

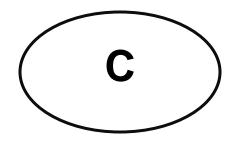
Eliminating the Weakest Link: Making Manipulation Intractable?

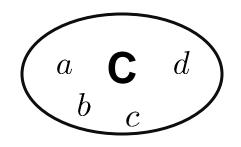
Jessica Davies, Nina Narodytska, Toby Walsh

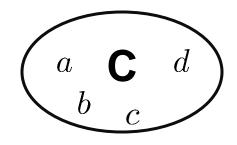
University of Toronto, NICTA and University of NSW

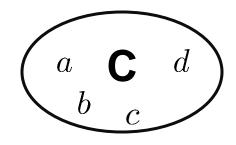
Australian Government

Department of Communications, Information Technology and the Arts

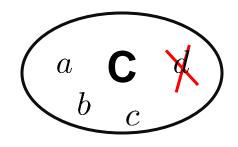

Australian Research Council

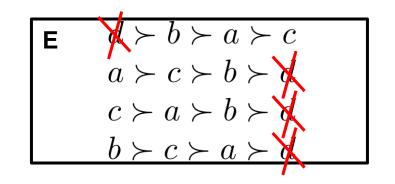






$$\begin{array}{ll} \mathbf{E} & d \succ b \succ a \succ c \\ & a \succ c \succ b \succ d \\ & c \succ a \succ b \succ d \\ & b \succ c \succ a \succ d \end{array}$$

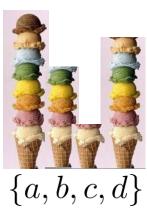



$$\begin{array}{ll} \mathsf{E} & d \succ b \succ a \succ c \\ & a \succ c \succ b \succ d \\ & c \succ a \succ b \succ d \\ & b \succ c \succ a \succ d \end{array}$$

 $\{a \succ b \succ c \succ d\}$

Example

Example



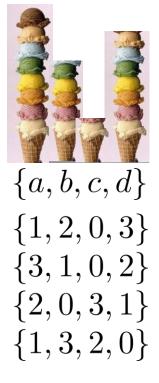
Example

 $d \succ b \succ a \succ c$ $a \succ d \succ b \succ c$ $c \succ a \succ d \succ b$ $b \succ c \succ a \succ d \rightarrow b$ $b \succ c \succ a \succ d$

Example

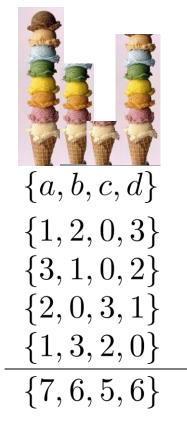
Base rule - Borda $(n-1, n-2, \dots, 0)$ $a \succ b \succ \dots \succ d$

 $d \succ b \succ a \succ c$ $a \succ d \succ b \succ c$ $c \succ a \succ d \succ b$ $b \succ c \succ a \succ d$



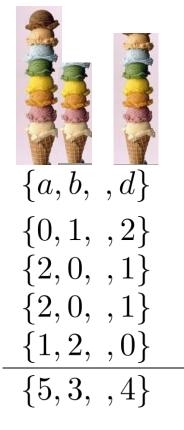
Example

 $d \succ b \succ a \succ c$ $a \succ d \succ b \succ c$ $c \succ a \succ d \succ b$ $b \succ c \succ a \succ d \succ b$ $b \succ c \succ a \succ d$



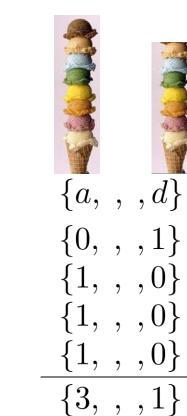
Example

$d \succ b \succ a \succ c$ $a \succ d \succ b \succ c$ $c \succ a \succ d \succ b$ $b \succ c \succ a \succ d \succ b$ $b \succ c \succ a \succ d$

