Electoral Equilibria under Scoring Voting Rules

Dodge Cahan, John McCabe-Dansted and Arkadii Slinko

Department of Mathematics
The University of Auckland

4th Summer Workshop of CMSS Auckland, 22 March, 2013

Introduction

Candidates running in an election must decide where they stand on the ideological spectrum in order to maximise the support of the voters measured by some voting rule.

Questions

- What positions should the candidates choose?

Questions

- What positions should the candidates choose?
- How do the optimal strategies depend on the voting system in use?

Questions

- What positions should the candidates choose?
- How do the optimal strategies depend on the voting system in use?
- Do equilibrium situations exist?

Questions

- What positions should the candidates choose?
- How do the optimal strategies depend on the voting system in use?
- Do equilibrium situations exist?
- What kind of equilibria?

The model

Spatial model introduced by Hotelling in 1929:

- The issue space is the interval $[0,1]$.

The model

Spatial model introduced by Hotelling in 1929:

- The issue space is the interval $[0,1]$.
- Voters have ideal positions uniformly distributed along the interval. Voters rank all candidates by their ideological distance.

The model

Spatial model introduced by Hotelling in 1929:

- The issue space is the interval $[0,1]$.
- Voters have ideal positions uniformly distributed along the interval. Voters rank all candidates by their ideological distance.

- There are m candidates. A profile is an m vector $x=\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ that specifies each candidate's position: x_{i} is candidate i 's position.

Broadening the options

- Most of the literature on competitive determinants of political policy positions has focused on just one electoral system: plurality voting.

Broadening the options

- Most of the literature on competitive determinants of political policy positions has focused on just one electoral system: plurality voting.
- Cox (1987a, 1990) gave us the first model that systematically considered different electoral systems, and he showed that incentives for diversity may differ systematically across voting rules.

Broadening the options

- Most of the literature on competitive determinants of political policy positions has focused on just one electoral system: plurality voting.
- Cox (1987a, 1990) gave us the first model that systematically considered different electoral systems, and he showed that incentives for diversity may differ systematically across voting rules.
- The basic theme of Myerson's Schumpeter Lecture (1998, Berlin meetings of the European Economic Association) is the importance of explicitly comparing different electoral systems in Hotelling type models.

Broadening the options

- Most of the literature on competitive determinants of political policy positions has focused on just one electoral system: plurality voting.
- Cox (1987a, 1990) gave us the first model that systematically considered different electoral systems, and he showed that incentives for diversity may differ systematically across voting rules.
- The basic theme of Myerson's Schumpeter Lecture (1998, Berlin meetings of the European Economic Association) is the importance of explicitly comparing different electoral systems in Hotelling type models.
- Myerson concentrated on positional scoring rules, we follow him in this.

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.
- Specified by an m-vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ of scores with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$ being the average score.

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.
- Specified by an m-vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ of scores with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$ being the average score.
- Require that $s_{1} \geq \cdots \geq s_{m}$ and $s_{1}>s_{m}$, i.e., the scores are nonincreasing and first is better than last. For example:

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.
- Specified by an m-vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ of scores with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$ being the average score.
- Require that $s_{1} \geq \cdots \geq s_{m}$ and $s_{1}>s_{m}$, i.e., the scores are nonincreasing and first is better than last. For example:
- Plurality: $s=(1,0,0, \ldots, 0,0)$,

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.
- Specified by an m-vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ of scores with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$ being the average score.
- Require that $s_{1} \geq \cdots \geq s_{m}$ and $s_{1}>s_{m}$, i.e., the scores are nonincreasing and first is better than last. For example:
- Plurality: $s=(1,0,0, \ldots, 0,0)$,
- Borda: $s=(m-1, m-2, \ldots, 1,0)$,

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.
- Specified by an m-vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ of scores with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$ being the average score.
- Require that $s_{1} \geq \cdots \geq s_{m}$ and $s_{1}>s_{m}$, i.e., the scores are nonincreasing and first is better than last. For example:
- Plurality: $s=(1,0,0, \ldots, 0,0)$,
- Borda: $s=(m-1, m-2, \ldots, 1,0)$,
- Antiplurality: $s=(1,1,1, \ldots, 1,0)$.

