x∗ in
[c(s,m),1− c(s,m)] is a CNE.



Convergent equilibria
Theorem (Cox, 1987). For m candidates and scoring rule s, a
profile x = (x∗, . . . , x∗) is a CNE if and only if

c(s,m) ≤ x∗ ≤ 1− c(s,m), (1)

where c(s,m) =
s1 − s̄

s1 − sm
is the c-value (with s̄ = 1

m
∑m

i=1 si ) .

The c-value is always between 0 and 1. It is a measure of the
dominating incentives.

• If c(s,m) > 1/2 (best rewarding rule), the inequality (1)
cannot hold. So no CNE exist.

• If c(s,m) ≤ 1/2 (worst punishing rule), any x∗ in
[c(s,m),1− c(s,m)] is a CNE.



Convergent equilibria
Theorem (Cox, 1987). For m candidates and scoring rule s, a
profile x = (x∗, . . . , x∗) is a CNE if and only if

c(s,m) ≤ x∗ ≤ 1− c(s,m), (1)

where c(s,m) =
s1 − s̄

s1 − sm
is the c-value (with s̄ = 1

m
∑m

i=1 si ) .

The c-value is always between 0 and 1. It is a measure of the
dominating incentives.

• If c(s,m) > 1/2 (best rewarding rule), the inequality (1)
cannot hold. So no CNE exist.

• If c(s,m) ≤ 1/2 (worst punishing rule), any x∗ in
[c(s,m),1− c(s,m)] is a CNE.



Convergent equilibria
Theorem (Cox, 1987). For m candidates and scoring rule s, a
profile x = (x∗, . . . , x∗) is a CNE if and only if

c(s,m) ≤ x∗ ≤ 1− c(s,m), (1)

where c(s,m) =
s1 − s̄

s1 − sm
is the c-value (with s̄ = 1

m
∑m

i=1 si ) .

The c-value is always between 0 and 1. It is a measure of the
dominating incentives.

• If c(s,m) > 1/2 (best rewarding rule), the inequality (1)
cannot hold. So no CNE exist.

• If c(s,m) ≤ 1/2 (worst punishing rule), any x∗ in
[c(s,m),1− c(s,m)] is a CNE.



Non-convergent equilibria

• What about equilibria in which not all candidates adopt the
same platform?

• It is an easy observation that in a three-candidate election
under any positional scoring rule no NCNE exist.

• The first question: If m = 4, can we characterize the rules
for which NCNE exist?



Non-convergent equilibria

• What about equilibria in which not all candidates adopt the
same platform?

• It is an easy observation that in a three-candidate election
under any positional scoring rule no NCNE exist.

• The first question: If m = 4, can we characterize the rules
for which NCNE exist?



Non-convergent equilibria

• What about equilibria in which not all candidates adopt the
same platform?

• It is an easy observation that in a three-candidate election
under any positional scoring rule no NCNE exist.

• The first question: If m = 4, can we characterize the rules
for which NCNE exist?



The four-candidate case
Theorem (CMS., 2012). In a four-candidate election under
scoring rule s = (s1, s2, s3, s4), NCNE exist iff both the following
conditions are satisfied:

• a) c(s,4) > 1/2 (that is no CNE exist);

• b) s1 > s2 = s3.

Moreover, the NCNE is unique and symmetric. Two paired
candidates at x1 =

s1

4(s1 − s2)
and x2 = 1− x1.

If c(s,4) > 1/2 but s2 6= s3 then no NE of either kind exist.
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The five-candidate case

Theorem (CMS., 2012). In a five-candidate election under
scoring rule s = (s1, s2, s3, s4, s5), NCNE exist iff both the
following conditions are satisfied:

• a) s1 > s2 = s3 = s4;

• b) c(s,5) > 1/2.

Moreover, the NCNE is unique and symmetric, with equilibrium
profile x = ((x1,2), (1/2,1), (x2,2)), where

x1 =
1
6

(
s1 + s2

s1 − s2

)
and x3 = 1− x1.

Note. For both m = 4 and m = 5 CNE and NCNE cannot
coexist together. This will be broken for m = 6.
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The six-candidate case

Since for m > 5 the equilibria are no longer unique even for
plurality, so it makes sense to describe only their types.

Theorem (CMS., 2012). Given m = 6 and scoring rule
s = (s1, s2, s3, s4, s5, s6). Then there are four possible types of
equilibria split in two groups:

{(2,2,2), (2,1,1,2)} and {(3,3), (6)}.

