Maximin Rational Expectations Equilibrium

Jiling Cao

Auckland University of Technology

Email: jiling.cao@aut.ac.nz

The 4th CMSS Summer Worshop: Mathematical Economics The University of Auckland, 21-22 March 2013

(日) (四) (문) (문) (문)

This talk is based on the following two papers:

[1] L. I. de Castro, M. Pesce and N. C. Yannelis, *A new perspective to rational epectations: maximin rational expectations equilibrium*, working paper, February 2012.

[2] A. Bhowmik, J. Cao and N. C. Yannelis, *Aggregate preferred* correspondence and the existence of a maximin REE

A model of a finite economy

Let $I = \{1, ..., n\}$ be the set of agents. Let Ω be the finite set of states of nature, and \mathscr{F} be the σ -algebra on Ω , representing the set of all events, i.e., $\mathscr{F} = 2^{\Omega}$. The commodity space is the *n*-dimensional Euclidean space \mathbb{R}^n , and \mathbb{R}^n_+ is the consumption set for all $(i, \omega) \in I \times \Omega$. A differential information exchange economy \mathscr{E} is the following collection

$$\mathscr{E} := \left\{ (\Omega, \mathscr{F}); \ (\mathscr{F}_i, u_i, e_i, \pi_i)_{i \in I} \right\},$$

where for all $i \in I$

A model of a finite economy

Let $I = \{1, ..., n\}$ be the set of agents. Let Ω be the finite set of states of nature, and \mathscr{F} be the σ -algebra on Ω , representing the set of all events, i.e., $\mathscr{F} = 2^{\Omega}$. The commodity space is the *n*-dimensional Euclidean space \mathbb{R}^n , and \mathbb{R}^n_+ is the consumption set for all $(i, \omega) \in I \times \Omega$. A differential information exchange economy \mathscr{E} is the following collection

$$\mathscr{E} := \left\{ (\Omega, \mathscr{F}); \ (\mathscr{F}_i, u_i, e_i, \pi_i)_{i \in I} \right\},$$

where for all $i \in I$

► \mathscr{F}_i is a partition of Ω , representing the private information of agent *i*. If ω is the state of nature that is going to be realized, agent *i* observes $\mathscr{F}_i(\omega)$, the unique element of \mathscr{F}_i containing ω .

▶ $u_i : \Omega \times \mathbb{R}^n_+ \to \mathbb{R}$ is a random utility function of agent *i*, representing his (ex post) preferences. We assume that for all $\omega \in \Omega$, $u_i(\omega, \cdot)$ is continuous.

▶ $e_i : \Omega \to \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ is a random initial endowment. We assume that e_i is \mathscr{F}_i -measurable and $\sum_{i \in I} e_i(\omega) \gg \mathbf{0}$ for any $\omega \in \Omega$.

▶ π_i is a probability on Ω , representing the prior belief of *i*. We assume that $\pi_i(\omega) > 0$ for all $\omega \in \Omega$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▶ $e_i : \Omega \to \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ is a random initial endowment. We assume that e_i is \mathscr{F}_i -measurable and $\sum_{i \in I} e_i(\omega) \gg \mathbf{0}$ for any $\omega \in \Omega$.

▶ π_i is a probability on Ω , representing the prior belief of *i*. We assume that $\pi_i(\omega) > 0$ for all $\omega \in \Omega$.

At the ex-ante stage ($\tau = 0$), only the above description of the economy is a common knowledge.

At the interim stage $\tau = 1$, agent t only knows that the realized state of nature belongs to the event $\mathscr{F}_i(\omega^*)$, where $\mathscr{F}_i(\omega^*)$ is the unique member of π_i containing the true state of nature ω^* at $\tau = 2$.

At the ex-post stage ($\tau = 2$), agents execute the trades according to the contract agreed at period $\tau = 1$, and consumption takes place.

Allocation and price

► A function $x : I \times \Omega \to \mathbb{R}^n_+$ is called an *allocation*. An allocation *x* is called *feasible* if

$$\sum_{i\in I} x(i,\omega) = \sum_{i\in I} e_i(\omega)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for all $\omega \in \Omega$.

Allocation and price

► A function $x : I \times \Omega \to \mathbb{R}^n_+$ is called an *allocation*. An allocation x is called *feasible* if

$$\sum_{i\in I} x(i,\omega) = \sum_{i\in I} e_i(\omega)$$

for all $\omega \in \Omega$.

