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Abstract

Rank tests are widely used for exploratory and formal inference in the health and

social sciences. With the increasing use of data from complex survey samples in med-

ical research, there is increasing demand for versions of rank tests that account for

the sampling design. In the absence of design-based rank tests, naive unweighted rank

tests are being used in survey analyses even by researchers who otherwise use inferential

methods appropriate for the sampling design. We propose a general approach to con-

structing design-based rank tests when comparing groups within a complex sample and

when using a national survey as a reference distribution, and illustrate both scenarios

with examples. We show that the tests have asymptotically correct level and that the

relative power of different rank tests is not greatly affected by complex sampling.

Keywords:multistage sampling; cluster sampling; health surveys; weak convergence;

Wilcoxon test

1. INTRODUCTION

Despite limitations such as non-transitivity (Brown and Hettmansperger 2002) and diffi-

culty of interpretation, rank-based tests are widely used by researchers in the social and

health sciences. Data from complex multistage survey designs are increasingly important

in these areas, with more and more large studies publishing public-use data. The exten-

sion of rank tests to data from complex samples would be valuable to researchers who

wish to do the same analyses with data from, say, NHANES (National Center for Health

Statistics 1981) or the British Household Panel Survey (Taylor 2010) as they would do

with data from a cohort or cross-sectional sample. In this paper we give a general and

computationally simple approach to design-based rank tests with complex sampling. The

term ‘design-based’ here implies two criteria to be satisfied, at least asymptotically: that

the test has the specified level when the population null hypothesis is true, and that it
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tests the same population null hypothesis regardless of the sampling scheme.

In the absence of correct design-based methods, rank tests, especially the Wilcoxon rank-

sum test, are currently being used on data from complex surveys by simply ignoring the

sampling scheme, even in papers that correctly use sampling weights in other aspects of

the analysis such as fitting regression models or estimating summary statistics. For exam-

ple, Knovich et al. (2008) examined the relationship between serum copper and anaemia

in the NHANES II sample, using design-based logistic regression for their primary anal-

yses, but unweighted Wilcoxon rank-sum tests for comparing serum copper between non-

anaemic and anaemic groups. Lamprecht et al. (2011) used the Wilcoxon rank-sum test

to compare continuous variables between groups in the Burden of Obstructive Lung Dis-

ease study, a multi-country complex survey that typically does account for the sampling in

their analyses (Buist et al. 2005). Hailpern et al. (2007) examined the association between

kidney disease and cognitive function, using data from NHANES III. They accounted for

the NHANES III sampling scheme when fitting logistic regression models and estimating

proportions, but used unweighted Wilcoxon rank-sum tests for unadjusted comparisons

between groups.

Similar issues arise with environmental health research using the extensive NHANES blood

analysis dataset as a control sample. Herrick et al. (2011) compared serum PCB levels in

teachers from PCB-containing schools to the NHANES 2003–4 sample, using the Wilcoxon

rank-sum test. Feng et al. (2011) compared dioxin and furan levels in people living near

wood-treatment plants to the NHANES 2003–4 sample, also using the Wilcoxon rank-sum

test. Castorina et al. (2010) compared pesticide, herbicide, and fungicide residues in blood

samples from pregnant women in the Salinas Valley to the NHANES 1999–2002 sample

using the Wilcoxon rank-sum test and quantile regression.
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In all these examples a simple design-based version of Wilcoxon rank-sum or quantile

test would have been preferable, and would likely have been used if it had been readily

available. There has been little previous literature directly on this topic. Rosner et al.

(2003) described an extension of the Wilcoxon test to clustered data, where the clusters

were assumed to be nested within the groups being compared. Rosner et al. (2006) removed

this assumption to allow clusters to have members from both groups. Both papers used

a permutation approach, obtaining a sampling distribution by randomization of the group

assignments. Jung and Jeong (2003) described weighted logrank tests for censored clustered

data, again assuming that each cluster belongs to a single group. They used a sandwich-

type variance estimator and theory developed for the Cox proportional hazard model.

Datta and Satten (2005) also addressed clustered data, using an approach based on thinning

the data to a single observation per cluster and then averaging to restore the information

thus lost. None of these tests is explicitly design-based, and none of them allows unequal

sampling probabilities.

Recently, Natarajan et al. (2010) described an extension of the Wilcoxon rank-sum test

to complex samples, based on fitting a proportional odds regression model to the data,

and using the score test, which is known to be asymptotically equivalent to the Wilcoxon

test under iid sampling. Their proposal was limited to ordinal categorical data: neither

the theoretical nor the computational approach generalize immediately to continuous data,

where the underlying proportional odds model would have as many parameters as obser-

vations. The approach also does not generalize to other rank tests; the score tests in other

cumulative link models for ordinal data do not reduce to rank tests in the same way.

