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next few years, resequencing will need to be confined to small sub-
sets of the large samples on which genome-wide association studies
have been recently been performed. This paper describes some strate-
gies for subsampling an existing cohort for resequencing, and flexibly
analysing the resulting data. We illustrate these strategies by de-
scribing the actual design and planned analyses for the example that
motivated our research, the CHARGE-S resequencing study carried
out by the CHARGE (Cohorts in Heart and Aging Research in Ge-
nomic Epidemiology) Consortium.

1. Introduction. The past few years have seen an explosion in the availability
of genotype information. Genome-wide association studies have been performed with
hundreds of thousands of genetic markers on sample sizes from tens to hundreds of
thousands of people, and these have found many, mostly weak, associations between
genetic variants and biological or clinical variables. The greatest likely benefit from these
studies is in improving the understanding of biological processes in health and disease,
rather than in direct prediction, but biological understanding is hampered by the fact
that the association studies typically find a set of nearby genetic markers rather than
the genetic variant or subset of variants that truly affects biological processes.

One approach to finding functional genetic variants near a set of markers is to de-
termine the complete DNA sequence of a region of the genome. Analysis of complete
sequence data should sharpen the association estimates compared with analysis only of
marker data. More importantly, as statistical association is unlikely to be sufficient to
narrow the association down to a single variant, having sequence data facilitates biolog-
ical investigation of candidate variants, whether in silico, in vitro, or in vivo.

DNA resequencing is technologically feasible but very expensive at sample sizes suf-
ficiently large for association studies. Although the costs are decreasing rapidly, over
at least the next few years it will be necessary to resequence relatively small subsam-
ples from the large samples that have been participated in genome-wide association
studies. Two large resequencing projects in cardiovascular disease were funded by the
US National Institutes of Health under the American Recovery and Reinvestment Act.
In this paper we present the design and analysis principles for one of these studies, the
CHARGE-S resequencing project, and provide some further study of this and alternative
subsampling designs.

The goal of CHARGE-S is to find candidate functional variants at positions in the
genome identified by genome-wide association studies involving the CHARGE (Cohorts
for Heart and Aging Research in Genomic Epidemiology) Consortium, a group of five
cohorts with a total of 40,000 participants(Psaty et al., 2009). Because of the funding
source, the resequencing was restricted to the three US member cohorts: the Atheroscle-
rosis Risk in Communities (ARIC) study, the Cardiovascular Health Study (CHS), and
the Framingham Heart Study (FHS). Sufficient funds were available to resequence ap-
proximately 60 genomic loci, in approximately 5000 people. The CHARGE consortium
had more than 20 working groups that had found associations suitable for follow-up by
resequencing.
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2. Subsampling design. Our aim in designing a subsampling procedure was to in-
crease power for detecting associations, without introducing systematic bias and without
unduly complicating the analysis. For all the participants eligible to be subsampled in
CHARGE-S, information was available on all outcomes and other demographic variables,
and on the genotypes measured in the genome-wide association study. In this section we
consider how this information can be used in design.

2.1. Subsampling based on outcome. The primary technique for increasing power at
a fixed sample size is to sample from the extremes of the distribution of the outcome
variable. For a rare event, oversampling those with the event in a case–control or case–
cohort design can give almost the same power as would be available with complete data.
Even for a continuous outcome variable, individuals at the extremes of the distribution
should be more likely to carry genetic variants that affect the outcome. Increasing the
sample size used in each comparison will also increase the powe, particularly for rare
variants, which are hard to distinguish from genotyping error in small samples.

A popular design for a continuous outcome in genetic epidemiology is to sample the
most extreme individuals from the upper and lower tails of the distribution and then
to treat the outcome as a binary (high/low) variable in the subsample. This approach
picks out the individuals most likely to carry functional variants and allows for simple
exact analyses in small samples such as Fisher’s exact test. For a moderate number of
phenotypes this design may be the most powerful, and there is little loss of information
in treating the outcome as binary (Guey et al., 2011). Using such a design for a set of
20 outcome variables would require taking and analysing independent samples for each
outcome. A total sample size of 5000 would then lead to samples of 125 from each tail
of the distribution for each outcome.

A larger sample size for each comparison is possible at some cost in per-sample effi-
ciency by sampling from just one tail of the outcome distribution and using a common
reference sample across all outcomes. This is a generalization of the case–cohort de-
sign (Prentice, 1986) for survival data. With a total sample size of 5000, a reference
sample of 1000 would allow samples of size 200 from one extreme of 20 outcomes. The
increased sample size will more than compensate for the fact that the reference group is
less extreme. The ARIC cohort has used the case–cohort design extensively in measuring
genetic and biological risk markers (e.g. Lee et al., 2008, 2007; Nambi et al., 2008).