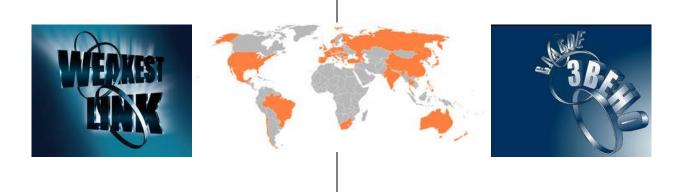


Example

$d \succ b \succ a$ $a \succ d \succ b$ $a \succ d \succ b$ $b \succ a \succ d$


Example

 $d \succ a$ $a \succ d$ $a \succ d$ $a \succ d$



More Examples

Motivation

Right answer

Motivation

Wrong answer

Motivation

Bank (before the next question)

Statistics: the strongest link, the weakest link

Motivation

Voting (Veto)

The player with the max veto-score is eliminated

The winner takes all the money

There is no point to play truthfully

Is it computationally difficult to play strategically?

Is it computationally difficult to manipulate such voting rules?

Motivation

Eliminate(X): successively eliminates the candidate placed in last place by X

Motivation

Eliminate(Veto)

Motivation

Divide(X): successively eliminates those candidates with the mean or smaller score

Motivation

Divide(Borda)

Motivation

Sequential(X): runs a sequence of elections using X to eliminate the last placed candidate from each successive election. In each round, voters can change their votes.

Motivation

Sequential(X):

Motivation

#manipulators		One
Copeland	Р	[Bartholdi & Orlin 91]
STV	NPC	[Bartholdi et al. 89]
Veto	Р	[Zuckerman et al. 08]
Plurality with runoff	P	[Zuckerman et al. 08]
Сир	Р	[Conitzer et al. 07]
Maximin	P	[Bartholdi & Orlin 91]
Ranked pairs	NPC	[Xia et al. 09]
Bucklin	P	[Xia et al. 09]
Borda	Р	[Bartholdi & Orlin 91]
Nanson's rule	NPC	[AAAI'11]
Baldwin's rule	NPC	[AAAI'11]

Motivation

Eliminate(Plur-ty) Eliminate(Borda)

Divide(Borda)

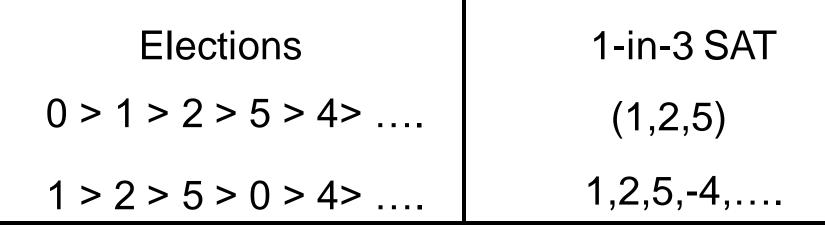
NP-complete[1991] NP-complete[AAAI'11]

NP-complete[AAAI'11]

Motivation

Eliminate(Plur-ty)	NP-complete[1991]
Eliminate(Borda)	NP-complete[AAAI'11]
Eliminate(Veto)	?
Coombs	?
Eliminate(scoring rule*)	?
Divide(Borda)	NP-complete[AAAI'11]
Divide(scoring rule*)	?
Sequential (Plurality)	?

Unweighted Coalitional Manipulation (UCM)


UCM under X is NP-complete UCM under Eliminate(X) is P?

X is an artificial rule

UCM

The imag	gination	driving	Australia's	ICT	future.
----------	----------	---------	-------------	-----	---------

UCM

Elections	1-in-3 SAT
0 > 1 > 2 > 5 > 4>	(1,2,5)
1 > 2 > 5 > 0 > 4>	1,2,5,-4,
Rule X:	Rule Eliminate(X)
if `assignment' vote is a solution in 1-in-3 SAT then 0 is a winner otherwise 1	0 or 1 always reach the last round.

X is an artificial rule

Eliminate(veto)

Eliminate(veto)

Theorem: UCM under eliminate(Veto) is **NP-complete** with a single manipulator

Eliminate(veto)

...the difficulty of WCM on Coombs for unlimited candidates as an open question. Coleman and Teague [2007]

Inspired by STV proof [Bartholdi and Orlin 1991]

3-Cover

$$S = \{d_1, \dots, d_n\}, |S| = n \text{ and } S_1, S_2, \dots, S_m \subset S$$

with $|S_i| = 3$ for $i \in [1, m]$.