Complex sampling degrades some of the attractive theoretical properties of the rank

tests. The lack of exchangeability under complex sampling means that rank tests are not

distribution-free in small samples, and the need to reweight observations to the population
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complicates the elegant optimality properties of rank tests under location-shift alternatives.

These limitations should not affect most uses of rank tests in complex samples, where the

sample size is usually large enough for inference based on the central limit theorem, and

where it is unusual to know a priori that two groups differ only by a location shift.

In Section 2 we introduce the test statistics and describe the estimation approach and the

computations needed, both for comparing groups within a complex survey and for using a

complex survey as a reference distribution. In Section 3 we use simulation to study the level

and power of design-based versions of some popular rank tests. In Section 4 we illustrate

the impact of the design-based tests on two examples from the NHANES series. In the

Discussion we point out some of the ways in which a design-based rank test has different

aims from the clustered rank tests described by previous authors.

2. CONSTRUCTION OF THE RANK TEST

2.1 Comparing groups within a survey

In this section we describe the test statistic and give an outline of the underlying theoretical

justification. Details of the asymptotics are given in the Appendix.

We are testing the null hypothesis that a real-valued random variable Y is independent of a

grouping variable G (initially taking just two values, 0 or 1) against the alternative that Y

is stochastically ordered by G. Suppose that we have data from a sample of n units, drawn

from a finite population of N units in which the ith population unit has values (Yi, Gi).

We shall assume that the finite population values, {(Yi, Gi); i = 1, . . . , N}, are generated

independently from some joint distribution with marginal distribution function FY . (Note

that the asymptotic properties of the test below depend very weakly on the assumption

that the finite population values are independent if N is large — see Graubard and Korn
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(2002). All we really need is that the finite-population rank statistics defined in equation 1

has expected value zero when Y is independent of G.)

First consider the finite-population quantity that will be estimated by the sample rank test.

Let FN (y) = 1
N

∑N
i=1 I(Yi ≤ y) denote the empirical finite-population distribution function

of Y . The scaled finite population mid-ranks, R1, R2, . . . , RN , are defined by setting

Ri =
1

N

N∑
j=1

[I(Yj < Yi) + 0.5× I(Yj = Yi)] =
1

2
[FN (Yi) + FN (Yi−)] .

The use of mid-ranks allows the test to be defined for discrete as well as continuous

Y (Conover 1973; Hudgens and Satten 2002). We define the finite-population rank test

statistic, TN , as the difference in the mean of g(Ri) between the groups for a suitable

function g(). For example, the Wilcoxon test uses g(Ri) = Ri, the normal-scores test uses

g(Ri) = Φ−1(Ri), and Mood’s test for the median uses g(Ri) = I(Ri > 1/2). Thus

TN =
1

M0

∑
{i:Gi=0}

g(Ri)−
1

M1

∑
{i:Gi=1}

g(Ri), (1)

where M` =
∑N

1 I(Gi = `) is the number of finite population units in group ` (` =

0, 1).

We draw a sample, s, of n units from the finite population using some probability sampling

method with sampling probabilities πi, and corresponding sampling weights wi = 1/πi, and

we observe the values of Yi and Gi for the sampled units. In large surveys the sampling

probabilities and weights will often include adjustments for non-response, frame errors, and

other imperfections; in two-phase designs the probabilities and weights may not be entirely

pre-specified. The estimated population mid-ranks R̂i are defined as

R̂i =
1

N̂

∑
j∈s

[wjI(Yj < Yi) + 0.5wjI(Yj = Yi)] =
1

2

[
F̂n(Yi) + F̂n(Yi−)

]
.
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where N̂ =
∑

j∈swj is the estimated population size and

F̂n(y) =
1

N̂

∑
j∈s

wjI(Yj ≤ y)

is the Hájek estimator of FN (y) (and hence a consistent estimator of the finite-population

and super-population distribution functions, FN (y) and FY (y) respectively). Note that

these are not the same as the sample ranks unless we have a self-weighting design. We

can now define T̂n, the sample version of the rank test statistic, as the estimator of the

finite-population quantity TN in equation 1:

T̂n =
1

M̂0

∑
i∈s0

wig(R̂i)−
1

M̂1

∑
i∈s1

wig(R̂i), (2)

where, for ` = 0 or 1, s` = {i ∈ s : Gi = `} and M̂` =
∑

i∈s` wi is the Horvitz-Thompson

estimator of M`.