Sampling from a single tail reduces the ability to find functional variants that are
concentrated in the other tail of the distribution. In the context of GWAS follow-up it is
possible to be reasonably confident which tail of the distribution is of interest — if the
minor alleles of the marker SNPs are associated with high values of the phenotype, the
minor allele of the functional variant is also likely to be associated with high values and
samples should be taken from the upper tail. In the context of an unbiased whole-exome
or whole-genome search it might still be preferable to sample from only a single tail,
which would give increased power for some functional variants and decreased power for
others.

An additional benefit of the design using a common reference sample is that it is a
proper probability sampling design, in which every individual has a known, non-zero
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probability of being included in the subsample. As a consequence, weighting methods
from survey statistics can be used to estimate any population parameters that would be
estimable with complete cohort data, including associations with other phenotypes that
were measured at phase one but not targetted in the design. These weighting methods
also allow the entire subsample to be used in the estimation of any parameter. With a
total sample size of 5000 each analysis would include not only the 200 people sampled
for extreme values of the outcome under study and the reference sample of 1000, but
also the 3800 people sampled for extreme values of other outcomes. Section 4 includes
simulations showing that the increased sample size does lead to increased power for the
design with common reference sample under plausible assumptions about effects and
correlations.

For some outcome variables there may be good measurements of non-genetic factors
that influence the outcome, and rather than subsampling the extremes of the outcome
it may be preferable to subsample the extremes of residuals after the influence of these
variables has been removed. For example, blood pressure depends strongly on age and
moderately strongly on sex, so residuals of blood pressure in a regression on age, age2,
and sex were used as the outcome for sampling.

2.2. Subsampling based on genotype and outcome. Since a major goal of the rese-
quencing follow-up study is to find candidates for the functional variants responsible for
associations in the genome-wide association study, it may be helpful to use the genetic
markers as well as the outcome variable in choosing the subsample. One strategy is to
attempt to increase the prevalence of the functional variant in the extreme subsample
by oversampling carriers of the highest-signal genetic marker.

For example, Levy et al. (2009) found a marker in the gene CYP17A with minor
allele frequency 10%, leading to lower blood pressure in carriers of the minor allele. If
a subsample of 200 low blood pressure individuals was taken to follow up this marker
we would expect to have 36 individuals with one copy of the marker and only two with
two copies. Oversampling to obtain a more balanced distribution of the marker would
likely increase the number of copies of the functional variant in the subsample. The price
for this large number of variants is not only an increase in the variability in sampling
probabilities but also a less extreme set of low blood pressure values. Additionally, the
increased distortion in allele frequencies may complicate the process of quality control
and data cleaning for the sequence data; experience on this is relatively limited and it
is hard to assess the likely impact. The simulations in Section 4.3 explore the effect on
power for finding a functional genetic variant in a limited set of scenarios.

3. Inference after two-phase sampling. The initial sampling of the cohorts fol-
lowed by the subsampling of the individuals to be resequenced forms a two-phase sam-
pling design. The phase-one data are all the variables available on the full cohorts,
including the genome-wide SNP measurements; the phase-two data are the sequence
variants. Since the two-phase sample is purely a cost-saving strategy, we wish to esti-
mate the same parameters as would be estimated with sequence data on the full cohorts.
Similarly, for testing the null hypothesis of no association between sequence variation
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and a phenotype the goal is to test the same hypothesis that would be tested with se-
quence data on the full cohorts. The constraints on estimation are stronger; an estimator
of effect that is consistent for zero under the null hypothesis but not consistent for the
true association under alternatives can still give a valid test. In section 3.1 we describe
estimation methods based on sampling weights. In sections 3.2 and 3.3 we describe tech-
niques that can give more powerful tests for association. In the following development we
treat the original cohorts as if they were simple random samples from a data generating
process, or superpopulation. Although treating the cohorts as simple random samples
is an idealization, it is standard practice for CHS and ARIC. The Framingham study
includes complex family structure that does need to be incorporated in the phase-one
analysis; details of how this is done in each analysis are beyond the scope of the paper.

3.1. Estimation. In all the situations we consider, and much more generally, the
estimators that would be used with complete data can be represented in terms of sums
over the whole cohort of terms involving a single individual: either as a function of
explicit sums or as the solution of an estimating equation that is a sum over individuals.
For example, linear regression can be written either way. As a function of explicit sums
over covariate vectors xi and outcomes yi in a cohort of size N the least squares estimator
is

β̂ =

(
N∑
i=1

xTi xi

)−1 N∑
i=1

xiyi,

and it also solves the equation

N∑
i=1

xi(yi − βTxi) = 0.

