

TEM-SAED for Identifying Erionite Fibres in Environmental Sample Protocols

Contributions from Wendy Fan.

Disclaimer

This technical note and opinions contained herein are based on a review of current data that is available. The authors base their conclusions and recommendations on this data in the format it was provided and/or sourced. The authors do not take any responsibility or liability for any commercial decisions or work carried out by anyone, or subsequent parties, or actions resulting from them.

Purpose

To confirm the presence of erionite fibres in environmental surface dust samples by analysing their crystallographic unit-cell parameters using Transmission Electron Microscopy with Selected Area Electron Diffraction (TEM-SAED). The key distinguishing feature is erionite's c-spacing of **15.1 Å**, which helps differentiate it from similar zeolite fibres that are difficult to distinguish through SEM-EDX or standard chemical composition methods.

1. TEM Setup

- **TEM model:** Tecnai F20 field-emission TEM (FEI Company, OR, USA)
- **Operating voltage:** 200 kV
- **Sample holder:** High-tilt holder
- **Camera:** TVIPS 16k CMOS, rolling-shutter mode
- **Software:** TVIPS MicroED.exe (for rotation control), EM2EM, ADXV, XDS (for indexing)

2. Grid Preparation and Fibre Transfer

2.1 Grid Type

- Use **300-mesh copper (Cu) TEM grids** with a **carbon-film coating** (hole diameter: 1.2 μm ; Protochips, NC, USA).

2.2 Sample extraction process Method

1. Put a leaf sample into a 200 mL beaker with DI water.
2. Sonicate for 2 minutes.
3. Filter the suspension onto a PC filter (0.2 μm pore size).
4. Place the PC filter into a beaker with 30 mL hydrogen peroxide (30%, Fisher Scientific) for 48 hours, followed by heating at 90 °C for 8 hours.
5. Add 100 mL DI water into the sample beaker, sonicate for 2 minutes, and filter the suspension onto a new PC filter.

2.3 Indirect Transfer Method

1. Cut a quarter of the PC filter that containing mineral dust particles and place it in a 2 ml test tube.
2. Add ~2 mL of ethanol into the test tube.
3. Sonicate the sample tube for 2 minutes.

4. Plasma-clean the TEM grid for 20 seconds and place the grid on clean filter paper in a petri dish, ensuring the carbon-film-coated side is facing up.
5. Use a 0.1–2.5 μL pipette to drop the suspension onto the TEM grid inside a fume hood.
6. Cover the petri dish and let the ethanol evaporate for 10 minutes before placing it in the TEM sample holder.

3. TEM-SAED Data Acquisition

3.1 Low-Dose Setup

- Conduct fibre screening using **low-dose search mode** at **1700 \times magnification**.
- Use **spot size 7** and insert a **40 μm selected area aperture**.
- Set **virtual camera distance** to **975 mm** (resolution potential: 0.75 \AA).

3.2 Data Collection

- Put the select area aperture on the fibre
- Set up the rotation from **–40° to +60°** in the MicroED interface.
- Acquire **170 consecutive exposure images**.
- Each frame:
 - **Exposure time**: 1.6 seconds
 - **Rotation step**: 0.6° per frame

4. Data Conversion and Inspection

4.1 File Format Conversion

- Convert acquired TIFF image files to **.img format** using **EM2EM**:
<http://www.ImageScience.de/em2em>

4.2 Manual Inspection

- Use **ADXV**:
<http://www.scripps.edu/tainer/arvai/adxv.html>
- Inspect and record **beam centres** for each dataset.

5. Indexing and Unit-Cell Determination

5.1 Indexing

- Process datasets in **XDS** (X-ray Detector Software; Kabsch 1993, 2010).
- Determine potential **unit-cell constants** and assign a **space group**.
- XDS will default to **P1 symmetry** unless a match is found.

5.2 Reference Unit Cell (Erionite)

If known erionite parameters are detected:

- Re-integrate using:

- $a \approx 13.3 \text{ \AA}$
- $b \approx 13.3 \text{ \AA}$
- $c \approx 15.1 \text{ \AA}$
- $\alpha = \beta = 90^\circ, \gamma = 120^\circ$
(Ballirano *et al.*, 2017; Gualtieri *et al.*, 1998)

6. Data Quality and Refinement

6.1 Evaluation Criteria

After integration, assess the index statistics for the whole data set (images 1 to 170 in the report)

- **I/σ (signal-to-noise ratio)**
- **R-measure (data consistency)**
- **CC 1/2 (cross-correlation in resolution shells)**

6.2 Acceptable indexing results Determination

- Accept data **only up to the resolution shell** where:
 - $I/\sigma > 1$
 - R-measure $< 100\%$
 - CC 1/2 $> 50\%$

6.3 Final Output

- Reprocess datasets to include **only reliable resolution shells**.
- Summarise results in **tabular form**, including:
 - Indexed unit cell parameters
 - Completeness
 - Data quality statistics

