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1 Introduction

Waves are disturbances that transport energy through matter or space. They are ubiquitous, manifesting them-
selves in a wide variety of different physical systems: from optics and geophysics to acoustics and hydrody-
namics. Remarkably, regardless of the specific physical system under consideration, the behaviour of waves is
always very similar; they interfere, diffract, reflect from boundaries and so on. The purpose of these lecture
notes is to describe salient topics of interdisciplinary wave physics. While practical examples are predomi-
nantly linked to optics and geophysics (due to the specialisation of the host department), we emphasise the
universality of the topics discussed.

We begin by briefly recounting the description of oscillating signals, and how Fourier transforms allow
us to describe arbitrary signals as superpositions of simple oscillations with different frequencies. Particular
emphasis will be given to computing Fourier transforms numerically using an algorithm known as Fast Fourier
Transformation (FFT). We will subsequently show how arrays of coupled oscillators result in wave equations
that describe the behaviour and characteristics of waves, and we will analyse the ensuing equations and their
solutions. We will then investigate the propagation of waves and how waves are reflected and transmitted
at interfaces that separate different media. Finally, we will describe waveguides that allow light to be
transversely confined and longitudinally transported over great distances. The silica-glass optical fibres that
form the backbone of modern telecommunications are an example of such waveguides (for light waves).

The focus of these lecture notes is to apply the mathematical ideas pertinent to oscillations and waves to
gain better understanding on salient physical phenomena. Given the very limited time available, this focus on
physics inevitably somewhat limits the mathematical depth. There are a number of excellent references that
provide more details on the underlying mathematics, and that have acted as references for the material con-
tained in this booklet:

References

• A guided tour of mathematical methods for the physical sciences by R. Snieder and K. Van Wijk.

• Linear Systems and Noise with Applications by S. Tan and C. Fox. Available as PDF.

• Linear Systems by John A. Scales.

• Fundamentals of Photonics by B. E. A. Saleh and M. C. Teich. Available online via UoA library.

• Optics by E. Hecht.
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2 Oscillations, signals, and Fourier analysis

Waves are intimately intertwined with oscillations, and a wave is often described as oscillations that occur
simultaneously in space and time. Moreover, one may argue that oscillations form the building blocks that
allow waves to exist and propagate. Because of their intimate connection, many of the concepts and tools we
use to describe waves stem from the description of oscillating signals. We therefore begin our discussion from
the beginning, i.e., from oscillations and on the description of arbitrary signals as superpositions of simple
oscillations.

Oscillations abound in nature, ranging from the periodic motion of a pendulum to the time-evolution of the
electric field of an electromagnetic wave at a fixed position. We write a generic signal that is oscillating as a
function of t (which may or may not represent time) as

y(t) = Ar cos(ωt+ φ), (2.1)

where Ar is the real oscillation amplitude, ω = 2πf is the angular frequency (f is the ordinary frequency),
and φ is the phase of the oscillation (at t = 0). Mathematically, it is often easiest to deal with the equivalent
complex form

y(t) = Re
[
Aeiωt

]
, (2.2)

where A = Ar exp[iφ] is a complex amplitude. In this course, we are interested in systems that are “linear”1.
For such systems, one can perform all the mathematical analyses using the phasor form y(t) = Aeiωt and then
just take the real part in the end. This simplifies things considerably.

The oscillating signal given by Eq. (2.1) has no beginning or an end; it is a mathematical idealisation that
does not strictly speaking exist in physical reality. All real signals are more complicated than simple harmonic
motion, and by the very least, they will begin somewhere and end somewhere else. Figure 1 qualitatively
illustrates the difference between a real signal and the idealisation given by Eq. (2.1). In the context of elec-
tromagnetic waves, we could say that the signal described by Eq. (2.1) is perfectly monochromatic, containing
just a single frequency ω. Real signals are never fully monochromatic, but instead are composed of a range of
frequencies.

Although real signals never coincide exactly with simple harmonic oscillations, they can be described as a
superpositions of oscillations with different frequencies. This is the idea behind Fourier analysis, which forms
the backbone of modern signal processing.2 Fourier analysis has numerous applications, ranging from image
processing to pricing of financial instruments, and in fact plays a key role in our daily lives, enabling e.g.
compression of audio and video files for streaming via Spotify or Netflix. Moreover, as we shall see, Fourier
analysis plays a key role in the description of wave physics. There are numerous variants of Fourier analysis,
and in what follows, we will focus on two of them: (continuous) Fourier transformation and the discrete Fourier
transformation.

1This means that the superposition principle holds, and that the equations describing the systems are linear with the oscillation
amplitude.

2Fourier analysis is named after Joseph Fourier, who showed in 1822 that representing a function as a sum of trigonometric
functions could significantly simplify the analyses of physical situations. Interestingly, however, Carl Friedrich Gauss came up with
similar ideas about 20 years earlier, and even devised a clever algorithm to compute Fourier transforms that was rediscovered in 1965
and has subsequently become the cornerstone of modern digital signal processing. More about that later!
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(a) Single−frequency oscillation

Figure 1: (a) Idealized monochromatic oscillation described by Eq. (2.1). (b) A possible real signal.

2.1 Fourier transform

Let us consider an arbitrary3 function f(t) that could describe e.g. the pressure at your ear when you are
listening someone playing the chord C major on a guitar. We define the Fourier transform of f(t) as:

F̃ (ω) =

∫ ∞
−∞

f(t)e−iωt dt. (2.3)

Note that, in these lecture notes, we typically use a capital letter and a tilde to indicate the Fourier transform.
The original function f(t) can be recovered via the inverse Fourier transform:

f(t) =
1

2π

∫ ∞
−∞

F̃ (ω)eiωt dω. (2.4)

The physical meaning of F̃ (ω) should be clear from this inverse transformation. Specifically, the function f(t)
is made out of a (possibly) continuous range of frequency components, with F̃ (ω) representing the complex
amplitude of the signal oscillating at frequency ω. In other words, F̃ (ω) can be understood as the “weight”
with which a harmonically oscillating signal exp(iωt) contributes to the function f(t).

You may wonder why on earth would we want to express a perfectly fine signal f(t) as a superposition of
different frequency components. The reason is that it is often much easier to analyse and manipulate the signal
in the frequency domain rather than time domain. For example, some signals may appear very complicated in

3Mathematically speaking, “arbitrary” might be stretching it, as functions have to satisfy certain conditions for their Fourier trans-
forms to exist. Functions describing real-life signals always satisfy these conditions, and for some important functions for which the
conditions are not met, the limitations can be overcome by using generalized functions, such as the Dirac delta function.
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Figure 2: Example of a Fourier transform pair. (a) Time-domain signal and (b) corresponding Fourier spectrum, i.e.,
|F̃ (ω)| plotted as a function of the ordinary frequency f = ω/(2π).

the time domain, even though they are very simple in the frequency domain. Figure 2 shows an example. Here,
Fig. 2(a) shows a time-domain signal f(t) which appears very chaotic and provides little insights. In contrast,
Fig. 2(b) shows the corresponding Fourier transform, and we now see that in fact the signal is nothing but a
superposition of eight waves with different frequencies and complex amplitudes. Clearly, Fig. 2(b) provides
much more insights into the soul of the signal.

Two notes about Fourier transform

1. Both the function f(t) and its Fourier transform F̃ (ω) can in general be complex functions of
a real variable. Even if the original function f(t) is real-valued, the Fourier transform will be
complex. This is nothing to be scared about: F̃ (ω) simply corresponds to the complex amplitude
introduced in Eq. (2.2), with its amplitude |F̃ (ω)| and phase arg[F̃ (ω)] describing the amplitude
and phase of the corresponding sinusoid. Mathematically, the reason that the Fourier transform
is complex (even for real signals) is simply because we elect to use phasors of the form exp(iωt)
rather than sines and cosines. In this context, one also notes that the (inverse) Fourier integral
involves both positive and negative frequencies. The latter may seem a bit strange from a physical
perspective, but again simply arises because of the complex phasor representation. For example,
considering a simple sinusoid y(t) = Ar cos(ωt+ φ), we may write

y(t) =
1

2

[
Aeiωt +A∗e−iωt

]
, (2.5)

where A = Ar exp(iφ) and A∗ is the complex conjugate of A. This example shows that the com-
plex representation of the signal y(t) involves both negative and positive frequency components;
the same is true for all real signals.
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2. There are several different definitions of the Fourier transform, with Eqs. (2.3) and (2.4) consti-
tuting just one of them. Another definition would associate the negative sign in the exponential
with the inverse rather than the forward transform. Moreover, some definitions use the ordinary
frequency f rather than the angular frequency ω. The benefit of this notation is that the equations
become symmetric, as the scaling factor 1/(2π) disappears from Eq. (2.4) through the change of
variable. We have opted to use the form defined above because it is more relatable to the physics
that follows. It must be emphasised that, regardless of the definition, the results are always the
same, though one must be careful with signs and factors of 2π.

2.1.1 Basic properties of Fourier transform

Below we list some important properties of Fourier transform that will be useful for the our subsequent discus-
sion. A more complete list can be found from various sources, including Wikipedia. The notation used below
is such that Fourier transform pair is represented with a double-arrow, e.g. f(t) ↔ F̃ (ω). The properties can
be proven using the definitions of the Fourier transform given above, and is left as exercise.

1. Linearity. For any real or complex constants c1 and c2,

c1f1(t) + c2f2(t)↔ c1F̃1(ω) + c2F̃2(ω). (2.6)

2. Shifting. For a function f(t− t0) that is shifted by an amount t0 compared to the function f(t),

f(t− t0)↔ F̃ (ω)e−iωt0 . (2.7)

Thus, the Fourier transform of f(t − t0) is the same as the Fourier transform of the un-shifted function
f(t) multiplied with exp(−iωt0). In other words, the shift does not affect the magnitude of the spectral
components, but introduces a linear phase shift whose slope depends on the amount of shift t0. The
dual of this property states that a linear phase in the time-domain corresponds to a shift in the frequency
domain:

f(t)eiω0t ↔ F̃ (ω − ω0). (2.8)

3. Scaling.
f(at)↔ 1

|a|
F̃
(ω
a

)
. (2.9)

4. Differentiation. Fourier transforms are extremely useful for numerically calculating derivatives and for
solving differential equations. This is due to following handy property:

df(t)

dt
↔ (iω)F̃ (ω). (2.10)

The derivative of a function can thus be obtained by (1) calculating the Fourier transform of the function,
(2) multiplying the Fourier transform with (iω), and (3) taking the inverse Fourier transform.
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5. Symmetry. Fourier transforms display several symmetry properties depending on whether the original
function f(t) is real, imaginary, even, or odd. Arguably the most important symmetry is the fact that the
Fourier transform of a real function f(t) is Hermitian, i.e.,

F̃ (−ω) = F̃ ∗(ω). (2.11)

This implies that the real (imaginary) part of the Fourier transform is even (odd). Since real-world
measured signals are always real, their Fourier transforms are Hermitian. An important consequence is
that negative frequency components are “redundant”, as they can be fully reconstructed from the positive
frequency components. For this reason, when plotting Fourier transforms of real-world measured signals,
it is conventional to only show positive frequency components [see e.g. Fig. 2(b)].