To extend these estimators to estimate the same parameters in a two-phase sample
we replace the sum over individuals in the cohort by a weighted sum over individuals
in the subsample, the Horvitz–Thompson estimator of a population total(Horvitz and
Thompson, 1952). The Horvitz–Thompson estimator is unbiased and has been shown
to be consistent and asymptotically Normal under various sets of asymptotics (Krewski
and Rao, 1981; Hájek, 1964; Sen, 2009). These asymptotic properties extend to estima-
tors solving weighted estimating equations, at least in simple cases; completely general
asymptotic results are not yet available(Binder, 1983; Breslow and Chatterjee, 1999; Lin,
2000; Breslow and Wellner, 2008). Lin and Tang (2011) describes how to formulate many
rare-variant tests as score tests, placing them in this framework.

We write Ri for the subsampling indicator for person i, and πi = E[Ri], where the
expectation is conditional on all phase-one information. These probabilities must be
known for individuals in the subsample; they typically are known for the whole cohort,
since the subsampling is entirely under the control of the researchers. The pairwise
sampling probabilities πij = E[RiRj ] must also be non-zero, and must be known at least
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for pairs of individuals in the subsample. Let

TX =

N∑
i=1

Xi

be the sum over the whole cohort of a variable X. The Horvitz–Thompson estimator of
TX is then

T̂X =
∑

i:Ri=1

1

πi
Xi

and an unbiased estimator of its variance around the true cohort total, conditional on
all the phase one information is

(1) v̂ar
[
T̂X − TX | phase one

]
=

∑
i,j:RiRj=1

Xi

πi

Xj

πj
− XiXj

πij
.

The same results hold if Xi is a function of observations on individual i and unknown
parameters, such as a log-likelihood or an estimating function.(Binder, 1983)

The unconditional variance of T̂X is the sum of the conditional finite-population sam-
pling variance and the variance of TX over repeated realizations of the cohort,

var
[
T̂X

]
= var

[
N∑
i=1

Xi

]
+ var

[
T̂X − TX | phase one

]
and can be estimated by

v̂ar
[
T̂X

]
=

N2

n− 1

∑
i:Ri=1

1

πi
(Xi − X̄)2 +

∑
i,j:RiRj=1

Xi

πi

Xj

πj
− XiXj

πij

where

X̄i =
1

N

∑
i:Ri=1

1

πi
Xi =

T̂X
N
.

Combining this approach with the delta method, if Ji(θ) is the efficient influence
function for observation i in an estimator θ̂ based on complete cohort data, and Ii(θ) is
the Fisher information from observation i then solving∑

i:Ri=1

1

πi
Ji(θ) = 0

gives a consistent, asymptotically Normal Horvitz-Thompson-type estimator θ̂HT based
on the subsample, with variance estimated by

v̂ar
[
θ̂HT

]
=

 N2

n− 1

∑
i:Ri=1

1

πi
Ii(θ̂HT )

−1

+
∑

i,j:RiRj=1

Ji(θ̂HT )

πi

Jj(θ̂HT )

πj
−Ji(θ̂HT )Jj(θ̂HT )

πij
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Similarly, if Ui(θ) is the efficient score for a parameter θ, a score test of θ = θ0 can be
constructed using the weighted score statistic

Ū(θ0) =
∑

i:Ri=1

1

πi
Ui(θ0)

with variance estimated by

v̂ar
[
Ū(θ0)

]
=

N2

n− 1

∑
i:Ri=1

1

πi
Ii(θ̂0) +

∑
i,j:RiRj=1

Ui(θ̂0)

πi

Uj(θ̂0)

πj
− Ui(θ̂0)Uj(θ̂0)

πij
.

The full generality of equation 1 is not needed in typical subsampling designs, which
divide the cohort into strata and take a simple random sample without replacement
from each stratum. Sampling probabilities πi are then constant within a stratum and
pairwise sampling probabilities πij depend only on the sampling fraction. We label strata
by h = 1, . . . ,H with cohort size Nh and subsample size nh in stratum h, and write Xhj

for the jth observation subsampled in the stratum. Equation 1 then reduces to

(2) v̂ar
[
T̂X − TX | phase one

]
=

H∑
h=1

(
Nh − nh
Nh

×N2
h ×

1

nh(nh − 1)

nh∑
i=1

(Xhi − X̄h)2

)

where X̄h is the subsample mean in stratum h. The formula for the contribution from
each stratum differs from that under iid sampling only in the finite population correction
factors (Nh − nh)/Nh.

In the CHARGE-S study, a further feature of the analysis is that individual-level
data are not shared between cohorts, so the analysis must be broken into cohort-specific
computations followed by a meta-analysis or pooling stage where cohort-specific results
are combined. This typically does not introduce any serious difficulty, since each sampling
stratum is restricted to a single cohort. In the earlier genome-wide association studies
the pooling stage simply involved taking a precision-weighted mean of point estimates
from cohort-specific regression models. A score test can similarly be combined across
cohorts by taking the precision-weighted sum of the efficient score from each cohort and
dividing by its estimated variance.