If R̂i were a fixed quantity associated with the ith unit in the realised finite population,

then T̂n would be the difference between two estimated domain means and inference based

on it would be straightforward. Inference is complicated by the fact that the value of R̂i is

not fixed for the finite population but depends on the values of the other units drawn in the

sample as well as on the sampling design. If we write Ui = 1
2 [FY (Yi) +FY (Yi−)], replacing

the estimate F̂n in the definition of R̂i with the superpopulation quantity FY , then the

Uis do not depend on the sample values or the sampling design in any way. (They are

also independent and identically distributed in the superpopulation under the assumptions

above, although we will not make use of this in our derivations.) The classical proof that

Ui can be substituted for Ri with no effect on the asymptotic distribution of the full finite

population statistic TN relies heavily on exchangeability(Hájek and Šidák 1967, Chapter 5)

and does not carry over to R̂i under complex sampling. However, an alternative approach

using the functional delta method and the weak convergence of
√
N (FN (y)− FY (y)) to a
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Brownian Bridge (Pyke and Shorack 1968; van der Vaart and Wellner 1996) can be adapted

for complex samples. We adopt this approach here and show in the appendix that, under

suitable conditions, T̂n defined in 2 has the same asymptotic null distribution as

T̃n =
1

M̂0

∑
i∈s0

wig(Ui)−
1

M̂1

∑
i∈s1

wig(Ui).

More precisely, under conditions described in the Appendix,
√
n
(
T̂n − T̃n

)
p→ 0 when the

null hypothesis that Y is independent of the grouping variable G in the superpopulation

is true.

To make use of this equivalence, we need an estimate of σ̃2, the asymptotic variance of

√
n T̃n. If we knew the values of Ui for the sampled units, T̃n would be the difference

between two estimated domain means and all computer packages with procedures for an-

alyzing survey data have software for producing such a variance estimate, Ṽ (Us) say. We

show in the appendix that Ṽ (R̂s), the value we get by replacing Ui with R̂i for i ∈ s is also

a consistent estimator of σ̃2 and hence, under H0, of var{T̂n}. This allows standard survey

programs to be used. In particular, a design-based rank test can be performed as a weighted

t-test on the transformed estimated ranks g(R̂i). Computation of R̂i is straightforward and

weighted t-tests under complex sampling are now available in most general-purpose statis-

tical software. We have provided an implementation for R, the svyranktest() function

in the survey package(Lumley 2011). This implementation uses a t reference distribution

rather than the asymptotic Normal distribution, with degrees of freedom defined as C−H,

where C is the number of primary sampling units and H is the number of strata, an ad-

justment that is widely used for inference in survey statistics. (Note that this can make a

substantial difference even in big surveys since the degrees of freedom may be small even

when the sample size is large. For example, the public-use data sets from the current

continuous NHANES surveys have 14 strata for each two-year period, with two primary
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sampling units per stratum, giving only 14 degrees of freedom per two years in a sample

size of approximately 10,000.)

The assumptions necessary to establish the equivalence of T̂n and T̃n amount to a strong

form of the central limit theorem for the sequence of sampling designs. Most importantly,

we assume that the sequence of designs is such that
√
n

 F̂0n − F0Y

F̂1n − F1Y

, where F`Y (y)

denotes the conditional distribution function of Y given G = ` in the superpopulation

and F̂`n(y) = 1

M̂`

∑
i∈s` wiI(Yi ≤ y) its sample estimate (` = 0, 1), converges weakly

to a bivariate Gaussian process as n, N → ∞. This last assumption is true under mild

conditions for simple random sampling and stratified random sampling with a fixed number

of strata. It has been established for a reasonably broad class of single-stage designs in

Breslow and Wellner (2007), Cardot and Josserand (2011), and Wang (2012). These results

have been extended to multi-stage designs, under the assumption that design effects of

estimated differences of step functions are bounded, in Lumley (2012). The assumption

of bounded design effects, while almost certainly stronger than necessary, is an intuitively

natural one in practice since sampling designs are typically chosen to minimize the design

effects of important variables subject to a fixed cost. A very large design effect would

indicate that the design is not an appropriate one for the variables under study.

For some rank tests it is more common simply to define the test statistic as the sum of

g(Ri) over one of the groups. For example, the Wilcoxon test statistic is often defined as

the sum of the ranks over the smaller group. This definition is a linear function of the

definition in equation 1, with coefficients that depend only on the group sizes M0 and M1.