6. Convolution. The Fourier transform of a convolution of two functions is the product of the functions’
Fourier transforms:

(f ∗ g)(t)↔ F̃ (ω)G̃(ω). (2.12)

This property is extremely useful for calculating convolutions: one can simply (1) calculate the Fourier
transforms of the two functions, (2) multiply them together, and (3) take an inverse Fourier transform.
The dual of this property states that a product in the time-domain corresponds to a convolution in the
frequency domain:

f(t)g(t)↔ (F̃ ∗ G̃)(ω). (2.13)

7. Parseval’s theorem. For a Fourier transform pair f(t)↔ F̃ (ω),∫ ∞
−∞
|f(t)|2 dt =

1

2π

∫ ∞
−∞
|F̃ (ω)|2 dω. (2.14)

The interpretation of this property is that the total “energy” calculated in the time and in the frequency
domains is the same. As an explicit example, if |f(t)|2 represents instantaneous power with units of J/s,
the Fourier transform |F̃ (ω)|2 will represent energy per unit frequency with units of J/Hz. From this, it
should be clear that both integrals will have units of Joules, hence describing energy.

2.1.2 Dirac delta function

Strictly speaking, Fourier transforms can be calculated only for a narrow class of functions which decrease
sufficiently rapidly to zero as time goes to infinity. Indeed, it is only for such “localised” functions that the
Fourier integral given by Eq. (2.3) can be evaluated. This is rather annoying, since it suggests that one cannot
evaluate Fourier transforms of many important functions such as standard trigonometric functions that extend
to infinity. Luckily, the problem can be resolved by referring to a function known as the Dirac delta function
δ(x). Despite its name, the Dirac delta function is rigorously speaking not really a function at all. Rather, it
corresponds to a generalised function or a distribution.

Loosely speaking, the Dirac delta function δ(t) can be understood as an infinitely narrow and infinitely tall
peak centred at x = 0. You can think of it as the limit of a rectangle with width ∆ and amplitude 1/∆ as ∆
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approaches zero. Alternatively, you can think of it as a distribution that is non-zero at one point only, but in
such a way that its integral is equal to one:∫ b

a
δ(x) dx =

{
1 if 0 ∈ (a, b)
0 if 0 /∈ [a, b]

(2.15)

More rigorously, the delta function is perhaps best considered in relation to how it affects other “test”
functions when integrated against them4. In particular, the delta function is defined to exhibit the substitution
or sifting property, which essentially allows for “extraction” of the value of a function at a given point:∫ ∞

−∞
δ(x− a)f(x) dx = f(a). (2.16)

You can think of this formula as showing how to decompose the function f(t) into a linear combination of delta
functions. Alternatively, the formula essentially says that the convolution between the Dirac delta function and
some other function f(t) is equal to the function f(t) itself.

The above sifting property can be used together with the Fourier transformations defined above to derive
an alternative representation for the delta function [exercise]:

δ(x− a) =
1

2π

∫ ∞
−∞

eip(x−a) dp. (2.17)

This interpretation is of critical importance for Fourier analysis, and its interpretation will be described shortly.

2.1.3 Some important Fourier transforms

We now summarise the Fourier transforms of some particularly important functions with the help of the Dirac
delta function. Complete proofs are again left as exercises.

1. Complex harmonic oscillation. Consider the complex function f(t) = exp(iω0t) describing simple
harmonic oscillation at frequency ω0. Using Eq. (2.17), it is easy to see that the Fourier transform will
be given by

eiω0t ↔ 2πδ(ω − ω0). (2.18)

This expression shows that the Fourier transform of a monochromatic oscillation is a delta function,
which is rather satisfying: monochromatic oscillation only contains one single frequency component, so
the Fourier “spectrum” must accordingly have non-zero value only at one frequency.

2. Sines and cosines. The Fourier transforms of sine and cosine functions can be readily obtained by using
(1) Euler’s formula, (2) the linearity of Fourier transforms, and (3) Eq. (2.17):

sin(ω0t)↔ −iπ [δ(ω − ω0)− δ(ω + ω0)] ,

cos(ω0t)↔ π [δ(ω − ω0) + δ(ω + ω0)] .

(2.19)

(2.20)

4Similarly to other generalized functions or distributions.
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These expressions show that sines and cosines are made out two frequency components at ω0 and −ω0,
which is in line with our expectation based on Euler’s formula. It is also evident that the only thing
distinguishing sine and a cosine is that the phases of the frequency components are different. Recalling
that ±i = exp(±iπ/2), we see that sine and cosine are 90◦ out of phase as expected.

3. Gaussian. The Fourier transform of a Gaussian function f(t) = exp(−αt2) can be shown to be (very
good exercise!):

exp(−at2)↔
√
π

α
e−ω

2/(4α). (2.21)

In other words, the Fourier transform of a Gaussian is a Gaussian! Importantly, the e−1 width of the
Gaussian5 in the time domain is given by ∆t = 1/

√
α, while in the frequency domain it is given by

∆ω = 2
√
α. We thus have

∆t∆ω = 2. (2.22)

This implies that the width in the frequency domain is inversely proportional to the width in the time
domain (and vice versa). The feature is not unique to Gaussian functions, but is rather a general property
of any localised signal. It follows that short signals in the time domain must be associated with broad
spectra in the frequency domain. Heisenberg’s uncertainty theorem is a particular manifestation of this
relationship, as is the fact that ultrashort pulses of laser light require broad spectral widths.

2.2 Fourier transform of a periodic function

Let us consider a periodic function fp(t) with a period Tp, and define f(t) to be a single period (or cycle) of
this function [see Fig. 3]. Mathematically,

f(t) =

{
fp(t) if t ∈ (−Tp/2, Tp/2)
0 otherwise,

(2.23)

By definition, the Fourier transform of the periodic function fp(t) is

F̃p(ω) =

∫ ∞
−∞

fp(t)e−iωt dt. (2.24)

We can divide the total integral into a sum of integrals evaluated over each period of the signal:

F̃p(ω) =
∞∑

n=−∞

∫ nTp+Tp/2

nTp−Tp/2
fp(t)e−iωt dt. (2.25)

5This width is the separation between the peak of the Gaussian at t = 0 and the point where the Gaussian has decayed to the value
e−1.
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Figure 3: Example of a periodic function with period Tp. The blue curve highlights a single period (or cycle) of the
function.

Then, using the periodicity of the signal and doing a change of variable t = t′ + nTp, we can replace the
periodic signal fp(t) with the function f(t) describing a single period:

F̃p(ω) =

∞∑
n=−∞

∫ Tp/2

−Tp/2
f(t′)e−iω(t′+nTp) dt′ (2.26)

=

∞∑
n=−∞

e−iωnTp
∫ Tp/2

−Tp/2
f(t′)e−iωt

′
dt′ (2.27)

=
∞∑

n=−∞
e−iωnTpF̃ (ω), (2.28)

where F̃ (ω) is the Fourier transform of a single period of the original function, i.e., F̃ (ω)↔ f(t). To shed more
light into this expression, we must discuss the prefactor

∑∞
n=−∞ exp(−iωnTp). This surprisingly corresponds

to an interesting generalized function known as a Dirac comb.

Dirac comb

The Dirac comb is a generalized function that essentially corresponds to a sequence of periodically
repeating Dirac delta functions. It is defined as

IIIX(x) =

∞∑
n=−∞

δ(x− nX), (2.29)
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where X denotes the period with which the delta functions repeat. It can be shown (exercise) that the
Dirac comb can also be expressed as an infinite sum of simple exponential functions:

IIIX(x) =
1

X

∞∑
n=−∞

e−i2πn
x
X . (2.30)

The validity of this expression can easily be demonstrated graphically by considering the limit of the
sum of a finite number of exponentials as the number of terms in the sum approaches infinity. Formal
proof is a bit trickier [exercise].

With the help of the Dirac comb, the Fourier transform given by Eq. (2.28) can be written as

F̃p(ω) = F̃ (ω)∆ω

∞∑
n=−∞

δ(ω − n∆ω),

= ∆ω
∞∑

n=−∞
F̃ (n∆ω) δ(ω − n∆ω)

(2.31)

(2.32)

where ∆ω = 2π/Tp, and the second term utilises the fact that the Dirac comb is non-zero only at frequencies
ω = n∆ω. These expressions show that the spectrum of a periodic function fp(t) with period Tp consists
of discrete components separated by ∆ω = 2π/Tp, enveloped by the spectrum of a single period of the
function (see Fig. 4).

Practical example: the 2005 Nobel Prize in Physics

Mode-locked lasers are devices that emit ultrashort bursts of laser light. These pulses are typically
emitted as a periodic sequence, with the temporal separation between two pulses corresponding to the so-
called “repetition time” tr. In light of the discussion above, the spectrum of the entire mode-locked pulse
train must consist of discrete components separated by ∆ω = 2π/trep, as shown in Fig. 4. This is indeed
found to be the case. The implications are tremendous: each of the discrete frequency components,
which there are typically hundreds of thousands, essentially corresponds to an ultrastable laser in its own
right. The resulting “optical frequency combs” have found numerous applications, and were recognised
by the 2005 Nobel Prize in physics.
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Figure 4: Comparison of the Fourier transforms of a periodic function (a, b) and a single cycle of that function (c, d).
Solid curves in (a) and (c) show the time-domain signals while solid curves in (b) and (d) show the corresponding Fourier
transforms. The dotted curve in (b) highlights that the discrete components that make up the spectrum of the periodic
signal is enveloped by the specturm of a single period of that function. Note: Fourier spectra plotted as a function of the
ordinary frequency f = ω/(2π). Also note that, since the signals are real, the Fourier spectra are symmetric.

2.3 Fourier series

It is instructive to take the inverse Fourier transform of F̃p(ω) given by Eq. (2.32) to recover the original
function:

fp(t) =
1

2π

∫ ∞
−∞

F̃p(ω)eiωt dω (2.33)

=
1

2π

∫ ∞
−∞

∆ω

∞∑
n=−∞

F̃ (n∆ω) δ(ω − n∆ω)eiωt dω (2.34)

=
1

2π

∞∑
n=−∞

∆ωF̃ (n∆ω)ein∆ωt. (2.35)
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Recalling ∆ω = 2π/Tp, we can write this expression in a slightly different form:

fp(t) =
∞∑

n=−∞
cne

i 2πn
Tp

t
, (2.36)

where we also introduced the coefficient cn = ∆ωF̃ (n∆ω)/(2π). Writing out the Fourier integral, this coeffi-
cient can be written as

cn =
1

T

∫ T/2

−T/2
f(t)e

−i 2πn
Tp

t
. (2.37)

We can now recognise Eq. (2.36) as the familiar Fourier series, with Eq. (2.37) providing the corresponding
Fourier coefficients. To summarise:

1. A periodic function can be written as a sum of sines and cosinesa with different frequencies.
Historically, this was the first form of Fourier (series) representation of a (periodic) function,
introduced by Joseph Fourier in 1822.