3.2. Testing. If sampling is based on phenotype alone, and if a single phenotype Y is
independent of the DNA sequence at a particular locus, then sampling based on this one
phenotype does not affect the distribution of sequence variation, so the null hypothesis
of no association can be tested without using sampling weights. This simplification does
not occur for sampling based on multiple phenotypes, as is shown in the simulations in
section 4. If the phenotypes are correlated and sequence variation is associated with one
phenotype, the correlation may lead to spurious associations with other phenotypes in
the subsample, a phenomenon related to Berkson’s Fallacy(Berkson, 1946).

It is still possible to regain some of the precision from the unweighted analysis when
sampling is based on multiple phenotypes, using the the idea of ‘stabilized weights’(Robins,
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Hernán and Brumback, 2000) or ‘adjusted weights’(Pfeffermann and Sverchkov, 1999).
Let Y be the phenotype of interest. Under the null hypothesis that Y is independent
of DNA sequence in the population, the sampling weights may be divided by any func-
tion of Y without inducing dependence between Y and DNA sequence in the weighted
sample. The optimal function of Y to use is the one that minimizes the coefficient of
variation of the weights, that is,

r(y) = expE [−R log π|Y = y] .

The optimal function is not available in practice, as it depends on the joint distribution
of all phenotypes, but it can be estimated by one-dimensional smoothing. Testing can
then be based on the same computations as in section 3.1 but using (r̂(Yi)πi)

−1 in place
of π̂−1

i as the sampling weights.
If sampling were based only on Y this approach would recover the unweighted analysis,

as r(Yi) = πi, so (r(Yi)πi)
−1 = 1. With sampling based on multiple phenotypes, the

variation in weights is reduced but not eliminated. The simulations in section 4 confirm
that using stabilized weights leads to higher power without introducing bias when the
null hypothesis is true, but that the gain in power is very small in the scenarios we
consider.

3.3. Unweighted testing. When sampling is based only on phenotype, an unweighted
test of association between a phenotype and DNA sequence is valid under the assump-
tion that all other phenotypes have no association with DNA sequence at that locus.
If the resequencing study is worth doing, this strong genetic null hypothesis must be
implausible. However, genetic associations with complex traits have typically been very
weak, so the strong genetic null hypothesis may be a reasonable approximation, and the
unweighted tests may be close to being valid for plausible genetic effect sizes. Since the
unweighted test often has greater power than the weighted test, a valid unweighted test
would be very useful.

For the case of linear regression with no adjustment variables it is possible to examine
the bias analytically. The score test for association is the test based on the covariance
of genotype and phenotype. Let G be a genetic predictor variable and Y and Z be
phenotypes. Assume for simplicity that X, Y and Z are standardized to have zero mean
and unit variance in the whole cohort. We are interested in testing for association between
G and Y , in the presence of association between G and Z. Our test statistic is based on

U =

∑N
i=1RiGiYi∑N

i=1Ri

.

R depends on X only through Y and Z, so under the null hypothesis that X and Y are
independent in the whole cohort, R is independent of X given Z, and RX is independent
of RY given Z and R. Let π0 = E[R] be the overall sampling fraction, which is fixed by
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design. Then

E[U ] =
1

Nπ0
E [RGY ]

E [RGY ] = E [E [RGY |Z]]

= E [E [G|Z] · E [RY |Z]]

= E [E [G|Z] · E [E [R|Y,Z] · Y |Z]] .

The bias depends on the strength of association between genotype G and the other
phenotype Z, between the two phenotypes Y and Z, and between the sampling proba-
bilities and the two phenotypes. The correlation between the phenotypes may be high,
certainly 0.5 is not out of the question. The association between G and Z is, by hy-
pothesis, of the order of magnitude that we care about for genetic associations. So the
only way that the unweighted test can be reliable is for E[R|Y,Z] to be small or weakly
correlated with Y and Z. If there were only two phenotypes, the sampling probabilities
would be deterministic monotone functions of Y and Z, so the bias would be large, but
as the number of phenotypes increases, the dependence on any given phenotype becomes
weaker.

It is important to note that the unweighted test will not always be usefully more
powerful, and intuition can be unreliable in this setting. A familiar example comes from
the classical case–control design, where all cases of a rare disease are sampled together
with approximately the same number of controls. Unweighted logistic regression is the
standard analysis and is semiparametric efficient if the model is correctly specified (Pren-
tice and Pyke, 1979; Breslow, Robins and Wellner, 2000). Weighted logistic regression
using sampling weights would appear to be much less efficient, since very high weight is
given to controls relative to cases. In fact, weighted logistic regression is fully efficient
for saturated models, is locally efficient at the null hypothesis of zero covariate effects
for any model, and is typically highly efficient for models with small numbers of discrete
covariates (Lumley, 2010, chap 8). Substantial loss of efficiency does occur for continuous
covariates having moderate to strong effects (Scott and Wild, 2002).