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.
- Specified by an m-vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ of scores with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$ being the average score.
- Require that $s_{1} \geq \cdots \geq s_{m}$ and $s_{1}>s_{m}$, i.e., the scores are nonincreasing and first is better than last. For example:
- Plurality: $s=(1,0,0, \ldots, 0,0)$,
- Borda: $s=(m-1, m-2, \ldots, 1,0)$,
- Antiplurality: $s=(1,1,1, \ldots, 1,0)$.
- The candidates' overall scores are then calculated by integrating across all voters.

Positional scoring rule

- Each voter ranks the candidates. The candidate ranked i-th receives s_{i} points.
- Specified by an m-vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ of scores with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$ being the average score.
- Require that $s_{1} \geq \cdots \geq s_{m}$ and $s_{1}>s_{m}$, i.e., the scores are nonincreasing and first is better than last. For example:
- Plurality: $s=(1,0,0, \ldots, 0,0)$,
- Borda: $s=(m-1, m-2, \ldots, 1,0)$,
- Antiplurality: $s=(1,1,1, \ldots, 1,0)$.
- The candidates' overall scores are then calculated by integrating across all voters.
- Candidates are score (share) maximisers.

Positional scoring rules with ties

- If two or more candidates occupy the same policy position the voters will be indifferent between them.

Positional scoring rules with ties

- If two or more candidates occupy the same policy position the voters will be indifferent between them.
- A candidate ranked by a voter in an indifference group that is ranked from $i+1$-th to j th in his ranking receives $\frac{1}{j-i}\left(s_{i+1}+\ldots+s_{j}\right)$ points from this voter.

Positional scoring rules with ties

- If two or more candidates occupy the same policy position the voters will be indifferent between them.
- A candidate ranked by a voter in an indifference group that is ranked from $i+1$-th to j th in his ranking receives $\frac{1}{j-i}\left(s_{i+1}+\ldots+s_{j}\right)$ points from this voter.
- For example, if Borda rule is used:

Ranking	Points received
A	6
B	5
$C \sim D \sim E$	$3=\frac{1}{3}(4+3+2)$
F	1
G	0

Workings of a positional scoring rule

The score of a candidate positioned at x^{1} would be

$$
\frac{s_{1}+s_{2}}{2} \frac{x_{1}+x_{2}}{2}+\frac{s_{2}+s_{3}}{2} \frac{x_{3}-x_{2}}{2}+\frac{s_{4}+s_{5}}{2}\left(1-\frac{x_{1}+x_{3}}{2}\right) .
$$

Nash equilibrium

- We look for profiles (vectors of candidate positions) that are in Nash equilibrium.
- This is a situation in which no candidate has an incentive to change position. Each candidate's position is a best response to positions of the other candidates.

Nash equilibrium

- We look for profiles (vectors of candidate positions) that are in Nash equilibrium.
- This is a situation in which no candidate has an incentive to change position. Each candidate's position is a best response to positions of the other candidates.

Two kinds of Nash equilibria exist:

Nash equilibrium

- We look for profiles (vectors of candidate positions) that are in Nash equilibrium.
- This is a situation in which no candidate has an incentive to change position. Each candidate's position is a best response to positions of the other candidates.

Two kinds of Nash equilibria exist:

- A convergent Nash equilibrium (CNE) occurs when all candidates adopt the same ideological position.

Nash equilibrium

- We look for profiles (vectors of candidate positions) that are in Nash equilibrium.
- This is a situation in which no candidate has an incentive to change position. Each candidate's position is a best response to positions of the other candidates.

Two kinds of Nash equilibria exist:

- A convergent Nash equilibrium (CNE) occurs when all candidates adopt the same ideological position.
- A non-convergent Nash equilibrium (NCNE) is when not all candidate positions are the same.

Convergent equilibria

Theorem (Cox, 1987). For m candidates and scoring rule s, a profile $x=\left(x^{*}, \ldots, x^{*}\right)$ is a CNE if and only if

$$
\begin{equation*}
c(s, m) \leq x^{*} \leq 1-c(s, m) \tag{1}
\end{equation*}
$$

where $c(s, m)=\frac{s_{1}-\bar{s}}{s_{1}-s_{m}}$ is the c-value (with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$).