2. The Fourier series representation arises naturally from the theory of continuous Fourier trans-
forms. In particular, the Fourier transform of a periodic function is equal to the Fourier series. It
follows that the Fourier transform is more general, being applicable also to functions (and distri-
butions) that are not periodic.

aEquation (2.36) can be readily transformed into sines and cosines using Euler’s formula.
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Problems

2.1 Use Eqs. (2.3) and (2.4) to prove the basic properties of Fourier transform listed in Subsection 2.1.1.

2.2 Derive the sifting property of the Dirac delta function [see Eq. (2.16)] from the definition given by
Eq. (2.15).

2.3 Use the sifting property of the Dirac delta function [see Eq. (2.16)], together with the definitions of the
Fourier transform, to derive Eq. (2.17).

2.4 Explicitly prove all of the Fourier transforms listed in Subsection (2.1.3). Use the definitions of the Dirac
delta function where needed.

2.5 Show that the Dirac comb, defined by Eq. (2.29), can be expressed in the form given by Eq. (2.30). Hint:
since the Dirac comb is periodic, it can be expressed as a Fourier series.

2.6 Consider a function f(t) comprising of two Gaussian features with identical durations that are separated
from one another by time t0. Derive an expression for the power spectrum of the function, i.e., |F̃ (ω)|2.
Figure 5 shows an example of the power spectrum for some unknown separation t0. Estimate t0 for this
example.
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Figure 5: Power spectrum of a time-domain function consisting of two Gaussian features temporally separated from one
another by t0.

2.7 Consider a damped, driven harmonic oscillator. As will be shown in Section 4, the Fourier transform of
the oscillator displacement [x(t)↔ X̃(ω)] is given by:

X̃(ω) =
F̃ (ω)

ω2
0 − ω2 + 2iγω

, (2.38)

where F̃ (ω) is the Fourier transform of the time-domain driving function f(t), ω0 is the resonance
frequency, and γ is the damping coefficient. Assume that an oscillator that is initially at rest (x(t) = 0
for t < 0) is perturbed with an impulse at t = 0, such that f(t) = δ(t). Calculate the time-domain
response x(t) of the oscillator by explicitly evaluating the inverse Fourier transform of X̃(ω).
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3 Sampling in time and discrete Fourier transform

The Fourier transform takes a continuous function f(t) and gives out another continuous function F̃ (ω) that
describes the frequency spectrum of the original function. However, in most real-world applications, we do
not have knowledge of the functional form of the signal we are interested in. Rather, we only have access to
(digital) data that samples a continuous (analog) waveform at discrete points [see Fig. 6]. For example, while
sound is a continuous waveform of pressure variations, the only way we can store and process it on a computer
is by taking discrete samples of the pressure variations at finite points in time. This raises three questions: what
is the Fourier spectrum of a discretely sampled signal, how does it relate to the spectrum of the original analog
waveform, and how can we efficiently compute the spectrum on a computer?
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Figure 6: Illustration of sampling in time. The blue circles represent discrete and equally-spaced samples taken from the
underlying continuous waveform.

3.1 Sampling in time and discrete-time Fourier transform

Let us first consider a continuous waveform described by a function f(t) that is sampled at equally-spaced
points in time. Mathematically, we may represent the process of sampling by multiplying the function f(t)
with a Dirac comb to give a new (generalised) function fs(t):

fs(t) = f(t)
∞∑

n=−∞
δ(t− nTs) =

∞∑
n=−∞

f(nTs)δ(t− nTs), (3.1)

where Ts is the sampling period, i.e., the time-separation between two sampling points.
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The Fourier transform of fs(t) is known as the discrete-time Fourier transform6, and is given by7

F̃s(ω) =

∫ ∞
−∞

fs(t)e
−iωt dt,

=
1

Ts

∞∑
n=−∞

F̃ (ω − 2πn/Ts) ,

(3.2)

(3.3)

where F̃ (ω) is the Fourier transform of the un-sampled function f(t) [see Fig. 7].
And so we see that the Fourier spectrum of a sampled function is periodic, with the period given by 2π/Ts

in angular frequency. This should not be particularly surprising, since the situation is simply the dual of the
Fourier transform of the periodic signal considered in Section 2.2:

1. The Fourier transform of a periodic function is an enveloped Dirac comb.

2. The Fourier transform of an enveloped Dirac comb is a periodic function.

We also see that the Fourier spectrum of a sampled waveform can be constructed by shifting and adding
up copies of the Fourier transform of the underlying continuous waveform [see Fig. 7]. This observation leads
to a fundamental requirement for the period Ts with which the waveform must be sampled for there to be no
information loss:

Nyquist-Shannon sampling theorem

To recover the original waveform from sampled data, the latter must contain the entire undistorted
spectrum of the former. This requires that the shifted spectra added up in Eq. (3.3) do not overlap. If
the spectra do overlap, they will add up in the overlap region, resulting in distortions that are not present
in the original waveform, which prevents us from recovering the original spectrum. To avoid this issue,
the sampling time Ts must be sufficiently short so as to ensure that the shifted spectra do not overlap.
Quantitatively, if the largest angular frequency contained in the original waveform is ωc = 2πfc, then
the amount with which the spectra are shifted in Eq. (3.3) must be at least 2ωc

a. This gives the following
requirement for the sampling time:

Ts <
1

2fc
. (3.4)

The highest frequency that can be reconstructed from the sampled signal [fc = 1/(2Ts)] is known
as the Nyquist frequency. Digitisation of music (or sound) is an excellent example. Common audio
tracks stored on CDs or in other digital formats are sampled at 44.1 kHz, corresponding to a sampling
period Ts ≈ 23 µs. This yields a Nyquist frequency of fc ≈ 22.1 kHz, allowing the full range of
frequencies heard by humans to be represented (human hearing extends to 20 kHz). On the other hand,
there is no point to use a larger sampling frequency, since human hearing does not extend beyond 20 kHz.

As an example, imagine we sample a simple sine wave with frequency f0 and corresponding pe-

6Note that discrete-time Fourier transform is not the same as discrete Fourier transform. Very confusing but not my fault.
7To show this, one first uses Eq. (2.30) to replace the sum of Dirac delta functions with exponential functions, then changes the

order of summation and integration, and finally does a change of variable ω′ = ω − 2πn/T .
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Figure 7: Illustration of discrete-time Fourier transform. (a, b) Continuous-time waveform (a) and corresponding Fourier
transform (b). (c) Discretely sampled version of the waveform shown in (a). (d) Discrete-time Fourier transform corre-
sponding to the sampled waveform shown in (c). The Fourier transform of the sampled signal repeats in frequency with a
period 1/Ts. Note: spectra plotted as a function of the ordinary frequency.

riod t0 = 1/f0. Equation (3.4) shows that reconstruction of this waveform requires that the sampling
time Ts < t0/2. Thus, we need at least two sample points per period.

aThe factor of two comes from the fact that the Fourier spectrum of real waveforms is symmetric versus the zero frequency.
In this case, the sampling time must be sufficiently short so that the ωc component does not overlap with the −ωc component
of the next term in the sum. Hence the factor of two.

3.2 Discrete Fourier transform

Our discussion above imposed no limits on the number of points in our sampled waveform (the sum in Eq. (3.1)
extends to infinity). This is clearly not physical in terms of actual real-world data stored on a computer, which
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is not only discrete but also finite. Indeed, real-world data constitutes a sampled version of an analog waveform
over some finite region with duration Tp. To calculate the Fourier spectrum of such data, we need to make an
assumption on what the waveform is doing outside the region with which we have sampled it (recall that the
Fourier integral goes to infinity).

A particularly good approach is to assume that the waveform is periodic with a period Tp, as shown in Fig. 8.
Indeed, with this assumption, we know that the Fourier spectrum will only be composed of discrete components
spaced by 2π/Tp [see Section 2.2]. Moreover, because the original data is sampled with a sampling time of
Ts, we know that the Fourier spectrum will be periodic with a period of 2π/Ts (see previous subsection). This
implies that all of the spectral information is contained at a discrete set of angular frequencies between zero
and 2π/Ts that are spaced by 2π/Tp, i.e., at frequencies ωn = n2π/Tp where n = 0...(N −1) andN = Tp/Ts

is the total number of sampling points [see Fig. 8]. The implication is that we can take a waveform sampled at
N evenly-spaced points and obtain the Fourier spectrum at N frequencies without having to calculate a single
integral going to infinity. The resulting procedure is known as the discrete Fourier transform (DFT) and is
arguably the most important variant of Fourier analysis since it can be efficiently calculated on a computer for
real-world data that is discrete and finite.

Mathematically, we can represent a waveform sampled with N points as

fs(t) =
N−1∑
m=0

f(t)δ(t−mTs). (3.5)

Taking the continuous Fourier transform yields

F̃s(ω) =
N−1∑
m=0

f(mTs)e
−iωmTs . (3.6)

Since we are assuming that fs(t) corresponds to a sampled version of the single cycle [f(t)] of an underlying
periodic waveform [fp(t)], we know that the total spectrum is nonzero only at frequencies ω = n∆ω [see
Section 2.2]. Thus, we only need to evaluate F̃s(ω) at ω = n∆ω to obtain the spectrum of our (assumed)
periodic waveform:

F̃p(n∆ω) =

N−1∑
m=0

fs(mTs)e
−in∆ωmTs . (3.7)

Note that we have chosen to ignore the prefactor ∆ω that arises in the Fourier transform of a periodic signal;
this is not particularly important. Recalling that ∆ω = 2π/Tp and that N = Tp/Ts, we finally obtain

F̃p(n∆ω) =

N−1∑
m=0

fs(mTs)e
− 2πi

N
nm. (3.8)

This corresponds to the discrete Fourier transform (DFT), which allows us to obtain a (finite) discrete Fourier
spectrum from a (finite) sampled data fs(t).

We can express the DFT relationship more algorithmically by referring exclusively to the indices n and m,
without referring to the actual time and frequency at all. Specifically, given a sequence of (complex) numbers
with components x[k] for k = 0, 1, ..., N−1, the DFT is another sequenceX[n] for n = 0, 1, ..., N−1 defined
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Figure 8: Schematic illustration of discrete Fourier transform. (a) A time-domain signal composed of a finite number of
points sampled at even intervals separated by Ts (blue) is assumed to be part of a larger waveform that repeats periodically
with a period Tp. (b) The Fourier spectrum of the assumed periodic waveform is periodic with period 1/Ts and non-zero
only at frequencies separated by 1/Tp. A single period of the Fourier spectrum contains all the information available
(red shaded area). Hence, we only need to evaluate the Fourier components at the discrete frequencies within the shaded
region.

by

X[n] =
N−1∑
m=0

x[m]e−
2πi
N
nm. (3.9)

This expression is formally identical to the one derived above. The corresponding inverse Fourier transform is

x[m] =
1

N

N−1∑
n=0

X[n]e
2πi
N
nm. (3.10)

Note that different conventions exist for the normalisation factor 1/N .
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3.3 DFT with a computer

The beauty of the DFT lies in the fact that it can be easily computed as simple sums, without the need for any
infinite integrals. Morever, it can be very efficiently calculated on a computer using a clever algorithm known
as Fast Fourier Transform (FFT). The modern development of the algorithm is credited to the 1965 work by
James Cooley and John Tukey, but in fact, it was already alluded to by Carl Friedrich Gauss in 1805 – more
than a decade before Fourier came up with his series! We will not discuss the FFT algorithm itself, but we will
summarise how it is used in typical computational environments (e.g. Python or Matlab).