► A price is a non-zero \mathscr{F} -measurable function $p: \Omega \to \mathbb{R}^n_+$. Let $\sigma(p)$ be the smallest sub- σ -algebra of \mathscr{F} for which p is measurable. We can think $\sigma(p)$ as the information revealed by the price p. Note that $\sigma(p)$ is generated by a partition $\Pi(p)$ of Ω .

Allocation and price

► A function $x : I \times \Omega \to \mathbb{R}^n_+$ is called an *allocation*. An allocation x is called *feasible* if

$$\sum_{i\in I} x(i,\omega) = \sum_{i\in I} e_i(\omega)$$

for all $\omega \in \Omega$.

▶ A price is a non-zero \mathscr{F} -measurable function $p : \Omega \to \mathbb{R}^n_+$. Let $\sigma(p)$ be the smallest sub- σ -algebra of \mathscr{F} for which p is measurable. We can think $\sigma(p)$ as the information revealed by the price p. Note that $\sigma(p)$ is generated by a partition $\Pi(p)$ of Ω .

 \blacktriangleright The σ -algebra

$$\mathscr{G}_i := \mathscr{F}_i \vee \Pi(p)$$

represents the information combined by the private information \mathscr{F}_i of agent *i* and the information generated by the price *p*.

< □ > < (四 > < (回 >) < (回 >) < (回 >) < (回 >) (□) [□] (□)

Let $\mathscr{G}_i(\omega)$ be the unique member of \mathscr{G}_i containing ω .

For a consumption bundle $x : \Omega \to \mathbb{R}^n_+$, we consider two different types of expected utility.

▶ The *Bayesian expected utility* of agent *i* with respect to \mathscr{G}_i at *x* in state ω is given by

$$\mathsf{v}_i(\mathsf{x}|\mathscr{G}_i)(\omega) := \sum_{\omega' \in \mathscr{G}_i(\omega)} \mathsf{u}_i(\omega',\mathsf{x}(i,\omega')) imes rac{\pi_i(\omega')}{\pi_i(\mathscr{G}_i(\omega))}.$$

▶ The maximin expected utility of agent *i* with respect to \mathscr{G}_i at x in state ω is given by

$$\underline{u}_{i}^{REE}(\omega, x) := \min_{\omega' \in \mathscr{G}_{i}(\omega)} u_{i}(\omega', x(\omega')),$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Rational expectations equilibrium

Let x be a feasible allocation and p is a price system.

- ▶ The pair (x, p) is called a *Bayesian REE* if for each $i \in I$,
 - $x(i, \cdot)$ is \mathcal{G}_i -measurable;

③ $x(i, \omega) \in \arg \max_{y \in B_i(\omega, p(\omega))} v_i(y|\mathscr{G}_i)(\omega)$ for all $\omega \in \Omega$, where $B_i(\omega, p(\omega))$ is defined as

 $\{y \in (\mathbb{R}^n_+)^\Omega \text{ is } \mathscr{G}_i\text{-measurable} : \langle y(\omega), p(\omega) \rangle \leq \langle e_i(\omega), p(\omega) \rangle \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rational expectations equilibrium

Let x be a feasible allocation and p is a price system.

▶ The pair (x, p) is called a *Bayesian REE* if for each $i \in I$,

•
$$x(i, \cdot)$$
 is \mathcal{G}_i -measurable;

③ $x(i, \omega) \in \arg \max_{y \in B_i(\omega, p(\omega))} v_i(y|\mathscr{G}_i)(\omega)$ for all $\omega \in \Omega$, where $B_i(\omega, p(\omega))$ is defined as

 $\{y \in (\mathbb{R}^n_+)^\Omega \text{ is } \mathscr{G}_i\text{-measurable} : \langle y(\omega), p(\omega) \rangle \leq \langle e_i(\omega), p(\omega) \rangle \}.$

The pair (x, p) is called a maximin REE if for each i ∈ I,
(x(i,ω), p(ω)) ≤ ⟨e_i(ω), p(ω)⟩ for all ω ∈ Ω;

② $x(i, \omega) \in \arg \max_{y \in B_i^{REE}(\omega, p)} \underline{u}_i^{REE}(\omega, y)$ for all $\omega \in \Omega$, where $B_i^{REE}(\omega, p)$ is defined as

$$\left\{y\in (\mathbb{R}^n_+)^\Omega: \langle y(\omega'), p(\omega')\rangle \leq \langle e_i(\omega'), p(\omega')\rangle \text{ for all } \omega'\in \mathscr{G}_i(\omega)\right\}.$$