Under simple random sampling or independent sampling from a superpopulation, if the

null hypothesis is true, M̂0 and M̂1 are independent of the ranks and it is standard to

condition on them, so the two definitions give the same test. Under complex sampling
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the group sizes are typically not independent of the ranks unless the groups were used to

stratify the sampling, so the two definitions of the rank test are not equivalent. We have

chosen equation 1 as estimating a more readily interpretable population quantity; this form

was also the one used by Hájek and Šidák (1967).

A test based on the sample ranks, as distinct from the estimated population ranks R̂i,

would also be possible, but would not be design-based, in the sense that the mapping of

values of Y to sample ranks would depend on the sampling scheme, and so the alternatives

against which the test was consistent would also depend on the sampling scheme. For

example, it would be possible for the rank test statistic in the population to be positive,

but for the sample rank-test statistic to be negative with arbitrarily high probability.

2.2 Comparing a targeted sample to a population survey

The NHANES series of surveys includes a wide range of assays performed on blood samples,

giving population distributions for nutrients, environmental pollutants, disease biomark-

ers, and other variables. Researchers often wish to compare the distribution of blood

measurements in a targeted sample (a case series or a cohort) to national reference values

from NHANES, and as we illustrated in the Introduction, often use rank tests for these

comparisons.

When the targeted sample is a well-defined probability sample from a population that

is not the NHANES population, the targeted sample and NHANES can be treated as

two strata of a single stratified sample from the combined population. Examples would

include comparisons across time and comparisons between countries. The targeted sample

could also be a well-defined probability sample from a subset of the US, eg comparing

data from a state survey with national data. In this scenario we can treat the data as a

dual-frame survey(Lohr and Rao 2000; Metcalf and Scott 2009). That is, NHANES is a
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sample from the US population, and the targeted sample is a sample from some subset

of the US population. Metcalf and Scott (2009) described a large class of estimators for

dual-frame surveys that use the original design weights for the non-overlapping subsets of

the two surveys and rescale the weights to prevent double-counting for population in the

overlap of the two sampling frames. For example, if data from a California survey were

being compared to NHANES it would be necessary to decide how to apportion the weight

for California between the Californian survey and the Californian subset of NHANES. A

simple and reasonably efficient choice is to apportion the weight in proportion to the sample

size the two surveys have for California. The two surveys would then be treated as two

strata in a combined data set with the adjusted weights.

More commonly, as in the references we cited above, a reference distribution from NHANES

is being compared to a small targeted sample that was not drawn according to any proba-

bility mechanism. In this situation we can still model the data as coming from a dual-frame

survey, but one in which the sampling frame for the targeted sample is just the sample it-

self. Since the overlap is a negligible fraction of the national sampling frame for NHANES,

we propose to use the NHANES sampling weights without modification. We use weights

wi = 1 for the targeted sample, reflecting the fact that they are members of the national

sampling frame but need not be sampled in a way that makes them representative of any

larger subset of the population. Again, the two samples are then treated as strata in a

combined data set.

12



3. SIMULATIONS

3.1 Large sample with few clusters

NHANES, like a number of other large public studies, has a sampling design with a mod-

erate number of strata and only two, large, clusters per stratum. The usual approximation

to degrees of freedom for estimating standard errors is C−H, where C is number of PSUs

in the sample and H is the number of strata. As we have noted above, his can be quite

small even in very large surveys. For example, NHANES II had n = 20, 322 participants

completing clinical exams but only 32 degrees of freedom. For this reason, it is important

to evaluate the performance of the rank tests in situations where the sample size is large

but the number of PSUs is relatively small.

[Figure 1 about here.]

We simulated a population of size 100,000 with Y ∼ N(0, 1) and G ∼ Bernoulli(1/3).

Since the rank tests are invariant to monotone transformations there is no loss of generality

in using a Normal distribution for Y . Strata were defined by quantiles of Y G + ε, where

ε ∼ N(0, σ2), with the first 5 strata containing 10% each of the population, the next 9 strata

containing 5%, four containing 2% and 2 containing 1%. Clusters of size 100 were defined

by quantiles of Y + η, with η ∼ N(0, τ2), and two clusters per stratum were sampled.

Each simulation scenario was replicated 10,000 times. Figure 1 shows quantile-quantile

plots of − log10(p-values) for the Wilcoxon test, the median test, the normal-scores test,,

and the t-test, for simulations with σ = τ = 5. An unweighted t-test or Wilcoxon test has

a median z-statistic of approximately 3.5 under this sampling design, so the sampling is

strongly biased.

