Composition of Simple Games

Rupert Freeman
Supervisor: Arkadii Slinko
University of Auckland
rfre038@aucklanduni.ac.nz

March 24, 2013

Introduction

- A simple game is a pair $G=\left(P_{G}, W_{G}\right)$, where P_{G} is a set of players and $W_{G} \subseteq 2^{P_{G}}$ is a non-empty set of subsets (coalitions) which satisfy the monotonicity condition:

$$
\text { if } X \in W_{G} \text { and } X \subseteq Y \text {, then } Y \in W_{G}
$$

Coalitions from W_{G} are called winning coalitions of G, the others are called losing coalitions.

Introduction

- A simple game is a pair $G=\left(P_{G}, W_{G}\right)$, where P_{G} is a set of players and $W_{G} \subseteq 2^{P_{G}}$ is a non-empty set of subsets (coalitions) which satisfy the monotonicity condition:

$$
\text { if } X \in W_{G} \text { and } X \subseteq Y \text {, then } Y \in W_{G}
$$

Coalitions from W_{G} are called winning coalitions of G, the others are called losing coalitions.

- eg. UN Security Council

5 permanent members, 10 non-permanent members. A vote requires the support of all 5 permanent members in addition to at least 4 non-permanent members to pass.

Introduction

- A simple game is a pair $G=\left(P_{G}, W_{G}\right)$, where P_{G} is a set of players and $W_{G} \subseteq 2^{P_{G}}$ is a non-empty set of subsets (coalitions) which satisfy the monotonicity condition:

$$
\text { if } X \in W_{G} \text { and } X \subseteq Y \text {, then } Y \in W_{G}
$$

Coalitions from W_{G} are called winning coalitions of G, the others are called losing coalitions.

- eg. UN Security Council

5 permanent members, 10 non-permanent members. A vote requires the support of all 5 permanent members in addition to at least 4 non-permanent members to pass.

- $[39 ; 7,7,7,7,7,1,1,1,1,1,1,1,1,1,1]$

Composition of Games - Motivation

- Consider the board of a large company, who vote to make strategy decisions under a certain voting rule. Suppose one of the board members retires, but it is decided that their knowledge and experience is too great to replace with just a single person. Instead, a group of people fills the one spot on the board. They collectively vote on each issue. A collective yes vote means that the ex-board members vote is a yes, a collective no means that the ex-board members vote is a no.

Composition of Games - Motivation

- Consider the board of a large company, who vote to make strategy decisions under a certain voting rule. Suppose one of the board members retires, but it is decided that their knowledge and experience is too great to replace with just a single person. Instead, a group of people fills the one spot on the board. They collectively vote on each issue. A collective yes vote means that the ex-board members vote is a yes, a collective no means that the ex-board members vote is a no.
- What properties does the resulting voting structure (game) have?

Composition of Games - Motivation

- Consider the board of a large company, who vote to make strategy decisions under a certain voting rule. Suppose one of the board members retires, but it is decided that their knowledge and experience is too great to replace with just a single person. Instead, a group of people fills the one spot on the board. They collectively vote on each issue. A collective yes vote means that the ex-board members vote is a yes, a collective no means that the ex-board members vote is a no.
- What properties does the resulting voting structure (game) have?
- Is it possible to incorporate all voters in a one-step process, or do we require two separate votes?

Composition of Games - Definition

Definition

Let G and H be two games such that P_{G} and P_{H} are disjoint. Define the composition $C=G \circ_{g} H$ via player $g \in P_{G}$ by $P_{C}=\left(P_{G} \backslash\{g\}\right) \cup P_{H}$ and

$$
\begin{aligned}
& W_{C}^{\min }=\left\{X \subseteq P_{C}: X \in W_{G}^{\min }\right\} \cup\left\{X \subset P_{C}:\right. \\
& \left.\quad\left(X \cap P_{G}\right) \cup\{g\} \in W_{G}^{\min } \text { and } X \cap P_{H} \in W_{H}^{\min }\right\}
\end{aligned}
$$