Does there exist an index set I with |I| = n/3 and $\bigcup_{i \in I} S_i = S$

Eliminate(veto)

1. Make choice of sets Si: (ai,-ai, bi,-bi, pi), i=1..m

- (choice) bi or -bi, i=1..m
- (memory) elimination of p_i increases veto scores of all candidates except $\{b_j, -b_j\} \ j < i+1$
- 2. Check that cover is valid:
 - size of the cover is n/3
 - a dangerous candidate is eliminated iff we selected 3-COVER

Coombs rule

Coombs' rule is eliminate(veto) which stops when one candidates has a majority.

Coombs rule

Theorem: UCM under Coombs is **NP-complete** with a single manipulator

Coombs rule

UCM under Coombs

At least n manipulators

UCM under Elim(Veto)

0 manipulators

UCM under Coombs

		1	$c \succ$	$d_1 \succ$	$d_2 \succ$		$d_n \succ$	$b \succ$	a
	Group 1	2	c	d_2	d_3		d_{n-1}	b	a
		÷	:	÷	÷			÷	÷
		n	c	d_n	d_{n-1}		d_1	b	a
		n+1	b	c	d_1	d_2		d_n	a
	Group 2	n+2	b	c	d_2	d_3		d_{n-1}	a
	01000 2	÷	:	÷	÷	÷		÷	÷
		2n	b	c	d_n	d_{n-1}		d_1	a
		2n + 1	a	b	c	d_1		d_{n-1}	d_n
	Group 3	2n+2	a	b	c	d_2		d_{n-2}	d_{n-1}
	croup c	÷	1	÷	÷	÷		÷	÷
-		3n	a	b	c	d_n		d_2	d_1

UCM under Coombs

			_							
		1	$c \succ$	$d_1 \succ$	$d_2 \succ$		$d_n \succ$	$b \succ$	a	1
Gr	oup 1	2	c	d_2	d_3		d_{n-1}	b	a	L
		÷	:	:	÷			÷	÷	L
		n	c	d_n	d_{n-1}		d_1	b	a	
		n+1	b	c	d_1	d_2		d_n	a	Г
Gr	Group 2	n+2	b	c	d_2	d_3		d_{n-1}	a	L
		÷	:	÷	÷	÷		÷	÷	L
		2n	<u>b</u>	c	d_n	d_{n-1}		d_1	a	
		2n + 1	a	b	c	d_1		d_{n-1}	d_n	
Gr	Group 3	2n+2	a	b	c	d_2		d_{n-2}	d_{n-1}	1
				÷	÷	÷		÷	÷	
		3n	a	b	c	d_n		d_2	d_1	

UCM under Coombs

		_							_			
	$\frac{1}{2}$	c	► c		$d_1 \succ d_2$	$d_2 \succ d_3$		$d_n \succ d_{n-1}$	$b \succ b$			
Group 1	÷		:		:	:			:			
	n		c	(d_n	d_{n-1}		d_1	b			
	n+1	l	b		c	d_1	d_2		d_n			
Group 2	n+2		b		c	d_2	d_3		d_{n-1}			
	÷		:		÷	÷	÷		÷			
	2n	i	b	_	c	d_n	d_{n-1}		d_1			
	2n+1			_	b	c	d_1		d_{n-1}	(d_n	
Group 3	2n+2				b	c	d_2		d_{n-2}	d_{r}	n - 1	
	:				÷	÷	÷		÷		÷	
-	3n				b	c	d_n		d_2	(d_1	

UCM under Coombs

		_					_	
	$\begin{array}{c} 1\\2\end{array}$	$\begin{array}{c} c \\ c \end{array}$	$\begin{array}{c} d_1 > \\ d_2 \end{array}$			$d_n \succ d_{n-1}$		
Group 1	:		:	:		a_{n-1}		
	$\begin{vmatrix} \cdot \\ n \end{vmatrix}$	c	d_n	d_{n-1}		d_1		
	n+1		c	d_1	d_2		d_n	
Group 2	n+2		c	d_2	d_3		d_{n-1}	
	:		÷	÷	÷		÷	
	2n		c	d_n	d_{n-1}		d_1	
	2n+1			c	d_1		d_{n-1}	d_n
Group 3	2n+2			c	d_2		d_{n-2}	d_{n-1}
				÷	÷		÷	÷
	3n			c	d_n		d_2	d_1