As Figure 1 shows, using a t reference distribution with the design degrees of freedom gives

a test with close to nominal size; in fact 6.0–6.5% of p-values were below 0.05. Using a
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Normal reference distribution is moderately anticonservative, with about 8% of p-values

below 0.05. Increasing the number of clusters to three per stratum, giving 40 design

degrees of freedom, improves performance, with 5.5–6.0% of p-values below 0.05 using the

t40 reference distribution and 6.0–6.5% using the Normal.

Repeating the simulation with τ = σ = 1, which gives much stronger sampling bias and a

median unweighted z-statistic of about 19, the test using a t-reference distributions were

conservative for α near 0.1, but anti-conservative for very small α; the rank tests still had

similar performance to the t-test.

These simulations confirm that the rank tests, while not exact, have acceptable control of

Type I error even under strongly biased sampling with a small number of clusters, and that

the performance is improved by using a t distribution rather than a Normal distribution

to compute p-values.

3.2 Tail sampling and power

Under independent sampling, rank tests are locally optimal for certain location-shift alter-

natives. For example, the Wilcoxon test is locally optimal for location shift in a logistic

distribution, the median test for location shift in a double exponential (Laplace) distribu-

tion, and the normal-scores test for location shift in a Normal distribution. The situation is

more complicated under complex sampling, because the sampling affects the distributions

of the variables, and because the estimated group sizes M̂1 and M̂2 are typically not inde-

pendent of the ranks unless sampling is stratified on group. We carried out a simulation

to investigate the impact on power of random group size and of oversampling the tails of

the outcome distribution.

Group membership for a population of 10,000 was simulated as Bernoulli(0.3). Variables
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X, Y , and Z were simulated from independent Normal, double exponential, and logistic

distributions with unit variance and with mean G/5. Sampling probabilities were either

equal for all units or oversampled in the tails, with πi ∝ |Xi + Yi + Zi|+ 2.

The sample size was 500, either sampled in a single stratum or with sampling stratified on

G to give 150 units with G = 1 and 350 with G = 0. Table 1 shows the efficiencies of the

Wilcoxon rank-sum test, Mood’s test for the median, and the normal-scores test, relative

to a design-based t-test. The relative efficiency was estimated by the ratio of squared

z-statistics, based on 10,000 replications.

The results in Table 1 show that the relative efficiencies of the tests are affected both by

the random group size when sampling is not stratified on group, and by the oversampling

of tails. Both of these factors tended to attenuate the difference in efficiency between tests,

though the pattern of differences remained consistent. The equivalence of the normal-

scores test and t-test for Normal data persisted in all four scenarios and the patterns of

higher and lower efficiency tended to remain the same. These results suggest that criteria

for choosing a rank test under complex sampling should be similar to the criteria used in

standard situations when data are sampled independently.

[Table 1 about here.]

4. EXAMPLES

4.1 Serum copper and anemia in NHANES II

To show the potential impact of the sampling design on inference we repeat an analysis from

Knovich et al. (2008). The authors conjectured that copper deficiency would explain some

cases of anemia, and compared serum copper concentrations in people with and without

anemia using data from NHANES II. They reported unweighted median serum copper
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concentrations in anemic and non-anemic subjects as 1260 and 1190 µg/dl, respectively, and

described this as statistically significant using an unweighted Wilcoxon test. We compute

the unweighted Wilcoxon p-value to be 1.3×10−7. The weighted estimates of the population

median are 1200 and 1160µg/dl, noticeably lower than the unweighted estimates, and the

design-based Wilcoxon p-value is 0.011. The Wilcoxon test still reports a statistically

significant difference, but the p-value is much larger and a test for difference in medians

gives a p-value of only 0.079.

Three factors are responsible for the inflated significance of the unweighted Wilcoxon test.

First, ignoring the weights gives a slightly larger difference between the distributions of

serum copper. Second, ignoring the clustering in NHANES II overstates the precision of

the comparison. Finally, the NHANES design with 64 sampling units and 32 strata has

low design degrees of freedom, so a t reference distribution is more appropriate than the

Normal distribution used in the Wilcoxon test.

The main results of Knovich et al. (2008) do not come from the Wilcoxon test, but from

a logistic regression model that did account for the clustering in the NHANES II design,

and their conclusions of a U-shaped relationship between serum copper and anemia are

still supported by the analysis.

4.2 Comparing to NHANES III

The Heart and Estrogen/Progestin Study (HERS) was a randomized trial of estrogen and

progestin supplementation in post-menopausal women(Hulley et al. 1998). Some data from

this trial have been made available in Vittinghoff et al. (2004), and we will use them to

illustrate a comparison between a targeted sample and a national survey. We compared

HDL cholesterol, systolic and diastolic blood pressure, and self-rated global health for

2763 women in HERS and the 6695 women over age 50 among the 18162 NHANES III
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participants with examination and lab data, who represent a subpopulation of 29 million

women. HDL cholesterol and blood pressure are continuous measurements, but self-rated

health is a five-level discrete variable with levels from “Excellent” to “Poor”.

As HERS was a trial in women who had existing coronary disease we would expect the

participants to have worse health than the population as a whole. HERS participants

had lower HDL cholesterol, lower blood pressure, and worse self-rated global health than

the NHANES women over 50. For systolic blood pressure the design-based Wilcoxon test

had a t-statistic of -2.5 and p-value of 0.013, but ignoring the design gave a z-statistic

of -9.4 and p-value of 10−21. For diastolic blood pressure the design-based Wilcoxon test

had a t-statistic of -11.9 and ignoring the design gave a z-statistic of −10.3. For HDL

cholesterol the design-based test had t = −10.6 and ignoring the design gave −13.8. For

self-rated health the design-based test had a t-statistic of -4.9 and ignoring the design gave

a z-statistic of -5.5.

The Wilcoxon test for the discrete self-rated health variable is equivalent to a score test in a

proportional-odds model, so we also computed the Wald test and the Rao-Scott likelihood

ratio test(Rao and Scott 1984) under the proportional-odds model. The Wald z-statistic

was -3.34. The Rao-Scott χ2 statistic was 11.95; taking the appropriately-signed square

root gives a z-statistic of -3.45. The large difference between the score test and the other

two tests in this example appears to be because the proportional-odds assumption is far

from true for these data.

The impact of the sampling design on the Wilcoxon test is sometimes large and is not

consistent from variable to variable, so ignoring the design makes results difficult to inter-

pret.
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5. DISCUSSION

We have shown how to construct design-based analogs of the Wilcoxon rank-sum test,

Mood’s test for quantiles, and other two-sample rank tests. Although they are asymptotic

rather than exact tests, the actual significance levels are close to their nominal values in

simulated data sets representative of population surveys. The tests are easy to implement

and do not require substantially more computational resources than a design-based t-test

would. The impact on p-values of taking the sampling design into account can be large,

but is quite variable, so using a design-based test is preferable to ad hoc strategies for

interpreting standard rank-test results.

Datta and Satten (2005) and Rosner et al. (2003) both discuss the issue of informative

cluster size, i.e., the possibility that the distribution of Y could be systematically different

in large and small clusters. This is an important problem in both cluster-randomized

trials and in observational studies of repeated measurements. It is a less serious problem

in design-based inference. In our design-based setting the clusters are an aspect of the

sampling plan, not of the scientific question, and the goal is to estimate the same population

quantity for any sampling plan. There is no difficulty in deciding how much weight should

be given to large versus small clusters, or between-cluster versus within-cluster contrasts:

they should be weighted so as to reproduce the population totals.

As an illustration of this issue, consider the example in Datta and Satten (2005, Section

3.3) of linkage and association between presence of a gene variant and circulating levels of

a biomarker (ACE: angiotensin converting enzyme). The clusters in this example are 37

nuclear families, extracted from a sample of 69 previously sampled pedigrees. A design-

based test would require sampling probabilities for each family and would estimate whether,

in the population, ACE levels are higher in people who carry the variant. In this example
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Datta and Satten’s clustered test is a test for linkage and association, so it is immune to

confounding by population structure, which could bias the design-based test. On the other

hand, in a setting where clusters are merely a feature of the sampling plan, the removal of

cluster-level association performed by Datta and Satten’s test would be undesirable.

Some extensions of our approach are straightforward. Handling more than two groups, as

in the Kruskal–Wallis test, simply involves replacing the weighted t-test by a weighted one-

way ANOVA on g(Si). We have not explicitly considered non-monotone transformations of

ranks, such as in the Ansari–Bradley test for scale differences, but theory and computations

for these tests follow using similar arguments to those in section 2. One-sample tests such

as the Wilcoxon signed-rank test should also be straightforward; we did not consider them

because there appears to be little demand. A more-speculative direction for future research

is extending the median test to provide tests and confidence intervals for design-based

quantile regression.
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APPENDIX A. ASYMPTOTICS

Some conditions on the sequence of populations and samples are necessary for the rank

tests to be valid. We will use a fairly simple set of conditions; weaker assumptions are

almost certainly possible.

We have a sequence of finite populations indexed by ν with values, {(Yi, Gi); i = 1, . . . , Nν},

generated independently from some joint distribution with marginal distribution function

FY . A sample of size nν is drawn from the νth population using some well-defined proba-

bility sampling scheme. We suppose that nν , Nν →∞ with lim sup nν/Nν < 1 as ν →∞.

(To avoid the notation getting too cumbersome, we shall omit the subscript ν from here

on.) We shall assume throughout that the sequence of sampling designs supports a central

limit theorem for Horvitz-Thompson estimators. More specifically, assume that:

A0 If µ̂HT is the Horvitz-Thompson estimator of the mean, µ say, of any variable with

finite fourth moment and σ̂2HT is the Horvitz-Thompson estimator of var {
√
nµ̂HT},

then Zn =
√
n (µ̂HT − µ) /σ̂HT

d→ N(0, 1) as ν →∞.

Conditions under which this assumption is valid are discussed in Section 1.3 of Fuller

(2009), for example.

As in Section 2.1, let F`Y (y) denote the conditional distribution function of Y given G = `

and F̂`n(y) = 1

M̂`

∑
i∈s` wiI(Yi ≤ y) its sample estimator (` = 0, 1). Our derivation depends

on the following assumption:

A1 The sequence
√
n

 F̂0n − F0Y

F̂1n − F1Y

 converges weakly to a bivariate Gaussian process

as ν →∞.

LetDY (y) = F0Y (y)−F1Y (y) and D̂n(y) = F̂0n(y)−F̂1n(y). Note thatDY (y) ≡ 0 under the
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null hypothesis that F0Y = F1Y . Define the midrank function, UY (y), by setting UY (y) =

1
2 [FY (y) + FY (y−)] and let R̂n denote its sample estimator, R̂n(y) = 1

2 [F̂n(y) + F̂n(y−)].

We need the following preliminary result:

Lemma 1. Under assumptions A0 and A1,
√
n

 D̂n −DY

R̂n − UY

 converges weakly to a

bivariate Gaussian process, say Z(y) =

 Z1(y)

Z2(y)

.

Proof: This follows directly from A0 and A1 on noting that R̂n−UY is a function of F̂n−FY

which can be written in the form F̂n−FY = p0(F̂0n−F0Y )+p1(F̂1n−F1Y )+(p̂0−p0)DY +εn

where p` denotes the probability that G = ` in the superpopulation, p̂` =
∑

i∈s` wi/
∑

i∈swi

is its sample estimator (` = 0, 1)and εn = (p̂0 − p0)(D̂n −DY ).

Our first result requires the following additional assumption:

A2 g() is differentiable on (0, 1) , with derivative bounded and continuous on closed subin-

tervals of (0, 1).

Result 1 If assumptions A0, A1, and A2 hold, then:

(a)
√
n(T̃n − δY )

d→ N(0, σ̃2), where δY =
∫
g(UY ) dDY ;

(b) If H0 : F0Y ≡ F1Y is true, then δY = 0 and
√
n(T̂n − T̃n)

p→ 0.

Proof: We can write T̂n in the form

T̂n =

∫
g(R̂n) dF̂0n −

∫
g(R̂n) dF̂1n =

∫
g(R̂n) dD̂n

It follows from Lemmas 12.2 and 12.3 of (Kosorok 2008) that (D,R) 7→ φ(D,R) =∫
g(R) dD is Hadamard differentiable under A2 with Hadamard derivative

φ′(α, β) =

∫
g(R)dα+

∫
βg′(R)dD.
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It then follows from Lemma 1 and the functional delta method (Kosorok 2008, Theorem

12.1) that
√
n(T̂n − δY )

d
 
∫
g(UY )dZ1 +

∫
Z2g

′(UY )dDY ,

where δY =
∫
g(UY ) dDY . Similarly we can write T̃n in the form

T̃n =

∫
g(UY ) dD̂n

and use the same argument to show that

√
n(T̃n − δY )

d
 
∫
g(UY )dZ1 ∼ N(0, σ̃2).

It also follows that
√
n
(
T̂n − T̃n

)
d
 
∫
Z2g

′(UY )dDY ,

which is normally distributed with mean zero and finite variance. If H0 is true, then

DY = 0 so that δY =
∫
g(UY ) dDY = 0 and

√
n
(
T̂n − T̃n

)
p→ 0.

Assumption A2 rules out several statistics of interest, most notably Mood’s test for the

median and similar tests for quantiles. To cover such cases, we can replace A2 by the

alternative assumptions:

A2a g(r) is the indicator function of a subinterval (a, b) of (0, 1).

Now, however, we need to make an additional assumption of absolute continuity:

A3 Y has a bounded density, fY say, with respect to Lebesgue measure in the superpop-

ulation.

Result 2 If assumptions A0, A1, A2a, and A3 hold, then:

(a)
√
n(T̃n − δY )

d→ N(0, σ̃2), where here δY = DY (U−1Y (b))−DY (U−1Y (a));

(b) If H0 : F0Y ≡ F1Y is true, then δY = 0 and
√
n(T̂n − T̃n)

p→ 0.
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Proof: Here we can write T̂n in the form

T̂n = F̂0n(R̂−1n (b))−F̂0n(R̂−1n (a))−F̂1n(R̂−1n (b))+F̂1n(R̂−1n (a)) = D̂n(R̂−1n (b))−D̂n(R̂−1n (a)).

Let d(y) = D′(y) = f0(y) − f1(y), where f`(y) is the conditional density of Y given

G = `. Note that UY = FY under A3 and that d(y) = 0 under H0. By assumption A3,

and Lemmas 12.2 and 12.8 of Kosorok (2008), the map (D,R) 7→ φ(D,R) = D(R−1) is

Hadamard differentiable at the superpopulation values (DY , RY ), with derivative

φ′(α, β) = α
(
R−1

)
+

d(R−1)

fY (R−1)
β(R−1).

It follows that

√
n(T̂n − δY )

d
 Z1

(
U−1Y (b)

)
− Z1

(
U−1Y (a)

)
+ k(b)Z2

(
U−1(b)

)
− k(a)Z2

(
U−1(a)

)
,

where k(p) = d(U−1(p))
fY (U−1(p))

.

Similarly we can write T̃n in the form

T̃n = D̂n(U−1Y (b))− D̂n(U−1Y (a))

which, from Lemma 1, leads directly to

√
n(T̃n − δY )

d
 Z1

(
U−1Y (b)

)
− Z1

(
U−1Y (a)

)
,

and hence that
√
n(T̃n − δY ) is asymptotically Normal. It also follows that

√
n
(
T̂n − T̃n

)
d→ k(b)Z2

(
U−1(b)

)
− k(a)Z2

(
U−1(a)

)
.

If H0 is true, then d(y), and hence k(p), is identically zero and
√
n
(
T̂n − T̃n

)
p→ 0.

To use these results, we need to be able to estimate the asymptotic variance σ̃2 of
√
n T̃n.

Now T̃n is just the difference between two estimated domain means and all packages for
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the analysis of survey data will produce an estimate, say Ṽn(Us) where Us = {Ui; i ∈ s},

of the variance of
√
n T̃n. Thus, if the Uis were known for the sample units, we could use

the standardized quantity, Z̃n =
√

n

Ṽn
T̃n as a test statistic. Under assumption A0, Z̃n

will be asymptotically normal with mean zero under H0 provided that the fourth moment

of g(Ui) is finite (which is true for all standard choices of g(.)) and p` = P (G = `) > 0

for ` = 0 or 1 since Ṽn is an algebraic function of Horvitz-Thompson variance estimators.

Since we do not know Ui, we substitute the estimated midrank R̂i and use Ẑn =
√

n

V̂n
T̂n

with V̂n = Ṽn(R̂s) as our test statistic.

Result 3 Under the assumptions of either Result 1 or Result 2,

Ẑn =

√
n

V̂n
T̂n

d→ N(0, 1)

as ν →∞ if H0 is true.

Proof: This follows directly from Lemma 1.
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Figure 1: Quantile–quantile plot of 10,000 realizations of − log10(p−values) for three rank
tests and the t-test, in a stratified cluster sample with 20 strata and 40 clusters of size
100. Grey dots indicate a Normal reference distribution for the test statistic; black circles
indicate a t distribution with 20 degrees of freedom.
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Table 1: Estimated relative efficiencies relative to a (weighted) t-test for three rank tests
and three superpopulation outcome distributions, under four sampling designs. N is a
Normal distribution, E is a double exponential (Laplace) distribution, L is a logistic dis-
tribution. Fixed/Random M means the group sizes are fixed or random in the sampling
design, equal/unequal π means the sampling is with equal probability or with oversampling
of the tails of the distributions. Based on 10,000 replications, samples of size 500 from a
population of size 10,000

Wilcoxon Median Normal-scores
N E L N E L N E L

Random M , unequal π 0.91 1.41 1.03 0.71 1.62 0.85 1.00 1.23 1.01
Fixed M , unequal π 0.95 1.62 1.10 0.78 1.98 0.97 0.99 1.33 1.03
Random M , equal π 0.89 1.45 0.99 0.43 1.77 0.70 1.00 1.23 1.00

Fixed M , equal π 0.93 1.65 1.07 0.49 2.23 0.79 1.00 1.31 1.02

32