Composition of Games - Definition

Definition

Let G and H be two games such that P_{G} and P_{H} are disjoint. Define the composition $C=G \circ_{g} H$ via player $g \in P_{G}$ by $P_{C}=\left(P_{G} \backslash\{g\}\right) \cup P_{H}$ and

$$
\begin{aligned}
& W_{C}^{\min }=\left\{X \subseteq P_{C}: X \in W_{G}^{\min }\right\} \cup\left\{X \subset P_{C}:\right. \\
& \left.\quad\left(X \cap P_{G}\right) \cup\{g\} \in W_{G}^{\min } \text { and } X \cap P_{H} \in W_{H}^{\min }\right\}
\end{aligned}
$$

- eg. Consider the case where $G=H$ are k out of n majority games. Then the minimal winning coalitions of $G \circ_{g} H$ are those consisting of k players from G, or $k-1$ players from G and k players from H.

Complete Games and Weighted Voting Games

Definition

Let $G=\left(P_{G}, W_{G}\right)$. We define the desirability relation \preceq on G by: $i \preceq{ }_{G} j$ if for all $U \subseteq P_{G} \backslash\{i, j\}, U \cup i \in W_{G} \Longrightarrow U \cup j \in W_{G}$. We say that j is more desirable than i.

Complete Games and Weighted Voting Games

Definition

Let $G=\left(P_{G}, W_{G}\right)$. We define the desirability relation \preceq on G by: $i \preceq{ }_{G} j$ if for all $U \subseteq P_{G} \backslash\{i, j\}, U \cup i \in W_{G} \Longrightarrow U \cup j \in W_{G}$. We say that j is more desirable than i.

- This is a partial ordering.

Complete Games and Weighted Voting Games

Definition

Let $G=\left(P_{G}, W_{G}\right)$. We define the desirability relation \preceq on G by: $i \preceq \preceq_{G} j$ if for all $U \subseteq P_{G} \backslash\{i, j\}, U \cup i \in W_{G} \Longrightarrow U \cup j \in W_{G}$. We say that j is more desirable than i.

- This is a partial ordering.
- Say that a game is complete if " \preceq " is a total ordering.

Complete Games and Weighted Voting Games

Definition

Let $G=\left(P_{G}, W_{G}\right)$. We define the desirability relation \preceq on G by: $i \preceq \preceq_{G} j$ if for all $U \subseteq P_{G} \backslash\{i, j\}, U \cup i \in W_{G} \Longrightarrow U \cup j \in W_{G}$. We say that j is more desirable than i.

- This is a partial ordering.
- Say that a game is complete if " \preceq " is a total ordering.
- G weighted $\Longrightarrow G$ complete.

Complete Games and Weighted Voting Games

Definition

A simple game G is swap robust if for any two winning coalitions in that game, say S and T, if we swap one player in S with one player in T, then the resulting two coalitions are not both losing.

Complete Games and Weighted Voting Games

Definition

A simple game G is swap robust if for any two winning coalitions in that game, say S and T, if we swap one player in S with one player in T, then the resulting two coalitions are not both losing.

Definition

A simple game G is trade robust if for any set \mathcal{S} of winning coalitions in that game, any redistribution of players among the coalitions in \mathcal{S} does not result in all coalitions in \mathcal{S} becoming losing.

Complete Games and Weighted Voting Games

Definition

A simple game G is swap robust if for any two winning coalitions in that game, say S and T, if we swap one player in S with one player in T, then the resulting two coalitions are not both losing.

Definition

A simple game G is trade robust if for any set \mathcal{S} of winning coalitions in that game, any redistribution of players among the coalitions in \mathcal{S} does not result in all coalitions in \mathcal{S} becoming losing.

- G swap robust $\Leftrightarrow G$ complete
- G trade robust $\Leftrightarrow G$ weighted

Composition of Complete Games

Theorem
Let G and H be complete games with more than one distinct minimal winning coalition and no dummy players. Then the composition $C=G \circ_{g} H$ is complete if and only if g is a member of the weakest desirability class of G.

Composition of Complete Games

Theorem

Let G and H be complete games with more than one distinct minimal winning coalition and no dummy players. Then the composition $C=G \circ_{g} H$ is complete if and only if g is a member of the weakest desirability class of G.

Proof.

$\Leftarrow:$ Let $W_{1}, W_{2} \in W_{C}$. Write $W_{1}=X_{1} \cup Y_{1}$ and $W_{2}=X_{2} \cup Y_{2} . X_{i} \cup\{g\}$ is winning in G and Y_{i} is winning in H if X_{i} is not winning in G. Three ways to swap a player from W_{1} with a player from W_{2} :
(1) $x_{1} \in X_{1}$ with $x_{2} \in X_{2}: W_{1}$ or W_{2} still winning by completeness of G.
(2) $y_{1} \in Y_{1}$ with $y_{2} \in Y_{2}: W_{1}$ or W_{2} still winning by completeness of H.
(3) $x_{1} \in X_{1}$ with $y_{2} \in Y_{2}$ or vice versa : then $X_{2} \cup\left\{x_{1}\right\}$ is winning.

Decomposition of Complete Games

- Say that a game G is reducible if there exist G_{1}, G_{2} such that $\min \left\{\left|P_{G_{1}}\right|,\left|P_{G_{2}}\right|\right\}>1$ such that $G=G_{1} \circ_{g} G_{2}$ for some $g \in G_{1}$.

Decomposition of Complete Games

- Say that a game G is reducible if there exist G_{1}, G_{2} such that $\min \left\{\left|P_{G_{1}}\right|,\left|P_{G_{2}}\right|\right\}>1$ such that $G=G_{1} \circ_{g} G_{2}$ for some $g \in G_{1}$.

Theorem

The set of all complete games with the operation of composition forms a semigroup. Every complete game can be uniquely decomposed (up to isomorphism) as a composition $G=G_{1} \circ_{g_{1}} G_{2} \ldots \circ_{g_{n-1}} G_{n}$ where each G_{i} is irreducible.

Composition of Weighted Voting Games

- Goal: Given weighted voting games G and H, and $g \in G$, under what conditions is the composition weighted?

Composition of Weighted Voting Games

- Goal: Given weighted voting games G and H, and $g \in G$, under what conditions is the composition weighted?
- If $G \circ_{g} H$ is weighted, then g must be (one of) the least desirable player in G, or else $G \circ_{g} H$ is not even complete.

Example

Example

Let $G=[7 ; 3,3,2,2,2,2]$ and let $H=[2 ; 1,1,1]$. Label the two players of weight 3 in G as type A players, the players of weight 2 in G as type B players and the players in H as type C players. We have the following certificate of incompleteness for $G \circ_{B} H$:

$$
\left(A B^{2}, A B C^{2} ; A^{2} C, B^{3} C\right)
$$

So substituting via the least desirable player is not enough to ensure weightedness of the composition.

A Partial Condition

- If G is weighted then we can always find integer weights and quota for G.

A Partial Condition

- If G is weighted then we can always find integer weights and quota for G.

Theorem

Let G and H be weighted and suppose that there exists an integer system of weights for G such that the least desirable player, g, has weight 1 . Then $G \circ_{g} H$ is weighted.

A Partial Condition

- If G is weighted then we can always find integer weights and quota for G.

Theorem

Let G and H be weighted and suppose that there exists an integer system of weights for G such that the least desirable player, g, has weight 1 . Then $G \circ_{g} H$ is weighted.

- We can prove the theorem by constructing a system of weights for the composition.

Homogeneous Games

Definition (Homogeneous Simple Game)

A homogeneous simple game G is a weighted voting game where it is possible to find a system of weights such that every minimal winning coalition has the same weight.

Homogeneous Games

Definition (Homogeneous Simple Game)

A homogeneous simple game G is a weighted voting game where it is possible to find a system of weights such that every minimal winning coalition has the same weight.

- Ostmann (1984) proved that all homogeneous games can be represented by an integer system of weights with some player having weight 1 . Thus, if G is homogeneous and H is weighted, then $G \circ_{g} H$ is weighted.

Open Questions

- Fully characterise conditions for $G \circ_{g} H$ to be weighted.

Open Questions

- Fully characterise conditions for $G \circ_{g} H$ to be weighted.
- Investigate decompositions of arbitrary games.

Open Questions

- Fully characterise conditions for $G \circ_{g} H$ to be weighted.
- Investigate decompositions of arbitrary games.
- Closure of other classes of game under compposition. Eg. Is the composition of two homogeneous games in turn homogeneous?