UCM under Coombs

Group 1	$\begin{array}{c}1\\2\end{array}$	$\begin{array}{c} c \succ \\ c \end{array}$	$d_1 \succ d_2$	$d_2 \succ d_3$		$\begin{array}{c} d_n \succ \\ d_{n-1} \end{array}$	$b \succ b$	$egin{array}{c} a \ a \end{array}$	Group
	:	:	÷	÷			÷	1	
	n	c	d_n	d_{n-1}		d_1	b	a	
	n+1	b	c	d_1	d_2		d_n	a	
Group 2	n+2	b	c	d_2	d_3		d_{n-1}	a	Group
	÷	÷	÷	÷	÷		÷	:	
	2n	b	c	d_n	d_{n-1}		d_1	a	
	2n+1	a	b	c	d_1		d_{n-1}	d_n	
Group 3	2n+2	a	b	c	d_2		d_{n-2}	d_{n-1}	Group
	÷	:	÷	÷	÷		÷	÷	Croup
	3n	a	b	c	d_n		d_2	d_1	

	1	c	≻ ($d_1 \succ$	$d_2 \succ$		$d_n \succ$	$b \succ$	Г	a
Group 1	2	(2	d_2	d_3		d_{n-1}	b		a
	÷			÷	÷			÷		÷
	n		2	d_n	d_{n-1}		d_1	b		a
	n+1	ł)	c	d_1	d_2		d_n	1	a
Group 2	n+2	1)	c	d_2	d_3		d_{n-1}		a
	:			÷	÷	÷		÷		÷
	2n	l)	c	d_n	d_{n-1}		d_1		a
	2n+1	6	l	b	c	d_1		d_{n-1}	C	l_n
Group 3	2n+2	6	ı	b	c	d_2		d_{n-2}	d_r	n - 1
Croup 5	:			÷	÷	÷		÷		:
	3n	6	ı	b	c	d_n		d_2	0	d_1

Coombs rule

UCM under Coombs

1 manipulator

UCM under Elim(Veto)

At least n manipulators

Eliminate (truncated scoring rule)

Truncated scoring rule

Given a fixed k, a *truncated scoring rule* has a scoring vector (s_1, \ldots, s_m) with $s_i = 0$ for all i > k.

Truncated scoring rule

k-approval the Heisman Trophy the presidential election in Kiribat Formula One points (1..1,0,...)(3,2,1,0,...)(4,3,2,1,0,...)(10,...,1,0...)

Eliminate(Truncated scoring rule)

Theorem: UCM under eliminate (truncated s.r.) is **NP-complete** with a single manipulator

Eliminate(Truncated scoring rule)

Inspired by STV proof [Bartholdi and Orlin 1991]

Eliminate(Truncated scoring rule)

A manipulator **only** makes a choice at the i-th,i=1..m, rounds between two candidates that are tied

NICTA

Eliminate(Truncated scoring rule)

S 1 S 2 S k-1	sk 0		0	• • •
F1				
F2				
		E'		
Fp-1				
Fp				

Divide(Truncated scoring rule)

Theorem: UCM under divide(truncated s.r.) is **NP-complete** with a single manipulator

Sequential rules

20	12 Summer Olym	pics bidd	ing result	s	[hide]
City	NOC	Round 1	Round 2	Round 3	Round 4
London	🚟 Great Britain	22	27	39	54
Paris	France	21	25	33	50
Madrid	spain	20	32	31	
New York City	United States	19	16		
Moscow	Russia	15			

2012 Summer Olympics bidding results [hide]					
City	NOC	Round 1	Round 2	Round 3	Round 4
London	🚟 Great Britain	22	27	39	54
Paris	France	21	25	33	50
Madrid	spain	20	32	31	
New York City	United States	19	16		
Moscow	Russia	15			

