Choosing Collectively Optimal Sets of Alternatives Based on the Condorcet Criterion

Edith Elkind¹ Jérôme Lang² Abdallah Saffidine²

¹Nanyang Technological University, Singapore

²LAMSADE, Université Paris-Dauphine, France

Α	В	С	D	E
Mon. Wed. Thu.	Wed. Thu. Fri.	Wed. Fri. Mon.	Thu. Fri. Mon. Tue. Wed.	Mon. Fri. Thu.

Holding weekly research seminars in a department.

Α	В	С	D	Е
			Thu. Fri.	
			Mon.	
			Tue.	
⊢ri.	ivion.	iue.	Wed.	vvea.

→ no single day will suit everybody.

Α	В	С	D	Е
			Thu. Fri.	
	_		Mon.	
_		_	Tue.	_
Fri.	Mon.	Tue.	Wed.	Wed.

[→] no single day will suit everybody.

Α	В	С	D	Е
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

[→] no single day will suit everybody.

Α	В	С	D	Е
			Thu. Fri.	
Wed.	Thu.	Fri.	Mon.	Fri.
_		_	Tue. Wed.	_

[→] no single day will suit everybody.

Holding weekly research seminars in a department.

Α	В	С	D	Е
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

→ no single day will suit everybody.

Α	В	С	D	E
Mon. Wed. Thu.	Wed. Thu. Fri.	Thu. Wed. Fri. Mon. Tue.	Fri. Mon. Tue.	Mon. Fri. Thu.

- → no single day will suit everybody.
- \rightarrow select 2 seminar days, for even weeks and odd weeks

Α	В	С	D	Е
Mon. Wed. Thu.	Wed. Thu. Fri.	Wed. Fri. Mon.	Thu. Fri. Mon. Tue. Wed.	Mon. Fri. Thu.

- → no single day will suit everybody.
- \rightarrow select 2 seminar days, for even weeks and odd weeks

Α	В	С	D	E
Mon. Wed. Thu.	Wed. Thu. Fri.	Thu. Wed. Fri. Mon. Tue.	Fri. Mon. Tue.	Mon. Fri. Thu.

- → no single day will suit everybody.
- \rightarrow select 2 seminar days, for even weeks and odd weeks

Related Work

- Proportional Representation
- Condorcet Committees

Notations

- n voters
- a set of p candidates X
- preference profile $P = \langle \succ_1, \dots, \succ_n \rangle$

θ-Winning Sets

Definition

For $Y \subseteq X$, $z \in X \setminus Y$, and $0 < \theta \le 1$ $Y \theta$ -covers z if

$$\#\{i \in N \mid \exists y \in Y \text{ such that } y \succ_i z\} > \theta n.$$

(A proportion at least θ of the voters prefers *some* alternative of Y to z).

θ -Winning Sets

Definition

For $Y \subseteq X$, $z \in X \setminus Y$, and $0 < \theta \le 1$ $Y \theta$ -covers z if

$$\#\{i \in N \mid \exists y \in Y \text{ such that } y \succ_i z\} > \theta n.$$

(A proportion at least θ of the voters prefers *some* alternative of Y to z).

Y is a θ -winning set if $\forall z \in X \setminus Y$, $Y \theta$ -covers z.

Condorcet winning set = $\frac{1}{2}$ -winning set.

Given P, θ , and k

 $D(P, \theta, k) = \{Y, Y \text{ is a } \theta\text{-winning set}, |Y| \leq k\}$

Given P, θ , and k

$$D(P, \theta, k) = \{Y, Y \text{ is a } \theta\text{-winning set}, |Y| \leq k\}$$

We may

- fix θ and minimize k
- fix k and maximize θ

≻1	\succ_2	≻3
а	b	d
С	С	а
d	d	b
b	а	С

\succ_1	\succ_2	≻3
а	b	d
С	С	а
d	d	b
b	а	С

- $\{c\}$ $\frac{1}{2}$ -covers d
- $\{c\}$ does not $\frac{1}{2}$ -cover a or b

≻1	\succ_2	≻3
а	b	d
С	С	а
d	d	b
b	а	С

- $\{c\}$ $\frac{1}{2}$ -covers d
- $\{c\}$ does not $\frac{1}{2}$ -cover a or b
- $\{a,b\}$ $\frac{1}{2}$ -covers c
- $\{a,b\}$ $\frac{1}{2}$ -covers d
- $\bullet \to \{a,b\}$ is a $\frac{1}{2}$ -winning set

