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Preamble

This talk is based on the following two papers:

[1] L. I. de Castro, M. Pesce and N. C. Yannelis, A new perspective
to rational epectations: maximin rational expectations equilibrium,
working paper, February 2012.

[2] A. Bhowmik, J. Cao and N. C. Yannelis, Aggregate preferred
correspondence and the existence of a maximin REE



A model of a finite economy

Let I = {1, ..., n} be the set of agents. Let Ω be the finite set of
states of nature, and F be the σ-algebra on Ω, representing the
set of all events, i.e., F = 2Ω. The commodity space is the
n-dimensional Euclidean space Rn, and Rn

+ is the consumption set
for all (i , ω) ∈ I × Ω. A differential information exchange economy
E is the following collection

E :=

{
(Ω,F ); (Fi , ui , ei , πi )i∈I

}
,

where for all i ∈ I

I Fi is a partition of Ω, representing the private information of
agent i . If ω is the state of nature that is going to be realized,
agent i observes Fi (ω), the unique element of Fi containing ω.

I ui : Ω× Rn
+ → R is a random utility function of agent i ,

representing his (ex post) preferences. We assume that for all
ω ∈ Ω, ui (ω, ·) is continuous.
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I ei : Ω→ Rn
+ \ {0} is a random initial endowment. We assume

that ei is Fi -measurable and
∑

i∈I ei (ω)� 0 for any ω ∈ Ω.

I πi is a probability on Ω, representing the prior belief of i . We
assume that πi (ω) > 0 for all ω ∈ Ω.

I At the ex-ante stage (τ = 0), only the above description of the
economy is a common knowledge.

I At the interim stage τ = 1, agent t only knows that the realized
state of nature belongs to the event Fi (ω

∗), where Fi (ω
∗) is the

unique member of πi containing the true state of nature ω∗ at
τ = 2.

I At the ex-post stage (τ = 2), agents execute the trades
according to the contract agreed at period τ = 1, and
consumption takes place.
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Allocation and price

I A function x : I ×Ω→ Rn
+ is called an allocation. An allocation

x is called feasible if ∑
i∈I

x(i , ω) =
∑
i∈I

ei (ω)

for all ω ∈ Ω.

I A price is a non-zero F -measurable function p : Ω→ Rn
+. Let

σ(p) be the smallest sub-σ-algebra of F for which p is
measurable. We can think σ(p) as the information revealed by the
price p. Note that σ(p) is generated by a partition Π(p) of Ω.

I The σ-algebra
Gi := Fi ∨ Π(p)

represents the information combined by the private information Fi

of agent i and the information generated by the price p.
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Expected utility

Let Gi (ω) be the unique member of Gi containing ω.

For a consumption bundle x : Ω→ Rn
+, we consider two different

types of expected utility.

I The Bayesian expected utility of agent i with respect to Gi at x
in state ω is given by

vi (x |Gi )(ω) :=
∑

ω′∈Gi (ω)

ui (ω
′, x(i , ω′))× πi (ω

′)

πi (Gi (ω))
.

I The maximin expected utility of agent i with respect to Gi at x
in state ω is given by

u
¯
REE
i (ω, x) := min

ω′∈Gi (ω)
ui (ω

′, x(ω′)),



Rational expectations equilibrium

Let x be a feasible allocation and p is a price system.

I The pair (x , p) is called a Bayesian REE if for each i ∈ I ,

1 x(i , ·) is Gi -measurable;

2 〈x(i , ω), p(ω)〉 ≤ 〈ei (ω), p(ω)〉 for all ω ∈ Ω;

3 x(i , ω) ∈ argmaxy∈Bi (ω,p(ω)) vi (y |Gi )(ω) for all ω ∈ Ω,

where Bi (ω, p(ω)) is defined as

{y ∈ (Rn
+)Ω is Gi -measurable : 〈y(ω), p(ω)〉 ≤ 〈ei (ω), p(ω)〉}.