An election in which a manipulator can only change the result if the manipulator votes differently in some rounds

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0	
1	a	w	c	
1	d_1	a	w	c
1	d_2	a	w	c
3	g	a	w	c
2	b	w	c	
2	f_1	b	w	c
2	f_2	b	w	c
6	w	c		
5	c	w		

$$\sigma(w) = 6$$

$$\sigma(c) = 5$$

$$\sigma(g) = 3$$

$$\sigma(b) = 2$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(a) = 1$$

$$\sigma(d_1) = 1$$

$$\sigma(d_2) = 1$$

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Roun	d 0	
1	a	w	c	
1	d_1	a	w	c
1	d_2	a	w	c
3	g	a	w	c
2	b	wC	c	
2 2 2	f_1	b	W	c
2	f_2	b	w	c
6 5	w	\overline{c}		/
5	c	w		
		1		

$$\sigma(w) = 6$$

$$\sigma(c) = 5$$

$$\sigma(g) = 3$$

$$\sigma(b) = 2$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(a) = 1$$

$$\sigma(d_1) = 1$$

$$\sigma(d_2) = 1$$

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

	# Votes		Rour	nd 0						
	1	a	w	С		w	С			
_	1	d_1	a	w	c	d_1	w	c		
	1	d_2	a	w	c	d_2	w	c		
-	3	g	a	w	С	g	a	w	c	Γ
-	2	b	w	c		b	w	c		Γ
	2	f_1	b	w	c	f_1	b	w	c	
	2	f_2	b	w	c	f_2	b	w	c	
-	6	w	c			w	c			Γ
	5	c	w			c	w			

$$\sigma(w) = 7$$

$$\sigma(c) = 5$$

$$\sigma(g) = 3$$

$$\sigma(b) = 2$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(d_1) = 1$$

$$\sigma(d_2) = 1$$

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0	
1	a	w	c	
1	d_1	a	w	c
1	d_2	a	w	c
3	g	a	w	c
2	b	w	c	
2	f_1	b	w	c
2	f_2	b	w	c
6	w	c		
5	c	w		

$$\sigma(w) = 6$$

$$\sigma(c) = 5$$

$$\sigma(g) = 3$$

$$\sigma(b) = 2$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(d_1) = 1$$

$$\sigma(d_2) = 1$$

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0	
1	a	w	c	
1	d_1	a	w	c
1	d_2	a	w	c
3	g	a	w	c
2	b	w	c	
2	f_1	b	w	c
2	f_2	b	w	c
6	w	c		
5	c	w		

Manipulator

$$\sigma(w) = 6$$
$$\sigma(c) = 5$$
$$\sigma(g) = 3$$
$$\sigma(b) = 2$$
$$\sigma(f_1) = 2$$
$$\sigma(f_2) = 2$$
$$\sigma(a) = 1$$
$$\sigma(d_1) = 1$$
$$\sigma(d_2) = 1$$

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0		F			
1	a	w	c		a	w	С	
1	d_1	a	w	c	a	w	c	
1	d_2	a	w	c	a	w	c	
3	g	a	w	С	g	a	w	c
2	b	w	c		b	w	c	
2	f_1	b	w	c	f_1	b	w	c
2	f_2	b	w	c	f_2	b	w	c
6	w	c			w	c		
5	c	w			c	w		

 $\sigma(w) = 6$ $\sigma(c) = 5$ $\sigma(g) = 3$ $\sigma(b) = 2$ $\sigma(f_1) = 2$ $\sigma(f_2) = 2$ $\sigma(a) = 3$