An example (Kreps, 1977)

 $I = \{1, 2\}$, two commodities and two equally probable states of nature, i.e., $\Omega = \{\omega_1, \omega_2\}$. The primitives of the economy are:

$$e_{1}(\cdot) = \left(\left(\frac{3}{2}, \frac{3}{2}\right), \left(\frac{3}{2}, \frac{3}{2}\right) \right), \mathscr{F}_{1} = \{\{\omega_{1}\}, \{\omega_{2}\}\};$$

$$e_{2}(\cdot) = \left(\left(\frac{3}{2}, \frac{3}{2}\right), \left(\frac{3}{2}, \frac{3}{2}\right) \right), \mathscr{F}_{2} = \{\{\omega_{1}, \omega_{2}\}\}.$$

$$u_{1}(\omega_{1}, (x, y)) = \ell nx + y, \quad u_{1}(\omega_{2}, (x, y)) = 2\ell nx + y$$

$$u_{2}(\omega_{1}, (x, y)) = 2\ell nx + y, \quad u_{2}(\omega_{2}, (x, y)) = \ell nx + y.$$

A Bayesian REE does not exist in \mathscr{E} , but a unique maximin REE exists in \mathscr{E} :

$$(x_1(\omega_1), y_1(\omega_1)) = (1, 2), \quad (x_1(\omega_2), y_1(\omega_2)) = (2, 1),$$

 $(x_2(\omega_1), y_2(\omega_1)) = (2, 1), \quad (x_2(\omega_2), y_2(\omega_2)) = (1, 2).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ Kreps (1979) provided an example that shows that a Bayesian REE does not exist in general.

▶ Radner (1979) and Allen (1981-2) studied conditions on the existence of a Bayesian REE and obtained some generic existence results.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ Kreps (1979) provided an example that shows that a Bayesian REE does not exist in general.

▶ Radner (1979) and Allen (1981-2) studied conditions on the existence of a Bayesian REE and obtained some generic existence results.

Theorem (de Castro, Pesce and Yannelis)

There always exists a maximin REE in \mathscr{E} .

▶ Open question: Can the above theorem be extended to an economy with infinitely many states of nature, continuum of agents, and even to an infinite dimensional commodity space?

► The space of agents is a finite measure space (T, Σ, μ) .

► The commodity space is the *n*-dimensional Euclidean space \mathbb{R}^n , and \mathbb{R}^n_+ is the consumption set for all $(t, \omega) \in T \times \Omega$.

► The space of state nature is a complete probability measure space $(\Omega, \mathcal{F}, \nu)$.

► The (ex-post) preferences of agents are represented by a utility function $u: T \times \Omega \times \mathbb{R}^n_+ \to \mathbb{R}$ such that $u(\cdot, \cdot, x)$ is jointly measurable and $u(t, \omega, \cdot)$ is monotone, continuous and concave.

► The *initial endowments* of agents are represented by a jointly measurable function $e: T \times \Omega \to \mathbb{R}^n_+$ such that $\int_T e(\cdot, \omega) d\mu \gg 0$.

► The private information of each $t \in T$ is represented by the σ -algebra \mathscr{F}_t generated by a partition Π_t of Ω .

• The *prior belief* of each $t \in T$ is a probability measure \mathbb{Q}_t on Ω .

Aggregate preferred correspondence

Let

$$\Delta:=\left\{ p\in \mathbb{R}^n_+: p\gg 0 ext{ and } \sum_{h=1}^n p^h=1
ight\}.$$

The *budget correspondence* $B : T \times \Omega \times \Delta \rightrightarrows \mathbb{R}^n_+$ is defined by

$$egin{aligned} B(t,\omega,m{p}) &:= ig\{x\in\mathbb{R}^n_+: \langlem{p},x
angle\leq \langlem{p},m{e}(t,\omega)
angleig\} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for all $(t, \omega, p) \in T \times \Omega \times \Delta$.

Aggregate preferred correspondence

$$\Delta:=\left\{ p\in \mathbb{R}^n_+: p\gg 0 ext{ and } \sum_{h=1}^n p^h=1
ight\}.$$

The *budget correspondence* $B : T \times \Omega \times \Delta \rightrightarrows \mathbb{R}^n_+$ is defined by

$$B(t,\omega,p) := \left\{ x \in \mathbb{R}^n_+ : \langle p,x
angle \leq \langle p,e(t,\omega)
angle
ight\}$$

for all $(t, \omega, p) \in T \times \Omega \times \Delta$.