I The pair (x , p) is called a maximin REE if for each i ∈ I ,

1 〈x(i , ω), p(ω)〉 ≤ 〈ei (ω), p(ω)〉 for all ω ∈ Ω;

2 x(i , ω) ∈ argmaxy∈BREE
i (ω,p) u

¯
REE
i (ω, y) for all ω ∈ Ω,

where BREE
i (ω, p) is defined as{

y ∈ (Rn
+)Ω : 〈y(ω′), p(ω′)〉 ≤ 〈ei (ω′), p(ω′)〉 for all ω′ ∈ Gi (ω)

}
.
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An example (Kreps, 1977)

I = {1, 2}, two commodities and two equally probable states of
nature, i.e., Ω = {ω1, ω2}. The primitives of the economy are:

e1(·) =

((
3

2
,

3

2

)
,

(
3

2
,

3

2

))
,F1 = {{ω1}, {ω2}};

e2(·) =

((
3

2
,

3

2

)
,

(
3

2
,

3

2

))
,F2 = {{ω1, ω2}}.

u1(ω1, (x , y)) = `nx + y , u1(ω2, (x , y)) = 2`nx + y

u2(ω1, (x , y)) = 2`nx + y , u2(ω2, (x , y)) = `nx + y .

A Bayesian REE does not exist in E , but a unique maximin REE
exists in E :

(x1(ω1), y1(ω1)) = (1, 2), (x1(ω2), y1(ω2)) = (2, 1),

(x2(ω1), y2(ω1)) = (2, 1), (x2(ω2), y2(ω2)) = (1, 2).



Existence results

I Kreps (1979) provided an example that shows that a Bayesian
REE does not exist in general.

I Radner (1979) and Allen (1981-2) studied conditions on the
existence of a Bayesian REE and obtained some generic existence
results.

Theorem (de Castro, Pesce and Yannelis)

There always exists a maximin REE in E .

I Open question: Can the above theorem be extended to an
economy with infinitely many states of nature, continuum of
agents, and even to an infinite dimensional commodity space?
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A model of a continuum economy Ec

I The space of agents is a finite measure space (T ,Σ, µ).

I The commodity space is the n-dimensional Euclidean space Rn,
and Rn

+ is the consumption set for all (t, ω) ∈ T × Ω.

I The space of state nature is a complete probability measure
space (Ω,F , ν).

I The (ex-post) preferences of agents are represented by a utility
function u : T × Ω× Rn

+ → R such that u(·, ·, x) is jointly
measurable and u(t, ω, ·) is monotone, continuous and concave.

I The initial endowments of agents are represented by a jointly

measurable function e : T × Ω→ Rn
+ such that

∫
T

e(·, ω)dµ� 0.

I The private information of each t ∈ T is represented by the
σ-algebra Ft generated by a partition Πt of Ω.

I The prior belief of each t ∈ T is a probability measure Qt on Ω.



Aggregate preferred correspondence
Let

∆ :=

{
p ∈ Rn

+ : p � 0 and
n∑

h=1

ph = 1

}
.

The budget correspondence B : T × Ω×∆⇒ Rn
+ is defined by

B(t, ω, p) :=
{

x ∈ Rn
+ : 〈p, x〉 ≤ 〈p, e(t, ω)〉

}
for all (t, ω, p) ∈ T × Ω×∆.

I Define C : T × Ω×∆⇒ Rn
+ by

C (t, ω, p) :=
{

y ∈ Rn
+ : u(t, ω, y) ≥ u(t, ω, x),∀x ∈ B(t, ω, p)

}
.

Since u(t, ω, ·) is continuous, C (t, ω, p) 6= ∅.

For any (t, ω, p) ∈ T × Ω×∆, let

δ(p) := min
{

ph : 1 ≤ h ≤ n
}
, and γ(t, ω, p) :=

1

δ(p)

n∑
h=1

eh(t, ω).
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The preferred set of agent t at the price p and state ω is defined as

CX (t, ω, p) := {x ∈ C (t, ω, p) : x ≤ γ(t, ω, p)1},

and the aggregate preferred correspondence is defined by∫
T

CX (·, ·, ·)dµ : Ω×∆⇒ Rn
+.

Properties of the APC

1 The APC is non-empty compact-valued.

2 For each ω ∈ Ω,

∫
T

CX (·, ω, ·)dµ : ∆→ Rn
+ is Hausdorff

continuous.