≻1	≻ 2	≻3
а	b	d
С	С	а
d	d	b
b	а	С

- $\{c\}$ $\frac{1}{2}$ -covers d
- $\{c\}$ does not $\frac{1}{2}$ -cover a or b
- $\{a,b\}$ $\frac{1}{2}$ -covers c
- $\{a,b\}$ $\frac{1}{2}$ -covers d
- $\rightarrow \{a, b\}$ is a $\frac{1}{2}$ -winning set

$$\begin{array}{l} \textit{D}(\textit{P}_{1},\frac{1}{2},1) = \emptyset \\ \textit{D}(\textit{P}_{1},\frac{1}{2},2) = \{\{\textit{a},\textit{b}\},\{\textit{a},\textit{c}\},\{\textit{a},\textit{d}\},\{\textit{b},\textit{d}\},\{\textit{c},\textit{d}\}\} \end{array}$$

• $\theta = \frac{1}{2}, k = 1$ If P has a Condorcet winner cthen $D(P, \frac{1}{2}, 1) = \{\{c\}\}$ else $D(P, \frac{1}{2}, 1) = \emptyset$

- $\theta = \frac{1}{2}, k = 1$ If P has a Condorcet winner cthen $D(P, \frac{1}{2}, 1) = \{\{c\}\}$ else $D(P, \frac{1}{2}, 1) = \emptyset$
- $\theta^* = \max\{\theta | D(P, \theta, 1) \neq \emptyset\}$ {x} is a θ^* -winning set iff x is

- $\theta = \frac{1}{2}, k = 1$ If P has a Condorcet winner cthen $D(P, \frac{1}{2}, 1) = \{\{c\}\}$ else $D(P, \frac{1}{2}, 1) = \emptyset$
- $\theta^* = \max\{\theta | D(P, \theta, 1) \neq \emptyset\}$ {x} is a θ^* -winning set iff x is a winner for the maximin voting rule

- $\theta = \frac{1}{2}, k = 1$ If P has a Condorcet winner cthen $D(P, \frac{1}{2}, 1) = \{\{c\}\}$ else $D(P, \frac{1}{2}, 1) = \emptyset$
- $\theta^* = \max\{\theta | D(P, \theta, 1) \neq \emptyset\}$ {x} is a θ^* -winning set iff x is a winner for the maximin voting rule
- ∀Y ∈ D(P, 1, k)
 Y contains every candidate ranked first by some voter

CWS: not a tournament solution

≻1	≻ 2	≻ 3
a	b	d
С	С	а
d	d	b
b	а	С

≻1	≻ 2	≻3
а	С	d
b	d	а
С	а	b
d	b	С

 $\{a,b\}$ is a CWS

 $\{a,b\}$ is not a CWS

Condorcet Dimension

Definition

Condorcet dimension of a profile P: $\dim_{\mathcal{C}}(P) = \text{smallest } k \text{ s.t. } D(P, \frac{1}{2}, k) \neq \emptyset$

Condorcet Dimension

Definition

Condorcet dimension of a profile P: $\dim_C(P) = \text{smallest } k \text{ s.t. } D(P, \frac{1}{2}, k) \neq \emptyset$

- If P has a Condorcet winner then dim_C(P) = 1.
- We have seen that $\dim_C(P_1) = 2$

≻1	≻ 2	≻ 3
а	b	d
С	С	а
d	d	b
b	а	С

<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄	<i>V</i> ₅	<i>v</i> ₆	V 7	<i>V</i> 8	V 9	<i>v</i> ₁₀	<i>V</i> ₁₁	<i>V</i> ₁₂	<i>V</i> ₁₃	<i>V</i> ₁₄	<i>V</i> ₁₅
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14
6	7	8	9	10	11		13	14	15	1	2	3	4	5
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9

Not CWS:

_																	
	<i>V</i> ₁	<i>v</i> ₂	<i>V</i> ₃	<i>V</i> ₄	<i>V</i> 5	<i>v</i> ₆	<i>V</i> 7	<i>v</i> ₈	V 9	<i>v</i> ₁₀	١	V ₁₁	<i>v</i> ₁₂	<i>v</i> ₁₃	<i>v</i> ₁₄	<i>v</i> ₁₅	
_	1	2	3	4	5	6	7	8	9	10		11	12	13	14	15	Not CWS:
	2	3	4	5	1	7	8	9	10	6		12	13	14	15	11	
	3	4	5	1	2	8	9	10	6	7		13	14	15	11	12	
	4	5	1	2	3	9	10	6	7	8		14	15	11	12	13	
	5	1	2	3	4	10	6	7	8	9		15	11	12	13	14	
	6	7	8	9	10	11	12	13	14	15		1	2	3	4	5	
	7	8	9	10	6	12	13	14	15	11		2	3	4	5	1	
	8	9	10	6	7	13	14	15	11	12		3	4	5	1	2	
	9	10	6	7	8	14	15	11	12	13		4	5	1	2	3	
1	10	6	7	8	9	15	11	12	13	14		5	1	2	3	4	
1	11	12	13	14	15	1	2	3	4	5		6	7	8	9	10	
1	12	13	14	15	11	2	3	4	5	1		7	8	9	10	6	
1	13	14	15	11	12	3	4	5	1	2		8	9	10	6	7	
1	14	15	11	12	13	4	5	1	2	3		9	10	6	7	8	
1	15	11	12	13	14	5	1	2	3	4		10	6	7	8	9	

<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄	<i>V</i> ₅	<i>v</i> ₆	V 7	<i>v</i> ₈	V 9	<i>v</i> ₁₀	<i>v</i> ₁₁	<i>v</i> ₁₂	<i>v</i> ₁₃	<i>v</i> ₁₄	<i>v</i> ₁₅	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Not CWS:
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11	_
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12	
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13	● {1,3} < 11
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14	(1,0)
6	7	8	9	10	11	12	13	14	15	1	2	3	4	5	
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1	
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2	
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3	
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4	
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10	
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6	
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7	
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8	
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9	
15	11	12	13	14	5	1	2	3	4	10	6	/	8	9	

<i>v</i> ₁	<i>V</i> ₂	<i>v</i> ₃	<i>V</i> ₄	<i>V</i> ₅	<i>v</i> ₆	v ₇	<i>v</i> ₈	v ₉	<i>v</i> ₁₀	V ₁₁	<i>v</i> ₁₂	<i>v</i> ₁₃	<i>v</i> ₁₄	<i>V</i> ₁₅	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11	•
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12	
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13	
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14	
6	7	8	9	10	11	12	13	14	15	1	2	3	4	5	
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1	
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2	
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3	
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4	
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10	
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6	
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7	
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8	
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9	

Not CWS:

- {1,2}
 ≺ 5
- **●** {1,3} ≺ 11
- $\{1,6\} \prec 5$
- etc.

<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	<i>V</i> ₄	<i>V</i> ₅	<i>v</i> ₆	V 7	<i>v</i> ₈	V 9	<i>v</i> ₁₀	<i>V</i> ₁₁	<i>v</i> ₁₂	<i>v</i> ₁₃	<i>V</i> ₁₄	<i>v</i> ₁₅	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Not CWS:
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11	_
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12	
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13	§ {1,3} < 1°
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14	_
6	7	8	9	10	11	12	13	14	15	1	2	3	4	5	etc.
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1	
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2	CWS:
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3	_
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4	(1, 6, 11)
															{1,3,6}
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10	
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6	etc.
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7	
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8	
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9	

High dimension profiles?

- finding P such that $\dim_C(P) = 1$ or $\dim_C(P) = 2$ is trivial.
- $\dim_C(P) = 3$ needs more work(previous slide).
- we could not find a profile of dimension 4 or more

High dimension profiles?

- finding P such that $\dim_C(P) = 1$ or $\dim_C(P) = 2$ is trivial.
- $\dim_C(P) = 3$ needs more work(previous slide).
- we could not find a profile of dimension 4 or more

Question

Does there exist a profile of dimension *k* for any *k*?

Probabilistic approach

- n voters
- m = |X| candidates
- generate profiles randomly with a uniform distribution (impartial culture)

Proposition

 $\{a,b\}\subseteq X$ is CWS with probability $\geq 1-me^{-n/24}$

Hint: with probability $\frac{2}{3}$ in any given vote, either a or b is ranked above c, therefore the expected number of votes where a or b beats c is $\frac{2n}{3}$. By Chernoff bound, the probability that a or b is ranked above c in at least $\frac{n}{2}$ votes is at most $e^{-n/24}$. Therefore the probability that $\{a,b\}$ is not a CWS is at most $me^{-n/24}$.

Experimental results (1)

Figure: probability that a fixed set of size k is a Condorcet winning set as a function of n, for a 30-candidate election

Important remark: dominating sets are CWS

≻1	\succ_2	≻3
а	b	d
С	С	а
d	d	b
b	a	С

 ${a,b}, {a,c}, {a,d}, {c,d}, {c,d}$

An upper bound on the dimension

Proposition

For any profile P with n voters (n odd) we have $\dim_{\mathcal{C}}(P) \leq \lceil \log_2 m \rceil$.

An upper bound on the dimension

Proposition

For any profile P with n voters (n odd) we have $\dim_C(P) \leq \lceil \log_2 m \rceil$.

Proof.

- n odd ⇒ the majority graph is a tournament
- dominating sets of the majority graph are CWS.
- Megiddo and Vishkin (1988): a tournament has a dominating set of size \[log_2 m \].

Complexity

CONDORCET DIMENSION: compute $\dim_{\mathcal{C}}(P)$.

Complexity

CONDORCET DIMENSION: compute $\dim_C(P)$. Is there a K such that for all P, $\dim_C(P) \leq K$?

Yes

- enumerate all subsets of size ≤ K
- \bullet \rightarrow poly $(n, m)m^K$
- polynomial (∈ P)

Complexity

CONDORCET DIMENSION: compute $\dim_C(P)$. Is there a K such that for all P, $\dim_C(P) \leq K$?

Yes

- enumerate all subsets of size ≤ K
- \bullet \rightarrow poly $(n, m)m^K$
- polynomial (∈ P)

No

- enumerate all subsets of size ≤ [log₂ m]
- \bullet \rightarrow poly $(n, m)m^{\log m}$
- quasi-polynomial (∈ QP)

θ -Winning Sets for $\theta \neq \frac{1}{2}$

$$\theta = \frac{1}{2}, k \geq 2,$$

- every pair is with high probability a CWS. \Rightarrow fixing $\theta = \frac{1}{2}$ and minimizing k is not interesting.
- fix k and use $\theta = \frac{k}{k+1}$

Experimental Results (2)

Figure: Empirical distribution of the number of $\frac{2}{3}$ -winning sets of size 2 for 20 candidates

Experimental Results (3)

Figure: Empirical distribution of $\theta(P, k)$ for m = 30 and n = 100, where $\theta(P, k) = \max \theta$ such that P has a θ -winning set of size k.

Related Work (1)

Related Work (1)

Proportional representation

Chamberlin and Courant (1983): choose the highest-ranking alternative from the given set in each vote, but use the Borda score as a basis.

A set Y receives $\max_{y \in Y} s_B(y; i)$ points from a voter i and the winning committee of size k is the k-element set of candidates with the highest score.

Related Work (1)

Proportional representation

Chamberlin and Courant (1983): choose the highest-ranking alternative from the given set in each vote, but use the Borda score as a basis.

A set Y receives $\max_{y \in Y} s_B(y; i)$ points from a voter i and the winning committee of size k is the k-element set of candidates with the highest score.

Procaccia, Rosenschein and Zohar (2008): computing a winning committee of size *k* is **NP**-hard.

Betzler, Slinko and Uhlmann (2011): parametrised complexity + **NP**-hardness of the maxmin version

Related Work (2)

Condorcet committees: "conjunctive" sets

Gehrlein (1985): $Y \subseteq X$ is a Condorcet committee if for *every* alternative y in Y and every alternative x in $X \setminus Y$, a majority of voters prefers y to x.

≠ CWS: disjunctive interpretation of sets

Related Work (2)

Condorcet committees, continued

Ratliff (2003): generalizes Dodgson and Kemeny to sets of alternatives.

Fishburn (1981): defines preference relations on *sets* of alternatives and looks for a subset that beats any subset in a pairwise election.

Kaymak and Sanver (2003): under which conditions on the extension function can a Condorcet committee in the sense of Fishburn be derived from preferences over single alternatives?

Can Condorcet committees be also CWSs? Depends on the extension function.

For "standard" extension functions: no.

Conclusion

Reconciliating both approaches

- disjunctive interpretation (as in proportional representation)
- satisfies the Condorcet criterion (like Condorcet committees)

Question

Are there profiles of Condorcet dimension 4 or more?