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Abstract

The term Quantum Teleportation describes the disembodied transfer of a quantum state with the
help of an EPR resource. During the process the state to be teleported is destroyed at the input
of the teleporter and a perfect copy of it is created on the output side. The information about
the teleported state is transferred between the input and the output station in two parts. The
quantum mechanical information is transferred via a pair of entangled particles or light beams
and the classical part of the information about the state is transmitted through ordinary classical
channels. The idea of quantum teleportation was first introduced for a descrete two variable
system only but then generalised to continuous variables up to whole quantum fields with all its
statistical properties.
The aim of this thesis is to investigate how well a single photon and later a stream of single photon
pulses can be teleported. In order to do so, the protcol for broadband teleportation proposed by
Noh [1] will be used and its suitability for teleporting single photons will be tested. For the purpose
of testing the dependence of the teleportation quality on the various bandwidthes is first analysed
qualitatively. Then a scheme for measureing the teleportation quality quantitatively is devised,
based on the schemes for quantum state transfer of Parkins and Kimble [2] and Cirac et al. [3].
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Chapter 1

Introduction

Einstein, Podolsky and Rosen were not satisfied with the stochastic characteristics of quantum
mechanics and believed that the theory of quantum mechanics was not complete. In 1935 they
published a paper entitled ’Can Quantum-Mechanical Description of Physical Reality Be Con-
sidered Complete?’ [4] (EPR-Paradox) in which they tried to prove the existence of variables,
so called hidden variables, that were not yet taken into consideration by the theory of quantum
mechanics. To illustrate their ideas they showed that nonlocal interaction occurs between two
systems that are prepared in a certain way. These special kind of systems that are capeable of
nonlocal interaction with another, are nowadays referred to as entangled states and are the foun-
dation of quantum teleportation.
The EPR-Paradox, precisely the question of existence of hidden variables, was reformulated into a
testable inequality in 1964 by John S. Bell [5] and experiements (the first one in 1972 by Freedman
et al. [6]) on it showed that the concept of hidden variables is not right. But even though Ein-
stein, Podolsky and Rosen have been proven to be wrong, the entangled states proposed by them
play an essential role in quantum teleportation. A priori one may think about teleportation as the
transport of an object over a spatial distance, but in fact it can be best described by a disembodied
transport of the complete information of the object. The complete information consists of a part
of classical information - transferred by a classical channel - and a part of quantum information
- transferred by the entangled state, in this context called EPR pair or EPR resource. In order
to gain these two parts of information the object is measured at the input of the teleporter and
gets destroyed during the measurement. At the output the classical and quantum parts of the
information are reesembled in a way that a perfect copy of the incoming object leaves the tele-
porter. The idea of quantum teleportation was proposed by Bennet et al. [7] in 1993 for discrete,
two-value variables and later expanded by Vaidman [8] to continuous variables. Based on this,
Braunstein and Kimble [9] proposed in 1998 a continuous variable teleportation protocol made
out of optical tools, which was capable of teleporting a single mode of an electromagnetic field. In
1998 Furusawa et al. [10] suceeded in realising this protocol and even expanded it to broadband
inputs [10]. The theory of broadband teleportation has been developed by van Loock et al. in
2000 [11]. Based on this theory Noh developes in his PhD Thesis [1] and unpublished paper [12] a
protocol for the teleportation of a complete electromagnetic field with all its statistical properties.
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The aim of this dissertation is to investigate how well single photons can be teleported. From
there it is just a minor step towards the teleportation of single photon pulses. Noh’s protocol
will be used for this purpose and tested if it is capable of teleporting single photons. In order
to do so the dependence of the teleportation quality on the various bandwidthes is first analysed
qualitatively. Then a scheme for measureing the teleportation quality quantitatively is devised,
based on schemes for quantum state transfer of Parkins and Kimble [2] and Cirac et al. [3].

1.1 Outline

The structure of the thesis will mostly follow the course of time of the developement of quantum
teleportation, with inserted chapters and section on the background of quantum optics where nec-
essary. Chapter 2 provides an introduction to the beginnings of quatum teleportation, explaining
entangled states and showing the first teleportation scheme. Squeezed light will be introduced in
chapter 3 as it is used as an EPR resource for the following teleportation schemes. Then proceed-
ing to the continuous variable teleportation protocol in chapter 4 and the broadband teleportation
protocol in chapter 5 and testing both protocols for their suitability of teleporting a single pho-
ton. In chapter 6 a quantitative measurement scheme for the broadband teleportation protocol is
developed and finally chapter 7 concludes the results and gives a perspective for future work.
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Chapter 2

History of Teleportation

A brief history of teleportation was given in the first chapter. In this chapter we will now follow
the course of time more detailed until the first teleportation protocol proposed by Bennett et al.
in 1993 [7]. Going back to the beginnings of quantum teleportation will help us understand the
physical background - like entangled states - and the principles of teleportation.

2.1 Entangled States

In 1935 Einstein, Podolsky and Rosen wanted to show that the theory of quantum mechanics
is incomplete [4]. Their line of argumentation can be summarized as follows: Because of the
Heisenberg uncertainty principle the measurement of two noncommuting operators cannot be
done. In fact quantum mechanics states, that if a system is in an eigenstate of one operator,
all eigenvalues from other operators have no physical reality. In order to show that a system
’inherits’ the eigenvalues of other operators as well, they used two spatially seperated particles as
an example (These kind of particles are now called EPR-pair or EPR-resource). These particles
have been through an mutual interaction until time t = T and their states were known before the
interaction. Einstein, Podolsky and Rosen assumed - falsely - that the particles cannot interact
with antoher after the time t = T . The state of the system can be written as

Ψ(x1, x2) =
∫ ∞

−∞
ψi(x2) ui(x1) dp =

∫ ∞

−∞
e

i
�

(x1−x2−x0) pdp (2.1)

Where the term in the middle descirbes the expansion of the state Ψ(x1, x2) into orthogonal
functions ui(x1), which can be the eigenfunctions of any operator. Einstein, Podolsky and Rosen
considered the two cases where ui(x1) are the eigenfunctions of the momentum operator P = i

�

∂
∂x

(eigenvalue p) and the coordinate operator Q = x (eigenvalue x), indexed p and x, respectively
and both operating on the first particle only. Note that given a ui(x1), ψi(x2) can be calculated
out of equation (2.1). For ui(x1) eigenstate of the momentum operator, up(x1) and ψp(x2) become

up(x1) = e
i
�
x1 p, ψp(x2) = e−

i
�

(x2−x0) p (2.2)
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This ψp(x2) however is just the eigenvalue of the momentum operator of the second particle with
eigenvalue −p. This means, that by measuring the momentum of the first particle one can deter-
mine the momentum of the second particle without direct measurement. The same holds true if
ui(x1) were the eigenstate of the coordinate operator. So it is shown - under the assumption of
no interaction between the particles, that the eigenvalues of the momentum- and the coordinate
operators can both be inherited in the same reality. This leads Einstein, Podolsky and Rosen to
the conclusion that quantum mechanical description cannot be complete and that there are hidden
variables that have to be added.
Bell investigated theories with hidden variables and showed 1964 in general that a hidden variable
theory cannot reproduce the quantum mechanical expectation value neither accurately nor arbi-
trarily close [5]. Other than Einstein, Podolsky and Rosen, Bell used two spin-half particles in a
singlet state as an EPR-resource to illustrate his idea. In that scenario spin measurements of the
spatially seperated particles (denoted by σ1 and σ2) along the same vector give opposite values.
If the value of the first particle along a vector �a is found to be 1, the measurement along the same
vector at the distant second particle gives -1. (i.e. σ1 ·�a = 1, σ2 ·�a = −1). The expectation value
of the measurements - where second measurement is now along vector �b - is given by

〈σ1 · �a σ2 ·�b〉 = −�a ·�b (2.3)

. Bell compared this quantum mechanical expectation value to the expectation value devised from
a hidden variable theory. In order to so he introduced λ as the hidden variable parameter, which
- besides the vectors - determined the result of measurement A σ1 · �a and B σ2 ·�b. Precisely:

A(�a, λ) = ±1, B(�b, λ) = ±1. (2.4)

With ρ(λ) the normalized probability distribution of λ, the expectation value of both measurements
is then given by

P (�a,�b) =
∫

dλ ρ(λ) A(�a, λ)B(�b, λ). (2.5)

At its lowest value -1 and with �a = �b the results of the measurements must be opposite, i.e.
A(�a, λ) = −B(�a, λ). That converts the expectation value (2.5) into

P (�a,�b) = −
∫

dλ ρ(λ) A(�a, λ) A(�b, λ), (2.6)

In order for equation(2.6) to become a quantum mechanical expectation value, it has to be sta-
tionary at its minimal value of -1 (with �a = �b). But after a few subsitutions and with the help of
a third unit vector �c Bell found that (2.6) can be rewritten into an inequality that reads

1 + P (�a,�b) ≥ |P (�c,�b) − P (�c,�b)| (2.7)

Because the right hand side varies with magnitude |�a−�b| around �a = �b, P (�a,�b) cannot be stationary
and therefore not a quantum mechanical expectation value.
Bell also showed in his paper that the quantum mechanical expectation value (2.3) cannot be
approximated by the hidden variable theory expectation value (2.5). Alltogether he found that
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the quantum theory cannot be expanded by hidden variables and therefore either the quantum
theory or the hidden variable theory describes nature. A series of experiments has been done to
determine in which way nature behaves - the first one in 1972 by Freedman et al. [6]) - and they
yield to the result that nature ’favours’ the quantum mechanical description.
But the absence of hidden variables - and therefore the predetermination of the states of the
particles - means, that the measurement of one particle affects the states of the other one, even
though it can be in very remote location and that the interaction can be seen as a non-local
interaction between the two particles. On the first sight it seems, that the non-local interaction
violates the uncertainty principle, but as the interaction cannot be used to transfer information the
uncertainty priciple still holds. Nowadys the ability of non-local interaction between to particles
is called entangelment or the states are refered to as entangled states.

2.2 Discrete Variable Teleportation

Even though the hidden variable theory of Einstein, Podolsky and Rosen did not hold, they were
the first think of entangled states. In 1993 Bennett et al. proposed a scheme for transferring a
quantum state from a sender to a distant receiver using entangled states. This process is called
teleportation and this version is in so far similar to the teleportation in science-fiction that an
object or a person (in our case a quantum state) dissapears at the sending station, while a exact
replica appears at the receiver. It is important to note, that the object at the sending station is
destroyed in order to perform the teleportation. If that were not be the case, it would be possible
to make a copy of the quantum state. But with an exact copy of a quantum state, one could
perform measurements of two non-commuting variables (one on each state) and therefore violate
the Heisenberg uncertainty principle. Benett’s teleportation scheme differs from science-fiction
teleportation in so far, that it is not instantaneuos because classical information has to be passed
on to the receiving station. From now on, we will call the sender "Alice" and the receiver "Bob".
The foundation of all teleportation protocols is an EPR-Pair shared between Alice and Bob prior
to the teleportation. In Bennett’s scheme the EPR-Pair are two particles (indexed a and b) in a
singlet state, that can be described by the wavefunction

|Ψa,b〉 =

√
1
2

( |↑a〉|↓b〉 − |↓a〉|↑b〉 ) . (2.8)

The state input particle c can be written as

|ψc〉 = a |↑c〉 + b |↓c〉, (2.9)

with |a|2 + |b|2 = 1. Before the teleportation the state of the total system consisting of the EPR
pair and the input state can be written as

|Ψabc〉 =
a√
2
(|↑a〉 |↓b〉 |↑c〉 + |↓a〉 |↑b〉 |↑c〉) =

b√
2
(|↑a〉 |↓b〉 |↓c〉 + |↓a〉 |↑b〉 |↓c〉) (2.10)
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Now the teleportation can take place and the protocol involves the following five steps, assuming
that the input state is given to Alice:

1. Alice and Bob share an EPR pair

2. Alice creates a mixed state of her input particle and her part of the EPR pair

3. Alice fulfills a conjoint measurement on her joint state

4. Alice transfers her measurement results to Bob

5. Bob transforms a unitary transformation based on Alice’s results on his share of the EPR
pair and receives the input particle

In Bennett’s protocol step 2 and 3 are carried out simultaniuosly by performing a measurement of
the von Neumann type on the input particle c and her share of the EPR pair a. The measurement
is performed in the following orthonormal basis, called the Bell operator basis [13]

|Ψ(±)
ac 〉 =

√
1
2
(|↑c〉 |↓a〉 ± |↓c〉 |↑a〉)

(2.11)

|Φ(±)
ac 〉 =

√
1
2
(|↑c〉 |↑a〉 ± |↓c〉 |↓a〉)

Now equation (2.10) can be expressed in terms of equation(2.12) and we obtain

|Ψabc〉 =
1
2
[ |Ψ(−)

ac 〉
|ψ1

b〉︷ ︸︸ ︷
(−a |↑b〉 − b |↓b〉) + |Ψ(+)

ac 〉
|ψ2

b〉︷ ︸︸ ︷
(−a |↑b〉 + b |↓b〉) +

+|Φ(−)
ac 〉 (a |↓b〉 + b |↑b〉)︸ ︷︷ ︸

|ψ3
b〉

+ |Φ(+)
ac 〉(a |↓b〉 − b |↑b〉)︸ ︷︷ ︸

|ψ4
b〉

] (2.12)

It is now obvious that for everyone of the four measurement outcomes of Alice (|Ψ(±)
ac 〉or|Φ(±)

ac 〉),
Bob ends up with a different state (|ψ1,2,3,4

b 〉). With the knowledge of Alice’s measurement result
Bob can then transform his share of the EPR pair into the input state via a unitary transformation.
The transformation are given by

|ψ1
b 〉 =

(
−a
−b

)
= −|ψc〉,

(
−1 0

0 1

)
|ψ2
b 〉 = |ψc〉

(2.13)(
0 1
1 0

)
|ψ3
b 〉 = |ψc〉,

(
0 −1
1 0

)
|ψ2
b 〉 = −|ψc〉

After performing one of the above transformation Bob has reproduced the input state except for
an irrelevant phase factor and the teleportation is complete. Note that Alice is left with the input
particle and her share of the EPR pair in one of the states |Ψ(±)

ac 〉 or |Φ(±)
ac 〉 which do not contain

any information about the input state |ψc〉 as demanded by the uncertainty principle.
At this point in time, we will end our excursion into the history of teleportation as we are now
quite familiar with the principles of it. Before we can proceed to the teleportation of continuous
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variables (Chapter 4), we will have to understand the phenomenon of squeezed light, as it is used
as an EPR resource for continuous variable teleportation protocols. We will do so in the next
chapter.
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Chapter 3

Introduction to Squeezed light

In this chapter some of the basic ideas of quantum optics are discussed. The focus of the discussion
lies on the phenomenon of squeezing, as two squeezed states are used as the EPR pair of the
continuous variable teleportation protocols.
However, the discussions are far from completeness, derivations are not presented and shall give a
brief overview only.

3.1 Quantization of the electromagnetic field

After the quantization of matter (i.e. atoms) the investigation of the quantum mechanical in-
teraction of atoms with electromagnetic radiation was the next step. The field of physics which
deals with theses kind of interactions is called Quantum Optics and in order to do so, a quantum
mechanical description of the electromagnetic field is needed.
One can think of an electromagnetic field as the superposition of single modes of different fre-
quency. The easiest and most intuitive way of describing these modes is to think of them as
harmonic oscillators. This is the standard approach used in many textbook, see for example [14]
and [15]. As the Hamiltonian of a single oscillator is Ĥ = �ω(n̂ + 1

2 ) where n̂ stands for the
photon number operator, the Hamiltion of the electromagnetic field - as a superposition of these
oscillators - becomes

Ĥ =
∑
k

�ωk

(
n̂k +

1
2

)
. (3.1)

The term
∑ 1

2 is ground state energy that evolves from vacuum fluctuations.
The photon number operatorn̂ can be rewritten in terms of the standard harmonic oscillator
creation and annihilation operators â† and â, respectively, which obey the commutation relation
given by

[â, â†] = 1. (3.2)
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Using the operators as the normal mode amplitude and its conjugate, one can write the electro-
magentic field as

�̂E(�r, t) =
∑
�k,λ

�ε�k,λA�k â�k,λe
−i(ω�k

t−�k·�r) + h.c., (3.3)

where h.c.means the hermitian conjugate, ε�k the polarization vector and A�k is a constant involving
ω�k to get to the right units. The field is usually spilt up into two terms of positive and negative
frequency:

�̂E(�r, t) = �̂E(+)(�r, t) + �̂E(−)(�r, t), (3.4)

where
�̂E(+)(�r, t) =

∑
�k,λ

�ε�k,λA�kâ�k,λe
−i(ω�k

t−�k·�r) (3.5)

�̂E(−)(�r, t) = �̂E(+)(�r, t)†. (3.6)

However, we will use another notation of the electromagnetic field with units of photon flux. And
due to the fact that all our fields evolve from cavities, we can use the input-output formalism
developed by Collet and Gardiner [16]. This gives rise to the following expression for the fields:

E(t) =
√

2γâ(t) − ξt, (3.7)

where γ stands for the fields halfwidth and ξt for vacuum fluctuation.

3.2 Quadrature Operators

In the previous section we used the creation and annihilaton operator to describe the electro-
magnetic field. But the field can also be described by other operators. We will now introduce
the quadrature operators and rewrite the electromagnetic field in terms of two specific quadrature
operators to illustrate their physical meaning. The definition of quadrature operators rely on the
creation and annihilaton operators as follows

Âθ :=
1
2
(
ae−iθ + a†eiθ

)
. (3.8)

Operator defined in that way are Hermitian and therefore measurable experimentally. Furthermore
it is easy to proof that the canonically conjugate of Aθ is simply

Aθ+π
2

=
1
2i
(
ae−iθ − a†eiθ

)
. (3.9)

In our case we are only using the quadrature operator for θ = 0 and its canonically conjugate and
call them X̂ and Ŷ , respectively.

X̂ =
1
2
(
a+ a†

)
, Ŷ =

1
2i
(
a− a†

)
. (3.10)
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As from now we will refer to these two operators as the quadrature operators. By definition X̂

and Ŷ are canonically conjugate operators, so their commutator does not vanish but becomes

[X̂, Ŷ ] =
i

2
. (3.11)

That means, that they cannot be measured simultaneously but obey the Heisenberg Uncertainty
Principle.

Now we want to illustrate the physical meaning of the quadrature operators. Rearranging their
definitions lead to expressions for â and â†

â = X̂ + iŶ , â† = X̂ − iŶ . (3.12)

Putting that into the expression of the electric field (3.3) we obtain

�̂E =
∑
�k,λ

�ε�k,λA�k

[
X̂�k,λ cos(−ω�kt+ �k · �r) + Ŷ sin(−ω�kt+ �k · �r)

]
(3.13)

From that equation it becomes obvious that the quadrature operators X̂ and Ŷ are just the
amplitude operators of the cosinusoidally and sinusoidally varying parts of the electric field.

3.3 The creation of squeezed via a degenerate parametric

amplifier in a cavity

Usually squeezed light is introduced by defining a squeezing operator and then describing the effect
of the operator on the quadratures. However, we will approach squeezing ’hands on’ by exploring
the creation of squeezed light via a degenerate parametric amplifier in a cavity. We will closely
follow the approach of Collet and Gardiner [16].

3.3.1 The intracavity field

The starting point of our decription will be the expression of the field inside a cavity - the intracavity
field - in terms of the input field. Describing the intracavity field as a system coupled to a reservoir
we can use the Langevin equations to describe the time evolution. (see for example [15])

dâ

dt
= − i

�
[â, Hsys] − γâ+ Γ (3.14)

where Γ is the noise operator, Hsys the Hamiltonian for the internal mode and 2γ the damping
constant. We will see later on that γ becomes the halfwidth of the squeezed field. For a one sided
cavity Γ is simply the input field âin times a constant γ′. Hsys describes the internal modes and
is in the case of an empty cavity just the Hamilton of an harmonic oscillator with frequency ω0.

Ĥsys = �ω0â
†a. (3.15)
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Later on we will replace Ĥsys by the Hamliton for a degenerate parametric amplifier.
Now that we have gathered our different parts of the Langevin equation (3.14), it looks like

dâ

dt
= − i

�
− iω0â− γâ+ γ′âin. (3.16)

Transforming this equation into frequency space via

â(ω) =
1√
2π

∫ ∞

−∞
â(t) eiω t, (3.17)

it can been shown that γ′ =
√
γ and thus we get a equation relating the incoming field with the

intracavity field in frequency space

â(ω) =
√
γ

γ − i(ω − ω0)
âin(ω) (3.18)

Note that the commutators in frequencyspace are given by

[âin(ω), âin(ω′)] = 0,
[
âin(ω), â†in(ω

′)
]

= δ(ω − ω′). (3.19)

3.3.2 The degenerate parametric amplifier in a cavity

In the previous subsection we dervied a formula for the intracavity filed for the empty cavity. Now
we can expand equation (3.18) into the desired case with a degenerate parametric amplifier inside
the cavity. In short a degenerate parametric amplifier converts a photon of the incoming pump
beam with frequency ωp = 2ω0 into two photons with frequency ω0 each. The Hamiltonian for a
degenerate parametric amplifier is given by (see for example [15])

Ĥsys = � ω0 â
†a+

1
2
i�
(
ε e−iωpt (â†)2 − ε∗ eiωpt â2

)
, (3.20)

where ε is a measure for the effective pump intensity and can generally be complex. But for our
purposes the complex phase will cancel out later on and is therefore not taken into consideration
here. We will proceed in writing ε for the complex modulus instead of |ε|. The above Hamiltonian
(3.20) will now replace Hsys in equation (3.14) and then we transform into a frame rotating with
half the pump frequency via

a→ e−iω0tâ. (3.21)

This yields to the following Langevin equation in matrix form

d̂�a

dt
= (A− γ1)�̂a

√
γ �̂ain, (3.22)

where 1 is the identity matrix and

A =

(
0 ε

ε∗ 0

)
, �̂a =

(
â

â†

)
. (3.23)
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Solving (3.22) in frequency space one obtains a expression similar to equation (3.18) which relates
the incoming field to the intracavity field:

â(ω0 − ω) =
(γ − iω)

√
γâin(ω0 + ω) + ε

√
γâin(ω0 − ω)

(γ − iω)2 − ε2
(3.24)

As we now have an expression for â we can calculate variances and correlation functions. First of
all we note that the input field is a vacuum field and therefore âin has the following expectation
values (compare [15])

〈âin〉 = 〈â†in〉 = 〈âinâin〉 = 〈â†inâin〉 = 0 (3.25)

The variance is given by
〈â, b̂〉 = 〈âb̂〉 − 〈â〉〈b̂〉 (3.26)

Using equation (3.25), the variances of the intracavity field are given by the following equations.

〈â(ω0 + ω), â(ω0 + ω′)〉 =
γ − iω

2

(
1

(γ − ε)2 + ω2
− 1

(γ + ε)2 + ω2

)
δ(ω + ω′), (3.27)

〈â†(ω0 + ω), â(ω0 + ω′)〉 =
ε

2

(
1

(γ − ε)2 + ω2
− 1

(γ + ε)2 + ω2

)
δ(ω − ω′) (3.28)

As the non commutator terms vanish, the variances equal the correlation functions of the field.
Transforming these expressions back into time space and introducing the sqeezing parameter
λ = ε

γ , 0 < λ < 1 gives the correlation functions of the intracavity field

〈â(t′) â(t′′)〉 = −1
4

[
λ

1 − λ
e−γ (1−λ) |t′−t′′| +

λ

1 + λ
e−γ (1+λ) |t′−t′′|

]
(3.29)

〈â†(t′) â(t′′)〉 =
1
4

[
λ

1 − λ
e−γ (1−λ) |t′−t′′| − λ

1 + λ
e−γ (1+λ) |t′−t′′|

]
. (3.30)

We will make use of these correlation functions in 5.1.2 in order to calculate the outgoing photon
flux of the teleporter.

3.4 Squeezing

After all the calculations, we will now interpret them and explain squeezed light. To do so we will
explore the influence of the degenerate parametric amplifier on the quadrature amplitudes, pre-
cisely the variance of the normally ordered quadrature amplitudes, and finally get to the meaning
of what squeezing. Recalling the definitions of the quadrature operators (3.10), their variances
can be written as:

〈: X̂, X̂ :〉(t) = 〈: 1
2
(â(t) + â†(t))

1
2
(â(t) + â†(t)) :〉

=
1
2
[〈â â〉 + 〈â† â〉]

= −1
4

λ

(1 + λ)
(3.31)
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Figure 3.1: Quadrature plots of squeezed light. Solid, red line: field squeezed in X direction;
dashed, blue line: field squeezed in Y direction,

〈: Ŷ , Ŷ :〉(t) = +
1
4

λ

(1 − λ)
(3.32)

The effect of the squeezing parameter λ is obvious. As it increases, the variance of the X-quadrature
decreases but at the expense of the Y-quadrature variance. The increasing variance of the Y-
quadrature is necessary because of the Heisenberg uncertainty principle. If the Y variance would
not increase while decreasing the X variance, squeezing would be able to violate the uncertainty
principle. Figure 3.1 shows a quadrature plot of two squeezed fields to illustrate squeezing. The
ellipses indicate the variances of the quadratures and thus define the range in which the field
fluctuates. In this representation a vacuum field would be just a circle around the origin and
according to our considerations for a X squeezed light field (solid, red line) the minor axis of the
ellipses is parallel to the X axis, indicating less fluctuations in this quadrature.
In short squeezing can be seen as the process of reducing of fluctuations of one quadrature while

increasing the fluctations in the other. One of the application of squeezed light is the creation of
entagled light beams. This will be explained in detail in section 4.1.

3.5 The Squeezing Operator

As said at the beginning of the chapter, squeezing can be formally approached by introducing a
squeezing operator. Here we will just show the operator and its effect on the quadrature operators

13



rather briefly. The unitary squeezing operator Ŝ(ε) with the complex squeezing paramter ε = r e2iφ

is defined as
Ŝ(ε) = exp

[
1
2
ε∗ â2 − 1

2
ε (â†)2

]
. (3.33)

Note the similarity between the exponent in (3.33) and the part of the degeneric amplifier of the
Hamiltonian in equation (3.20). The effect of Ŝ(ε) at φ = 0 on the the X and Y quadratures is

Ŝ†(r) X̂ Ŝ(r) = X̂ e−r, Ŝ†(r) Ŷ Ŝ(r) = Ŷ er. (3.34)

That explicitly shows - in accordance to our derivation - that squeezing amplifies one quadrature
while deamplifying the conjugate one. Note that the squeezing parameter r here can take values
from 0 to ∞, where r → ∞ refers to perfect squeezing, meaning that only one quadrature remains
in the field.
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Chapter 4

Continuous Variable Teleportation

The teleportation protocol of Bennett et el. for discrete variables, which we have discussed in
section 2.2, can be expanded to continuous variables. Continuous variable teleportation was first
proposed by Vaidman in 1994 [8] altough rather abstract. In 1998 Braunstein and Kimble brought
forward a continuous variable teleportation protocol based on quantum optics, using squeezed
light as an EPR resource [9]. In this chapter will first show how squeezed light can be used as
an EPR resource, then explore the protocol of Braunstein and Kimble before we survey, if this
protcol is suitable for our purposes of teleporting single photons.

4.1 Squeezed light as an EPR resource

Squeezed light was discussed in the previous chapter and we will now use two beams of squeezed
light to create a EPR resource. The idea is to cross the two beams via a 50/50 beam splitter
where the squeezing of the input beams are in conjugate quadratures, i.e. one beam is squeezed in
the X quadrature, the other one in the Y quadrature. The entanglement is then created because
squeezing reduces the noise in one quadrature on cost of the other, meaning that only one of the
input beams is responsible for only one of the quadrature noises of the output field. Even though
the beams at the output of the beam splitter do have noise in both quadratures, they come from
adding or subtracting both of the squeezed input fields. Therefore the relation of the quadratures
of the output beams is determined by the relation of the two input fields. Because this relation
is given by the beam splitter, measuring the quadratures of one of the ouput beams gives the
quadratures of the other, thus the output beams form an entangled state.
To explain the entanglement more detailed we start out with the fields (in form of eq. (3.7) ) for
two beams of squeezed light created via degenerate down conversion in a cavity (see section 3.3)

Xsq =
√

2γs â+ ξta, Ysq =
√

2γs b̂+ ξtb (4.1)

where γs stands for the halfwidth of the cavity and Xsq (Ysq) is squeezed in the X quadrature (Y
quadrature). Note that this means that Xsq (Ysq) has strong fluctutations in the Y quadrature
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Figure 4.1: Simulated fluctuations of the two beams of entangeld light; LHS: quadrature plot of
EA, RHS: quadrature plot of EB

(X quadrature). Both fields are squeezed by the same amount, characterized by the squeezing
parameter λ. Crossing these fields with a 50/50 beam splitter gives the following EPR fields

EA =
1√
2

(Xsq + Ysq), EB =
1√
2

(Xsq − Ysq) (4.2)

For perfect sqeezing the contributions to the Y quadrature of the output field EYA,B solely come
from the field squeezed in the X quadrature Xsq and the contribution to EXA,B solely from Ysq.
With equation (4.2) the relations between the quadratures of the two fields are then given by

EXA = −EXB , EYA = EYB (4.3)

Now it is clear that the two fields EA and EB form an EPR resource because the measurement of
the quadrature of one field yields to the quadrature of the others. In fact the fields are an example
of the entangled states that Einstein, Podolsky and Rosen used originally.
Note that equation (4.3) only holds for perfect squeezing (i.e. λ = 1). The lesser the squeezing
gets, the weaker the entanglement becomes, because for weaker squeezing the quadratures of the
output do not solely consist of the contributions of one of the input fields anymore, but are now
dependent on both fields. That means, that the squeezing parameter λ does not only describe
the squeezing but also gives a measure for the entanglement. A picture of the fluctuation of the
two entangled beams can be seen in figure 4.1. At first sight the two beams look light random
noise, but in fact one is just a mirrored copy of the other according to equation (4.3) and therefore
they are highly entangled. The entanglement can also be seen in figure 4.2, where figure 4.1 is
’disensembled’ into the graph of EXB over EXA (left) and EYB over EYA (right) and shows clearly that
EA and EB obey equation (4.3). A nice and more intuitive approach to squeezing can be found in
[17].
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Figure 4.2: Simulated fluctuations of the two beams of entangeld light; LHS: EXB over EXA , RHS:EYB
over EYA

4.2 The protocol

With the creation of an EPR resource of continuous variables in the previous section, we have laid
the foundation for the continuous variable teleportation protocol. We will develope this protocol
now, closely following the paper of Braunstein and Kimble [9] and Noh [18]. In principle this
protocol uses the same five steps as Bennett’s protocol, except that steps 2 and 3 - the mixing of
the input with Alice’s EPR share and the measurement of the joint state - have to be performed
sperately (see section 2.2). The mixing of the input field Ec with Ea is done by a 50/50 beamsplitter,
yielding to the two joint fields

Ed =
1√
2

(Ec + Ea) , Ee =
1√
2

(Ec − Ea) (4.4)

Now switching to the Wigner representation, the Wigner function for the total system before the
mixing can be written as

Wtot(EXc , EYc , EXa , EYa , EXb , EYb ) = Win(EXc , EYc ) WEPR(EXa , EYa , EXb , EYb ) (4.5)

where the Wigner function for the EPR resource can be found in [8], with r as a squeezing
parameter (compare 3.5)

WEPR(EXa , EYa , EXb , EYb ) =
4
π

exp
[−e−2r

[
(EXa − EXb )2 + (EYa + EYb )2

]− e+2r
[
(EXa + EXb )2 + (EYa − EYb )2

]]
(4.6)
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After the measurement, i.e. after applying equation (4.4) to equation (4.5), the total Wigner
function looks like

Wtot(EXd , EYd , EXe , EYe , EXb , EYb ) =

Win

(
1√
2

(EXd + EXe
)
,

1√
2

(EYd + EYe
))×

WEPR

(
1√
2

(EXd − EXe
)
,

1√
2

(EYd − EYe
)
, EXb , EYb

)
(4.7)

Then Alice performs her quadrature measurements via balanced homodyne detection, measuring
the X quadrature of Ed and the Y quadrature of Ee, giving the results xd and ye, respectively. She
then passes this information onto Bob. In the Wigner representation the measurement process
is performed by subsituting EXd with xd and EYe with ye, then integrating over the unmeasured
quadratures EYd and EXe . In order to express the integration, we make use of the complex Gaussians
of the form

Gσ(α) =
1
πσ

exp
[−|α|2

σ

]
, (4.8)

where we introduced a shorthand notation for the quadratures: αj = EXj + i EYj . Now the Wigner
function for the total system after the measurement can be written in terms of Bob’s field and
Alice’s results as

W ′
tot(αb) = 4N Gν(αb)

∫
d2αc Win(αc) Gτ

(√
2(xd = iye) + tanh(2r)αb − αc

)
, (4.9)

where ν = cosh(2r)/2, τ = 1/2 cosh(2r) and N represents a normalization constant.
For perfect squeezing (r → ∞). The Gaussian Gτ becomes a delta function because tanh(2r) → 1
and τ → 0 and the Gaussian Gν describes a broad background state, which we can neglect. All
of that leads to the following total Wigner function

W ′
tot = 4N Win(αb +

√
2(xd + i ye)). (4.10)

If Bob then displaces his field on behalf of Alice’s measurement results by −√
2(xd + i ye) he ends

up with the input state in his hand

Wout(αb) = W ′
tot(αb −

√
2(xd + i ye)) = Win(αb), (4.11)

So this protocol is able to teleport continuous variables by means of two beams of squeezed light
as an EPR resource. The necessary steps are quite similar to those of Bennett’s protcol and can
be summarized to

1. Alice and Bob share an EPR resource in form of two entangled light beams

2. Alice creates a mixed state of her input field and her part of the EPR share by passing them
through a 50/50 beam splitter

3. Alice measures the quadrature of the two joint fields

4. Alice transfers her measurement results to Bob
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5. Bob transforms a displacment based on Alice’s results on his beam of the EPR resource and
receives the input field

The above protocol is a single-mode version of continuous variable teleportation (in this case for
the Wigner function), but relies on mode-matching of all envolved fields. A broadband version
has been put forward bei van Loock et al. and will be discussed in the upcoming chapter. But for
now we will stick to this protocol and test it with a one photon input.

4.3 Teleportation of a single photon

4.3.1 Derivation of the output Wigner function

Having derived a teleportation protocol for continuous variables like the Wigner function, we now
want to put it to the test, if it suits our purposes of teleporting a single photon. Our tests will be
of purely graphical nature, as we do not need to use the results for further calculation. So far we
are only interested in proof of concept.
In order to test the protocol, we need the Wigner function of a single photon, i.e. a Fock state.
In general the Wigner function of a Fock state is given by (compare with Noh [18], p.83)

Wl(X,Y ) =
2
π

1
l!

exp
[−2(X2 + Y 2)

] l∑
k=0

(−1)l−k
l!

k! (l − k)!
l!
k!

4k(X2 + Y 2)k, (4.12)

where l is the number of photons. In our case of a single photon l = 1 and equation (4.12) then
simplifies to our input state:

Win(EXc , EYc ) = − 2
π
e−2(EX 2

c +EY 2
c )

[
1 − 4 (EX 2

c + EY 2
c )

]
. (4.13)

Having defined our input state we can use equation (4.9) in order to calculate our the total Wigner
function after the measurement. We will skip the necessary calculations as they can be found in
the Appendix to [18] and just quote the result of

Wtot(EXb , EYb ) = N exp
[−2 (EX 2

c + EY 2
c )

A

]
exp

[−2AB2

1 +A

]
1 −A2 + 4A2B

(1 +A)3
, (4.14)

where A = cosh(2r) and B2 = [
√

2xd + EXb tanh(2r)]2 + [
√

2ye + EYb tanh(2r)]2. This Wigner
function still has to be displaced by −√

2(xd+ i ye) yielding to the desired output Wigner function
of

Wout(EXb −
√

2xd, EYb −
√

2ye) =

N exp

[
−2 ((EXc −√

2xd)2 + (EYc −√
2ye)2)

A

]
exp

[−2AB2

1 +A

]
1 −A2 + 4A2B

(1 +A)3
, (4.15)

with the same A as above but a simpler B = [EXb tanh(2r)]2 + [EYb tanh(2r)]2.
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4.3.2 Results of the teleportation of one photon
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Figure 4.3: Wigner functions of teleported one photon Fock states with λ = 1.3. a) Input Wigner
function b),c),d)teleported Wigner functions

Figure 4.3 shows three telported Wigner functions b), c) and d) with different xd and ye, i.e.
different results of Alice’s measurement, for an arbitrary value of λ = 1.3. They are computed
with equation (4.15) and compared to the input Wigner function a) of a one photon Fock state.
As we excpet for the output to look just like the input, one can easily see that the teleportation
gets better the smaller the values of xd and ye become. So how can we influence xd and ye in
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order to achieve better teleportation?
The answer is, that we cannot. xd and ye are random variables due to the noise of the squeezed
light. But because Alice measures quadratures, xd and ye depend on each other and are not
complete random. In fact we can work out a probability distribution for xd and ye making
use of the same Wigner function we used to calculate the output(equation 4.7). To get to the
desired probabilty distribution we have to integrate EXb and EYb out, because Alice performs a
local measurement, therefore her results do not depend on Bob’s field. To simplify calculations
we integrate over EXb and EYb even before we introduce the input field, obtaining for WEPR the
Gaussian distribution∫

dEXb dEXb WEPR =
2

π cosh(2r)
exp

[−2(EX 2
a + EY 2

a )
cosh(2r)

]
. (4.16)

Using that in equation (4.7) and integrating over the two quadratures that are not measured by
Alice, we obtain for the probability distribution

P (xd, ye) =
2

π cosh(2r)
×

×
∫

dEYd dEXe Win

(
1√
2

(EXd + EXe
)
,

1√
2

(EYd + EYe
))

exp
[−2(EX 2

a + EY 2
a )

cosh(2r)

]
. (4.17)

With our input Fock state for one photon (4.13) we arrive at the following probability distribution
for xd and ye

P (xd, ye) =
√
x2
d + y2

e

8N
(1 + cosh(2r))3

(−1 + cosh(2r)2 + 8 (x2
d + y2

e)
)

exp
[
−4

(x2
d + y2

e)
1 + cosh(2r)

]
,

(4.18)
where N is a normalizing constant. Obviously P (xd, ye) depends only on the radial distance of xd
and ye and can be written as a function of the radial probability q =

√
x2
d + y2

e . Figure 4.4 shows
the distribution P (q) for three different squeezing paramteres. Unsurprisingly the peak of P (q)
moves to higher q as r increases, due to the fact that with increased squeezing the amplitudes in
the unsqueezed quadratures grow yielding to bigger xd and ye.
Now that we have found the proper distribution for xd and ye, we can investigate the influence of

the squeezing parameter r. Figure 4.6 shows three output wigner functions for different magnitudes
of squeezing, where xd and ye are choosen randomly out of their probability distribution (4.18).
Again it is just what we expected. The quality of teleportation increases with the magnitude

of squeezing. This makes perfect sense, since the the stronger the squeezing is, the bigger the
magnitude of the enganglement between the light beams that Alice and Bob share becomes. With
a squeezing parameter of r = 3.1 the teleported Wigner function is already very similiar to the
Wigner function of a one photon Fock state, meaning that it is possible to teleport single photons
with this protocol.
Note that for many teleportation attempts the averaged output Wigner function approximates
the input Wigner function, even for small values of r. The quality of the approximation rises with
the number of attempts made. This is illustrated for a teleportation with a squeezing parameter
r = 0.9 in figure 4.5 and we have seen an example of the out put of a single teleportation attempt
in figure 4.6. The obtained Wigner function is very similar to the input one even though the
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Figure 4.5: Averaged output Wigner function of 1000 teleportation attempts at r = 0.9

squeezing is fairly week. Because of the week squeezing the light beams are just weakly entangled
and therefore information about the input state is lost. Thus it is not possible to reconsruct the
input field at the output at the first attempt, but all information about the input field is eventually
passed on with rising number of attempts.

4.3.3 Suitability for telporting single photons

In the previous section we discussed the results of the teleportation of one photon using the
continuous variable teleportation protocol proposed by Braunstein and Kimble. We have seen
that it is possible to teleport a single photon quite well and the magnitude of squeezing controls
the quality of the teleportation. Thus the continuous variable teleportation protocol is suitable for
our purposes to teleport streams of single photons. However, this protocol has its flaws that limit
its usability. The input was a Fock state, i.e. a single mode field, which is very hard to realise
experiementially. So more general form of teleportation is needed, which is capable of teleporting
a broadband input. We will discuss such a protocol in the next chapter.
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Chapter 5

Broadband teleportation

So far we have been dealing with single mode fields as input fields. In this chapter we will expand
the protocol of the previous chapter to broadband fields and we will introduce filters in order to
recover all statistical properties of the field. The derivation presented here is based on a paper of
van Loock et al. [11] but closely follows the works of Noh [1], [12].
The protocol will be put to use with an input field originating from a decaying photon in a cavity.
In order to evaluate the quality of the teleportation of the input, we will also have to think about
how to measure the accordance of the output field and the input field quantitativly, which we will
do in the next chapter.

5.1 The Broadband Teleportation protocol

5.1.1 The Basic Protocol

The teleportation protocol for broadband teleportation is essentially the same as for single mode
teleportation in the previous chapter. A schematic sketch of the setup can be found in figure 5.1.
Alice and Bob share two beams of entangled squeezed light as an EPR resource. Alice crosses
the in input field with her share of the EPR resource via a 50/50 beamsplitter and then measures
the quadratures. After the measurement she passes her measurement outcomes on to Bob, who
displaces his field accordingly and recieves the output field. But as we are dealing with broadband
fields now, filtering becomes part of the protocol and the relation between the bandwidth of the
fields will play an important role. The complete protocol reads as follows and involes seven steps

1. Alice and Bob share an EPR resource in form of two entangled light beams, which are
squeezed over a bandwidth of 2γs

2. Alice creates a mixed state of her input field (with bandwidth 2γi) and her part of the EPR
resource by passing them through a 50/50 beam splitter

3. Alice measures the quadrature of the two joint fields
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Figure 5.1: Schematic sketch of the teleporting protocol without filtering by Bob; BS: 50/50
beamsplitter; BHD: balanced homodyne detector

4. Alice filters her results with a filter of bandwith 2γA

5. Alice transfers her measurement results to Bob

6. Bob transforms a displacment based on Alice’s results on his beam of the EPR resource

7. Bob filters the displaced field with a filter of bandwidth 2γB and receives the input field

Note that the γi’s above are all halfwidth.
At this point we can already make a few assumptions towarding the relation between the band-
widthes by looking at figure 5.2, which shows a schematic sketch of the spectrum of the output
field. First of all, as the entanglement is provided by the squeezing and we do not want to ’loose’
entanglement, Alice’s filter bandwidth has to be greater than the squeezing bandwidth. Otherwise
the information send from Alice to Bob would not be sufficient because of missing information
about Alice’s share of the EPR resource. Therefore γA > γs. Then we take into consideration
that the frequencies of the EPR field outside of the squeezing bandwidth just contribute noise and
that they should be filtered out by Bob. That gives γs > γB. At last the bandwidth of the input
field has to be small compared to that of the squeezing in order for the teleportation to work,
so that the peak of the input signal lies within the ’valley’ created by the squeezing. The input
signal also has to pass through Bob’s filter in order to give the input field at the output of the
teleporter. Thus γB > γi. In practise we have to allow frequency roll offs for the filters so that all
the above relations are supposed to be in order of magnitude. Altogether we obtain as the basic
relation between the bandwidthes

γA >> γs >> γB >> γi. (5.1)

Keeping the bandwidth relations in mind, we will now proceed to the actual protocol. Other than
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in chapter 4 our calculations will be in the Heisenberg picture. Starting out with the three given
fields in the form of equation (3.7) we write for the input field Êin(t), and the field squeezed in the
X quadrature (Y quadrature) X̂(t) (Ŷ (t))

Êin(t) =
√

2γi ĉ(t) + ξtc (5.2)

X̂(t) =
√

2γs â(t) + ξta

and Ŷ (t) =
√

2γs b̂(t) + ξtb.

The fields X̂(t) and Ŷ (t) are output fields of a degenerate parametric amplifier in a cavity as
discussed in section 3.3 and are entangled via a 50/50. Alice and Bob receive the entangled fields

Â =
1√
2

(
X̂ + Ŷ

)
, B̂ =

1√
2

(
X̂ − Ŷ

)
. (5.3)

Then Alice crosses her share of the EPR resource with the input field and receives the two fields

ÊA1 =
1√
2

(
Êin + Â

)
, ÊA2 =

1√
2

(
Ein − Â

)
. (5.4)

She proceeds by measuring the X quadrature of ÊA1 and the Y quadrature of ÊA2, filters her photo
currents - denoted by a convolution of her measurement results with the impulse response of her
filter Fa(t) and passes the output of the filter on to Bob. The information sent from Alice to Bob
can be written as

Fa(t) ∗
[

1√
2

(
ÊXin + ÂX

)
+ i

1√
2

(
ÊYin − ÂY

)]
, (5.5)
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where ∗ denotes the convolution. Because Alice’s filtering bandwith has to be the largest of the
bandwidthes according to the bandwith relation (5.1), we can set γs → ∞ meaning that Alice
does not filter at all. With γs → ∞, Fa(t) → δ(t) and the classical information is just the part at
the right hand side of the asterisk in expression (5.5).
Based on this information Bob performs a displacment on his share of the EPR resource (compare
to equation (4.11)) and obtains the field

ÊBob = B̂ +
√

2
[

1√
2

(
ÊXin + ÂX

)
+ i

1√
2

(
ÊYin − ÂY

)]
= B̂ + Êin + Â∗

= Êin +
√

2
(
X̂X − i Ŷ Y

)
. (5.6)

So Bob ends up with the input field on top of some background given by
√

2
(
X̂X − i Ŷ Y

)
. But

the background can be reduced by increasing the squeezing and with perferct squeezing - meaning
X̂X , Ŷ Y → 0 - Bob receives the input field and therefore achieves perfect teleportation. This
shows that the protocol is working and that Bob’s filtering is only needed to increase the quality
of teleportation for finite squeezing.

5.1.2 Filtering of Bob’s field

After the displacement by Bob the field can also be filtered in order to reduce the noise from the
EPR resource. It is usually done with a two sided cavity. The output field of the teleporter Êout
(i.e. after Bob’s filtering) can be written as

Êout = FB ∗
(
ÊBob + ξtout

)
− ξtout, (5.7)

where FB is the impulse response of Bob’s filter and ξtout denotes the vacuum fluctuations. The
fluctuations appear here twice, because they mix with Bob’s field at the input of the filter and then
again at the output semi transparrent mirror of the filter. But they vanish as soon as correlation
functions are calculated and are therefore not taken into account (compare with section 3.3.2).
With FB(t) = γB exp(−γB t) equation (5.7) becomes

Êout(t) = γB

∫ t

0

dt′e−γB (t−t′)
[
Êin +

√
2
(
X̂X − i Ŷ Y

)]
. (5.8)

Furthermore

〈
√

2
(
X̂X − iŶ Y

)† √
2
(
X̂X − iŶ Y

)
〉

= 2〈XX†XX − iXX†
Y Y + iY Y †XX + Y Y †Y Y 〉

= 4〈XX†XX〉, (5.9)

because XX = Y Y due to the fact, that both fields are squeezed with the same magnitude.
Computing the correlation functions from equation (5.8), using equation (5.9) and splitting the
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integral into two parts - one originating from the input, the other from the EPR resource - gives

〈Ê†
out(t

′) Êout(t′′)〉 =

= γ2
B

∫ t′

0

dt′
∫ t′′

0

dt′′ eγB (t′−τ ′+t′′−τ ′′) 〈E†
in(τ ′) Ein(τ ′′)〉 Integral I

+4 γ2
B

∫ t′

0

dt′
∫ t′′

0

dt′′ eγB (t′−τ ′+t′′−τ ′′) 〈XX†(τ ′)XX(τ ′′)〉 Integral II (5.10)

Integral I only depends on the input field an will be treated in the next section. Before solving
Integral II however, an expression for the correlation function of X̂X is needed. Using the definition
of the quadratures (3.10) the correlation function becomes

〈XX†(t′)XX(t′′)〉 =
1
4
〈(â+ â†) (â+ â†)〉, (5.11)

with â =
√

2γsâc + ξta the output field of the squeezing cavity. Note that âc is the same cre-
ation operator as used in the derivation of squeezed light in section 3.3.2. The calculation of
〈XX†(t′) XX(t′′)〉 is quite lengthy as it involves 16 terms and will be skipped at this point but
can be found in the Appendix A.1. The result is

〈XX†(t′)XX(t′′)〉 = γs
[〈âc(t′)âc(t′′)〉 + 〈â†c(t′)âc(t′′)〉

]
+

1
4
δ(t′ − t′′), (5.12)

where δ(x) is the Dirac δ-function and âc denotes the intracavity field. As the correlation functions
for the intracavity field have already been devised in section 3.3.2, equation (3.30), equation (5.12)
can be written explicitly as

〈XX†(t′)XX(t′′)〉 = −γs
2

λ

1 + λ
e−γs(1+λ)|t′−t′′| +

1
4
δ(t′ − t′′). (5.13)

and with that the Integral II of equation (5.10) becomes

4 γ2
B

∫ t′

0

dt′
∫ t′′

0

dt′′ eγB (t′−τ ′+t′′−τ ′′) 〈XX†(τ ′)XX(τ ′′)〉

= 4 γ2
B

∫ t′

0

dt′
∫ t′′

0

dt′′ eγB (t′−τ ′+t′′−τ ′′)
[
−γs

2
λ

1 + λ
e−γs(1+λ)|t′−t′′| +

1
4
δ(τ ′ − τ ′′)

]
,(5.14)

Again, this is an integral over a sum and can therefore been split up. The term involving the
δ-function gives

γB
2

[
e−γB |t′−t′′| − e−γB (t′+t′′)

]
, (5.15)

where the modulus originates in the evaluation of the δ-function for the two cases τ ′ > τ ′′ and
τ ′ < τ ′′. The term involving the exponentials has to be split up into two parts because of the
modulus. However the two parts differ only in the interchange of τ ′ and τ ′′, so we will only give
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one part and abbreviate the other with (τ ′ ↔ τ ′′)

−2γ2
Bγs

λ

1 + λ
e−γB (t′+t′′)

[∫ t′

0

dt′
∫ t′′

0

dt′′eγB(τ ′+τ ′′) e−γB(1+λ)(τ ′−τ ′′) + (τ ′ ↔ τ ′′)

]
(5.16)

= − 2γ2
Bγs

γB + γS(1 + λ)
λ

1 + λ
e−γB (t′+t′′)

[
1

2γB

(
e2γB t′ − 1

)
− 1
γB − γs(1 + λ)

(
e[γB−γs(1+λ) t′] − 1

)

+
1

2γB

(
e2γB t′′ − 1

)
− 1
γB − γs(1 + λ)

(
e[γB−γs(1+λ) t′′] − 1

)]
(5.17)

The sum of equation (5.15) and (5.17) give the correlation function of the EPR resource part of
〈Ê†
out(t′) Êout(t′′)〉, which we will denote 〈Ê†

out Êout〉EPR But for now only the photon flux is needed
so that t ≡ t′ = t′′ can be used and because it is assumed that the source of the squeezed light
was turned on long before the input reaches Alice the limit of t → ∞ can be taken. With these
two assumptions equations (5.15) and (5.17) give a constant noise background in the output field
dependend on the squeezing bandwidth and Bob’s filter bandwidth. So Integral II of equation
(5.10) yields to

〈Ê†
out Êout〉EPR =

γB
2

− 2γBγs
γB + γs(1 + λ)

λ

1 + λ

= 2γB

[
1
4

(
1 − λ

1 + λ

)2

+
λ

(1 + λ)2
γB

γB + γs(1 + λ)

]
. (5.18)

It worthwhile having a short look at this expression. There are two parts that contribute to the
background noise. The second part depends on the bandwitdthes and gets small for the assumption
γA >> γB made in equation (5.1). The other term depends on the squeezing only and goes to
γB/8 for prefect squeezing and describes this is the smallest possible background.
Note that for a constant input, Integral I of equation (5.10) collapses and just gives the constant
photon flux in the long term limit, yielding to the following equation for the output photon flux
of the teleporter for a constant input

〈Ê†
out Êout〉const. = 〈Ê†

in Êin〉 + 2γB

[
1
4

(
1 − λ

1 + λ

)2

+
λ

(1 + λ)2
γB

γB + γs(1 + λ)

]
. (5.19)

5.2 Teleportation of a single photon

Having calculated the contribution of the EPR resource to the output photon flux (5.18), the
protocol is now ’ready to use’, meaning that only Integral I of equation (5.10) has to be solved for
a given input correlation function. In this section the investigated input is the field emitted from
a photon that decays from a cavity. In order to solve said Integral I, the correlation function is
needed and will now be calculated.
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5.2.1 Correlation function of a photon decaying in a cavity

The derivation of the correlation function of the decaying photon is done with use of the master
equation. The master equation gives a equation of motion for the density matrix ρ of a system.
The derivation of the master equation can be found in standard textbooks like [19] and for the
regarded case and in a rotation frame (according to equation (3.21) the master equation takes this
simple form

ρ̇ = γi
(
2aρa† − a†aρ− ρa†a

)
. (5.20)

With use of the density matrix of a system, the expectation value of any operator can be written
as the trace over the density matrix times the operator, like

〈O〉 = tr(O ρ), (5.21)

where O represents a general operator and tr() denotes the trace. With this relation and the
master equation the time evolution of the operators of the photon ĉ inside the cavity can be
written as

d〈ĉ†ĉ〉
dt

=
d tr

(
ĉ†ĉρ

)
dt

= tr
(
ĉ†ĉρ

)
= γi tr

(
2ĉ†ĉ ĉρĉ† − ĉ†ĉ ĉ†ĉρ− ĉ†ĉρĉ†ĉ

)
= γi tr(2(ĉ†)2ĉ2ρ− 2(ĉ†ĉ)2ρ)

= −2γi〈ĉ†ĉ〉, (5.22)

where the cyclic property of the trace has been used: tr(ÂB̂Ĉ) = tr(ĈÂB̂) = tr(B̂ĈÂ). This
simple differential equation for 〈ĉ†ĉ〉 yields to

〈ĉ†ĉ〉(t) = e−2γi t. (5.23)

Simliarly the expectation value of ĉ is found to be

〈ĉ〉(t) = c(0) e−γi t, (5.24)

out of
〈 ˙̂c〉 = −γi〈ĉ〉, (5.25)

Now the Quantum Regression Theorem can be used to obtain the desired correlation function.
The theorem roughly states that if

〈 ˙̂
A〉 = M 〈Â〉, M = const., (5.26)

the following holds for an arbitrary operator O

d
dτ

〈Ô(t) Â(t+ τ)〉 = M 〈Ô(t) Â(t+ τ)〉. (5.27)
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Again, this is a very rough statement of the Quantum Regression Theorem. For a rigorous deriva-
tion and further reading see [19], Chapter 1. For the case treated here the following can be chosen

Ô(t) = ĉ†(t), Â(t+ τ) = ĉ ,M = −γi, (5.28)

where the value for M is taken out of equation (5.25). With these values equation (5.27) becomes

d
dτ

〈ĉ†(t) ĉ(t+ τ)〉 = −γi 〈ĉ†(t) ĉ(t+ τ)〉, (5.29)

which gives for the correlation function

〈ĉ†(t)ĉ(t+ τ) = 〈ĉ†(t)ĉ(t+ 0) e6−γi τ〉〉
= e−2γi t e−γi τ , (5.30)

where the inital value 〈ĉ†(t)ĉ(t + 0)〉 is obtained from equation (5.23)Because the operators ĉ
describe the field inside the cavity the desired correlation function is calculated with use of the
equation for the input field (5.2) to

〈Ê†
in(t′) Êin(t′′)〉 = 2 γi e−γi (t′+t′′). (5.31)

That is the desired correlation function for a field of a photon decaying in a cavity incident on the
teleporter input.

5.2.2 Output photon flux

Having a defined input, the missing part of the output - besides the constant noise of the entangled
beams - can be calculated. Namely Integral I of equation (5.10) that takes now the following form

2γ2
Bγi

∫ t′

0

dτ ′
∫ t′

0

dτ ′′ e−γB (t′1−τ ′+t′′−τ ′′) e−γi (τ ′+τ ′′)

=
2γi

(1 − γi

γB
)2
(
e−γi t

′ − e−γB t′
) (

e−γi t
′′ − e−γB t′′

)
(5.32)

=
2γi

(1 − γi

γB
)2
(
e−γi t − e−γB t

)2
, after setting t ≡ t′ = t′′. (5.33)

Putting the two parts of the equation (5.10)together - Integral I from above, Integral II from
equation(5.18), an expression for the output photon flux is obtained

〈Ê†
out Êout〉(t) =

2γi
(1 − γi

γB
)2
(
e−γi t − e−γB t

)2 + 2γB

[
1
4

(
1 − λ

1 + λ

)2

+
λ

(1 + λ)2
γB

γB + γs(1 + λ)

]
.

(5.34)
With an equation for the output photon flux at hand, it is possible to study the influences of the
squeezing and different bandwidthes on the teleportation. Figure 5.3 shows the output photon
flux as a function of time for three different values of λ. As expected the noise on which the peak
of the decaying photon sits gets smaller with increasing magnitude of the squeezing. This is not
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Figure 5.3: Output photon flux, varying λ; γi = 15, γb = 100, γs = 1000

suprising because the vacuum fluctuations of the squeezed light decrease with stronger squeezing
(see equation (5.6)). The width of the peak of the input signal also gets smaller the better the
squeezing is, indicating a better teleportation quality.

Now considering figure 5.4, which plots the photon flux and varyies γB and γs in a) and b),
respectively. a) shows that for a decreasing bandwidth of Bob’s filter, the noise decreases as well.
This is just what is expected as the noise level throughout the squeezing bandwidth is constant
and the smaller Bob chooses his bandwidth, the less noise he will pick up. However, with a smaller
bandwith Bob is more likely to cut off frequency parts of the input signal and thus loose quality.
That can be witnessed as a broadening of the input signal peak as Bob’s bandwith gets closer
to the input bandwidth. The same can be seen for the squeezing bandwidth in figure 5.4 b).
The noise level rises with decreasing squeezing bandwidth, because as the squeezing bandwidth
approaches the filter bandwidth, Bob will pick up noise from unsqueezed frequency that have much
higher fluctuations.
Having seen the influences of the squeezing on the teleportation quality only qualitatively, one
might want to have a measure for the quality of teleportation. Such a measure will be developed
in the upcoming chapter.
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Chapter 6

Measuring the Teleportation Quality

Quantitatively, the influence of the different parameters of the protocol on the teleportation quality
has been investigated in the last chapter. But one still lacks a quantitative measure for the quality,
meaning a measure how well the output field mimicks the input field. A developement of such
a measure shall be done in this chapter using a mode matched cavity with a time dependent
damping constant 2γc(t) to ’catch’ the peak of output signal. Such a cavity has been proposed by
Parkins [2] to transfer quantum states between light fields and the motion of trapped atoms. Noh
applies this to the simpler case of a photon that decays in one cavity and is caught in a second
one (the one with the time dependent damping constant) [1].

6.1 Time dependence of the damping constant

As said before, a cavity after the output of the teleporter is used to measure the quality of
teleportation. This catching cavity has a time dependent damping constant, that tends to zero
over time in order to allow the output to enter the cavity but prevents it from decaying once in the
cavity. The evaluation of the output can then be done by calculating the mean photon number in
the catching cavity. In order to evaluate the intracavity field the explicit time dependence of 2γc(t)
is needed. Noh calculates the time dependence assuming the simple case of a photon decaying in
one cavity which is caught in a second one (the one with the time dependent damping constant)
[1]. He uses quantum trajectory theory to find 2γc(t) and because an excursion into quantum
trajectory would sidetrack us here, we just cite the result of

γc(t) = γc(0)
e−2γI t

1 +
(
γc(0)
γI

)
(1 − e−2γI t)

. (6.1)

As the cavity is suppose to catch all of the input for very small times γc(0) → ∞ is assumed and
equation (6.1) simplifies to

γc(t) = γI
e−2γI t

1 − e−2γI t
. (6.2)
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This gives the time dependence of γc(t) for the simple two cavity case. The model can be used
in the telportation case, too, because the teleporter is not supposed to alter the field between the
cavities.

6.2 Mean photon number in the catching cavity

Given the time dependence of γc(t) an expression for the intracavity field of the catching cavity
d̂(t) is needed in order to proceed. As it is assumed that the teleporter gives just the input field,
the intracavity field can be obtained with a Langevin equation approach of two coupled cavities,
similar to the one of Cirac et al. [3].
The field of the input and the catching cavity are found by solving the respective Langevin equa-
tions (3.14), where the output field of the first cavity provides the input field of the catching cavity.
The two equations in a rotating frame (according to equation (3.21) read as follows

dâ
dt

= −γI â+
√

2γI âin (6.3)

dd̂
dt

= −γc(t)d̂+
√

2γc(t)
(√

2γI â− âin

)
, (6.4)

where the input field for the catching cavity as been replaced with the ouput of the input cavity
according to equation (3.7). Note that no time delay between the two cavities is assumed, because
a possible delay can be eliminated using "time delayed" operators in the first cavity (compare [3]).
Equation (6.4) is a inhomogeneuos differential equation for d̂ and the solution of the corresponding
homogeneous equation is

d̂H(t) = d0 e
− R t

0dt
′γc(t

′). (6.5)

Now noting that γc(t) of equation (6.2) can be written as

γc(t) =
1
2

d
dt

ln
[−e−2γi t

]
+ 1 (6.6)

the solution of the homogeneous equation (6.5) simplifies to

d̂H(t) = d0
1√

e−2γi t − 1
. (6.7)

For the solution of the inhomogeneous differential equation (6.4) the following Ansatz is used

d̂(t) = d0(t)
1√

e−2γi t − 1
, (6.8)

yielding to the following for d̂(t)

d̂(t) =
√

2γI
1√

e−2γi t − 1

∫ t

0

dt′e−γI t
′ (√

2γI â(t′) − âin(t′)
)

. (6.9)

That equation describes the dependence of the intracavity field operator d̂ on the input field
operators â and âin. Now, an equation for the average photon number inside the catching cavity
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can be given in terms of the input correlation function

〈d̂†(t′)d̂(t′′)〉(t) = 4γ2
I

1
e−2γi t − 1

∫ t

0

dt′
∫ t

0

dt′′ e−γI(t′+t′′) 〈â†(t′)â(t′′)〉, (6.10)

where the âin’s cancel because of (3.25).

6.2.1 Testing the scheme without the teleporter

In order to establish confidence in the mode matching of the cavity, equation (6.10) is tested with
the correlation function of the decaying photon in the cavity without teleportation. If the mode
matching is working properly the mean photon number in the steady state is supposed to be unity.
The correlation function for a decaying photon has be calculated in section 5.2.1 and is given by
equation (5.31). Using that equation in equation (6.10), the mean photon number becomes after
a staightforward calculation

〈d̂†d̂〉(t) = 4γ2
I

1
e−2γi t − 1

∫ t

0

dt′
∫ t

0

dt′′ e−γI(t′+t′′) eγI(t′+t′′)

= 1 − e−2γI t, (6.11)

which becomes in the steady state limit

lim
t→∞ 〈d̂†d̂〉(t) = lim

t→∞
(
1 − e−2γI t

)
= 1. (6.12)

As expected the mean photon number is 1, prooving that the mode matching works. So with
equation (6.10)an expression for the mean photon number inside the catching cavity in terms of
the field incident on it is found and can now be used as a quantiative measure for the teleportation
of one photon.
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Chapter 7

Conclusion

7.1 Summary

In this thesis we started out in 1935 with the Einstein, Podolsky and Rosen paradox and worked our
way through the history of teleportation. The mechanism of teleportation has been demonstrated
on the simplest case, then generalising this idea before reaching a point today, where teleportation
of whole quantum fields is possible.
Keeping in mind the intent of teleporting single photons the two continuous variable telportation
protocols have been tested towards their suitability for that case. For the testing of the continuous
variable teleportation protocol introduced in chapter 4 the Wigner representation was used and
the suitabilty of that protocol for teleporting a single photon has been proven.
Because of that the broadband teleportation was introduced in chapter 5 and investigated. Due
to a qualitaive analysis of the teleportation quality in dependence of the various bandwidthes, it
has been found that the concerned bandwidths have to obey the following equation to achieve the
highest quality of teleportation

γA >> γs >> γB >> γi.

However, unsatisfied with just a qualitative analysis of the teleportation quality a measure
for teleporting single photons has been developed in chapter 6. Based on schemes of quantum
state transfer a cavity at the output of the teleporter is used to ’catch’ the outcoming field. The
catching is done by a fastly decaying damping constant of the cavity. Having caught the output
field of the teleporter the mean photon number inside the cavity can then be calculated, expecting
a value close but greater than unity, as noise from the squeezing beams has also been picked up
during the catching. It has been shown that this scheme works perfectly without teleportation
and the qualitative analysis of the teleporting quality can now be done with a simple calculation.
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7.2 Future Work

Having devised a scheme for teleporting single photons and a measure for the quality of telepor-
tation, the process can now be taken to the next step: The teleportation of a stream of single
photon pulses. In fact the step is not that big after all, supposing that the photons arrive at
the teleporter separated by a time that is longer than the inverse of their bandwith. Assuming
that, no modifications of the teleportation protocol itself have to be done and for the quantitative
measurement of the quality, only the time dependent cavity has to be reinitiated in the intervals
of the incoming photons. Of course the photons that are already inside the catching cavity can
escape while the damping constant is reinitiated, but a cascaded system of catching cavities would
allow to capture all of the photons.
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Appendix A

Calculations

A.1 Derivation of 〈XX†(t′) XX(t′′)〉
The correlation function 〈XX†(t′)XX(t′′)〉 is needed in section 5.1.2 and will now be calculated.
Replacing X̂ by its definition (3.10) and expanding the expression, one ends up with an equation
for the correlation function consisting of four terms as follows

〈XX†(t′)XX(t′′)〉 =
1
4
〈(â+ â†) (â+ â†)〉

=
1
4
[ 〈â(t′)â(t′′)〉︸ ︷︷ ︸

1

+ 〈â(t′)â†(t′′)〉︸ ︷︷ ︸
2

+ 〈â†(t′)â(t′′)〉︸ ︷︷ ︸
3

+ 〈â†(t′)â†(t′′)〉︸ ︷︷ ︸
4

]. (A.1)

The terms will be considered seperately, replacing â by
√

2γS âc − ξta according to (3.7). While
expanding the parenthesis in the correlation function, all normally ordered correlation functions
involving the vacuum fluctutations will vanish because of (3.25).

Term 1

〈â(t′)â(t′′)〉 = 〈(âc(t′) + ξta(t
′′)
) (
âc(t′′) + ξta

)〉
= 2γS 〈âc(t′)âc(t′′)〉 −

√
2γs 〈ξta(t′)âc(t′′)〉 (A.2)

The correlation function of the vacuum fluctuation and the field is given by the following relation

−
√

2γS〈ξta(t′)âc(t′′)〉 =

⎧⎪⎨
⎪⎩

0 t′′ < t′

γS〈[âc(t′′), âc(t′)]〉 t′′ = t′

2γS〈[âc(t′′), âc(t′)]〉 t′′ > t′
. (A.3)

This relation can be devised out of the Langevin equation and the Quantum Regression Theorem,
see for example chapter 7 of [19]. However, the fact that there is no correlation for t′′ > t′ and
some for t′′ < t′ can be made plausible on physical grounds. The Langevin equation gives an
expression for the time evolution of the intracavity field âc(t) due to the vacuum input field of
the cavity at the same time ξta(t). Therefore for times t′′ < t′ there cannot be any correlation as
âc(t′′) is not yet dependent on ξta(t

′). On the other hand for t′′ > t′ correlation exists as there is
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now a dependence between âc(t) and ξta(t) through the Langevin equation. So with use of this
relation (A.3), equation (A.2) yields to the following

〈â(t′)â(t′′)〉 = 2γS〈âc(t′)âc(t′′)〉 + 2γS

{
0 t′′ < t′

〈âc(t′)âc(t′′)〉 − 〈âc(t′)âc(t′′)〉 t′′ > t′

= 2γS 〈âc(t′)âc(t′′)〉. (A.4)

This is quite general, as no special attention is paid to the case t′ = t′′

Term 2

〈â(t′)â†(t′′)〉 = 〈ξta(t′)ξt†a (t′′)〉 + 2γS〈âc(t′)â†c(t′′)〉 +
√

2γS
[〈âc(t′)ξt†a (t′′)〉 + 〈ξta(t′)â†c(t′′)〉

]
(A.5)

〈ξta(t′)ξt†a (t′′)〉 = δ(t′ − t′′) because δ-correlated fluctuations were assumed. Furthermore the fol-
lowing two expressions - similar to (A.3) - are used

−
√

2γS〈ξta(t′)â†c(t′′)〉 =

⎧⎪⎨
⎪⎩

0 t′′ < t′

γS〈
[
â†c(t

′′), âc(t′)
]〉 t′′ = t′

2γS〈
[
â†c(t

′′), âc(t′)
]〉 t′′ > t′

(A.6)

−
√

2γS〈âc(t′)ξt†a (t′′)〉 =

⎧⎪⎨
⎪⎩

0 t′′ < t′

γS〈
[
âc(t′′), â†c(t′)

]〉 t′′ = t′

2γS〈
[
âc(t′′), â†c(t

′)
]〉 t′′ > t′

. (A.7)

With that equation (A.5) becomes

〈â(t′)â†(t′′)〉 = 2γS 〈â†c(t′)âc(t′′)〉 + δ(t′ − t′′). (A.8)

Term 3

〈â†(t′)â(t′′)〉 = 〈(â†c + ξt†a
) (
âc + ξta

)〉
= 2γS 〈â†c(t′)âc(t′′)〉, (A.9)

Term 4

〈â†(t′)â†(t′′)〉 = 〈â(t′)â(t′′)〉∗ = 2γS 〈âc(t′)âc(t′′)〉∗

= 2γS 〈âc(t′)âc(t′′)〉 (A.10)

Putting these four terms ( (A.4),(A.8),(A.9),(A.10)) into expression (A.1) and noting the sim-
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ilarity between terms 1 and 4 and the terms 2 and 3 the correlation function for the squeezed field
is then given by

〈XX†(t′)XX(t′′)〉 = γS
[〈âc(t′)âc(t′′)〉 + 〈â†c(t′)âc(t′′)〉

]
+

1
4
δ(t′ − t′′). (A.11)
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