FFT is truly one of the cornerstones of modern signal processing, and it is widely used in image, sound, and
video compression and editing, analysis of scientific data, numerical integration and differentiation and so on.
Because of its universal usefulness, most platforms of scientific computation include routines for performing
FFT. This is typically very simple:

1. Python. In Python, FFT is included both in the numpy and and scipy libraries (among others). Given a
sequence of numbers with N components x[k]:

from scipy.fftpack import fft
X = fft(x)

2. Matlab. FFT is a standard function in Matlab. Given a sequence of numbers with components x[k]:

X = fft(x);

Both examples return a sequence of numbers X[n] with N components according to Eq. (3.9). The only
difficulty is then to interpret what frequencies do these different numbers represent. Comparison of Eqs. (3.8)
and (3.9) make this simple: the nth component corresponds to the frequency

ω[n] = n∆ω = n
2π

Tp
, (3.11)

where Tp = NTs is the entire duration of the sampled data signal. Thus, to construct the FFT frequency grid,
the only thing we need to know is the sampling time Ts. We can then extract the number of points N from the
data and construct both the time- and frequency grids.

There is one important point to note. Specifically, because the DFT is essentially a Fourier transform of
discretely sampled data, the Fourier spectrum is periodic [see Fig. 8]. This implies that the latter half of the
frequencies can be interpreted as negative frequency components, and this indeed is the convention. Assuming
N is even8, the frequency grid should be interpreted as

ω[n] = [0, 1, ...n/2− 1,−n/2, ...− 1]∆ω. (3.12)

Note how the frequencies turn negative after the mid-point. If the signal being analysed is real, then the second
half of the DFT spectrum (corresponding to negative frequencies) is of course redundant thanks to the Hermitian
symmetry. However, if the signal is not real, the negative frequency components contain new information.

The numpy library in Python contains a handy function that returns the FFT frequency grid in terms of the
ordinary frequency f = ω/(2π):

8FFT typically performs better for even numbers of sampling points
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import numpy as np
f = np.fft.fftfreq(N, d = Ts)

where N is the number of sample points and Ts is the sampling time. Below we give an explicit example of the
use of FFT with Python:

import numpy as np
from scipy.fftpack import fft
import matplotlib.pyplot as plt

Tper = 4
f0 = 1/Tper

Tp = 8*Tper
N = 2**10
Ts = 40*Tper/N

t = np.arange(0,N)*Ts
x = np.cos(2*np.pi*f0*t)
f = np.fft.fftfreq(N,d = Ts)
X = fft(x)

plt.plot(f,X)

Two common problems

There are two important things to be aware of when using DFT to compute spectra of real-world signals
on a computer. Both of these things result directly from the theoretical foundations outlined above:

1. For the spectrum to be representative of the appropriate physical waveform, the sampling period
Ts must satisfy the Nyquist-Shannon sampling theorem. If the sampling period is too large, the
spectrum will not accurately represent the spectrum of the actual waveform. The resulting artifacts
are referred to as “aliasing”.

2. The DFT explicitly assumes that the data being transformed is a single period of a fully periodic
waveform with period Tp. However, if the first and the last points of the sampled data are not
identical, then an unphysical discontinuity must be present in the underlying periodic waveform.
This results in artifacts in the evaluated spectrum. Such artifacts can be readily seen when consid-
ering the example above with e.g. Tp = 8.2*Tper such that the time window does not contain
an integer multiple of sinusoidal oscillations. The FFT no longer contains infinitely sharp peaks,
but there is rather some energy leakage to neighbouring Fourier frequencies. Bottom line is that,
when considering data sequences that fill the entire sampling window, one has to bear in mind the
fact that DFT assumes periodic boundaries.
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Problems

3.1 In Canvas, you will find the file tohoku.npy, which contains a numpy array of seismometer data
recorded during the 2011 Tohoku earthquake. The sampling rate of the data is 1 Hz.

(a) Write a Python code that loads the data and plots the seismometer data as a function of time.
Describe your observations.

(b) Estimate the speed of the seismic wave corresponding to the earthquake.

(c) Plot the Fourier spectrum of the seismic wave. Describe your observations.

3.2 In Canvas, you will find the audio files 32a.wav and 32b.wav. The former (latter) is a recording of
the the lecturer playing a free note (chord) on an acoustic guitar. Use Fourier analysis (and the internet)
to answer the following questions.

(a) What is the free note recorded on file 32a.wav?

(b) What are the dominant frequencies that make up the the recording on file 32b.wav? With domi-
nant frequencies, we mean those that do not correspond to harmonics (or overtones).

(c) What is the chord played on the recording on file 32b.wav?

(d) Has the lecturer been careful with tuning the instrument?

Hint: the following commands allow you to load audio files with Python:

import scipy.io.wavfile
rate, signal = scipy.io.wavfile.read(’32a.wav’)

Here, the variable rate will contain the sampling rate 1/Ts in units of Hz, while the variable signal
contains the actual audio file (i.e., the pressure wave generated by a loudspeaker).

3.3 Consider the hyperbolic secant function, which is of particular significance in many areas of physics,

f(t) = sech

(
t

T0

)
=

2

et/T0 + e−t/T0
, (3.13)

where T0 is a parameter that defines the width (or duration) of the function. Write a Matlab/Python code
that uses FFT to numerically demonstrate that the Fourier transform

F̃ (ω) ∝ sech

(
πT0

2
ω

)
. (3.14)

Note the proportionality: for simplicity, you can ignore prefactors and normalize the FFT result to unity.

3.4 Write a Matlab/Python code that evaluates the derivative of the hyperbolic secant function given by
Eq. (3.13). Check your result against the analytical formula

df(t)

dt
= − 1

T0
sech

(
t

T0

)
tanh

(
t

T0

)
. (3.15)
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Note: evaluating derivatives in this manner is very handy, especially when an analytical result is not
available. It is also very straightforward to evaluate higher-order derivatives, which may be cumbersome
to do analytically. For example, consider the second or third order derivatives of the hyperbolic secant
function. Would you rather evaluate them analytically or numerically?

3.5 In Canvas, you will find the file 35.mat. This file contains the complex amplitude of the slowly-varying
envelope of an ultra-short light pulse that has propagated through a highly nonlinear material, as well as
the corresponding time base. Mathematically, if we write the complex electric field as

E(t) = A(t)eiω0t, (3.16)

the amplitude contained in the file corresponds toA(t). Assuming ω0/(2π) = 400 THz, write a Python/-
Matlab code that plots the power spectrum |Ẽ(ω)|2 of the light pulse in decibel scale as a function of
wavelength from 500 nm to 1200 nm. Note that, since A(t) is complex, you cannot discard negative
frequencies. Rather consider what they mean, and consider shifting things around so that the “zero”
frequency lies in the middle of the frequency grid. Python and Matlab have functions fftshift that
do this shifting for you. Note that the data is stored in a Matlab file format: to open this on python, use
the following code

import scipy.io
mat = scipy.io.loadmat(’35.mat’,squeeze_me=True)

t = mat[’t’]
A = mat[’A’]
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4 From oscillations to waves

In this Section, we will describe how wave equations arise naturally from the analysis of coupled oscillators.
We will start with a brief recap into harmonic oscillations, and apply our newly-developed knowledge of Fourier
transforms to solve the pertinent equations.

4.1 Damped, driven harmonic oscillator

In the preceding two Sections, we have mathematically described how arbitrary signals can be represented
as superpositions of simple oscillatory functions. But of course, (superpositions of) oscillations are not only
mathematical constructs, but they arise very naturally in numerous physical systems. A familiar example —
that also happens to be of particular significance — is that of the harmonic oscillator, which is typically first
encountered in undergraduate physics in the form of a mass attached to a spring. It turns out, however, that the
harmonic oscillator model is not limited to masses on springs, but is rather remarkably universal, appearing in
numerous situations such as electronic circuits, acoustical systems, light-matter interaction, optical resonators
and so on.

The equation of motion of any second-order linear oscillatory system can be cast into the following univer-
sal oscillator equation form:

d2x(t)

dt2
+ 2γ

dx

dt
+ ω2

0x = f(t), (4.1)

where γ is a damping coefficient, ω0 is the characteristic frequency of the oscillator, and f(t) is the driving
function. We can obtain the familiar equation of motion for a mass m attached to a spring by replacing f(t) =
F (t)/m, where F (t) is the driving force with units of Newtons9. In this case, the characteristic frequency
ω2

0 = k/m, where k is the spring constant.
In the absence of damping (γ = 0) and driving (f(t) = 0), Eq. (4.1) admits solutions in the form of simple

harmonic oscillations: x(t) = A cos(ω0t). If damping (but not driving) is present, the solutions depend on the
ratio γ/ω0; in the case of weak damping (γ � ω0), the solutions correspond to exponentially damped oscil-
lations. In the general case, where both damping and driving are present, Eq. (4.1) can be easily solved using
Fourier transforms. Specifically, Fourier transforming both sides of the equation and using the differentiation
rule given by Eq. (2.10), we obtain

−ω2X̃(ω) + 2iγωX̃(ω) + ω2
0X̃(ω) = F̃ (ω), (4.2)

where X̃(ω) and F̃ (ω) are the Fourier transforms of x(t) and f(t), respectively. Simple manipulation yields

X̃(ω) =
F̃ (ω)

ω2
0 − ω2 + 2iγω

= S̃(ω)F̃ (ω), (4.3)

where we defined the frequency response function

S̃(ω) =
1

ω2
0 − ω2 + 2iγω

. (4.4)

9The exact same form, with F (t) = −qE(t), would describe the motion of an electron in a time-varying electric field.
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Figure 9: Amplitude (black solid curve) and phase (red dash-dotted curve) of the frequency-response function S̃(ω) of
a damped driven harmonic oscillator in the vicinity of ω ≈ ω0. Note how the y- and x-axes are normalised. Also note
that the response function is Hermitian, i.e., S̃∗(ω) = S̃(−ω), which means that there is another resonance peak in the
vicinity of ω ≈ −ω0 with inverted phase.

Equation (4.3) shows that the Fourier spectrum of x(t) can be obtained by multiplying each frequency
component of the Fourier spectrum of the driving function f(t) with an appropriate complex number [i.e., S̃(ω)]
10. The corresponding time-domain behaviour can then be obtained via inverse Fourier transform, regardless
of the form of the driving function. In the particular case where the driving function is harmonic, such that
f(t) = cos(ωf t), it can be shown that the oscillator motion is also harmonic, and given by [exercise]

x(t) = |S̃(ωf )| cos(ωf t+ φ), (4.5)

where φ = arg[S̃(ωf )]. In other words, the magnitude (phase) of the response function sets the amplitude
(phase) of the oscillator motion relative to the driving function.