Let

► Define
$$C : T \times \Omega \times \Delta \rightrightarrows \mathbb{R}^n_+$$
 by
 $C(t, \omega, p) := \{y \in \mathbb{R}^n_+ : u(t, \omega, y) \ge u(t, \omega, x), \forall x \in B(t, \omega, p)\}.$
Since $u(t, \omega, \cdot)$ is continuous, $C(t, \omega, p) \neq \emptyset$.
For any $(t, \omega, p) \in T \times \Omega \times \Delta$, let
 $\delta(p) := \min \{p^h : 1 \le h \le n\}, \text{ and } \gamma(t, \omega, p) := \frac{1}{\delta(p)} \sum_{h=1}^n e^h(t, \omega).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The *preferred set of agent t* at the price p and state ω is defined as

$$\mathcal{C}^{X}(t,\omega, p) := \{x \in \mathcal{C}(t,\omega, p) : x \leq \gamma(t,\omega, p)\mathbf{1}\},$$

and the aggregate preferred correspondence is defined by

$$\int_{\mathcal{T}} C^{\mathsf{X}}(\cdot,\cdot,\cdot) d\mu : \Omega \times \Delta \rightrightarrows \mathbb{R}^{n}_{+}.$$

Properties of the APC

• The APC is non-empty compact-valued.

3 For each
$$\omega \in \Omega$$
, $\int_{\mathcal{T}} C^{X}(\cdot, \omega, \cdot) d\mu : \Delta \to \mathbb{R}^{n}_{+}$ is Hausdorff continuous

3 For each
$$p \in \Delta$$
, $\int_{T} C^{X}(\cdot, \cdot, p) d\mu : (\Omega, \mathscr{F}, \nu) \rightrightarrows \mathbb{R}^{n}_{+}$ is measurable.

Measurable correspondences

A correspondence $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$ is *measurable* if

$$F^{-1}(V) := \{t \in T : F(t) \cap V \neq \emptyset\} \in \Sigma.$$

for every open subset $V \subseteq Y$. A measurable $f : (T, \Sigma, \mu) \rightarrow (Y, d)$ is called a *measurable selection* of F if $f(t) \in F(t)$ for all $t \in T$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Measurable correspondences

A correspondence $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$ is *measurable* if

$$F^{-1}(V) := \{t \in T : F(t) \cap V \neq \emptyset\} \in \Sigma.$$

for every open subset $V \subseteq Y$. A measurable $f : (T, \Sigma, \mu) \rightarrow (Y, d)$ is called a *measurable selection* of F if $f(t) \in F(t)$ for all $t \in T$.

Theorem (Characterizations)

Consider the following statements for $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$:

(1)
$$F^{-1}(C) \in \Sigma$$
 for each closed set $V \subseteq Y$.

(2) F is measurable.

(3) The function $t \mapsto d(y, F(t))$ is Σ -measurable for each $y \in Y$.

(4) $Gr(F) := \{(t, y) \in T \times Y : t \in T, y \in F(t)\} \in \Sigma \otimes \mathscr{B}(Y).$

Then $(1) \Rightarrow (2) \Rightarrow (3)$. If F is closed-valued and Y is separable, then all of these statements are equivalent.

Kuratowski-Ryll-Nardzewski Selection Theorem (1965)

If $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$ is a closed-valued and measurable correspondence into a complete separable metric space, then F admits a measurable selection.

<ロト <四ト <注入 <注下 <注下 <

Kuratowski-Ryll-Nardzewski Selection Theorem (1965)

If $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$ is a closed-valued and measurable correspondence into a complete separable metric space, then F admits a measurable selection.

von Neumann (1949)-Aumann (1969) Selection Theorem

If $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$ is a correspondence into a complete separable metric space such that $Gr(F) \in \Sigma \otimes \mathscr{B}(Y)$, then F admits a measurable almost everywhere selection.

<ロト <四ト <注入 <注下 <注下 <

Kuratowski-Ryll-Nardzewski Selection Theorem (1965)

If $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$ is a closed-valued and measurable correspondence into a complete separable metric space, then F admits a measurable selection.

von Neumann (1949)-Aumann (1969) Selection Theorem

If $F : (T, \Sigma, \mu) \rightrightarrows (Y, d)$ is a correspondence into a complete separable metric space such that $Gr(F) \in \Sigma \otimes \mathscr{B}(Y)$, then F admits a measurable almost everywhere selection.