4. Simulations.

4.1. Simulation set-up. The code generating the simulated cohort populations is
given in the Appendix. Each locus contains a marker SNP and a functional variant
explaining the association at the marker. The marker has perfect specificity for the
functional variant, but imperfect sensitivity; in the results presented here the functional
variant is present in half the haplotypes containing the marker SNP. The results were
qualitatively similar when we varied the sensitivity of the marker.

Each targeted locus also has rare variants. We assumed that these would be filtered
using bioinformatic predictions of functional effects before analysis, and so the frequency
of functional rare variants in the analysis could be quite high. The number functional rare
variants were simulated from a compound Poisson–Poisson distribution with mean 0.25,
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and the number of non-functional rare variants from a compound Poisson–Poisson distri-
bution with mean 0.5. The analysis used the total of the functional and non-functional
numbers of variants as a mutation liability score. These simulations were targeted at
the question of relative power and bias for different designs. They do not use a full
population-genetic model for simulating haplotypes, and so may not give reliable esti-
mates of absolute power.

Because bias from effects of correlated phenotypes was a concern for the case–cohort
design and especially for the unweighted tests, the phenotypes were simulated to have
moderately strong positive and negative correlations in a complex pattern. The iteration

xi+1 ← (xi + τi, εi1 − xi + τi, εi2)

creates 2i phenotypes at stage i, where εij are Normal or t15 and τi is a vector of scaling
parameters. Our simulations used τi = 1. The functional rare and common variants
are simulated to have additive effects on the phenotype, with zero effects on half the
phenotypes and non-zero effects on the other half. The correlation structure and pattern
of null and strong non-null effects was chosen to be unfavorable for the unweighted tests,
which tend to perform even better in other scenarios.

There were two major sampling designs. In the first design, with 20 phenotypes, binary
extreme samples were taken as the highest and lowest 132 observations for a phenotype.
In the generalized case–cohort design the cohort random sample of 1024 was taken
first, and then individuals not already selected who had the 200 highest values for each
phenotype. In the second design, with 4 phenotypes, the binary extreme samples were the
125 highest and lowest values of each phenotype. The generalized case–cohort design used
a random reference cohort sample of 200 and four phenotype samples of 200, to give the
same total sample size of 1000. The sampling probability was taken as 1 for individual
in the phenotype samples. For those in the random reference cohort the probability
was the empirical sampling probability: the number sampled who did not have extreme
phenotype values divided by the number in the full cohort who did not have extreme
phenotype values. Smoothing for stabilized weights used the supersmoother(Friedman,
1984).

In a design that samples both extremes of a phenotype there will be some overlap
between samples for different phenotypes, allowing for either an increase in the sample
size per phenotype or a reduction in total sequencing costs. The size of the overlap is
sensitive to the size of the cohort and the correlation among phenotypes. We ignore this
potential for overlap in the results presented here on sampling binary extremes.

4.2. Results. Figures 1, 2, 3, and 4 show boxplots of regression coefficients scaled
by the simulation standard error for 4000 replications of a simulated study with 20
phenotypes. These boxplots show how the power and the control of Type I error vary
across designs. Figures 1 and 2 are for a targeted variant; Figures 3 and 4 for rare variants.
Figures 1 and 3 are for a Normal; Figures 2 and 4 for a heavy-tailed phenotype.

The first two pairs of boxes in each plot show a design than samples from both
extremes of each phenotype. The remaining sets of boxes show weighted and unweighted
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Fig 1. Boxplots of z-statistics testing for effects of targeted variant on Normal phenotype: (a) binary
extremes analysed as binary, (b) binary extremes analysed with quantitative phenotype, (c) case–cohort
with weighted linear regression, (d) case–cohort with unweighted linear regression. The dashed lines are
at ±2.69, the expected endpoints of a boxplot with Normal data

tests in the generalized case-cohort design. The unweighted test in the generalized case-
cohort design is always more powerful than the tests based on sampling two extremes,
and the weighted test is more powerful in three of the four scenarios. Sampling from
both extremes has lower relative power when the phenotype is heavy-tailed, as does
the unweighted test. The unweighted test shows some deviation from the correct null
distribution, but these are small compared to the effect size needed to induce the bias.
Other simulations, not shown, confirm there is no bias under the strong null hypothesis
of no genetic effects on any phenotype.