Manipulator

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

1			nd 0		Round 1-2			
• 1	a	w	c		a	w	c	
1	d_1	a	w	c	a	w	c	
1	d_2	a	w	c	a	w	c	
3	g	a	w	С	g	a	w	С
2	b	w	c		b	w	c	
2	f_1	b	w	c	f_1	b	w	c
2	f_2	b	w	c	f_2	b	w	c
6	w	c			w	c		
5	c	w			c	w		

$$\sigma(w) = 6$$

$$\sigma(c) = 5$$

$$\sigma(g) = 3$$

$$\sigma(b) = 2$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(a) = 3$$

$$\sigma(d_1) = 1$$

Manipulator

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0	Round 1-2				
1	a	w	С		a	w	c	
1	d_1	a	w	c	a	w	c	
1	d_2	a	w	c	a	w	c	
3	g	a	w	С	g	a	w	c
2	b	w	c		w	c		
2	f_1	b	w	c	f_1	w	c	
2	f_2	b	w	c	f_2	w	c	
6	w	c			w	c		
5	c	w			c	w		

$$\sigma(w) = 8$$

$$\sigma(c) = 5$$

$$\sigma(g) = 3$$

$$\sigma(b) = 2$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(a) = 3$$

$$\sigma(d_1) = 1$$

$$\sigma(d_2) = 1$$

Manipulator

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0		Round 1-2			
1	a	w	c		a	w	c	
1	d_1	a	w	c	a	w	c	
1	d_2	a	w	c	a	w	c	
3	g	a	w	С	g	a	w	c
2	b	w	c		b	w	c	
2	f_1	b	w	c	f_1	b	w	c
2	f_2	b	w	c	f_2	b	w	c
6	w	c			w	c		
5	c	w			c	w		

 $\sigma(w) = 6$ $\sigma(c) = 5$ $\sigma(g) = 3$ $\sigma(b) = 2$ $\sigma(f_1) = 2$ $\sigma(f_2) = 2$ $\sigma(a) = 3$ $\sigma(d_1) = 1$

Manipulator

 $b > \ldots$

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0		Round 1-4			
1	a	w	c		a	w	c	
1	d_1	a	w	c	a	w	c	
1	d_2	a	w	c	a	w	c	
3	g	a	w	С	g	a	w	c
2	b	w	c		b	w	c	
2	f_1	b	w	c	b	w	c	
2	f_2	b	w	c	b	w	c	
6	w	c			w	c		
5	c	w			c	w		

$$\sigma(w) = 6$$

$$\sigma(c) = 5$$

$$\sigma(g) = 3$$

$$\sigma(b) = 6$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(a) = 3$$

$$\sigma(d_1) = 1$$

$$\sigma(d_2) = 1$$

Manipulator

 $b > \ldots$

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0	Round 1-5			
1	a	w	c		a	w	С
1	d_1	a	w	c	a	w	c
1	d_2	a	w	c	a	w	c
3	g	a	w	c	a	w	с
2	b	w	c		b	w	c
2	f_1	b	w	c	b	w	c
2	f_2	b	w	c	b	w	c
6	w	c			w	c	
5	c	w			c	w	

$$\sigma(w) = 6$$

$$\sigma(c) = 5$$

$$\sigma(g) = 2$$

$$\sigma(b) = 6$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(a) = 6$$

$$\sigma(d_1) = 1$$

$$\sigma(w_2) = 1$$

Manipulator

Tie-breaking $c > g > d_1 > d_2 > a > f_1 > f_2 > b > w$.

# Votes		Rour	nd 0	Round 1-5			
1	a	w	c		a	w	С
1	d_1	a	w	c	a	w	c
1	d_2	a	w	c	a	w	c
3	g	a	w	c	a	w	с
2	b	w	c		b	w	c
2	f_1	b	w	c	b	w	c
2	f_2	b	w	c	b	w	c
6	w	c			w	c	
5	c	w			c	w	

$$\sigma(w) = 6$$

$$\sigma(c) = 5$$

$$\sigma(g) = 2$$

$$\sigma(b) = 6$$

$$\sigma(f_1) = 2$$

$$\sigma(f_2) = 2$$

$$\sigma(a) = 6$$

$$\sigma(d_1) = 1$$

$$\sigma(d_2) = 1$$

Manipulator

c >

Conclusions

NICTA

Motivation

Eliminate(Borda) Eliminate(Veto) Coombs Eliminate(scoring rule*) Divide(Borda) Divide(scoring rule*) Sequential (Plurality)

NP-complete[AAAI'11] **NP-complete NP-complete NP-complete** NP-complete[AAAI'11] **NP-complete NP-complete**

Hard in theory!

Hard in theory! Hard in practice?

Thank you!