3 For each p ∈ ∆,

∫
T

CX (·, ·, p)dµ : (Ω,F , ν)⇒ Rn
+ is

measurable.



Measurable correspondences

A correspondence F : (T ,Σ, µ)⇒ (Y , d) is measurable if

F−1(V ) := {t ∈ T : F (t) ∩ V 6= ∅} ∈ Σ.

for every open subset V ⊆ Y . A measurable f : (T ,Σ, µ)→ (Y , d)
is called a measurable selection of F if f (t) ∈ F (t) for all t ∈ T .

Theorem (Characterizations)

Consider the following statements for F : (T ,Σ, µ)⇒ (Y , d):

(1) F−1(C ) ∈ Σ for each closed set V ⊆ Y .

(2) F is measurable.

(3) The function t 7→ d(y ,F (t)) is Σ-measurable for each y ∈ Y .

(4) Gr(F ) := {(t, y) ∈ T × Y : t ∈ T , y ∈ F (t)} ∈ Σ⊗B(Y ).

Then (1) ⇒ (2) ⇒ (3). If F is closed-valued and Y is separable,
then all of these statements are equivalent.
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Measurable selections

Kuratowski-Ryll-Nardzewski Selection Theorem (1965)

If F : (T ,Σ, µ)⇒ (Y , d) is a closed-valued and measurable
correspondence into a complete separable metric space, then F
admits a measurable selection.

von Neumann (1949)-Aumann (1969) Selection Theorem

If F : (T ,Σ, µ)⇒ (Y , d) is a correspondence into a complete
separable metric space such that Gr(F ) ∈ Σ⊗B(Y ), then F
admits a measurable almost everywhere selection.

A Hausdorff topological is called a Suslin space if it is a continuous
image of some Polish space.

Sainte-Beuve Selection Theorem (1974)

If F : (T ,Σ, µ)⇒ Y is a correspondence into a Suslin space such
that Gr(F ) ∈ Σ⊗B(Y ), then F admits a measurable selection.
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A general existence result

Theorem (Bhowmik, C. and Yannelis)

There always exists a maximin REE in Ec .

Proof. Consider the correspondence Z : Ω×∆⇒ Rn, defined by

Z (ω, p) :=

∫
T

CX (·, ω, p)dµ−
∫
T

e(·, ω)dµ.

Then, Z is non-empty compact-valued and jointly measurable. By
the existence theorem of a Walrasian equilibrium due to
Hildenbrand in 1974, the correspondence F : Ω⇒ ∆, defined by

F (ω) := {p ∈ ∆ : Z (ω, p) ∩ {0} 6= ∅},

is non-empty valued. Since Gr(F ) = Z−1({0}) and Z is jointly
measurable, F has a measurable graph.
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Proof continued

Now, the Sainte-Beuve selection theorem implies that F admits a
measurable selection p̂ : Ω→ ∆.

By the definition of Z , there exists a feasible allocation x such that
x ∈ CX (t, ω, p̂(ω)) for almost all t ∈ T and all ω ∈ Ω. Thus,
x(t, ω) ∈ Bt(ω, p̂(ω)) for almost all t ∈ T and all ω ∈ Ω. Define

Tω := {t ∈ T : x(t, ω) ∈ Bt(ω, p̂(ω)) ∩ C (t, ω, p̂(ω))}.

Finally, define a function x̂ : T × Ω→ Rn
+ such that if t ∈ Tω,

x̂(t, ω) = x(t, ω), and if t ∈ T \ Tω, x̂(t, ω) is any point in
Bt(ω, p̂(ω)) ∩ C (t, ω, p̂(ω)).

It can be verified that (x̂ , p̂) is a maximin rational expectation
equilibrium in Ec . �
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Other properties of a maximin REE in E

I There always exists a MREE which satisfies the budget set with
an equality.

I Under certain assumptions the equilibrium price is strictly
positive in each state of nature.

I If the utility functions are private information measurable, then
for each agent i ∈ I , the maximin utility at any maximin REE
allocation is constant in each event of the partition Gi .

I If the utility functions are private information measurable and
monotone, then any maximin REE allocation is maximin efficient.

I Any maximin REE allocation is maximin coalitional incentive
compatible.



The end

Thank You · · ·
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