A Hausdorff topological is called a *Suslin space* if it is a continuous image of some Polish space.

Sainte-Beuve Selection Theorem (1974)

If $F : (T, \Sigma, \mu) \rightrightarrows Y$ is a correspondence into a Suslin space such that $Gr(F) \in \Sigma \otimes \mathscr{B}(Y)$, then F admits a measurable selection.

A general existence result

Theorem (Bhowmik, C. and Yannelis)

There always exists a maximin REE in \mathcal{E}_c .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Theorem (Bhowmik, C. and Yannelis)

There always exists a maximin REE in \mathcal{E}_c .

Proof. Consider the correspondence $Z: \Omega \times \Delta \rightrightarrows \mathbb{R}^n$, defined by

$$Z(\omega,p) := \int_{\mathcal{T}} C^{X}(\cdot,\omega,p) d\mu - \int_{\mathcal{T}} e(\cdot,\omega) d\mu$$

Then, Z is non-empty compact-valued and jointly measurable. By the existence theorem of a Walrasian equilibrium due to Hildenbrand in 1974, the correspondence $F : \Omega \Rightarrow \Delta$, defined by

$$F(\omega) := \{ p \in \Delta : Z(\omega, p) \cap \{ 0 \} \neq \emptyset \},$$

is non-empty valued. Since $Gr(F) = Z^{-1}(\{0\})$ and Z is jointly measurable, F has a measurable graph.

By the definition of Z, there exists a feasible allocation x such that $x \in C^{X}(t, \omega, \hat{p}(\omega))$ for almost all $t \in T$ and all $\omega \in \Omega$. Thus, $x(t, \omega) \in B_{t}(\omega, \hat{p}(\omega))$ for almost all $t \in T$ and all $\omega \in \Omega$. Define

 $T_{\omega} := \{t \in T : x(t, \omega) \in B_t(\omega, \hat{p}(\omega)) \cap C(t, \omega, \hat{p}(\omega))\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

By the definition of Z, there exists a feasible allocation x such that $x \in C^{X}(t, \omega, \hat{p}(\omega))$ for almost all $t \in T$ and all $\omega \in \Omega$. Thus, $x(t, \omega) \in B_{t}(\omega, \hat{p}(\omega))$ for almost all $t \in T$ and all $\omega \in \Omega$. Define

 $T_{\omega} := \{t \in T : x(t, \omega) \in B_t(\omega, \hat{p}(\omega)) \cap C(t, \omega, \hat{p}(\omega))\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Finally, define a function $\hat{x}: T \times \Omega \to \mathbb{R}^n_+$ such that if $t \in T_\omega$, $\hat{x}(t,\omega) = x(t,\omega)$, and if $t \in T \setminus T_\omega$, $\hat{x}(t,\omega)$ is any point in $B_t(\omega, \hat{p}(\omega)) \cap C(t,\omega, \hat{p}(\omega))$.

By the definition of Z, there exists a feasible allocation x such that $x \in C^{X}(t, \omega, \hat{p}(\omega))$ for almost all $t \in T$ and all $\omega \in \Omega$. Thus, $x(t, \omega) \in B_{t}(\omega, \hat{p}(\omega))$ for almost all $t \in T$ and all $\omega \in \Omega$. Define

 $T_{\omega} := \{t \in T : x(t, \omega) \in B_t(\omega, \hat{p}(\omega)) \cap C(t, \omega, \hat{p}(\omega))\}.$

Finally, define a function $\hat{x}: T \times \Omega \to \mathbb{R}^n_+$ such that if $t \in T_\omega$, $\hat{x}(t,\omega) = x(t,\omega)$, and if $t \in T \setminus T_\omega$, $\hat{x}(t,\omega)$ is any point in $B_t(\omega, \hat{p}(\omega)) \cap C(t,\omega, \hat{p}(\omega))$.

It can be verified that (\hat{x}, \hat{p}) is a maximin rational expectation equilibrium in \mathscr{E}_c .

Other properties of a maximin REE in \mathcal{E}

► There always exists a MREE which satisfies the budget set with an equality.

► Under certain assumptions the equilibrium price is strictly positive in each state of nature.

▶ If the utility functions are private information measurable, then for each agent $i \in I$, the maximin utility at any maximin REE allocation is constant in each event of the partition \mathscr{G}_i .

▶ If the utility functions are private information measurable and monotone, then any maximin REE allocation is maximin efficient.

► Any maximin REE allocation is maximin coalitional incentive compatible.

Thank You ···

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで