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Abstract

The Jaynes Cummings Model with driving is considered. We attempt to extend
previous results to include atomic and cavity detunings. Analytical expressions
for the energies are derived for the case of atomic detuning. For the case of
cavity detuning, the solution scheme fails and no exact solutions are possible.
Non-degenerate perturbation theory is used to find the first order energy shifts
for the case of small detuning. These analytical results are compared with fully
numerical simulations of the system with detunings.
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Chapter 1

Introduction

The interaction of matter with radiation has been one of the driving forces of
modern physics. The problem of blackbody radiation led Planck to reluctantly
introduce the idea of quantisation at the turn of the previous century. In de-
scribing the photoelectric effect Einstein, in one of his seminal papers of 1905,
introduced the concept of the photon. The problems of spectral radiation from
atoms culminated in the development of Quantum Mechanics during the 1920s.
Physics’ most accurate theory, Quantum Electrodynamics(QED) describes the
interaction of electrons and other leptons with the electromagnetic field. The
advent of the laser has not only opened up new vistas in physics research, but
also revolutionised communications.

In more recent years the advent of atom trapping and optical microcavities
has opened new opportunities to test fundamental physics and possible links
to future technologies, for example Quantum Computing. One of the areas of
Quantum Optics that relates to this is known as Cavity Quantum Electrody-
namics(CQED). CQED is an area of considerable theoretical and experimental
interest. The core system of Cavity QED is a that of cold atoms held inside an
optical resonator interacting with external laser light fields. In this report we
examine a model of this system.

The Jaynes Cummings Model describes a two level atom in the radiation
field. Much of the initial work on two level systems was undertaken in the
context of magnetic resonance of spin-1/2 particles. In an optics context this
two level model was put forward in 1963 by Jaynes and Cummings[1].

The Jaynes Cummings Model is the one of the simplest systems in quantum
optics. Not only can it be solved exactly but it also displays interesting phe-
nomena of more general interest, e.g. collapse-revival phenomena. This means
that the Jaynes-Cummings Model serves as a useful approximation to more
complicated systems. Hence it is still a research topic some 40 years after its
introduction.

This work examines an extension of the Jaynes Cummings Model that in-
cludes an external driving field. This introduction of the driving field is neces-
sary to provide comparison between theory and experiment, as in experiments
the atom-cavity system is probed by an external laser field to retrieve informa-
tion about the system. We begin with a section outlining the Jaynes Cummings
Model and its solutions. The displacement and squeezing transformations that
are required are then introduced. Proceeding onto the body of the work we cover
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a minor extension of analytical work undertaken by Alsing and coworkers[2].
First order perturbation theory is used to derive results in regimes where the
exact methods fail. Finally we look at some numerical simulations that compli-
ment work of earlier sections.
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Chapter 2

Background

This section covers the necessary background to understanding the body of this
report. We begin with a discussion of the Jaynes Cummings Model and its
solutions. This is followed by sections discussing the Displacement and Squeez-
ing Operators. The information contained herein relies upon the textbooks of
Walls[3], and Gerry and Knight[4].

2.1 Jaynes Cummings Model

The Jaynes Cummings Model is an idealised model of the interaction of an atom
with the radiation field. We assume that we can isolate and drive one particular
one atomic transition and hence ignore the rest of the atomic structure. So we
can model the atom as having only two levels. For simplicity we only consider
the interaction with a single mode of radiation. The interaction of radiation and
the atom is described by the dipole interaction, ĤI = −d · E where d and E are
the atomic dipole moment and the Electric field respectively. Upon imposing
quantisation this becomes

ih̄g
(

a† − a
)

(σ− + σ+)

Here g is the dipole coupling constant that takes up the normalisation constant
from the EM wave as well as the dipole matrix elements. a and a† are the
creation and annihilation operators for the radiation field. They obey the usual
commutation relations

[

a, a†
]

= 1 (2.1)

The atomic raising and lowering operators σ±, and atomic inversion operator
σz are defined as

σ+ =
∣

∣+〉〈−
∣

∣ (2.2)

σ− =
∣

∣−〉〈+
∣

∣ (2.3)

σz =
∣

∣+〉〈+
∣

∣−
∣

∣−〉〈−
∣

∣ (2.4)

where
∣

∣+〉 is the excited state and
∣

∣−〉 is the ground state. From the definitions
it is easily shown that these operators are formally identical to the Pauli spin
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operators and hence satisfy the commutation relations

[σ+, σ−] = σz (2.5)

[σz , σ±] = ±2σ± (2.6)

It follows that we may express the Hamiltonian of the bare atom as

ĤA = h̄ωa/2
(
∣

∣+〉〈+
∣

∣−
∣

∣−〉〈−
∣

∣

)

= h̄ωa/2σz

using the fact that we have set the zero of our energy scale halfway between the
ground and excited state energies.

We may drop the non energy conserving terms like a†σ+ and aσ− which re-
spectively create a photon while exciting the atom and annihilate a photon while
the atom decays to its lower state. Finally the Jaynes Cummings Hamiltonian
is given by

H = h̄ωca
†a+

h̄ωa

2
σz + ih̄g

(

a†σ− − aσ+

)

(2.7)

The first term corresponds to the energy of the photons in the cavity, where
ωc is the resonant frequency of the cavity. The second term to the atomic
energy, where ωa is the frequency of the atomic transition that we have isolated.
The third term describes the interaction between the two via electric dipole
transitions. This may be solved exactly by noting that the interaction term
couples pairs of states,

∣

∣n,+〉 and
∣

∣n + 1,−〉. I will omit the details of the
calculation, and merely present the final results. These are taken from Gerry
and Knight[4].

En,ξ = h̄ωc

(

n+
1

2

)

± h̄Ωn(∆) (2.8)

∣

∣ψn,u〉 =
1√
2

(

Ωn(∆) + ∆

Ωn(∆)

∣

∣n,+〉 +
Ωn(∆) − ∆

Ωn(∆)

∣

∣n+ 1,−〉
)

(2.9)

∣

∣ψn,l〉 =
1√
2

(

Ωn(∆) − ∆

Ωn(∆)

∣

∣n,+〉 +
Ωn(∆) + ∆

Ωn(∆)

∣

∣n+ 1,−〉
)

(2.10)

Ωn(∆) =

[

(ωa − ωc)
2

4
+ g2(n+ 1)

]1/2

∆ = ωa − ωc (2.11)

2.2 Displacement Operator

The Displacement operator is used to generate coherent states. Coherent states
are of interest as they are as close as a quantum mechanical state comes to a
classical wave of well defined amplitude and phase. As a result coherent states
and the displacement operator are ubiquitous in Quantum Optics.

A coherent state is created by applying the displacement operator to the
ground state of the harmonic oscillator. The displacement operator is defined
as

D(α) = exp
(

αa† − α∗a
)

(2.12)

It is a unitary operator and hence obeys

D†(α) = D−1(α) = D(−α) (2.13)
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The quantised radiation field is a set of quantised harmonic oscillators, so the
vacuum state ,denoted

∣

∣0〉, corresponds to the ground state of a harmonic oscil-
lator. A coherent state of complex amplitude α is given by

∣

∣α〉 = D(α)
∣

∣0〉 (2.14)

The displacement operator can be applied to any number state, displacing it
away from the origin. Unlike the displaced vacuum, these states seem to lack
any larger meaning.

Throughout this report we will need to apply unitary transformations. Of
considerable use in calculating these is the Baker-Hausdorff Lemma [5]

eiλBAe−iλB = A+ iλ[B,A] +
(iλ)2

2!
[B, [B,A]] + . . . (2.15)

where B is a hermitian operator and λ is real. Applying this we can transform
the creation and annihilation operators according to

D†(α)aD(α) = a+ α (2.16)

D†(α)a†D(α) = a† + α∗ (2.17)

As suggested by the name, this operator displaces the vacuum state away
from the origin. Under time evolution the wavefunction oscillates about the
origin at resonant frequency ω in a similar fashion to that of a classical harmonic
oscillator. This can be made explicit by transforming to the Heisenberg picture
where the operators carry all the time dependence. We introduce the unitary
time evolution operator

Û(t) = exp
[

−iĤt/h̄
]

(2.18)

= exp
[

−iωa†at
]

The second line specialising to the case of the harmonic oscillator Hamiltonian
H = h̄ωa†a as our state is a harmonic oscillator eigenstate. In the Heisenberg
picture the annihilation operator is given by

a(t) = U †(t)aU(t) = a(0)e−iωt (2.19)

We can apply a similar transformation to the the displacement operator.

U †(t)D(α)U(t) = U †
∞
∑

n=0

[

αa† − α∗a
]n

n!
U

=

∞
∑

n=0

[

αU †a†U − α∗U †aU
]n

n!

= exp
[

αeiωta† − α∗e−iωta
]

(2.20)

where in the second line we have used the unitarity of U(t) to insert U †U = 1
as required. It follows that under time evolution a coherent state evolves as

∣

∣α(t)〉 = U(t)
∣

∣α〉 =
∣

∣αeiωt〉
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In comparison with Eq.(2.16) we see that now the operators under time
evolution transform according to

D†(αe−iωt)aD(αe−iωt) = a+ αe−iωt (2.21)

D†(αe−iωt)a†D(αe−iωt) = a+ α∗eiωt (2.22)

So we see that the displacement of the state oscillates sinusoidally with time,
confirming the earlier comparison to the motion of a classical harmonic oscilla-
tor.

2.3 Squeezing Operator

It is a general result of quantum mechanics that two incompatible observables
must satisfy an uncertainty principle, the product of their variances has a
nonzero lower bound. The most quoted example is the well known position-
momentum uncertainty relation

∆x∆p ≥ h̄

2

This can be recast in a dimensionless form which is useful for optics. The two
quadratures are X̂1,X̂2, analogous to the canonical position, x̂, and momentum
p̂. The quadrature operators defined as

X̂1 =
a+ a†

2
=

√

mω

2h̄
x̂ (2.23)

X̂2 =
a− a†

2i
=

1√
2h̄mω

p̂ (2.24)

where we have used the definitions of a, a†

a =

√

mω

2h̄

(

x̂+ i
p̂

mω

)

a† =

√

mω

2h̄

(

x̂+ i
p̂

mω

)

The quadrature operators must satisfy the following uncertainty relation.

∆X1∆X2 ≥ 1/2 (2.25)

In the vacuum state the equality is satisfied with equal uncertainty in both
quadratures. The squeezing transformation reduces the quantum uncertainty of
a state in one quadrature at the expense of increased uncertainty in the other
quadrature. This has application in increasing the accuracy of physical measure-
ments, whereby we can reduce the quantum uncertainty on our measurement
channel below vacuum levels.

The squeezing operator is defined as

S(η) = exp

[

1

2

(

ηa†
2 − η∗a2

)

]

(2.26)

where the squeeze parameter η is complex. Like the Displacement operator,
S(η) is unitary, so that

S†(η) = S−1(η) = S(−η)
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Using the Baker-Hausdorff Lemma it can be shown that the creation and
annihilation operators transform according to

S†(η)aS(η) = a cosh r − a†eiθ sinh r (2.27)

S†(η)a†S(η) = a† cosh r − ae−iθ sinh r (2.28)

where we have used η = reiθ. The effect of r is to set the magnitude of the
squeezing, θ determines the rotation of the uncertainty ellipse with respect to
the quadrature axes.

For example if we consider the squeezed vacuum state

∣

∣η〉 = S†(η)
∣

∣0〉, (2.29)

then we can calculate the variance of the quadrature operators with respect to
the squeezed state.

〈
(

∆X̂1

)2

〉 =
1

4

[

sinh2 r + cosh2 r − 2 cos θ cosh r sinh r
]

(2.30)

〈
(

∆X̂2

)2

〉 =
1

4

[

sinh2 r + cosh2 r + 2 cos θ cosh r sinh r
]

. (2.31)

Then for θ = 0

〈
(

∆X̂1

)2

〉 =
1

4
e−2r (2.32)

〈
(

∆X̂2

)2

〉 =
1

4
e2r (2.33)

So we see that in this instance the X1 quadrature is squeezed.
In a similar fashion to that of the displacement operator we can introduce

time evolution with the results that

U †S(η)U = exp

[

1

2

(

ηe2iωta†
2 − η∗e−2iωta2

)

]

(2.34)

Having discussed the properties of the squeezing operator I should at least
mention the states. A squeezed vacuum state is created via

∣

∣η〉 = S(η)
∣

∣0〉 (2.35)

As with the coherent states it is possible to apply the squeezing transformation
to any state. A common extension it to combine displacement and squeezing to
create a displaced squeezed number state

∣

∣α, η;n〉 = D(α)S(η)
∣

∣n〉
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Chapter 3

Analytical Work

This chapter covers the work undertaken in carrying out the extension of Als-
ing’s results[2]. The solution scheme is identical and the final results are even
contained as an aside in the original paper. Despite this, this has been what I
have spent the largest share of my time working on, in addition to being the
vehicle for learning more about Quantum Optics. The debt owed to the origi-
nal work cannot be overstated. In this section we look at the extension of the
Jaynes Cummings Model to include an external laser driving field. This can be
oriented to drive the atom-cavity system by either directly driving the atoms
through the side of the cavity or by driving the cavity by coupling through one
of the mirrors.

The Jaynes Cummings Model with a classical driving field is given by the
following Hamiltonian

H = h̄ωca
†a+

h̄ωa

2
σz + ih̄g(a†σ− − aσ+) + ih̄E

[(

σ+

a†

)

e−iωLt −
(

σ−
a

)

eiωLt

]

(3.1)
In the final term, the top line applies to the laser driving the atom, and the

lower line for the laser driving the cavity. The laser is at frequency ωL.
We can make a unitary transformation to an “interaction” picture which

eliminates the time dependence of the driving field. The “interaction” picture
used does not follow the usual scheme of eliminating the bare Hamiltonian,
hence the quotation marks. This transformation is required in order to allow
any progress in finding the energy eigenvalues and eigenstates of the system.
The energy eigenvalues that we will find are better termed quasi-energies as they
define shifts in the energy levels around the energies of the Hamiltonian used in
the unitary transformation. These energy shifts are added to every energy level
of the transforming Hamiltonian Em = h̄ωL(m− 1/2) for m = 0, 1, 2, . . ..

In this case we apply the following unitary transformation

U(t) = exp

(−i
h̄

[

h̄ωLa
†a+

h̄ωL

2
σz

]

t

)

(3.2)

The operators and states transform according to

Â(t) = U †(t)ÂU(t)
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|ψI〉 = U †(t)|ψS〉
From the Baker-Hausdorff Theorem, we find that

a(t) = a(0)e−iωLt (3.3)

σ−(t) = σ−(0)e−iωLt (3.4)

with the adjoint expressions following from these. In the “interaction”picture
we have the following problem

ih̄
d|ψI〉
dt

=

[

h̄∆ca
†a+

h̄∆a

2
σz + ih̄g

(

a†σ− − aσ+

)

+ ih̄E
(

σ+ − σ−
a† − a

)]

∣

∣ψI〉
(3.5)

where we have defined

∆c = ωc − ωL ∆a = ωa − ωL (3.6)

Following normal procedure we may now seek solutions to this equation that
satisfy

H |ψI〉 = E|ψI〉 (3.7)

We will proceed by deriving the results for atomic detuning i.e. ωa 6= ωc =
ωL. The solution scheme we follow is borrowed from [2]. I will then show how
this method fails for the case of a cavity detuning where ωc 6= ωL. From here
the need for numerical simulations becomes clear.

3.1 Atomic Detuning, Atomic Driving

In this section we look at the case where the laser is coupling to the atoms and
is on resonance with the cavity, but ∆a 6= 0. In this case the eigenvalue problem
is

[

h̄∆a

2
σz + ih̄g

(

a†σ− − aσ+

)

+ ih̄E (σ+ − σ−)

]

∣

∣ψE〉 = E
∣

∣ψE〉 (3.8)

We assume a solution of the form

∣

∣ψ〉 =
∣

∣ψ+
E〉
∣

∣+〉 +
∣

∣ψ−
E 〉
∣

∣−〉 (3.9)

On substituting this in and projecting against 〈±
∣

∣ we find the coupled equations

(

E − h̄∆a

2

)

∣

∣ψ+
E〉 + (ih̄ga− ih̄E)

∣

∣ψ−
E 〉 = 0 (3.10)

(

−ih̄ga† + ih̄E
) ∣

∣ψ+
E〉 +

(

E +
h̄∆a

2

)

∣

∣ψ−
E 〉 = 0 (3.11)

From Eq.(3.10) we have

∣

∣ψ+
E 〉 =

− (ih̄ga− ih̄E)

E − h̄∆a/2

∣

∣ψ−
E 〉 (3.12)
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On substituting into Eq.(3.11) we obtain

(

E2 − h̄2∆2
a

4

)

∣

∣ψ−
E 〉 = h̄2g2

(

a† − E/g
)

(a− E/g)
∣

∣ψ−
E 〉 (3.13)

The above equation may be transformed to the harmonic oscillator eigen-
value equation by applying the unitary displacement operator. If we multiply
Eq.(3.13) by D†(E/g) and insert D†(E/g)D(E/g) = 1 as required then we arrive
at the transformed equation

a†a
∣

∣ψ̃−
E 〉 =

(

E2

h̄2g2
− ∆2

a

4g2

)

∣

∣ψ̃−
E 〉 (3.14)

where
∣

∣ψ̃−
E 〉 = D†(E/g)

∣

∣ψ−
E 〉 (3.15)

Evidently Eq.(3.14) is satisfied by the number states. Since we must have

a†a
∣

∣n〉 = n
∣

∣n〉,

the energies must satisfy

(

E2

h̄2g2
− ∆2

a

4g2

)

= n. (3.16)

It follows that

E0 =
h̄∆a

2
(3.17)

En,u = +h̄g

√

n+
∆2

a

4g2
(3.18)

En,l = −h̄g
√

n+
∆2

a

4g2
(3.19)

Upon inverting the displacement of the eigenstates and using Eq.(3.12) we
have

∣

∣ψ−
E 〉 ≡

{

∣

∣ψ−
0 〉 =

∣

∣E/g, 0〉
∣

∣ψ−
n,ξ〉 =

∣

∣E/g, n〉 n = 1, 2, . . . ξ = u, l
(3.20)

∣

∣ψ+
E〉 ≡

{
∣

∣ψ−
0 〉 = 0

∣

∣ψ−
n,ξ〉 = −ih̄g

√
n

En,ξ−h̄∆a/2

∣

∣E/g, n− 1〉 n = 1, 2, . . .
(3.21)

Corresponding to Eq.(3.17) we have the state

∣

∣ψ0〉 =
∣

∣E/g, 0〉
∣

∣−〉 (3.22)

The other states are specified by

∣

∣ψn,ξ〉 = cn,ξ

(

−ih̄
√
n
∣

∣E/g, n− 1〉
∣

∣+〉 + (En,ξ − h̄∆a/2)
∣

∣E/g, n〉
∣

∣−〉
)

n = 1, 2, . . .
(3.23)

The above expression is not normalised as the full expression is needlessly messy
without adding any insight. Nonetheless we may note that in addition to re-
covering the resonant states as ∆a → 0 and g ≫ ∆a, the excited and ground
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state of the atom effectively decouple as ∆a → ∞. On the approach to the limit
∆a = ∞ there is a small dispersive interaction.

We now return to the Schrödinger picture by inverting the unitary trans-
formation carried out in Eq.(3.5). We find the following expressions for the
states

∣

∣ψS
0 〉 = e−ωLt/2

∣

∣e−iωLtE/g; 〉
∣

∣−〉 (3.24)

and

∣

∣ψS
n,ξ〉 = cn,ξe

−i(n−1/2)ωLt
(

−ih̄
√
n
∣

∣e−iωLtE/g, n− 1〉
∣

∣+〉
+ (En,ξ − h̄∆a/2)

∣

∣e−iωLtE/g, n〉
∣

∣−〉
)

n = 1, 2, . . . ξ = u, l (3.25)

The quasienergies and states have the correct limit as ∆a → 0. In the
Schrödinger picture there is no simple expression for the time evolution of these
states. This is due to the presence of the displacement each state includes
components of all number states, and hence all possible harmonics ωm = (m−
1/2)ωL for m = 0, 1, 2, . . .. The quasienergies then define shifts that are applied
to this ladder of energies.

3.2 Atomic Detuning, Cavity Driving

In this section we move on to the case where the external laser field is driving
the cavity. We are still in the regime where ωa 6= ωc = ωL. We will proceed
by obtaining a set of coupled equations for

∣

∣ψ+
E〉 and

∣

∣ψ−
E 〉. These can then

be decoupled by judicious use of creation and annihilation operators and their
commutation relations. The resulting eigenvalue problems for

∣

∣ψ−
E 〉 is quadratic

in a and a†. Fortunately this may be transformed into a harmonic oscillator
Hamiltonian by a combination of squeezing and displacement transformations.
In this case the equation we seek to solve is:

[

h̄∆a

2
σz + ih̄g

(

a†σ− − aσ+

)

+ ih̄E
(

a† − a
)

]

∣

∣ψE〉 = E
∣

∣ψE〉 (3.26)

Again assuming a solution of the form in Eq.(3.9), upon substitution in we
obtain the following coupled equations

[(

E − h̄∆a

2

)

− ih̄E
(

a† − a
)

]

∣

∣ψ+
E 〉 − ih̄ga

∣

∣ψ−
E 〉 = 0 (3.27)

[(

E +
h̄∆a

2

)

− ih̄E
(

a† − a
)

]

∣

∣ψ−
E 〉 + ih̄ga†

∣

∣ψ+
E〉 = 0 (3.28)

We multiply these two equations from the left by a† and a respectively, and use
the commutation relations in Eq.(2.1) to obtain

[(

E − h̄∆a

2

)

− ih̄E
(

a† − a
)

]

a†
∣

∣ψ+
E〉 + ih̄ga†a

∣

∣ψ−
E 〉 − ih̄E

∣

∣ψ+
E〉 = 0(3.29)

[(

E +
h̄∆a

2

)

− ih̄E
(

a† − a
)

]

a
∣

∣ψ−
E 〉 − ih̄gaa†

∣

∣ψ+
E〉 − ih̄E

∣

∣ψ−
E 〉 = 0(3.30)
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We can solve Eqs.(3.27) for a
∣

∣ψ+
E〉 and a†

∣

∣ψ−
E 〉, and substitute these into

Eq.(3.29). I will note in passing that this is valid as we have effectively intro-
duced two new variables and equations by multiplying Eq.(3.27) by a and a†.
So we can reuse our original equations to help eliminate one of the variables.
Later on it would be necessary to check that the states we calculate actually
solve the original equations. From this we gain an equation for

∣

∣ψ+
E〉,

∣

∣ψ+
E〉 =

{ −1

h̄2Eg

[

(

E − ih̄E
(

a† − a
))2 − h̄2∆2

a

4

]

+
g

E

}

∣

∣ψ−
E 〉 (3.31)

From this we can eliminate
∣

∣ψ+
E〉 from the equations and gain a single equation

in terms of
∣

∣ψ−
E 〉

{[

(

E

g

(

a† − a
)

+ i
E

h̄g

)2

+
∆2

a

4g2
+ aa†

]

[

(

E

g

(

a† − a
)

+ i
E

h̄g

)2

+
∆2

a

4g2
+ a†a

]

+
E2

g2

}

∣

∣ψ−
E 〉 = 0 (3.32)

Firstly, note that this equation is quartic in the creation and annihilation oper-
ators. Fortunately in this case we are able to factorise the above expression into
two commuting quadratic operators. This will not be possible for the ∆c 6= 0
case. The factorised operators are

Ôp(E) =

[E
g

(

a† − a
)

+ i
E

h̄g

]2

+
∆2

a

4g2
+
aa† + a†a

2
+

1

2

√

1 − 4E2

g2
(3.33)

Ôm(E) =

[E
g

(

a† − a
)

+ i
E

h̄g

]2

+
∆2

a

4g2
+
aa† + a†a

2
− 1

2

√

1 − 4E2

g2
(3.34)

So we seek solutions to

Ôp(E)Ôm(E)
∣

∣ψ−
E 〉 = 0 (3.35)

From this we see that the solution will take the form
∣

∣ψ−
E 〉 = cp

∣

∣ψ−
E,p〉 + cm

∣

∣ψ−
E,m〉 (3.36)

where
∣

∣ψ−
E,p〉 and cm

∣

∣ψ−
E,m〉 are the solutions to

Ôp

∣

∣ψ−
E,p〉 = 0 (3.37)

Ôm

∣

∣ψ−
E,m〉 = 0 (3.38)

In order to solve these equations we apply squeezing and displacement trans-
formations to transform these equations into the eigenvalue equations of a har-
monic oscillator. The explicit details of the transformation are contained in
Appendix(A). We multiply Eqs.(3.37),(3.38) by S†(η)D†(α) and insertD(α),S(η)
and their adjoints as required. We transform the creation and annihilation op-
erators according to

S†(η)D†(α)aD(α)S(η) = a cosh η + a† sinh η + α (3.39)

S†(η)D†(α)a†D(α)S(η) = a† cosh η + a sinh η + α∗ (3.40)
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with the parameters of the transformation given by

η = r

e2r =
√

1 − 4E2/g2 (3.41)

α =
−2iEE
h̄g2

(

1 − 4E2

g2

)

(3.42)

Then our transformed eigenvalue problems are given by

a†a
∣

∣ψ̃−
E,p〉 =

[

(

1 − 4E2

g2

)−1
(

E2

h̄2g2

(

1 − 4E2

g2

)−2

+
∆2

a

4g2

)

+ 1

]

∣

∣ψ̃−
E,p〉 (3.43)

a†a
∣

∣ψ̃−
E,m〉 =

[

(

1 − 4E2

g2

)−1
(

E2

h̄2g2

(

1 − 4E2

g2

)−2

+
∆2

a

4g2

)]

∣

∣ψ̃−
E,m〉 (3.44)

where
∣

∣ψ̃E〉 = S†(r)D†(α)
∣

∣ψE〉 (3.45)

From Eq.(3.43) we see that the eigenstates
∣

∣ψ̃E〉 are the Fock states. Hence
the energy eigenvalues are given by

En = ±h̄g
(

1 − 4E2

g2

)1/2
√

∆2
a

4g2
+ n

(

1 − 4E2

g2

)

(3.46)

The other equation yields the same spectrum of energies, with n→ n− 1. The
eigenstates of the two equations are given by

∣

∣ψ̃−
n,p〉 =

∣

∣n− 1〉 n = 1, 2, . . . (3.47)
∣

∣ψ̃−
n,m〉 =

∣

∣n〉 n = 1, 2, . . . (3.48)
∣

∣ψ̃0〉 =
∣

∣0〉 (3.49)

Following on from the expressions utilised in the section on the laser coupling
to the atom, it is apparent that the expressions for the eigenstates are likely to
be exceedingly messy with little return for a large investment of time. I will
outline how the eigenstates are formed as I have elected not to pursue this as it
would be an exercise in tedious algebra for little gain. To find the eigenstates in
the Schrödinger picture it is necessary to invert the displacement and squeezing
transformations on the states. From here Eq.(3.31) is used to express

∣

∣ψ+
E〉 in

terms of these states. The constants cp and cmare fixed via the normalisation
requirement.

In an analogous fashion to the case where the laser is driving the atom,
these quasi-energies define shifts of energy levels around the energy eigenvalues
of the transforming Hamiltonian. This ladder of quasi-energies is superimposed
on every energy level of the bare Hamiltonian. In Figure (3.1) the spectrum
is shown for the lowest lying energy eigenvalues up to a driving amplitude of
E = g/2. The reason being that for E = g/2 all of the discrete energies have
converged to zero. At the critical point we have infinitely many energy levels all
converging onto one point. This implies that above this this critical point we
have an infinite number of states at each point, i.e have a continuous spectrum.
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Figure 3.1: Quasi-energies of resonant system, laser driving the cavity

This can be related to the spectra of the operators in Eq.(3.1). The terms
in a†a and a†σ− − aσ+ have a discrete spectrum as shown in Section 2.1. The
driving term a† − a has a continuous spectrum as may be verified by noting
that it is proportional to X̂2, one of the quadrature operators which possesses a
constant spectrum. The threshold condition can be viewed as varying between
the discrete spectrum of the Jaynes Cummings Hamiltonian and the continuous
spectrum of the driving term.

3.3 Cavity Detuning, Cavity Driving

In this section I will show how the methods applied above break down when
applied to the case of an off resonant cavity i.e. ∆c 6= 0. The basic problem can
be seen by considering E → E− h̄∆aa

†a in the original expressions for Ôp,m(E)
in Eq(3.33). This leads to terms quartic in the creation and annihilation op-
erators. From there, no further progress is possible. For simplicity we will set
∆a = 0. Restating Eq.(3.1)

H = h̄ωca
†a+

h̄ωL

2
σz + ih̄g(a†σ− − aσ+) + ih̄E

[(

σ+

a†

)

e−iωLt −
(

σ−
a

)

eiωLt

]

(3.50)
For the case of cavity driving we have the coupled equations for the states

[

h̄∆ca
†a− E + ih̄E

(

a† − a
)] ∣

∣ψ+
E〉 − ih̄ga

∣

∣ψ−
E 〉 = 0 (3.51)

[

h̄∆ca
†a− E + ih̄E

(

a† − a
)] ∣

∣ψ−
E 〉 + ih̄ga†

∣

∣ψ+
E〉 = 0 (3.52)

As before we multiply by a† and a respectively to arrive at equations

([

h̄∆c

(

a†a− 1
)

− E + ih̄E
(

a† − a
)]

a† + ih̄E
)
∣

∣ψ+
E〉 − ih̄ga†a

∣

∣ψ−
E 〉 = 0 (3.53)
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([

h̄∆c

(

a†a+ 1
)

− E + ih̄E
(

a† − a
)]

a+ ih̄E
) ∣

∣ψ−
E 〉 + ih̄gaa†

∣

∣ψ+
E〉 = 0 (3.54)

Using expressions for a
∣

∣ψ−
E 〉 and a†

∣

∣ψ+
E〉 from Eq.(3.51) we can gain an ex-

pression for
∣

∣ψ+
E〉:

∣

∣ψ+
E 〉 =

i

h̄g

[

h̄∆c

(

a†a− 1
)

− E + ih̄E
(

a† − a
)]

[

h̄∆ca
†a− E + ih̄E

(

a† − a
)] ∣

∣ψ−
E 〉 − ih̄ga†a

∣

∣ψ−
E 〉 (3.55)

This yields the rather awe inspiring eigenvalue problem for
∣

∣ψ−
E 〉. Rather

than directly express that rather messy problem I will show one of the analogous
operators to Ô(E). In this case we have something like

Ô(E) =
[

h̄∆c

(

a†a± 1
)

− E + ih̄E
(

a† − a
)] [

h̄∆ca
†a− E + ih̄E

(

a† − a
)]

(3.56)
As promised the expression is quartic in the creation and annihilation opera-
tors. No one has yet developed any techniques for factorising arbitrary quartic
terms in a, a† into quadratic ones. We are also unable to directly solve quartic
expressions like these, hence no further progress is possible.

A similar problem holds for the case of coupling to the atom. This may be
brought out by considering a displacement transformation. We start from

H = h̄∆aa
†a+ ih̄g

(

a†σ− − aσ+

)

+ ih̄E (σ+ − σ−) (3.57)

Now applying a displacement

D†(α)aD(α) = a+ α

our Hamiltonian becomes

H ′ = h̄∆c

(

a† + α∗) (a+ α) + ih̄g
[(

a† + α∗)σ− − (a+ α)σ+

]

+ ih̄E (σ+ − σ−) +
∣

∣α
∣

∣

2

= h̄∆c

(

a†a+
∣

∣α
∣

∣

2
)

+ ih̄g
(

a†σ− − aσ+

)

+h̄∆c

(

αa† + α∗a
)

+ (ih̄E − ih̄gα) (σ+ − σ−) (3.58)

So if we choose α = E/g then we have a similar form of operators as exists in
the case of coupling to the cavity and similar problems will hold here.

H = h̄∆c

(

a†a+ E2/g2
)

+ ih̄g
(

a†σ− − aσ+

)

− h̄Eg
∆c

(

a† + a
)

(3.59)

Consequently no further exact analytical work is possible at this stage.
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Chapter 4

Perturbation Theory

This chapter outlines a few attempts to derive approximate analytical results
to aid understanding of the numerical simulations. Typically these have treated
the h̄∆ca

†a term as a perturbation upon the exact eigenstates found in the
previous chapter. These shifts are found in the case where ∆a = 0. The energy
shifts are found to first order in ∆c.

4.1 Cavity Detuning, Atomic Driving

Our initial eigenstates in the limit that ∆c = 0 are

∣

∣ψn,u〉 =
1√
2

(
∣

∣E/g;n− 1〉
∣

∣+〉 + i
∣

∣E/g;n〉
∣

∣−〉
)

(4.1)

∣

∣ψn,l〉 =
1√
2

(
∣

∣E/g;n− 1〉
∣

∣+〉 − i
∣

∣E/g;n〉
∣

∣−〉
)

(4.2)

where
∣

∣α;n〉 = D(α)
∣

∣n〉. Seeing as these states are non-degenerate we may
proceed with simple first order perturbation theory. In general the first order
energy shift for a state of the unperturbed Hamiltonian,

∣

∣n〉, is given by

E(1)
n = λ〈n

∣

∣V
∣

∣n〉

where λ is a small parameter and V is the perturbation. In our case we have

E
(1)
n,ξ = ∆c〈ψn,ξ

∣

∣a†a
∣

∣ψn,ξ〉 (4.3)

We now insert the form of the exact eigenstates, and use the Displacement
transformation on a†a to arrive at our result. Beginning with the ground state
we find

E
(1)
0 = 〈0

∣

∣D†(α)a†aD(α)
∣

∣0〉
= 〈0

∣

∣a†a+ α⋆a+ αa† +
∣

∣α
∣

∣

2∣
∣0〉

=
∣

∣α
∣

∣

2
= E2/g2 (4.4)

Similar for the excited states

E(1)
n,u =

1

2

(

〈n− 1,+
∣

∣− i〈n,−
∣

∣

)

D†(α)a†aD(α)
(∣

∣n− 1,+〉 + i
∣

∣n,−〉
)
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=
1

2

(

〈n− 1,+
∣

∣− i〈n,−
∣

∣

) (

a† + α∗) (a+ α)
(
∣

∣n− 1,+〉 + i
∣

∣n,−〉
)

=
(

〈n− 1,+
∣

∣− i〈n,−
∣

∣

)

(

a†a+ α∗a+ αa† |α|2
2

)

(∣

∣n− 1,+〉+ i
∣

∣n,−〉
)

= n− 1/2 + |α|2 = n− 1/2 + E2/g2 (4.5)

An identical result also holds for E
(1)
n,l . This simple result will be used in the

next section to provide comparison with the numerical simulations.

4.2 Cavity Detuning, Cavity Driving

In this case the results are of limited usefulness. Due to the transition between
discrete and continuous energy spectra, the exact solutions are only valid for 0 ≤
E < g/2. That said, due to the overall difficulty of interpreting the numerical
results, any light shed is useful.

In a similar manner to the previous section we use the fully resonant(ωa =
ωL = ωc) eigenstates as found in Section IV of [2]. We have as our basis states

∣

∣χ0〉 =
∣

∣r, 0; 0〉
∣

∣M〉 (4.6)
∣

∣χn,u〉 =
1√
2

(

∣

∣r, β(E(0)
n,u);n〉

∣

∣P 〉 + i
∣

∣r, β(E(0)
n,u);n〉

∣

∣M〉
)

(4.7)

∣

∣χn,l〉 =
1√
2

(

∣

∣r, β(E
(0)
n,l );n〉

∣

∣P 〉 − i
∣

∣r, β(E
(0)
n,l );n〉

∣

∣M〉
)

(4.8)

where
∣

∣η, α;n〉 = D(α)S(η)
∣

∣n〉

∣

∣P 〉 =
1√
2





(

1 +

√

1 − 4E2

g2

)

1

2

∣

∣+〉 −
(

1 −
√

1 − 4E2

g2

)

1

2

∣

∣−〉



 (4.9)

∣

∣M〉 =
1√
2





(

1 +

√

1 − 4E2

g2

)

1

2

∣

∣−〉 −
(

1 −
√

1 − 4E2

g2

)

1

2

∣

∣+〉



(4.10)

where the parameters of squeezing and displacement transformations are

e2r =
√

1 − 4E2/g2 β(E) =
−iE
h̄g

2E/g
1 − 4E2/g2

(4.11)

and the unperturbed energies are defined by

E
(0)
n,ξ = ±h̄g

√
n
[

1 − 4E2/g2
]3/4

(4.12)

Calculating the first order shifts leads to similar manipulations as used above,
where we transform the operator a†a. The required transformations may be
found in Appendix(A).

E(1)
n,u =

1

2

(

〈n− 1
∣

∣〈P
∣

∣− i〈n
∣

∣〈M
∣

∣

)

×
(

S†(η)D†(α)a†aD(α)S(η)
) (
∣

∣n− 1〉
∣

∣P 〉 + i
∣

∣n〉
∣

∣M〉
)

(4.13)
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From the appendix we have that

(

a†a
)′

= S†(η)D†(α)a†aD(α)S(η) = a†a cosh 2r +
cosh 2r − 1

2

− sinh 2r

2

(

a2 + a†
2
)

+ αer
(

a† − a
)

+ |α|2 (4.14)

which holds in the case where α∗ = −α, as is the case here. From here we find
that for two number states

〈n
∣

∣S†(η)D†(α)a†aD(α)S(η)
∣

∣m〉 =

(

n cosh 2r + |α|2 +
cosh 2r − 1

2

)

δn,m

− sinh 2r

2

(

√

m(m− 1)δn,m−2 +
√

(m+ 1)(m+ 2)δn,m+2

)

+ αer
(√
m+ 1δn,m+1 −

√
mδn,m−1

)

(4.15)

For the ground state we have

E
(1)
0 = 〈χ0

∣

∣a†a
∣

∣χ0〉
= 〈0

∣

∣S†(η)a†aS(η)
∣

∣0〉

=
cosh 2r − 1

2
(4.16)

where we have used D(0) = 1 and Eq.(4.15). The shifts for the excited states
are given by:

E(1)
n,u = 1/2

(

〈n− 1
∣

∣〈P
∣

∣− i〈n
∣

∣〈M
∣

∣

) (

S†(η)D†(α)a†aD(α)S(η)
) (∣

∣n− 1〉
∣

∣P 〉 + i
∣

∣n〉
∣

∣M〉
)

= 1/2
[

〈n− 1
∣

∣

(

a†a
)′ ∣
∣n− 1〉 − i〈n

∣

∣

(

a†a
)′ ∣
∣n− 1〉〈M

∣

∣P 〉

+i〈n− 1
∣

∣

(

a†a
)′ ∣
∣n〉〈P

∣

∣M〉 + 〈n
∣

∣

(

a†a
)′ ∣
∣n〉
]

= (n− 1/2) cosh2r + |α|2 +
cosh 2r − 1

2
+

2iEα
g

er
√
n (4.17)

Applying similar steps we also find that

E
(1)
n,l = (n− 1/2) cosh2r + |α|2 +

cosh 2r − 1

2
− 2iE

g
αe−r

√
n (4.18)

If we substitute in the parameters for β(E) and e2r then we arrive at the fol-
lowing form for the first order energy shifts

E(1)
n,u =

n

2

(

1 +
8E2

g2

)

[

(

1 − 4E
g2

)
1

2

+

(

1 − 4E
g2

)− 1

2

]

− 1

2
(4.19)

E
(1)
n,l =

n

2

[

(

1 +
8E2

g2

)
1

2
(

1 − 4E2

g2

)
1

2

+

(

1 − 8E2

g2

)
1

2
(

1 − 4E2

g2

)− 1

2

]

− 1

2

(4.20)
It should be immediately pointed out that these results depend upon e−2r =

(1 − 4E2/g2)−1/2 and so diverge at E = g/2. Another related weakness is
that at E = g/2 all of the zeroth order eigenvalues become degenerate and
nondegenerate perturbation theory breaks down. So these results are only valid
for E < g/2 . As a result of these weaknesses I have been loathe to extend these
results to second order as I doubt the results would be useful. Despite these
shortcomings, they do lend some insight into the numerical simulations.
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Chapter 5

Numerical Simulations

This chapter covers numerical simulations I have undertaken. I have compared
numerical simulations and the exact analytical solutions as a check on the sim-
ulations. The simulations are then extended to cases where there are no exact
analytical results and the only comparisons are from perturbation theory. I
have focused on the regime where ∆c is small so that I may compare the nu-
merical simulations with the results from perturbation theory. The numerical
simulations were undertaken in Matlab.

The basic procedure was to select an appropriate set of basis states and then
express the operators in the Hamiltonian as matrices in this basis. The resulting
matrix representing the Hamiltonian is diagonalised numerically for a given set
of parameters g, ∆a, ∆c and E . This was done using Matlab’s built in solving
routine to extract the energy eigenvalues and eigenvectors.

At some point I must mention units. I have elected to set h̄ = 1 explicitly
and have usually left g = 1 as we can scale the relative size of terms by varying
the other two parameters, E and ∆a or ∆c.

I initially planned on using two sets of basis states. The first set of states
were the separate eigenstates of the terms a†a and σz, combinations of number
and atomic eigenstates,

∣

∣n,±〉. These states have the advantage of being the
simplest to implement.

The other set of states were the dressed states. These diagonalise the Jaynes
Cummings Hamiltonian

h̄∆ca
†a+ h̄∆a/2σz + ih̄g

(

a†σ− − aσ+

)

. (5.1)

These states obviously diagonalise the full Hamiltonian for E = 0. Unfortunately
my implementation of these introduced spurious eigenvalues that I could not
rectify. In addition these calculations were not substantially faster nor the
results obviously superior. Hence all simulations were undertaken with a number
state basis.

5.1 Atomic Detuning, Cavity Driving

In this section I will compare the case where we have full analytical solutions
with their numerical counterparts. This lends the numerical simulations a sem-
blance of validity for the later purely numerical work. In the case where ∆c = 0,
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Figure 5.1: Energy Spectrum for Atomic Detuning, Cavity Coupling. ∆a=0.1,
basis size =300, Dotted Lines analytical solution, Crosses Numerical solution

∆a 6= 0 we have from Eq. (3.46),

H =
h̄∆a

2
σz + ih̄g

(

a†σ− − aσ+

)

+ ih̄E
(

a† − a
)

(5.2)

En = ±h̄g
(

1 − 4E2

g2

)1/2
√

∆2
a

4g2
+ n

(

1 − 4E2

g2

)1/2

. (5.3)

As noted earlier these energies are discrete for E < g/2, but for E ≥ g/2
they are continuous. From Figures (5.1) and (5.2) we see that the analytical
results agree closely with their numerical counterparts below the critical point.
Above this point the predicted energies, given by Eq. (5.3), become complex.
This breakdown is consistent with the earlier suggestion that in this regime the
spectrum is continuous. If we look at the numerical solutions these remain close
to zero above the critical point. This is in line with the idea of the energies
forming a continuum. Since we have a finite dimensional approximation they
remain discrete. As the basis size increases, these values get closer to zero. It
has been suggested that the spread between energy levels gives an idea as to
the behaviour of the density of states. Reassured as to the validity of these
numerical simulations we progress on to the case where ∆c 6= 0.

5.2 Cavity Detuning, Cavity Driving

We now progress to considering an off resonant cavity, ∆c 6= 0. In this regime
our only tools are numerical simulations and perturbation theory as there are
no exact results. We begin by covering some qualitative aspects of the spectrum
before moving on to the simulations. The Hamiltonian is given by

H = h̄∆ca
†a+ ih̄g

(

a†σ− − aσ+

)

− ih̄E
(

a† − a
)

This has a discrete spectrum which may be considered by enacting a displace-
ment transformation, D(α) with α = iE/∆c, on the Hamiltonian. The mathe-
matics is very similar to where I highlighted the similarity between cavity and
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Figure 5.2: Energy Spectrum for Atomic Detuning, Cavity Coupling. ∆a=1,
basis size =300, Dotted Lines analytical solution, Crosses Numerical solution

atomic coupling in Section (3.3). We find the following form for the displaced
Hamiltonian

H = h̄∆ca
†a+ ih̄g

(

a†σ− − aσ+

)

− h̄E2

∆c
− h̄Eg

∆c
(σ+ + σ−) (5.4)

The final term , σ+ + σ−, has eigenstates
∣

∣+〉 +
∣

∣−〉 and
∣

∣+〉 −
∣

∣−〉. So all the
terms in our Hamiltonian have a discrete eigenvalue spectrum. Thus we expect
the eigenvalue spectrum of the whole Hamiltonian to be discrete. In plots where
∆c ≪ 1 the discrete character of the spectrum is not obvious for all E and must
be taken on faith.

One of the striking features of the plots of the spectra is that there appear to
be two sets of spectra superimposed on one another. The first set is analogous
to the low lying eigenvalues of the resonant case. The second set is closely
spaced and these eigenvalues cross over the first set. As a result the first set of
eigenvalues must be inferred from the plots. These features can be understood if
we examine the eigenvalues of the Jaynes Cummings model. For the case E = 0
our Hamiltonian reduces to the Jaynes-Cummings model with eigenvalues given
by

En,± = h̄∆c

[

(n+ 1/2)±
√

1

4
+
g2(n+ 1)

∆2
c

]

(5.5)

If we look at En,− we see that the energy depends on n and
√
n. For small n, n≪√

n so the negative term will dominate and cause the energies to decrease. As
n increases the positive term will then dominate and the energies will increase.
We can solve for the value of n when En,− ascends through zero. We find that
this occurs for n = g2/∆2

c .
From Eq. (5.5) we can also calculate the spacing between states and invert

to get an approximate density of states

dn

dE±
=

√
n

h̄∆c
√
n± h̄g

(5.6)
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Figure 5.3: Approximate Density of States for Jaynes-Cummings Model. For
g = 1, ∆c = 0.01.

A typical example is included in Figure (5.3). In general as the size of our
basis increases, so does the agreement for the lower lying eigenvalues. As the
density of states is large for states given by En,−, and the energies decrease
to a minimum then increase with n, we see a dense band of states for E <
0. As E increases these eigenvalues spread out and cross over the eigenvalues
corresponding to smaller n.

The best example of this phenomenon is in Figure (5.7) where the basis size
is large enough that the eigenvalues corresponding to En,− have become positive
and have swamped the entire plot. This doesn’t occur for the other plots as in
those cases the basis size is not large enough to include states such that En,−
becomes positive.

An unfortunate side effect of the crossing of energy eigenvalues is that it is
difficult to track a particular eigenvalue. As we vary E as the indices correspond-
ing to a given eigenvalue vary and hence plotting the eigenvalue corresponding to
one state is problematic. Hence I have had to resort to plotting the entire set of
eigenvalues to track those that are most similar to their resonant counterparts.

A possible method of tracking the eigenvalues is to examine the composition
of the eigenstates. If we seek the state which bears the most similarity to our
chosen state as we vary from one parameter step to the next, then preliminary
checks suggest we could track the individual eigenvalues. So far the attempts
to implement this have been unreliable and hence have been omitted.

We now progress to discussing in detail some of the numerical simulations.
In Figure (5.4), we see that for E > g/2 around E=0 there is a region of

similarity to the results for the resonant case. Much like that case there is no
crossing of levels and the levels spread apart in an apparently discrete fashion,
although these energies are shifted upwards. In Figure (5.5) we see that even
for ∆c = 0.01 the perturbation energies have a rather poor agreement with
their numerical counterparts. Which suggests that either I have made an error
somewhere or that the perturbation expansion is not accurate.

Looking at Figures (5.4), (5.6) and (5.7) we see that the positive eigenvalues
for low n all pass through E = 0 for E > g/2. As ∆c → 0 the crossing points of
these eigenvalues get closer to together and closer to E = g/2 while magnitude
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Figure 5.4: Numerical solutions for ∆c = 0.01. Number state basis size = 300.
Note traces of energy eigenvalues buried within energies crossing over
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Figure 5.5: Numerical solutions for ∆c = 0.01. Number state basis size = 300.
Numerical solutions solid line, perturbation solution dashed line.
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Figure 5.6: ∆c = 0.05 Numerical solutions. Number state basis size = 300
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Figure 5.7: ∆c = 0.075 Numerical solutions. Number state basis size = 400.
Note dense band of states extends beyond E=0
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Figure 5.8: Plot of energies in perturbation theory. ∆c = 0.05. Note region
where there are no energy eigenvalues.

of their slope increases. I suspect that the continuum arises as the zero point
of the eigenvalues meet and their slope goes to −∞. Conversely as ∆c grows,
they move apart from one another eventually going over to some form of ladder.
The behaviour around E=0 for Figure (5.4) is quite close to that of the case
on resonance which either suggests something similar to a continuum in that
region or a more complicated dependence on ∆c than I am proposing.

One other feature of interest common to Figures (5.4), (5.6) and (5.7) is how
the negative eigenvalues converge onto one another and then peter out. In all
figures we see what appears to be a hyperbola or a parabola defining a region
where there are no negative energy eigenvalues corresponding to low n. As ∆c

increases so does the width of the curve. In all cases the apex is located at
E = 1, E = 0. While the feature recurs elsewhere, it may be a fault in the
numerics. A mark of doubt is that the parameters of the curve are dependent
on the size of our basis. If we increase the size of the basis the parameters of
this curve shift slightly, implying that this may be an effect of using a truncated
basis. That this also occurs for the case where ∆c = 0, reinforces that idea.

As useless as the perturbation theory results may appear to be they do recre-
ate a similar phenomenon. The perturbation theory results generate an envelope
below which there are no eigenvalues. As ∆c varies eigenvalues corresponding
to larger n increase in energy more quickly. These eigenvalues increase, leaving
lower and lower n values to define the envelope until eventually E=0. Once the
eigenvalues leave the envelope they do not cross each other again. An example
is provided in Figure (5.8). This suggests the possibility that these negative en-
ergy eigenvalues have “diverged” in a manner similar to the perturbation theory
results and hence we have lost the distinctive track we have been following as
there no more crossings.
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Figure 5.9: Energy vs. Cavity Detuning. 2E/g = 0.5 Number state basis size =
300
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Figure 5.10: Energy vs. Cavity Detuning. 2E/g = 1 Number state basis size =
300
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Figure 5.11: Energies from perturbation theory. 2E/g = 0.5

In Figures (5.9) and (5.10) we are varying ∆c for fixed E . The salient features
are to note are that as in the plot of energy vs. E , these plots also show what look
to be tracks of energy eigenvalues with another spectrum overlaid on top. The
lower energy eigenvalues obey a linear dependence in ∆c, as may be expected
from perturbation theory. Note however that the other eigenvalues seem to obey
a much more complicated dependence on ∆c.

In Figure (5.10) we have evaluated this plot at the critical driving strength
E = g/2. So as ∆c → 0 the discrete energies converge onto one another. At
this point the perturbation theory treatment is invalid. Unlike the previous plot
the decay to zero is not linear in ∆c. The decay to zero suggests a power law
dependence somewhat analogous to that found for the energies in Eq. (3.46).
Not all energies converge onto E=0 for ∆c = 0 as they should which is an effect
of having a finite basis size. Finally there appear to be no discrete energies for
E < 0. This appears to vindicate what was found in looking at the plots of
energy vs. E .

An interesting phenomenon common to both plots is the disappearance of
negative eigenvalues as we increase ∆c. I suspect that this is due to the eigen-
values not crossing and hence we lose the tell-tale markers we have been using.
If we look at the results from perturbation theory as plotted in Figure (5.11)
we see that as ∆c increases the negative energy eigenvalues stop crossing over
one another. As this has been the means by which we have observed these, we
lose the the tracks. For the case where E = g/2 this explanation is invalid and
consequently I have little idea of what is happening here.

5.3 Cavity Detuning, Atomic Driving

Here we examine the case where the laser is directly driving the atoms which
are inside an off-resonant cavity i.e. ωc 6= ωa = ωL. In this case the spectrum on
resonance is independent of E , unlike the case where the cavity is being driven.
The introduction of cavity detuning does not introduce any remarkable new
features. The spectrum remains discrete as is expected.

In Figure (5.12) we see that the perturbation results agree for∆c small. in
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Figure 5.12: Energy eigenvalues vs. driving strength (2E/g). ∆c = 0.01. Num-
ber state basis size = 300. Solid lines numerical simulation. Crosses perturba-
tions theory results.
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Figure 5.13: Energy eigenvalues vs. driving strength (2E/g). ∆c = 0.1. Number
state basis size = 300.
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Figure 5.14: Energy vs Cavity Detuning. 2E/g = 1. Number state basis size =
300. Dashed lines perturbation theory, dots numerical simulation.

Figure (5.13) we can see the basis size and ∆c are large enough so that the En,−
have become positive and filled up the plot. The buried eigenvalues appear to
have retained their quadratic dependence on E .

In Figure (5.14) there is an example of a plot of Energy vs ∆c. In a similar
manner to the previous case of cavity coupling the plots also become swamped
with traces of lower eigenvalues. The perturbation theory results, while similar
to the numerical spectrum, are probably invalid. Perturbation theory is valid
only for small energy shifts. In this case where En,ξ ∼ n∆c for large enough n,
the shifts will be large and the results invalid.
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Chapter 6

Conclusions

We have recalculated the energies of the driven Jaynes Cummings system includ-
ing an atomic detuning. In the case of cavity detuning first order perturbation
theory was used to find the first corrections to the energies. In the case of cou-
pling to the cavity these were of limited usefulness as the analytical solutions
are only valid for 0 < 2E/g < 1. Despite their limited validity they have been
useful in providing qualitative arguments for what may be occuring.

As ∆c and E increase the energies for different states appear to begin to
cross over. This can explained by the Jaynes-Cummings model energies and
the results from perturbation theory. This leads to rather messy plots with
energy eigenvalues of low lying states needing to be inferred. Examining only
these eigenvalues confirms the discrete nature of the spectrum. We found that
in a region around E = g/2 there appear to be no negative quasienergies. This
might be explained by similar behaviour exhibited by the perturbative results.
A similar explanation is possible when we are examining the dependence on ∆c.

The one overriding feature of the discussion in Chapter 5 has been that is it
overwhelming qualititative and tentative in its conclusions. This is is largely a
result of being unable to track particular energy eigenvalues and hence having
to deal with the entire spectrum. It follows that the top priority in completing
this work is to devise a means by which we can track a particular eigenvalue. A
second major task is to overhaul the code to improve efficiency as it is impractical
to use basis sizes larger than 400 states.

At the end of all this it is achingly obvious that there is still a large area to
explore in terms of numerical simulations. The above obstacles and poor time
management have precluded carrying this work further. It is almost certain that
the results presented here could be extended quite easily to resolve the questions
left unanswered.
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Appendix A

Squeezing and

Displacement

Transformation

In this section I will set out the details of the transformation required in passing
from the form of the operators in Eq. (3.33) to the harmonic oscillator. The
transformation required is identical to that used in [2] as the extra term ∆2

a/4g
2

does nothing to change the transformation parameters. Nonetheless I will in-
clude details hidden in a few lines of work in the main body of the text. We
start with the operators in the form

Ô(E) =

(E
g

(

a† − a
)

+ i
E

h̄g

)2

+
aa† + a†a

2
+

∆2
a

4g2
(A.1)

We neglect the constant terms involved in the full definition of Ôp(E) and

Ôm(E) as our purpose is to transform the terms in a and a† into something
similar to a†a. So the constant terms are irrelevant in determining the param-
eters of the transformation. Expanding this out we have

Ô =
E2

g2

(

a†
2
+ a2

)

+ (a†a+ 1/2)

(

1 − 2E2

g2

)

+
2iEE
h̄g2

(

a† − a
)

− E2 − h̄2∆2
a/4

h̄2g2

(A.2)
We apply a combined squeezing and displacement transformation to the creation
and annihilation operators.

a′ = S†(r)D†(α)aD(α)S(r) = a cosh r + a† sinh r + α (A.3)

a′
†

= S†(r)D†(α)a†D(α)S(r) = a† cosh r + a† sinh r + α∗ (A.4)

Here we have used η = r i.e. θ = 0. As a result we find that

a′
†2

=
1

2
cosh 2r

(

a†
2
+ a2

)

+
1

2

(

a†
2 − a2

)

+
2a†a+ 1

2
sinh 2r − 2α

(

a† cosh r + a sinh r
)

+ α2 (A.5)
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a′
2

=
1

2
cosh 2r

(

a†
2

+ a2
)

− 1

2

(

a†
2 − a2

)

+
2a†a+ 1

2
sinh 2r + 2α

(

a cosh r + a† sinh r
)

+ α2 (A.6)

a′
†
a′ =

a†a+ aa†

2
cosh 2r − 1/2 +

a†
2

+ a2

2
sinh 2r

+ α
(

a† − a
)

(cosh r − sinh r) − α2 (A.7)

Now substituting into Eq. (A.2) and grouping together like terms we get

Ô′(E) =
(

a2 + a†
2
)

[E2

g2
cosh 2r +

(

1

2
− E2

g2

)

sinh 2r

]

+
(

2a†a+ 1
)

[E2

g2
sinh 2r +

(

1

2
− E2

g2

)

cosh 2r

]

+
(

a† − a
)

e−r

[

−2α
E2

g2
+ α

(

1 − 2E2

g2

)

+
2iEE
h̄g2

]

−α2

(

1 − 4E2

g2

)

− E2 − h̄2∆2
a/4

h̄2g2
− 4iEE

h̄g2
α (A.8)

From the above equation we are able to choose the parameters of the transfor-

mation so that the terms in a2+a†
2

and a†−a vanish. After a little manipulation
we arrive at

e2r =

√

1 − 4E2

g2
(A.9)

α =
−2iEE
h̄g2

(

1 − 4E2

g2

)

(A.10)

With this parameter choice the transformed operator Ô′ becomes

Ô′(E) =
(

a†a+ 1/2
)

e2r − α

(

4iEE
h̄g2

+ αe4r

)

− E2 − h̄2∆2
a/4

h̄2g2

=
(

a†a+ 1/2
)

e2r − E2

h̄2g2
e−4r +

∆2
a

4g2
(A.11)

Now referring to our definition of Ôp(E) and Ôm(E) in Eq. (3.33), the trans-
formed operators are given by

Ô′
p,m(E) = Ôp,m ± 1

2

√

1 − 4E2/g2

Ô′
p(E) = a†a− E2

h̄2g2
e−6r +

∆2
a

4g2
e−2r + 1 (A.12)

Ô′
m(E) = a†a− E2

h̄2g2
e−6r +

∆2
a

4g2
e−2r (A.13)

where we have multiplied through by a constant as these operators are used in
Ô(E)

∣

∣ψ−
E 〉 = 0. From here we arrive at the eigenvalue equations in Eq. (3.43).
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