Convergent equilibria

Theorem (Cox, 1987). For m candidates and scoring rule s, a profile $x=\left(x^{*}, \ldots, x^{*}\right)$ is a CNE if and only if

$$
\begin{equation*}
c(s, m) \leq x^{*} \leq 1-c(s, m) \tag{1}
\end{equation*}
$$

where $c(s, m)=\frac{s_{1}-\bar{s}}{s_{1}-s_{m}}$ is the c-value (with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$).
The c-value is always between 0 and 1 . It is a measure of the dominating incentives.

Convergent equilibria

Theorem (Cox, 1987). For m candidates and scoring rule s, a profile $x=\left(x^{*}, \ldots, x^{*}\right)$ is a CNE if and only if

$$
\begin{equation*}
c(s, m) \leq x^{*} \leq 1-c(s, m) \tag{1}
\end{equation*}
$$

where $c(s, m)=\frac{s_{1}-\bar{s}}{s_{1}-s_{m}}$ is the c-value (with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$).
The c-value is always between 0 and 1 . It is a measure of the dominating incentives.

- If $c(s, m)>1 / 2$ (best rewarding rule), the inequality (1) cannot hold. So no CNE exist.

Convergent equilibria

Theorem (Cox, 1987). For m candidates and scoring rule s, a profile $x=\left(x^{*}, \ldots, x^{*}\right)$ is a CNE if and only if

$$
\begin{equation*}
c(s, m) \leq x^{*} \leq 1-c(s, m) \tag{1}
\end{equation*}
$$

where $c(s, m)=\frac{s_{1}-\bar{s}}{s_{1}-s_{m}}$ is the c-value (with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$).
The c-value is always between 0 and 1 . It is a measure of the dominating incentives.

- If $c(s, m)>1 / 2$ (best rewarding rule), the inequality (1) cannot hold. So no CNE exist.
- If $c(s, m) \leq 1 / 2$ (worst punishing rule), any x^{*} in $[c(s, m), 1-c(s, m)]$ is a CNE.

Convergent equilibria

Theorem (Cox, 1987). For m candidates and scoring rule s, a profile $x=\left(x^{*}, \ldots, x^{*}\right)$ is a CNE if and only if

$$
\begin{equation*}
c(s, m) \leq x^{*} \leq 1-c(s, m) \tag{1}
\end{equation*}
$$

where $c(s, m)=\frac{s_{1}-\bar{s}}{s_{1}-s_{m}}$ is the c-value (with $\bar{s}=\frac{1}{m} \sum_{i=1}^{m} s_{i}$).
The c-value is always between 0 and 1 . It is a measure of the dominating incentives.

- If $c(s, m)>1 / 2$ (best rewarding rule), the inequality (1) cannot hold. So no CNE exist.
- If $c(s, m) \leq 1 / 2$ (worst punishing rule), any x^{*} in $[c(s, m), 1-c(s, m)]$ is a CNE.

Non-convergent equilibria

- What about equilibria in which not all candidates adopt the same platform?

Non-convergent equilibria

- What about equilibria in which not all candidates adopt the same platform?
- It is an easy observation that in a three-candidate election under any positional scoring rule no NCNE exist.

Non-convergent equilibria

- What about equilibria in which not all candidates adopt the same platform?
- It is an easy observation that in a three-candidate election under any positional scoring rule no NCNE exist.
- The first question: If $m=4$, can we characterize the rules for which NCNE exist?

The four-candidate case

Theorem (CMS., 2012). In a four-candidate election under scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$, NCNE exist iff both the following conditions are satisfied:

- a) $c(s, 4)>1 / 2$ (that is no CNE exist);
- b) $s_{1}>s_{2}=s_{3}$.

Moreover, the NCNE is unique and symmetric. Two paired candidates at $x_{1}=\frac{s_{1}}{4\left(s_{1}-s_{2}\right)}$ and $x_{2}=1-x_{1}$.

The four-candidate case

Theorem (CMS., 2012). In a four-candidate election under scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$, NCNE exist iff both the following conditions are satisfied:

- a) $c(s, 4)>1 / 2$ (that is no CNE exist);
- b) $s_{1}>s_{2}=s_{3}$.

Moreover, the NCNE is unique and symmetric. Two paired candidates at $x_{1}=\frac{s_{1}}{4\left(s_{1}-s_{2}\right)}$ and $x_{2}=1-x_{1}$.

The four-candidate case

Theorem (CMS., 2012). In a four-candidate election under scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$, NCNE exist iff both the following conditions are satisfied:

- a) $c(s, 4)>1 / 2$ (that is no CNE exist);
- b) $s_{1}>s_{2}=s_{3}$.

Moreover, the NCNE is unique and symmetric. Two paired candidates at $x_{1}=\frac{s_{1}}{4\left(s_{1}-s_{2}\right)}$ and $x_{2}=1-x_{1}$.

If $c(s, 4)>1 / 2$ but $s_{2} \neq s_{3}$ then no NE of either kind exist.

The five-candidate case

Theorem (CMS., 2012). In a five-candidate election under scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)$, NCNE exist iff both the following conditions are satisfied:

- a) $s_{1}>s_{2}=s_{3}=s_{4}$;
-b) $c(s, 5)>1 / 2$.
Moreover, the NCNE is unique and symmetric, with equilibrium profile $x=\left(\left(x^{1}, 2\right),(1 / 2,1),\left(x^{2}, 2\right)\right)$, where

$$
x^{1}=\frac{1}{6}\left(\frac{s_{1}+s_{2}}{s_{1}-s_{2}}\right) \quad \text { and } \quad x^{3}=1-x^{1}
$$

The five-candidate case

Theorem (CMS., 2012). In a five-candidate election under scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)$, NCNE exist iff both the following conditions are satisfied:

- a) $s_{1}>s_{2}=s_{3}=s_{4}$;
-b) $c(s, 5)>1 / 2$.
Moreover, the NCNE is unique and symmetric, with equilibrium profile $x=\left(\left(x^{1}, 2\right),(1 / 2,1),\left(x^{2}, 2\right)\right)$, where

$$
x^{1}=\frac{1}{6}\left(\frac{s_{1}+s_{2}}{s_{1}-s_{2}}\right) \quad \text { and } \quad x^{3}=1-x^{1} .
$$

Note. For both $m=4$ and $m=5$ CNE and NCNE cannot coexist together. This will be broken for $m=6$.

The six-candidate case

Since for $m>5$ the equilibria are no longer unique even for plurality, so it makes sense to describe only their types.

The six-candidate case

Since for $m>5$ the equilibria are no longer unique even for plurality, so it makes sense to describe only their types.

Theorem (CMS., 2012). Given $m=6$ and scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right)$. Then there are four possible types of equilibria split in two groups:

$$
\{(2,2,2),(2,1,1,2)\} \text { and }\{(3,3),(6)\} .
$$

The equilibria of the first group occur for rules s that satisfy
(a) $c(s, 6)>1 / 2$,
(b) $s_{1}>s_{2}=s_{3}=s_{4}=s_{5}$.

The six-candidate case

Since for $m>5$ the equilibria are no longer unique even for plurality, so it makes sense to describe only their types.

Theorem (CMS., 2012). Given $m=6$ and scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right)$. Then there are four possible types of equilibria split in two groups:

$$
\{(2,2,2),(2,1,1,2)\} \text { and }\{(3,3),(6)\} .
$$

The equilibria of the first group occur for rules s that satisfy
(a) $c(s, 6)>1 / 2$,
(b) $s_{1}>s_{2}=s_{3}=s_{4}=s_{5}$.

The equilibria within each group can coexist but no equilibrium of the first group can coexist with an equilibrium of the second group.

The six-candidate case

Since for $m>5$ the equilibria are no longer unique even for plurality, so it makes sense to describe only their types.

Theorem (CMS., 2012). Given $m=6$ and scoring rule $s=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right)$. Then there are four possible types of equilibria split in two groups:

$$
\{(2,2,2),(2,1,1,2)\} \text { and }\{(3,3),(6)\} .
$$

The equilibria of the first group occur for rules s that satisfy
(a) $c(s, 6)>1 / 2$,
(b) $s_{1}>s_{2}=s_{3}=s_{4}=s_{5}$.

The equilibria within each group can coexist but no equilibrium of the first group can coexist with an equilibrium of the second group. In particular, CNE and NCNE can coexist.

The seven-candidate case

For $m>6$ the last type of symmetry breaks down.

The seven-candidate case

For $m>6$ the last type of symmetry breaks down.
Consider the rule $s=(10,10,4,3,3,1,0)$. Then the profile

$$
\left(\left(x^{1}, 4\right),\left(x^{2}, 3\right)\right) \quad \text { with } x^{1}=1 / 3 \text { and } x^{2}=2 / 3
$$

is an NCNE.

The seven-candidate case

For $m>6$ the last type of symmetry breaks down.
Consider the rule $s=(10,10,4,3,3,1,0)$. Then the profile

$$
\left(\left(x^{1}, 4\right),\left(x^{2}, 3\right)\right) \quad \text { with } x^{1}=1 / 3 \text { and } x^{2}=2 / 3
$$

is an NCNE.

Convex scores

We say that the score vector $s=\left(s_{1}, \ldots, s_{m}\right)$ is convex if

$$
s_{1}-s_{2} \geq s_{2}-s_{3} \geq \cdots \geq s_{m-1}-s_{m}
$$

Such rules are best rewarding or intermediate: $c(s, m) \geq 1 / 2$.

Convex scores

We say that the score vector $s=\left(s_{1}, \ldots, s_{m}\right)$ is convex if

$$
s_{1}-s_{2} \geq s_{2}-s_{3} \geq \cdots \geq s_{m-1}-s_{m}
$$

Such rules are best rewarding or intermediate: $c(s, m) \geq 1 / 2$.
Theorem (CMS, 2012). Let s be a convex scoring rule $s=\left(s_{1}, \ldots, s_{n}, s_{n+1}, \ldots, s_{m}\right)$, with

$$
s_{n} \neq s_{n+1}, \quad s_{n+1}=s_{n+2}=\cdots=s_{m}
$$

for some $1 \leq n<m$. Then there are no NCNE, unless the subrule $s^{\prime}=\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)$ is Borda and $n+1 \leq\lfloor m / 2\rfloor$ (i.e., more than half the scores are constant). In the latter case NCNE do exist.

Convex scores

We say that the score vector $s=\left(s_{1}, \ldots, s_{m}\right)$ is convex if

$$
s_{1}-s_{2} \geq s_{2}-s_{3} \geq \cdots \geq s_{m-1}-s_{m} .
$$

Such rules are best rewarding or intermediate: $c(s, m) \geq 1 / 2$.
Theorem (CMS, 2012). Let s be a convex scoring rule $s=\left(s_{1}, \ldots, s_{n}, s_{n+1}, \ldots, s_{m}\right)$, with

$$
s_{n} \neq s_{n+1}, \quad s_{n+1}=s_{n+2}=\cdots=s_{m}
$$

for some $1 \leq n<m$. Then there are no NCNE, unless the subrule $s^{\prime}=\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)$ is Borda and $n+1 \leq\lfloor m / 2\rfloor$ (i.e., more than half the scores are constant). In the latter case NCNE do exist.

Example. $s=(3,2,1,0,0,0,0)$.

Concave and weakly concave scores

We say that the rule $s=\left(s_{1}, \ldots, s_{m}\right)$ is concave if

$$
s_{1}-s_{2} \leq s_{2}-s_{3} \leq \ldots \leq s_{m-1}-s_{m} .
$$

Most our positive results are, however, applicable to a larger class of rules.

Concave and weakly concave scores

We say that the rule $s=\left(s_{1}, \ldots, s_{m}\right)$ is concave if

$$
s_{1}-s_{2} \leq s_{2}-s_{3} \leq \ldots \leq s_{m-1}-s_{m}
$$

Most our positive results are, however, applicable to a larger class of rules.

We say that a scoring rule is weakly concave if it obeys the following property:

$$
s_{i}-s_{i+1} \leq s_{m-i}-s_{m-i+1},
$$

for all $1 \leq i \leq\lfloor m / 2\rfloor$.

Concave and weakly concave scores

We say that the rule $s=\left(s_{1}, \ldots, s_{m}\right)$ is concave if

$$
s_{1}-s_{2} \leq s_{2}-s_{3} \leq \ldots \leq s_{m-1}-s_{m}
$$

Most our positive results are, however, applicable to a larger class of rules.

We say that a scoring rule is weakly concave if it obeys the following property:

$$
s_{i}-s_{i+1} \leq s_{m-i}-s_{m-i+1}
$$

for all $1 \leq i \leq\lfloor m / 2\rfloor$.
That is, for every drop at the top end there is a drop at least as large at symmetric position at the bottom end.

Concave and weakly concave scores

We say that the rule $s=\left(s_{1}, \ldots, s_{m}\right)$ is concave if

$$
s_{1}-s_{2} \leq s_{2}-s_{3} \leq \ldots \leq s_{m-1}-s_{m}
$$

Most our positive results are, however, applicable to a larger class of rules.

We say that a scoring rule is weakly concave if it obeys the following property:

$$
s_{i}-s_{i+1} \leq s_{m-i}-s_{m-i+1},
$$

for all $1 \leq i \leq\lfloor m / 2\rfloor$.
That is, for every drop at the top end there is a drop at least as large at symmetric position at the bottom end.

A weakly concave rule is either worst-punishing or intermediate.

Surprising properties of weakly convex rules

Theorem (CMS, 2012). Any weakly concave scoring rule s has no NCNE

$$
x=\left(\left(x^{1}, n_{1}\right), \ldots,\left(x^{q}, n_{q}\right)\right)
$$

in which $\max \left(n_{1}, n_{q}\right) \leq\lfloor m / 2\rfloor$.

Surprising properties of weakly convex rules

Theorem (CMS, 2012). Any weakly concave scoring rule s has no NCNE

$$
x=\left(\left(x^{1}, n_{1}\right), \ldots,\left(x^{q}, n_{q}\right)\right)
$$

in which $\max \left(n_{1}, n_{q}\right) \leq\lfloor m / 2\rfloor$.

This means that if a concave rule has an NCNE it has to have more than half of all candidates in one of the extreme locations!

Such weakly convex rules exist

For $m=12$ the scoring rule $s=(4,4,4,3,3,3,2,1,1,0,0,0)$ satisfies weak concavity, yet does allow NCNE. In particular, the profile

$$
\left(\left(x^{1}, n_{1}\right),\left(x^{2}, n_{2}\right)\right)=\left(\left(\frac{13}{28}, 8\right),\left(\frac{41}{84}, 4\right)\right)
$$

with eight candidates at position $x^{1}=\frac{13}{28}$ and four at position $x^{2}=\frac{41}{84}$ is an NCNE.

Such weakly convex rules exist

For $m=12$ the scoring rule $s=(4,4,4,3,3,3,2,1,1,0,0,0)$ satisfies weak concavity, yet does allow NCNE. In particular, the profile

$$
\left(\left(x^{1}, n_{1}\right),\left(x^{2}, n_{2}\right)\right)=\left(\left(\frac{13}{28}, 8\right),\left(\frac{41}{84}, 4\right)\right)
$$

with eight candidates at position $x^{1}=\frac{13}{28}$ and four at position $x^{2}=\frac{41}{84}$ is an NCNE.

Finally

It is not known if there exists a concave scoring rule that has NCNE.

Finally

It is not known if there exists a concave scoring rule that has NCNE.

The full paper is on ArXiv:
http://arxiv.org/abs/1301.0152

Any comments will be greatly appreciated.

Finally

It is not known if there exists a concave scoring rule that has NCNE.

The full paper is on ArXiv:
http://arxiv.org/abs/1301.0152

Any comments will be greatly appreciated.

Thanks for your attention!