Figures 5 and 6 show boxplots of the regression coefficients from unweighted and
weighted analyses of the generalized case–cohort design and from an analysis assuming
sequence data is available for the whole cohort. The weighted estimates are unbiased for
the whole-cohort estimates, and for the true simulation model. The unweighted estimates
have small amounts of bias under the null, and for targeted variants where there is a
true effect, but have substantial bias for rare variants where there is a true effect. These
results are for a Normal phenotype; the same pattern of bias is seen with the heavy-tailed
phenotype. Bias in the unweigted estimates is still small for functional variants when
the functional variant allele frequency is reduced from 10% to 2.5% or to 1%.

Figure 7 shows results for a design with only four phenotypes. The generalized case–
cohort design produces tests with lower power than sampling both extremes, though the
loss of power is less for the heavy-tailed phenotype.

Figure 8 shows quantile–quantile plots of the null p-values. On the right is the weighted
score test based on the two-phase design, which shows no deviations from the nominal
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Fig 2. Boxplots of z-statistics testing for effects of targeted variants on heavy-tailed phenotype: (a) binary
extremes analysed as binary, (b) binary extremes analysed with quantitative phenotype, (c) case–cohort
with weighted linear regression, (d) case–cohort with unweighted linear regression. The dashed lines are
at ±2.69, the expected endpoints of a boxplot with Normal data
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Fig 3. Boxplots of z-statistics testing for effects of rare variants on Normal phenotype: (a) binary ex-
tremes analysed as binary, (b) binary extremes analysed with quantitative phenotype, (c) case–cohort
with weighted linear regression, (d) case–cohort with unweighted linear regression. The dashed lines are
at ±2.69, the expected endpoints of a boxplot with Normal data
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Fig 4. Boxplots of z-statistics testing for effects of rare variants on heavy-tailed phenotype: (a) binary
extremes analysed as binary, (b) binary extremes analysed with quantitative phenotype, (c) case–cohort
with weighted linear regression, (d) case–cohort with unweighted linear regression. The dashed lines are
at ±2.69, the expected endpoints of a boxplot with Normal data
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Fig 5. Boxplots of β̂ testing for effects of targeted variant on Normal phenotype: weighted estimates,
unweighted estimates, estimates with sequence data on whole cohort
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Fig 6. Boxplots of β̂ testing for effects of rare variants on Normal phenotype: weighted estimates, un-
weighted estimates, estimates with sequence data on whole cohort
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Fig 7. Boxplots of z-statistics testing for effects of rare variants with four phenotypes. Left panel is
Normal phenotype, right panel is heavy-tailed. (a) binary extremes analysed as binary, (b) binary extremes
analysed with quantitative phenotype, (c) case–cohort with weighted linear regression, (d) case–cohort
with unweighted linear regression. The dashed lines are at ±2.69, the expected endpoints of a boxplot with
Normal data
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Fig 8. Quantile-quantile plot of 8×105 p-values where the null hypothesis is true, on a logarithmic scale.
Left panel is the unweighted test; circles indicate p-values using the (conservative) estimated standard
error, dots indicate p-values using the true simulation standard error. Right panel is the weighted score
test.

distribution. On the left is the unweighted test. Despite the bias observed in the un-
weighted point estimates, the unweighted test is conservative, because the standard
error is slightly conservative. We do not know whether the conservative standard error
estimate is a general phenomenon, but as the second set of dots on the qq-plot shows,
the test is not importantly anti-conservative even if the true simulation standard error
is used.

Figures 9 compares the weighted and unweighted estimates to those using stabilized
weights, for a targeted variant. The stabilized weights give unbiased estimates under
the null, and biased estimates under the alternative. The net effect is an increase in
power with no adverse effects on Type I error, but the increase in power is very small.
The pattern with smaller numbers of phenotypes is similar; the gain in power is slightly
greater for rare variants.

The weighted estimates are unbiased and the weighted tests have the correct level
in all the scenarios we examined. The weighted tests and case–cohort design have more
power in some situations and less power in other situations than a test and design based
on sampling only from the extremes, with the case–cohort design performing better for
larger numbers of phenotypes, for phenotypes with outliers, and for rare variants. The
unweighted tests consistently have higher power than the weighted tests, and have higher
power than a test based on sampling just the extremes. The unweighted tests always
have correct Type I error when there are no true effects, but they may have unacceptable
Type I error rates when the number of phenotypes is small and outliers are present.
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Fig 9. Boxplots of regression coefficients for targeted variants, with 20 phenotypes: unweighted, weighted,
and using stabilized weights. Dashed line indicates true regression coefficient.

4.3. Sampling on genotype. As sampling on genotype makes sense only for the tail
sample for a particular phenotype, not for the reference sample or the tail samples for
other phenotypes, the most favorable scenario is a single phenotype and a single locus.
We simulated cohorts of size 12000 with a Normal phenotype, and took a reference
sample of 1000 and a phenotype tail sample of 200. Genotype data were simulated in
the same way as in the previous section.

We compared the strategy of sampling the 200 highest values of the phenotype with
two strategies using marker information. The first ‘balanced’ strategy sampled the high-
est values of the phenotype for each of the three values of the marker genotype, dividing
the sample size as equally as possible. The second ‘marker first’ strategy sampled all
individuals with two copies of the marker, then made up the remainder of the sample
size of 200 using the highest phenotype values among those with one copy of the marker.

Since these sampling strategies induce an explicit relationship between phenotype and
genotype, unweighted tests cannot be used. Weighted estimates were effectively unbi-
ased, as expected, with all three sampling strategies. Table 1 shows simulation standard
errors for point estimates from the three sampling strategies, for a range of minor allele
frequencies. Even in the setting of a single phenotype and single locus, the reduction in
standard errors from sampling based on genotype is modest except at the lowest minor
allele frequencies. This is primarily because the reference sample makes up most of the
data and will contribute more copies of a relatively common variant than are added by
the targeted sample.

In a practical design with multiple phenotypes and multiple loci the benefit would
be much smaller, because selection for any one phenotype and locus would be used
for a smaller proportion of the data. In addition, it is not possible to use unweighted
testing for the genotype-based designs. In the context of CHARGE-S, only 1.6% of
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Table 1
Standard errors for effect of functional variant, comparing sampling based on phenotype alone to

sampling based on phenotype and marker genotype, for a single phenotype and single locus. Monte
Carlo error based on 5000 simulations is less than one unit in the last place quoted.

MAF Sampling strategy
Marker Functional Phenotype only Balanced Marker first

0.1 0.05 0.099 0.093 0.089
0.1 0.09 0.075 0.070 0.068
0.05 0.025 0.14 0.12 0.11
0.05 0.045 0.10 0.09 0.09
0.01 0.005 0.32 0.25 0.19
0.01 0.009 0.23 0.18 0.15

the samples would be targeted to each genotype:phenotype combination, leading to a
negligible increase in power relative to a weighted analysis of a phenotype-only sampling
design and a substantial loss in power relative to an unweighted analysis of a phenotype-
only sampling design.

5. Example. The final CHARGE–S design used 20 extreme-phenotype samples.
For phenotypes with more than three GWAS hits, all of which were in coding regions,
it was more cost-effective to sequence the entire coding set of the genome (whole-exome
sequencing) rather than designing capture sequences for targeted resequencing. Seven
phenotypes used whole-exome sequencing, with a reference sample of 1000. Thirteen
phentoypes used targeted sequencing, with a reference sample of 2000 that included
the 1000 used for the whole-exome reference sample. Approximately 2 megabases of the
genome was sequenced for the targeted loci; 18% of the sequencing for targets was in
exons, where the whole-exome samples will also be available for use in the analysis.

Table 2 and 3 describe the phenotype samples for whole-exome and targeted sequenc-
ing. Phenotype working groups were given considerable flexibility in selecting samples,
but for the majority of phenotypes, the sampling was 100 from ARIC, 50 from CHS,
and 50 from FHS, which is roughly in proportion to cohort size. The main reason for
varying from this plan was that a phenotype was not measured in one of the cohorts.
Most phenotypes were sampled at one extreme; a few were sampled at both extremes.

6. Discussion. The strategy of taking a probability sample from the available full
cohort data allows unbiased estimation and also allows sharing a common reference group
between phenotypes. When the number of phenotypes is large, there are power gains
compared to a strategy that samples both extremes of each phenotype. Importantly for
the CHARGE Consortium, using a generalized case–cohort sample also allows estimation
of the effects of sequence variants on the hundreds of other phenotypes available in the
CHARGE cohorts. A large number of phenotypes also makes it much more challenging
to follow an alternative strategy of maximum likelihood estimation which would require
a joint probability model for twenty phenotypes.

Weighted estimation is straightforward and estimates the same parameters as would
be estimated with complete cohort data, regardless of the sampling scheme. In some
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Table 2
Selection of phenotype samples for targeted sequencing. ‘Design N’ is the number sampled specifically
for this phenotype, ‘Achieved N’ adds in samples that were extreme on this phenotype but sampled for
other phenotypes. ‘Threshold’ is the lowest or highest value in the sample, not the residual threshold

used in selection. (F,C,A) indicates (Framingham, CHS, ARIC).

Phenotype strategy Design N Achieved N Threshold
(F,C,A) (F,C,A) (F,C,A)

EKG PR interval high resid (50,50,100) (64,50,109) (188, 220,212)
EKG QRS interval high resid (50,50,100) (59,72,114) (110.5, 104,112)ms
Stroke early (50,70,80) (42,98,173) (?97.6,68.5,70)y
Blood pressure low resid (25,25,54) (34,26,388) (110/65, 128/58,124/63)

high resid (25,25,46) (36,26,184) (155/97,172/82,140/88)
Body Mass Index (BMI) high (50,50,100) (65,51,135) (35.43,32.5,39.0)
Fasting insulin high (50,50,100) (66,61,182) (33,31,29)
Bone mineral density by DEXA low z-score (100,100,0) (109,103,) (−1.6,−0.73,—)
Left ventricular diastolic diameter high resid (50,100,0) (77,116,0) (5.13,5.27,—)
C–reactive protein high resid (50,50,100) (63,56,201) (5.6,10.35,10.5)
Hematocrit low resid (50,50,100) (59,72,260) (41,37.9,36.9)
Retinal venule diameter high (0,34,166) (0,44,220) (—,216.9,231.8) CRVE
Carotid wall thickness high (50,50,100) (63,63,276) (0.915,1.44,1.01)mm
Pulmonary: FEV1/FVC low (0,0,200) (0,0,618) (—,—,69.5)

Table 3
Selection of phenotype samples for whole-exome sequencing. ‘Design N’ is the number sampled

specifically for this phenotype, ‘Achieved N’ adds in samples that were extreme on this phenotype but
sampled for other phenotypes. ‘Threshold’ is the lowest or highest value in the sample, not the residual
threshold used in selection. (F,C,A) indicates (Framingham, CHS, ARIC). The multivariate metabolic

phenotype is the first principal component of a set of ’metabolic syndrome’ variables.

Phenotype strategy Design N Achieved N Threshold
(F,C,A) (F,C,A) (F,C,A)

Fibrinogen high resid (50,50,100) (58,60,121) (523, 436,448)
Menopause early (50,50,91) (55,53,254) (44,35,44)y
EKG QT interval high resid (50,50,100) (57,64,109) (461.5,384,382)ms
Fasting blood glucose high but non-diabetic (50,50,100) (65,65,267) (84,120,117)mg/dl
Waist:hip ratio high (50,50,100) (63,68,560) (0.90,1.03,0.98)
Multivariate metabolic high and low (50,50,100) (61,81,116) NA
Kidney function (eGFR) low resid (50,100,50) (59,141,459) (47.4,43.0,49.6)ml/min
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circumstances an unweighted analysis will give an approximately valid test of the null
hypothesis of no genetic association, and is often, but not always, usefully more powerful.
When sampling is based on phenotype the unweighted analysis appears to perform better
with large numbers of phenotypes, and to perform worse when the phenotype has outliers
that are extreme for non-genetic reasons. In situations where the unweighted test does
not perform well, the use of ‘stabilized weights’ appears to provide a useful gain in
power. Since the justification for the unweighted tests rests on simulations, the tests
should be used with caution in scenarios that vary significantly from the simulations.
In particular, the behavior of the tests for p-value thresholds much lower than those
planned for CHARGE-S has not been established.

Sampling based on the combination of phenotype and genotype at a marker makes
it impossible to use unweighted tests, and does not provide much increase in power for
weighted tests when the number of loci being studied is large; it may be more useful in
studying gene:environment interactions. We did not investigate calibration of weights us-
ing the full-cohort marker data (Breslow et al., 2009), because the plan for the CHARGE-
S study is to use the unsampled cohort participants to replicate findings by genotyping
promising variants.

DNA sequences contain many rare variants, so purely statistical methods will be in-
adequate. Biological information is needed to decide which variants are most promising
for analysis. After associations are found, further biological investigation will be needed
to decide which variants from a set that show association are actually functional. In-
creased precision and power in estimating associations, however, will make both these
tasks easier.
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APPENDIX A: SIMULATION DETAILS

make.full.cohort<-function(samplesize=12000, phenotypes=16,maf=0.1,

spurious=0.1,tau=c(1,1,1,1,1),beta=rep(0.25,phenotypes),betarare=beta*2){

pheno<-rt(samplesize,df=15)*tau[1]

n<-1; i<-2;

while(n<phenotypes){

pheno<-cbind(pheno+rt(n*samplesize,df=15)*tau[i],

-pheno+rt(n*samplesize,df=15)*tau[i])

n<-ncol(pheno)

i<-i+1

}

commonvariant <- rbinom(samplesize, 2, maf)

rarefvariants<-rpois(samplesize, rpois(samplesize,0.25))

rarenvariants<-rpois(samplesize, rpois(samplesize,0.5))

marker<- commonvariant+rbinom(samplesize, 2-commonvariant, spurious)

pheno<-pheno[,1:phenotypes]+outer(commonvariant,beta)

pheno<-pheno[,1:phenotypes]+outer(rarefvariants,betarare)
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data.frame(v1=commonvariant,vr=rarefvariants+rarenvariants,

snp=marker, pheno=pheno)

}
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