The equilibria of the first group occur for rules s that satisfy
(a) c(s,6) > 1/2,
(b) s1 > s2 = s3 = s4 = s5.

The equilibria within each group can coexist but no equilibrium
of the first group can coexist with an equilibrium of the second
group. In particular, CNE and NCNE can coexist.
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The seven-candidate case

For m > 6 the last type of symmetry breaks down.

Consider the rule s = (10,10,4,3,3,1,0). Then the profile

((x1,4), (x2,3)) with x1 = 1/3 and x2 = 2/3,

is an NCNE.
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Convex scores
We say that the score vector s = (s1, . . . , sm) is convex if

s1 − s2 ≥ s2 − s3 ≥ · · · ≥ sm−1 − sm.

Such rules are best rewarding or intermediate: c(s,m) ≥ 1/2.

Theorem (CMS, 2012). Let s be a convex scoring rule
s = (s1, . . . , sn, sn+1, . . . , sm), with

sn 6= sn+1, sn+1 = sn+2 = · · · = sm

for some 1 ≤ n < m. Then there are no NCNE, unless the
subrule s′ = (s1, . . . , sn, sn+1) is Borda and n + 1 ≤ bm/2c (i.e.,
more than half the scores are constant). In the latter case
NCNE do exist.

Example. s = (3,2,1,0,0,0,0).



Convex scores
We say that the score vector s = (s1, . . . , sm) is convex if

s1 − s2 ≥ s2 − s3 ≥ · · · ≥ sm−1 − sm.

Such rules are best rewarding or intermediate: c(s,m) ≥ 1/2.

Theorem (CMS, 2012). Let s be a convex scoring rule
s = (s1, . . . , sn, sn+1, . . . , sm), with

sn 6= sn+1, sn+1 = sn+2 = · · · = sm

for some 1 ≤ n < m. Then there are no NCNE, unless the
subrule s′ = (s1, . . . , sn, sn+1) is Borda and n + 1 ≤ bm/2c (i.e.,
more than half the scores are constant). In the latter case
NCNE do exist.

Example. s = (3,2,1,0,0,0,0).



Convex scores
We say that the score vector s = (s1, . . . , sm) is convex if

s1 − s2 ≥ s2 − s3 ≥ · · · ≥ sm−1 − sm.

Such rules are best rewarding or intermediate: c(s,m) ≥ 1/2.

Theorem (CMS, 2012). Let s be a convex scoring rule
s = (s1, . . . , sn, sn+1, . . . , sm), with

sn 6= sn+1, sn+1 = sn+2 = · · · = sm

for some 1 ≤ n < m. Then there are no NCNE, unless the
subrule s′ = (s1, . . . , sn, sn+1) is Borda and n + 1 ≤ bm/2c (i.e.,
more than half the scores are constant). In the latter case
NCNE do exist.

Example. s = (3,2,1,0,0,0,0).



Concave and weakly concave scores
We say that the rule s = (s1, . . . , sm) is concave if

s1 − s2 ≤ s2 − s3 ≤ . . . ≤ sm−1 − sm.

Most our positive results are, however, applicable to a larger
class of rules.

We say that a scoring rule is weakly concave if it obeys the
following property:

si − si+1 ≤ sm−i − sm−i+1,

for all 1 ≤ i ≤ bm/2c.

That is, for every drop at the top end there is a drop at least as
large at symmetric position at the bottom end.

A weakly concave rule is either worst-punishing or intermediate.
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Surprising properties of weakly convex rules

Theorem (CMS, 2012). Any weakly concave scoring rule s has
no NCNE

x = ((x1,n1), . . . , (xq,nq))

in which max(n1,nq) ≤ bm/2c.

This means that if a concave rule has an NCNE it has to have
more than half of all candidates in one of the extreme locations!
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Such weakly convex rules exist

For m = 12 the scoring rule s = (4,4,4,3,3,3,2,1,1,0,0,0)
satisfies weak concavity, yet does allow NCNE. In particular,
the profile

((x1,n1), (x2,n2)) =

((
13
28

,8
)
,

(
41
84

,4
))

with eight candidates at position x1 = 13
28 and four at position

x2 = 41
84 is an NCNE.
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Finally

It is not known if there exists a concave scoring rule that has
NCNE.

The full paper is on ArXiv:
http://arxiv.org/abs/1301.0152

Any comments will be greatly appreciated.

Thanks for your attention!
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