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The problem

• Each of n players supplies labour to a joint 
enterprise under a predetermined rule for 
sharing the resulting output.

• What are the implications of the chosen 
sharing rule for (a) efficiency, and (b) 
distribution, in the resulting 
noncooperative labour supply game?

• Can a mechanism be devised that leads to 
an efficient noncooperative equilibrium?
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•Technology: neoclassical, diminishing returns to 
‘labour’
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•Preferences: well-behaved in every way –
labour supply irksome

Preferences exhibit convexity and normality

•n players

Assumptions Throughout



Proportional surplus sharing
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Assume output shared in proportion to input supplied:

Player i chooses li to maximise utility:
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⇒ Overexploitation:  li ‘too high’ [Tragedy of the commons]



Exogenous surplus sharing
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Player i chooses li to maximise utility: ii MRTMRS =
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or

⇒ Under-exploitation:  li ‘too low’ [Public good provision]



A mixed sharing rule
• A sharing rule is initially agreed.
• The rule divides total output into two piles: λY =λF(L) is 

allocated to pile P, and (1 – λ)Y =[1 – λ]F(L) to pile E.
• We call the parameter λ the mixing parameter.
• The pile P will be divided up proportionally, and the pile E 

exogenously:

• Players, knowing the rule, choose their labour inputs 
noncooperatively
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Questions

1. Does a pure strategy equilibrium exist?
2. If so, is it unique, or are there many?
3. Is there a value of λ which implies a Pareto 

efficient equilibrium outcome?
4. Can any Pareto efficient outcome be an eq 

outcome given suitable choices of λ and the 
θi’s?

5. Is there a mechanism for selecting a λ that 
produces a Pareto efficient outcome?



Method of Analysis
• Define for every player a share function:

• Observe that, at a Nash equilibrium,

• Analysis of Nash equilibrium now involves the solution of one 
equation in one unknown. [cf the best response function 
approach, involving n equations.]
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Example

• 3 players, λ=1/2 , θ1= θ2= θ3=1/3
• Ui() = aixi − li, (a1, a2, a3) = (30, 20, 15)
• F(L) = L1/2

Si(L) S3(L) S2(L) S1(L) S(L)

L

1 1N



Some answers

• For a given set of values (λ, θ1, …, θn), 
there exists a unique noncooperative 
equilibrium.

• Assume identical preferences and equal 
shares [θi=1/n for all i]. If the mixing 
parameter λ equals the equilibrium 
elasticity of production, η(L), the 
equilibrium allocation is efficient.



Another result

• Assume preferences are quasilinear in 
income.  Consider an efficient allocation in 
which player i receives output xi

e and 
aggregate input is Le. Then the exogenous 
shares can be chosen so that the 
equilibrium of the surplus sharing game 
with λ=η(Le) satisfies xi = xi

e for all i and 
Σili

e =Le.



Freeness from (average) envy

• If the mixing parameter is chosen to equal 
the elasticity of production, every player 
prefers her equilibrium bundle to the 
bundle consisting of [F(LN)/n, LN/n].



Unanimity Test
• If F(L) = Lα and the mixing parameter λ = α, then 

for every player ,
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The stand-alone test

The stand-alone test formalizes the idea that 
no player should benefit from the negative 
externality they impose on others.

Call i a net contributor if, in equilibrium, 
li/L ≥ θi

• Then at equilibrium all net contributors 
pass the stand-alone test.



Results for large games
Our results may be strengthened for large games 

– that is, games with large n. 
For example:

• The sets of efficient allocations respecting 
voluntary participation and of equilibrium 
allocations with optimal mixing are identical. 

• By varying the exogenous weights, the whole set 
of efficient allocations can be mapped out.



Results for large games (II)
• If exogenous weights are equal, asymptotic 

equilibria are envy free and pass the unanimity 
test.

• If exogenous weights are equal, a stronger 
stand-alone test is satisfied.

• Eq. payoffs for each type are proportional to the 
same function of the mixing parameter. 

• Consequently, all types of player prefer the 
same value of the mixing parameter.

• Voting for the optimal value is a dominant 
strategy for every player in the first stage.
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