Figure 9 shows an example of the phase and amplitude profiles of the response function defined in Eq. (4.3)
in the vicinity of ω ≈ ω0. As can be seen, the amplitude of oscillation is maximised when ω = ω0; this is
the concept of resonance. In contrast, for frequencies that satisfy |ω − ω0| � γ, the oscillation amplitude is
virtually zero; the driving is out-of- resonance.

In the more general case where the driving function is not harmonic, the amplitude and phase of each
spectral component of F̃ (ω) must be scaled with the amplitude and phase of the response function S(ω). The
resulting changes in the time-domain can be very convolved11, but in the frequency domain everything is nice
and linear.

10This frequency-domain relationship is in fact a universal feature of linear systems.
11Pun intended: the time-domain response can be understood as a convolution between a time-domain response function and the

driving function.
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4.1.1 Another perspective: Green’s functions

Our approach to solving the universal oscillator equation consisted of solving the equation in the Fourier domain
[Eq. (4.3)] and then taking the inverse Fourier transform to obtain the time-domain response. It is instructive to
approach the problem from a slightly different perspective, although the end-result will of course be equivalent.
Let us consider the special situation where the driving function is an impulse δ(t − t′) centred at t′, and let us
denote the solution to the oscillator equation in this case as G(t − t′). (Note how the value of this function at
time t depends on the delay between t and the centre position t′ of the impulse.) By definition(s), we have[

d2

dt2
+ 2γ

d

dt
+ ω2

0

]
G(t− t′) = δ(t− t′). (4.6)

Let us now multiply both sides by an arbitrary driving function f(t′) and integrate from −∞ to ∞. We
obtain [

d2

dt2
+ 2γ

d

dt
+ ω2

0

] ∫ ∞
−∞

f(t′)G(t− t′) dt′ =

∫ ∞
−∞

f(t′)δ(t− t′) dt′. (4.7)

Note that we can swap the order of the differential and integral operators since t and t′ are independent variables.
Now, the right-hand side of Eq. (4.7) is equal to f(t) by virtue of the sifting property of the Dirac delta function.
What this means is that the solution to the universal oscillator equation in the presence of an arbitrary driving
function f(t) can be written as

x(t) =

∫ ∞
−∞

f(t′)G(t− t′) dt′ = (f ∗G)(t). (4.8)

This implies that, as soon as G(t) is known, we can readily obtain the solution to the universal oscillator for
any driving function as a simple convolution! The function G(t) is an example of Green’s functions, which are
essential for understanding the solutions to inhomogeneous linear differential equations.

Green’s functions

Green’s function is the impulse response of an inhomogeneous linear differential equation. Specifically,
given a linear differential operator L(t), a Green’s function solves the equation

LG(t, t′) = δ(t− t′). (4.9)

If the operator exhibits translational invariance, such that L(t) has constant coefficients with respect to
t, then the functional dependence of the Green’s function can be written as G(t, t′) = G(t− t′). For the
case of the universal oscillator equation considered above, it is easy to see that the operator

L(t) =
d2

dt2
+ 2γ

d

dt
+ ω2

0. (4.10)

Since the coefficients are constant with respect to t, we used the form G(t− t′).

As described above, Green’s functions allow us to study inhomogeneous differential equations of
the form

Lx(t) = f(t), (4.11)
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which manifest themselves in many branches of physics. For example, as we shall see, the generation
and behaviour of waves obeys an equation of this form, with the driving function f(t) representing
a source term that is actually responsible for the generation of the waves. To find solutions to such
equations, one must first find the Green’s function for the particular problem by solving the equation in
the case of an impulse driving function. Solutions for arbitrary driving functions can then be obtained
by using Eq. (4.8). It must be highlighted that each differential equation is associated with a different
Green’s function. Moreover, Green’s functions may not be unique: some systems may admit infinitely
many Green’s functions corresponding to different initial and/or boundary conditions.

4.1.2 Green’s function for damped, driven oscillator

To find the Green’s function G(t) for the damped, driven oscillator equation, we must solve Eq. (4.6) with
t′ = 0. This can be accomplished in the Fourier domain as before. Considering f(t) = δ(t), we have
F̃ (ω) = 1. Using Eq. (4.3), the Fourier transform of the Green’s function satisfies [see Eq. (4.3)]

G̃(ω) =
1

ω2
0 − ω2 + 2iγω

= S̃(ω). (4.12)

And so we see that the Green’s function corresponds to the inverse Fourier transform of the frequency-response
function S(ω) defined in Eq. (4.4). This should not be particularly surprising, as Eq. (4.3) and Eq. (4.8) corre-
spond to Fourier transform pairs by virtue of the convolution property. To re-iterate, the Green’s function G(t)
can be understood as the impulse response of the system, which corresponds to the inverse Fourier transform
of the system’s frequency response.

We can explicitly evaluate the inverse Fourier transform using contour integration [exercise]. Assuming
ω0 > γ, we obtain

G(t− t′) =
e−γ(t−t′)√
ω2

0 − γ2
sin

[√
ω2

0 − γ2(t− t′)
]
H(t− t′), (4.13)

where we defined the Heaviside step-function

H(t) =

{
1 if t ≥ 0
0 if t < 0.

(4.14)

As shown in Fig. 10, the Green’s function given by Eq. (4.13) corresponds to damped oscillation that begins
at t = t′. Physically, an impulse excites the oscillator from rest and causes it to oscillate; however, because of
dissipation and the absence of any subsequent driving, the oscillations are exponentially damped.

4.2 Coupled oscillators and normal modes

Let us now consider the situation of two coupled oscillators. Our goal is to introduce the concept of normal
modes12, and to pave the way for a simple physical derivation of a wave equation. To these ends, we focus here
on the simplest possible situation and the most salient physics, and ignore the effects of damping and driving.

12We will be looking at normal modes of some complex systems later on, so consider this section as a warm-up.
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Figure 10: Green’s function G(t− t′) for a damped, driven, harmonic oscillator with γ = 0.5 s−1 and ω0/(2π) = 2 Hz.

As shown in Fig. 11, we consider two masses that are attached to fixed walls with springs with spring
constants are k1 and k3, respectively. Moreover, we assume they are connected to one another by a spring k2. It
should be clear that (i) the force applied to a given mass is transmitted by the two springs it is connected to, and
(ii) the force each spring transmits is governed by the extent to which the spring is compressed or extended.

Spring 1 (3) can only be compressed or extended if mass 1 (2) is displaced from its equilibrium (we denote
the displacements as u1 and u2). On the other hand, spring 2 is compressed or stretched depending on whether
the quantity u1 − u2 is positive (compression) or negative (stretched). If that spring is compressed, it will exert
a force pushing mass 1 (2) to the left (right) and vice versa. The equations of motion following from Hooke’s
and Newton’s laws are:

m1
d2u1

dt2
= −k1u1 − k2(u1 − u2), (4.15)

m2
d2u2

dt2
= −k3u2 + k2(u1 − u2). (4.16)

Figure 11: Schematic illustration of two coupled oscillators.

27



These equations of motion can be written in matrix form as

d2~u
dt2

= M~u, (4.17)

where ~u = [u1, u2]T and the matrix

M =

[
−k1+k2

m1

k2
m1

k2
m2

−k3+k2
m2

]
. (4.18)

The general solution of the system given by Eq. (4.17) can be expressed as a linear combination of four
terms of the form

~u±1,2 = ~a1,2e
±iω1,2t (4.19)

where~a1,2 are the two linearly independent eigenvectors of the matrix M and ω1,2 are related to the correspond-
ing eigenvalues λ1,2 viz. ω1 =

√
|λ1,2|. Assuming for simplicity that the masses and springs are all identical13,

the frequencies and corresponding eigenvectors are

ω1 = ω0 ↔ ~a1 = [1, 1]T

ω2 =
√

3ω0 ↔ ~a2 = [1,−1]T,

(4.20)

(4.21)

where ω2
0 = k/m. We can draw important conclusions from the above results.

Normal modes

A single harmonic oscillator has a single characteristic frequency ω0. In the case of a simple spring-
mass system, this frequency is related to the spring constant and mass viz. ω2

0 = k/m. However,
when we couple two such oscillators together, as in our analysis above, we find that the overall system
exhibits two characteristic frequencies; in our example above, those frequencies are ω0 and

√
3ω0.

Importantly, all the constituents of the system (in our case two springs) simultaneously oscillate with
the same frequency (either ω0 or

√
3ω0 in our example). However, the oscillations can occur in different

directions, as was found for our two-spring system: the eigenvectors show that, when the system is
oscillating at ω0, both masses are displaced in the same direction, while the opposite is true for

√
3ω0.

The characteristic motion patterns (oscillation frequencies, directions) identified above are known as
the normal modes of the system. They can be understood as the patterns at which the overall system
“wants” to oscillate. While our example of coupled springs is not particularly practical, normal modes
are an important concept that arise in many different branches of science and engineering. For example,
the resonant frequencies of a laser cavity, oscillations of the Earth after an earthquake, or the motion of
a druma all represent examples of normal mode behaviour.

aYou know, the instrument you hit with a stick.

13The writer is sitting on a plane while writing this, and solving the eigenvalues and eigenvectors for the more general case seems
too much for this environment!
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4.3 Continuum limit

Our analysis above can be readily extended to as many oscillators as one desires. Here we are interested in the
“continuum limit”, i.e., the limit where we have an infinitely many oscillators that are infinitely close to each
other. (The physical interpretation is presented in the end; it is obvious.) In this case, each oscillator is coupled
to its two neighbouring oscillators. Assuming all the springs and masses to be identical, the equation of motion
for the displacement ui reads

m
d2ui
dt2

= k(ui+1 − ui) + k(ui−1 − ui) (4.22)

= k(ui+1 − 2ui + ui−1). (4.23)

The right-hand side of Eq. (4.23) resembles the finite-difference approximation of a second derivative.
Specifically, given a function u(x), we have

d2u

dx2
≈ u(x+ h)− 2u(x) + u(x− h)

h2
, (4.24)

with the approximation getting better as h gets smaller small. Since we are considering a linear chain of discrete
oscillators, h in our case should be understood as the oscillator spacing (or lattice spacing). We can rearrange
Eq. (4.23) to include this quantity (in a way that makes sense shortly):

d2ui
dt2

=
k/h

m/h3

ui+1 − 2ui + ui−1

h2
. (4.25)

In the continuum limit, the spacing of the oscillators goes to zero, the number of oscillators goes to infinity, and
the mass of a single oscillator must go to zero (otherwise the mass would un-physically diverge to infinity). In
this limit, the discrete set of displacements un can be replaced with the continuous function u(x, t). Moreover,
we can identify the limits limh→0m/h

3 and limh→0 k/h as the density (ρ) and stiffness per unit length (E) of
the resulting continuous medium. Taking the limit thus yields

∂2u(x, t)

∂t2
=
E

ρ

∂2u(x, t)

∂x2
. (4.26)

And so we have derived the wave equation for a thin elastic rod! Let us now put some physics into the
derivation.

Waves and coupled oscillators

The derivation above may feel very abstract: when would we ever encounter coupled oscillators? The
answer is “all the time”. In fact, different media support waves precisely because they are essentially
(the continuum limits of) coupled oscillators. Consider a string. All parts of the string are connected
(or coupled), and so displacing one region upwards forces the neighbouring regions to similarly shift
upwards. And so a wave can propagate through a string. Similarly consider sound. Air molecules move
about their equilibrium positions, colliding with each other in a manner that gives rise to (spring-like)
restoring forces.

29



This simple idea of coupling provides significant insights. For example, in fluids such as air,
longitudinal (sound) waves can propagate because different positions are coupled through collisions
between diffrent molecules. Fluids do not, however, support transverse waves since there is no coupling
in the transverse direction (an air molecule displaced upwards will not pull its neighbours with it).
Simple as that.
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Problems

4.1 Consider a damped, driven harmonic oscillator described by Eq. (4.1). Show that, for a harmonic driving
f(t) = cos(ω0t), the oscillator response can be written as

x(t) = |S̃(ω0)| cos(ω0t+ φ), (4.27)

where S̃(ω0) is the frequency-domain response function given by Eq. (4.4) and φ = arg[S̃(ω0)].

4.2 The quantity |S̃(ω)|2 is often of more interest than |S̃(ω)|, as the former is directly related to the energy of
oscillation. Show that, for ω0 � γ, the quantity |S̃(ω)|2 can be written as a Lorentzian function. Derive
an expression for the full-width at half maximum of this Lorenzian. Hint: When ω0 � γ, |S̃(ω)|2 is
highly localised around ω0. Thus, is may be a good idea to approximate ω ≈ ω0 somewhere.

4.3 Show that Eq. (4.13) corresponds to the Green’s function of the damped, driven, harmonic oscillator
equation [Eq. (4.1)].

4.4 Show that a linear combination of four terms of the form given by Eq. (4.19) satisfy the differential
Eq. (4.17). Further show that, for k1 = k2 = k3 and m1 = m2, the angular frequencies ω1 = ω0 and
ω2 =

√
3ω0 where ω2

0 = k/m, and that the corresponding eigenvectors ~a1 = [1, 1]T and ~a2 = [1,−1]T.

4.5 Equation (4.26) can be identified as the wave equation for a thin solid rod, where longitudinal defor-
mations propagate through the rod. In this case, the coefficient E should be understood as the Young’s
modulus defined by

E =
σ

ε
=

F/A

∆L/L0
, (4.28)

where σ = F/A is the force applied along the rod per unit area (stress) and ε = ∆L/L0 is the change
in length (∆L) of the rod divided by the original length (L) when a force F compresses or extends the
rod (strain). Suppose that a longitudinal wave causes an x-directed displacement u(x, t) of the various
elements of the rod from their equilibrium position. By considering the equation of motion of a thin
section of the rod, derive Eq. (4.26) using the concepts of stress and strain.

4.6 Consider an elastic string (like a guitar string) of length L and mass m that is held taught with tension T .
Show that the vertical displacement u(x, t) of the string satisfies the following wave equation

∂2u(x, t)

∂t2
=
T

µ

∂2u(x, t)

∂x2
. (4.29)
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5 Waves and wave equations

In the previous Section, we presented a simple derivation of a wave equation describing the oscillator displace-
ments in a system of coupled oscillators. Of course, an immediate conclusion is that the system supports waves:
a disturbance excited at one spatial position will propagate across the oscillator chain. In this Section, we dis-
cuss the basic solutions of the wave equation – first in one dimension and subsequently in three dimensions.

We can write Eq. (4.26) in a more general form as

∂2u(x, t)

∂t2
= v2∂

2u(x, t)

∂x2
, (5.1)

where v is a free parameter whose meaning will be evident shortly14. This is the general form of a wave
equation in one spatial dimension. The simplest solution of Eq. (5.1) is

u(x, t) = Aeiωt±ikx, (5.2)

where ω and k are constants related via the dispersion relation

ω = kv. (5.3)

It is straightforward to verify (e.g. via direct substitution) that Eq. (5.2) indeed solves the wave equation
provided that ω and k are related via the above dispersion relation. (Note that also the complex conjugate of
Eq. (5.2) is a solution.) It should be clear that ω is the angular frequency of the wave, describing the number
of periods that pass a fixed point per second. The parameter k is known as the wave number, and can easily be
shown to be related to the wavelength λ as

k =
2π

λ
. (5.4)

As illustrated in Fig. 12, the solution given by Eq. (5.2) (or its physically relevant real part) describes a sinu-
soidal wave that propagates along the spatial x dimension as time t evolves. Consider the value15 u(x, t) of the
wave at an arbitrary time t and position x. After an infinitesimal time increment t→ t+ dt, the wave assumes
this same value but at some slightly different position x→ x+dx. Equating u(x, t) = u(x+dx, t+dt) yields

ωt± kx = ω(t+ dt)± k(x+ dx) (5.5)

0 = ωdt± kdx. (5.6)

From the second expression, we obtain

dx

dt
= ∓ω

k
= ∓v. (5.7)

The parameter v therefore corresponds to the speed of the wave, whilst the sign in the exponential of Eq. (5.2)
determines the direction of wave propagation.

14I’m sure you already now the meaning...
15or displacement or whatever the wave describes
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Figure 12: Schematic illustration of a sinusoidal wave propagating with speed v. In time ∆t, the wave advances the
spatial distance d = v∆t.

5.1 General solution in one dimension

The wave equation is a linear equation, which implies that superpositions of elementary solutions also solve the
equation. In particular, we may write a general solution as an integral of elementary waves of the form given
by Eq. (5.2) with different frequencies and amplitudes16:

u(x, t) =
1

2π

[∫ ∞
−∞

Ã(ω)ei(ωt+k(ω)x) dω +

∫ ∞
−∞

B̃(ω)ei(ωt−k(ω)x) dω

]
(5.8)

Note how the general solution comprises of two linearly independent integrals corresponding to two different
signs in the exponential. Substituting k(ω) = ω/v from the dispersion relation yields

u(x, t) =
1

2π

[∫ ∞
−∞

Ã(ω)eiω(t+x/v) dω +

∫ ∞
−∞

B̃(ω)eiω(t−x/v) dω

]
. (5.9)

Introducing new variables t′ = t+ x/v and t′′ = t− x/v, it is easy to see that the two terms in Eq. (5.9) have
the general form of an inverse Fourier transform as defined in Eq. (2.4). Accordingly, we may write the general
solution to the wave equation in the following time-domain form

u(x, t) = A(t+ x/v) +B(t− x/v). (5.10)

Physically, the two terms in Eq. (5.10) represent disturbances with arbitrary profiles that are moving with
uniform speed v along the −x [A(t + x/v)] or +x [B(t − x/v)] directions. In other words, any function
that is uniformly moving with a speed of v solves the wave equation.

16the factor of 2π will be clear shortly
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5.2 Wave equation in three dimensions

The wave equation of Eq. (5.1) only includes a single spatial dimension (x), and therefore only describes
waves in systems where wave propagation is possible along one single direction (such as a guitar string). This
is of course not particularly general, as there are numerous systems17 where waves can propagate in arbitrary
directions [see exercises]. Moreover, Eq. (5.1) corresponds to a scalar wave equation, as the wave displacement
is aligned along a single direction y; in general, wave displacements can point in arbitrary directions. We can
write a more general form of the wave equation by permitting the directions of wave propagation and oscillation
to point in any direction in a three-dimensional Euclidean space:

∂2~u(~r, t)
∂t2

= v2∇2~u(~r, t). (5.11)

Here, ~u = [ux, uy, uz]
T is a vector that describes the direction and magnitude of the wave displacement at some

time t and position~r = [x, y, z]T, while∇2 is the Laplace operator defined in Cartesian coordinates as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (5.12)

We must note that, as for our derivation of the one-dimensional wave equation, the three-dimensional wave
equation arises from the laws of physics that govern the particular system under study. It will be left as an
exercise to derive the wave equation in different contexts.

The solutions of Eq. (5.11) are vectorial generalizations of the solutions of the one-dimensional wave equa-
tion. In particular, the simplest solution assumes the form

~u(~r, t) = ~u0e
i(ωt−~k·~r), (5.13)

where ~u0 = [u0x, u0y, u0z]
T is a constant vector amplitude of the wave, while ~k = [kx, ky, kz]

T is known as the
wave vector. The wave vector describes both the direction of wave propagation as well as the spatial periodicity
(i.e. wavelength) of the wave. In particular, it can be shown that the wave propagates in the direction defined
by ~k, and that the magnitude of the wave vector corresponds to the wave number

k = ||~k|| =
√
k2
x + k2

y + k2
z =

2π

λ
. (5.14)

It can also be shown via direct substitution that, for Eq. (5.13) to be a solution to the three-dimensional wave
equation, the dispersion relation described by Eq. (5.3) must still hold [but with the wave number defined by
Eq. (5.14)]. In this regard, we must highlight that, for a given angular frequency ω, the 3D wave equation
admits infinitely many solutions of the form Eq. (5.13), each associated with a different wave vector ~k; indeed,
the only condition the wave vector must satisfy is that its magnitude fulfills the dispersion relation.

17Consider for example electromagnetic waves propagating through space or seismic waves propagating through the Earth.
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Plane waves and polarization

Waves of the form given by Eq. (5.13) are known as plane waves. This is because the wave function
~u(~r, t) takes the same value at all points ~r that lie on a two-dimensional plane perpendicular to ~k.
Moreover, the planes of equal wave value repeat periodically in space. The period — i.e., the distance
over which the wave’s shape repeats itself along the direction of the wave vector ~k — is simply the
wavelength λ. We can thus picture the wave as being made out of infinite planes of constant value
that are moving in the direction of their surface normal (which corresponds to the wave vector). These
features can be readily demonstrated by considering Eq. (5.13), and is left as an exercise.

The vector amplitude ~u0 describes the amplitude and direction of the wave oscillation. The di-
rection of oscillation, which strictly speaking corresponds to the unit vector û0 = ~u0/||~u0||, is often
referred to as the polarization of the wave.

5.3 Helmholtz equation

In the preceding subsection, we have described the wave equation in three spatial dimensions as well as its
simplest solutions: the plane wave. It is important to note that plane waves do not really exist in real world.
Indeed, a wave whose “planes of constant value” extend to infinity must carry infinite energy, which is unphys-
ical. Nevertheless, it turns out that plane waves are useful: they offer very simple insights into the behaviour of
real waves, and arbitrary waves can in fact be expressed as superpositions of plane waves (via Fourier integrals;
more of that later).

In the next subsection, we discuss another important solution to the three-dimensional wave equation,
namely that of a spherical wave. They do not really exist in real world either, but they get closer to reality
than plane waves do. Before we describe the plane wave solutions, we shall introduce a time-independent form
of the wave equation, namely the Helmholtz equation.

The wave equation describes how a given disturbance evolves both in space and time. Often, we are,
however, interested in the spatial behaviour of waves that exhibit simple sinusoidal oscillations. Considering a
scalar wave equation for the sake of simplicity, we may write the wave as

u(~r, t) = ψ(~r)eiωt. (5.15)

Substituting this expression into the wave equation yields the Helmholtz equation:

∇2ψ(~r) + k2ψ(~r) = 0. (5.16)

One should note the analogy between the Helmholtz equation and the time-independent Schrödinger equation.
The applicability of the Helmholtz equation is not limited to simple sinusoidal time-dependencies. It can

also be derived by a more general separation of variables viz. u(~r, t) = ψ(~r)s(t), and moreover, it arises when
one takes the Fourier transform (against the time variable) on both sides of the wave equation [exercise]. It
should therefore be clear that the Helmholtz equation governs the spatial-dependency of all the different spectral
components ũ(~r, ω) that make up a given wave. This means that the full spatio-temporal wave behaviour can be
investigated by using the Helmholtz equation to analyze the spatial evolution of different spectral components,
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and by subsequently taking the inverse Fourier transform to reconstruct the time-domain waveform. In what
follows, we assume however a simple sinusoidal wave.

5.4 Spherical waves

It is easy to see that our plane wave with the spatial dependency exp(−i~k ·~r) satisfies the Helmholtz equation.
To derive the spherical wave solutions, we first transform the Helmholtz equation into spherical coordinates:

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0. (5.17)

The equation can be simplified considerably by assuming the wave to be spherically symmetric, i.e., ψ(r, θ, φ) =
ψ(r). This of course a fairly strong assumption, but one that is not wholly unrealistic. Indeed, waves generated
by point sources are (almost) spherical; consider for example a water wave generated by a fallen rock on a
pond.

Under the assumption of spherical symmetry, Eq. (5.17) reduces to

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+ k2ψ = 0, (5.18)

∂2ψ

∂r2
+

2

r

∂ψ

∂r
+ k2ψ = 0, (5.19)

1

r

∂2(rψ)

∂r2
+ k2ψ = 0. (5.20)

Multiplying by r and introducing the transformation g(r) = rψ(r) allows us to write

∂2g

∂r2
+ k2g = 0. (5.21)

This corresponds to the standard Helmholtz equation in one dimension, and the solutions will hence be plane
waves: u(r) = ψ0 exp(±ikr). Accordingly, a solution to our original spherically symmetric Helmholtz equa-
tion, described by our original function ψ(r) = u(r)/r, reads

ψ(r) =
ψ0

r
e±ikr. (5.22)

This is the (spatial-dependence) of the simple spherical wave solution to the 3D wave equation [time-dependence
is simple harmonic, as separated above].

It is easy to see that all points the same distance r away from the origin exhibit the same value for the wave
ψ(r). Accordingly, the points of equal wave value in space form spherical surfaces (hence the name). It is also
easy to see that the separation between two different surfaces associated with the same wave value is equal to
the wavelength λ (or an integer multiple thereof). Including the time-dependence exp(iωt) in the solution, one
can finally see that the the surfaces of constant value are moving radially inwards or outwards depending on the
algebraic sign in the exponential in Eq. (5.22), as shown in Fig. 13.
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Figure 13: The wavefronts (points along the wave with constant phase) of a spherical wave move radially inwards or
outwards depending on the combination of algebraic signs in the exponential.

Beyond spherical symmetry

Spherical waves correspond to spherically symmetrical solutions of the Helmholtz equation. Solutions
that are not spherically symmetric can be found by using the method of separation of variables. Specifi-
cally, one assumes the solution to be of the form ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), and substitutes this into
Eq. (5.17). Separating equations for the three variables results in three differential equations whose
solutions correspond to special functions, namely so-called spherical harmonics and Bessel functions.
The entire derivation is a good exercise and is left as such.

5.5 Normal modes revisited

In the preceding subsections, we have considered solutions to the wave equation in different dimensions and
coordinate systems. We have found that the wave equation can admit infinitely many different solutions with
different frequencies and corresponding spatial behaviours. However, we know from past experience that many
physical systems — such as guitar strings, drum membranes, laser resonators, or coupled oscillators — only
admit waves that oscillate (steadily) at certain specific frequencies. In fact, these specific frequencies (and asso-
ciated spatial oscillations patterns) correspond to the normal modes that were briefly introduced in section 4.2.
In this subsection, we will take a deeper look into normal modes and in particular analyze the normal modes
for a variety of systems from the vantage of the Helmholtz equation. It is important to emphasize that the wave
equation is only half the story, and alone cannot describe normal modes. To capture this behaviour, we must
additionally consider the boundary conditions of the specific system under study: natural modes will be those
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that satisfy both the wave equation and the boundary conditions.
Throughout this subsection, we assume the wave to be monochromatic and scalar such that the motion of

the system is described by the Helmholtz equation

∇2ψ(~r) + k2ψ(~r) = 0. (5.23)

5.5.1 Normal modes of a string

Let us start from a very simple and familiar example, namely that of a string that is described by the one-
dimensional (∇2 → ∂2/∂x2) wave Eq. (5.1). Assume the length of the string to be L, and that the endpoints
of the string are fixed, such that ψ(0) = ψ(L) = 0. It should be immediately clear that, while a simple
exponential ψ = exp(ikx) solves the wave equation, it does not satisfy the boundary conditions. In fact, the
simplest expression that can satisfy both is given by

ψ(x) =
ψ0

2i

[
eikx − e−ikx

]
= ψ0 sin(kx), (5.24)

with the boundary conditions demanding that the wavenumber satisfies

k =
nπ

L
, (5.25)

where n is an integer. We thus see that only certain specific wave numbers are “allowed” which implies (through
the dispersion relation) that the string can only oscillate at certain specific frequencies:

ωn = 2πfn =
nπv

L
. (5.26)

These frequencies [and corresponding spatial patterns sin(kx)] represent the normal modes of the string, i.e.,
the natural oscillation patterns of the system. Figure 14 shows selected examples of different spatial oscillation
patterns.

The above result should not be particularly surprising. Indeed you should have encountered standing wave
patterns in your earlier studies — whether in the context of string instruments or laser resonators — and should
therefore already be cognizant of the fact that a one-dimensional wave-supporting systems can only oscillate
at specific frequencies. In the context of musical instruments, only oscillations with small integer values of n
are typically excited; the oscillation of the lowest frequency [n = 1 in Eq. (5.26)] is known as the fundamental
mode, while oscillations with n > 1 are known as overtones. When a string is struck, both the fundamen-
tal mode as well as a number of overtones are excited, and it is the combination of the different frequency
components that gives the instrument its characteristic sound. It is important note that the spacing of allowed
frequencies is constant: ∆ω = ωn+1 − ωn = πv/L. This implies that the frequencies of the overtones are
integer multiples of the frequency of the fundamental mode. In the context of optical (laser) cavities (where
the oscillations correspond to electromagnetic waves), the spacing between allowed “resonance” frequencies is
known as the free-spectral range of the cavity.
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Figure 14: Examples of normal modes for a string with length L = 1 m. When including the time-dependence exp(iωt)
and taking the real part, we observe that the patterns oscillate uniformly.

5.5.2 Normal modes of a drum

Let us now consider a two-dimensional system: a drum membrane held taught with some tension (e.g. a
drum). Such a system can be shown to obey a two-dimensional wave equation [exercice]. Here we consider a
circular membrane with radius R, and we assume that the membrane is held fixed at the edge. In cylindrical
coordinates, ψ(r = R,φ) = 0, where ψ(r, φ) describes the displacement of the drum membrane in the z-
direction. (Note that the displacement does not depend on the coordinate z; it is rather directed along that
direction.) In cylindrical coordinates (with ∂ψ/∂z = 0), the Helmholtz equation reads

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
+ k2ψ = 0. (5.27)

We solve the equation by using the method of separation of variables. Specifically, we write ψ(r, φ) =
F (r)G(φ) and substitute this expression into Eq. (5.27) above. This yields

r

F (r)

∂

∂r

(
r
∂F (r)

∂r

)
+ k2r2 = − 1

G(φ)

∂2G(φ)

∂φ2
(5.28)

The left-hand side of the equation depends only on r, while the right-hand side depends only on φ. This implies
that they must both be equal to a constant. Indeed, consider changing r while keeping φ contant: if the left-hand
side should change, then the equality would no longer hold (since the right-hand side would not change). The
only way for the equality to hold for all r and φ is for both sides of the equation to be equal to a constant.
Assuming this constant is equal to m2, we have

r

F (r)

∂

∂r

(
r
∂F (r)

∂r

)
+ k2r2 = m2, (5.29)

− 1

G(φ)

∂2G(φ)

∂φ2
= m2. (5.30)
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The second equation can be rearranged to yield

∂2G(φ)

∂φ2
= −m2G(φ). (5.31)

The solution is trivial:

G(φ) = e±imφ. (5.32)

Because of the symmetry of the system, the constant m cannot take arbitrary values. Indeed, the point (r, φ) is
physically equal to the point (r, φ+2π), such that ψ(r, φ) = ψ(r, φ+2π). This implies thatG(φ) = G(φ+2π),
which is possible only if m is an integer.

We have found that the angular part of the solution reads G(φ) = exp(±imφ), where m is an integer. Let
us now look at the radial part. We first rearrange Eq. (5.29) into

r2∂
2F

∂r2
+ r

∂F

∂r
+
[
k2r2 −m2

]
F = 0. (5.33)

This equation has the form of the Bessel equation — an important differential equation that arises in many
different physical contexts18. Its solution can be written in terms of so-called Bessel functions

F (r) = AJm(rk) +BYm(rk), (5.34)

where A and B are integration constants and Jm and Ym are Bessel functions of the first and the second kind,
respectively. Figure 15 shows selected examples of Jm(kr) and Ym(kr). As can be seen, Ym(kr) diverges at
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Figure 15: Bessel functions of the (a) first (Jm) and (b) second (Ym) kind for orders m = 0, 1, 2, 3 as indicated. Note
that the functions are symmetric with x = 0 and that the Bessel function of the second kind diverges at x = 0.

18Such as e.g. electromagnetic wave propagation in optical fibres, heat conduction in a cylindrical object, solutions to the radial
Schrödinger equation for a free particle etc.
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r = 0, and a physical solution therefore requires B = 0. Moreover, boundary conditions require that the wave
number must be such that Jm(kR) = 0. There are no known analytical formulae for the zeros of the Bessel
functions, but they can be found from numerical tables or from common mathematical software (e.g. Matlab
or Scipy of Python). There are infinitely many of them for each value of the angular order m, and we can
therefore label the allowed wavenumbers as k(m)

n with n an integer that identifies the order of the zero of the
Bessel function (n = 1 corresponds to the smallest root).

Putting everything together, the normal modes of a drum can be written as

ψnm(r, φ) = Jm

(
k(m)
n r

)
eimφ, (5.35)

where m is an integer and the wavenumber satisfies

Jm

(
k(m)
n R

)
= 0. (5.36)

It is important to note that, to obtain the physical oscillation profiles, we must take the real part Re[ψnm(r, φ)].
Figure 16 shows examples of the two-dimensional spatial profiles of a drum with R = 30 cm.
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Figure 16: Examples of different spatial profiles corresponding to different natural modes of a drum with R = 30 cm
(circumference highlighted with black solid curves). All the different parts of the drum would oscillate at the frequency
ω
(m)
n in time, and so the minima would periodically turn to maxima and vice versa.
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It is interesting note that the eigenfrequencies (ω(m)
n = k

(m)
n v) of a drum are not equally spaced, which

is in stark contrast with the case of a string. This is simply because the zeros of the Bessel function are not
equally spaced. Since the allowed wave numbers k(m)

n = α
(m)
n /R, the spacing between two eigenfrequencies

∆ω = ω
(m)
n+1 − ω

(m)
n = v/R(α

(m)
n+1 − α

(m)
n ) will depend on the index n. This implies then that the overtones of

a drum are not integer harmonics of the fundamental mode (n = 1).

5.5.3 Normal modes of a sphere

As a final example, we consider the normal modes of a spherical surface with radiusR. This example is relevant
to a particularly important physical system: a planet such as the Earth. The normal modes of a planet would
be excited e.g. at the onset of an earthquake, and they will describe how the planet is deformed as the seismic
waves traverse through it. Here we only consider waves that propagate along the surface (i.e., surface waves),
and leave wave motion in the interior of the sphere (i.e., body waves) as an exercise.

Our starting point is the spherically symmetric Helmholtz Eq. (5.17). Since we are interested in surface
waves, we set ∂ψ/∂r = 0 to obtain:

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2
+ k2R2ψ = 0. (5.37)

We again use separation of variables to solve the equation, and specifically assume ψ(θ, φ) = F (θ)G(φ).
Substituting this expression into the equation above yields after wee rearrangement

sin θ

F (θ)

d

dθ

(
sin θ

dF (θ)

dθ

)
+ k2R2 sin2 θ = − 1

G(φ)

d2G(φ)

dφ2
. (5.38)

The left-hand side depends exclusively on θ while the right-hand side depends exclusively on φ; hence they
must be equal to the same constant m2. The right-hand side is the same as Eq. (5.31), and so we have

G(φ) = eimφ. (5.39)

The equation for F (θ) can be written as

1

sin θ

d

dθ

(
sin θ

dF (θ)

dθ

)
+

(
k2R2 − m2

sin2 θ

)
F (θ) = 0. (5.40)

Introducing a new variable x = cos θ, this equation can be written as

d

dx

(
(1− x2)

dF (x)

dx

)
+

(
k2R2 − m2

1− x2

)
F (x) = 0. (5.41)

This equation has the form of the so-called associated Legendre differential equation. It has a non-finite solution
only when (i) k2R2 = l(l+ 1), where l is a positive integer, and when (ii) |m| ≤ l. Note that these conditions
determine the allowed wavenumbers, and hence the allowed oscillation frequencies. There can again be
an infinite amount of different natural modes associated with different wavenumbers and frequencies.
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The solutions to Eq. (5.41) are known as the associated Legendre polynomial, and they are denoted Pml (x).
With this in mind, we can write the solution to Eq. (5.40) as

F (θ) = Pml (cos θ). (5.42)

And finally, the full normal modes of a spherical surface read

ψ(θ, φ) = Pml (cos θ)eimφ = Ylm(θ, φ). (5.43)

Here we introduced a set of new functions Ylm(θ, φ) which are known as the spherical harmonics.

Spherical harmonics

The spherical harmonics are special functions defined on the surface of a sphere. They form a complet
set of orthogonal functions on the sphere, and can therefore be used to represent functions on a cir-
cle; just like we use Fourier transforms to represent functions as a superposition of different frequency
components. They arise in many physical problems ranging from the computation of atomic electron
configurations to thr representation of gravitational and magnetic fields of a planetary body.

5.6 Dispersive wave equations

The wave equations we have discussed up to now [e.g. Eqs. (5.1) and (5.11)] are non-dispersive. That is to
say, the wave velocity v is a constant that does not depend on the wavelength or frequency. But of course,
common wisdom tells us that this is not true in general; EM waves for example propagate in media at the
velocity v = c/n, where the refractive index n ≡ n(ω) depends on frequency19.

Effects arising from a frequency-dependent wave velocity can be captured by using a generalised form of
the wave equation. Restricting our attention to the one-dimensional scalar case for simplicity, the generalisation
can be written as

∂2u(x, t)

∂x2
= f(t) ∗ ∂

2u(x, t)

∂t2
, (5.44)

where f(t) is a time-domain response function whose physical significance will be elaborated shortly, and ∗
denotes convolution. To illustrate how convolution with the response f(t) gives rise to a frequency-dependent
wave velocity, we substitute the plane wave ansatz u(x, t) = exp(iωt− ikx) into Eq. (5.44). This yields

−k2u(x, t) = −ω2

∫ ∞
−∞

f(τ)ei[ω(t−τ)−kx] dτ (5.45)

= −ω2ei(ωt−kx)

∫ ∞
−∞

f(τ)e−iωτ dτ (5.46)

= −ω2F̃ (ω)u(x, t), (5.47)

19How else would Newton have been able to separate white light into its constituent colours using a prism?
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where F̃ (ω) is the Fourier transform of the time-domain response function f(t). From the above expression,
we obtain the general dispersion relation

k(ω) =

√
F̃ (ω)ω, (5.48)

and corresponding wave velocity

v =
ω

k
=

1√
F̃ (ω)

. (5.49)

And so we see that a convolution in the wave equation yields a frequency-dependent wave velocity. The fact
that you may not have encountered such convolutions before, in the simple wave equations that you have
considered, is simply because of unrealistic approximations made in the derivations of said equations. As a
concrete example, when deriving the EM wave equation, one typically makes the approximation that bound
electrons of a material react instantaneously to an applied electric field, which results in a simple wave equation
that cannot predict or explain chromatic dispersion. In contrast, if one models the light-matter interaction more
accurately, taking into account the fact that electrons do not react instantaneously, a wave equation with a
convolution (and corresponding chromatic dispersion) arises. This issue is explored in Exercise 5.2.

We should stress that the convolution can also arise in the spatial domain. Specifically, another form of a
generalised wave equation could read:

∂2u(x, t)

∂x2
= g(x) ∗ ∂

2u(x, t)

∂t2
, (5.50)

where g(x) is a spatial response function that physically accounts for some non-local spatial coupling in the
material20, and the convolution should be evaluated with respect to x. Repeating the analysis above would now
reveal the dispersion relation

ω(k) =
k√
G̃(k)

. (5.51)

It is quite common to find dispersion relations quoted in the latter form, i.e., frequency as a function of
wavenumber. Of course, the wavenumber (wavelength) and the frequency are mathematically related, and
so the two different approaches to writing the dispersion relation are ultimately equivalent.

5.6.1 Phase and group velocity

The wave velocity discussed above corresponds to the phase velocity of the wave. It is the velocity at which a
given point (or phase) of a purely monochromatic, sinusoidal wave propagates. In contrast, in dispersive media,

20For example, think about a situation where coupled oscillators are affected by the motion of oscillators other then their nearest
neighbours.
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a wave packet that is made out of several different frequency components [see e.g. Fig. 1(b)] propagates at a
different velocity, known as the group velocity. To see this, we write the wave packet as a superposition of
harmonic waves:

u(x, t) =

∫ ∞
−∞

ũ(ω)ei(ωt−k(ω)x) dω, (5.52)

where the dispersion relation is expressed as k(ω). We then assume that the spectrum of the wave packet is
narrow and peaks around some frequency ω0. We can then expand the wavenumber as a Taylor series and only
retain the leading two terms:

k(ω) ≈ k0 + k′(ω − ω0), (5.53)

where k′ = dk/dω|ω0 . Substituting this expansion into Eq. (5.52) yields

u(x, t) = ei(k
′ω0x−k0x)

∫ ∞
−∞

ũ(ω)eiω(t−k′x) dω, (5.54)

The multiplicative factor in the front is a phase shift that does not affect the “envelope” of the wave packet.
Focussing then on the integrand, consider an arbitrary point along the wave packet at t = 0, say x0. At a later
time t, that point shifts in space to a new position x so as to conserve the integrand, i.e.,∫ ∞

−∞
ũ(ω)e−iωk

′x0 dω =

∫ ∞
−∞

ũ(ω)eiω(t−k′x) dω. (5.55)

From this expression we can readily see that the arbitrary point we picked, and hence the entire wave packet,
has shifted to x = x0 + t/k′. The group velocity is therefore

vg =
x− x0

t
=

1

k′
=

dω

dk
. (5.56)

In a non-dispersive medium, we have ω = kv, and so the group velocity is equal to the phase velocity,
vg = v. In contrast, in the presence of dispersion, the two are clearly different. This should not of course be
surprising; after all, the wave packet is made out of different frequency components, each of which propagates
at a different group velocity.

It is interesting to note that the above analysis predicts the envelope of the wave packet to maintain constant
shape: the integrand is constant except for a shift in space. However, this turns out to be strictly true only
when the first-order Taylor series expansion of k(ω) is exact, i.e., k = k0 + k′(ω − ω0). In the presence of
higher-order dispersion terms, the envelope of the wave packet becomes distorted. For example, it can become
wider or narrower or undergo various sorts of other changes.
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Problems

5.1 Consider a homogeneous, two-dimensional membrane with constant mass per unit area. The membrane
is stretched and then fixed along its entire boundary in the xy plane. (We’re talking about a drum here.)
The tension per unit length T caused by stretching the membrane is the same at all points and in all
directions and does not depend on time. Show that the deflection u(x, y, t) obeys a two-dimensional
wave equation. You may assume the deflection is small compared to the size of the membrane and that
all angles of inclination are small.

5.2 Maxwell’s equations govern all (classical) phenomena related to electricity and magnetism. In a dielectric
medium with no free currents or charges, the equations can be written as:

∇ · ~D = 0 ∇ · ~B = 0

∇× ~E = −∂
~B
∂t

∇× ~H =
∂~D
∂t
.

Here, ~D is the electric dispacement field, ~B is the magnetic field, ~E is the electric field, and ~H is the
magnetic displacement field. For a material that is non-magnetic, isotropic, and dielectric, we have
~B = µ0

~H (µ0 is the vacuum permeability) and ~D = ε0
~E + ~P, where the material polarization ~P = ε0χ~E

with ε0 the vacuum permittivity and χ a material parameter known as the electric susceptibility. Show
that Maxwell’s equations imply that the electric and magnetic fields satisfy a three-dimensional wave
equation. Based on your derivation, answer the following questions.

(a) What is the speed of light in vacuum (χ = 0)?

(b) How does the material refractive index depend on the parameter χ?

(c) The relationship ~P = ε0χ~E arises from the assumption that the bound electrons of the material react
instantaneously to the applied electric field21. A more realistic relationship reads

~P(~r, t) = ε0

∫ t

−∞
χ(t− τ)~E(~r, τ) dτ,

where χ(t) is a time-domain response function. How does the refractive index predicted by this,
more realistic model of the dielectric polarization ~P(~r, t), compare with the one you found in part
(b)?

5.3 Consider the “plane wave” solution to the 3D wave equation:

~u(~r, t) = ~u0e
i(ωt−~k·~r). (5.57)

(a) Show that the wavefronts, i.e., the points ~r where the wave attains the same value (up to a phase
shift of 2π), of this solution correspond to two-dimensional planes that are perpendicular to the
wave vector ~k.

(b) Show that the wavelength, i.e., the separation between two wavefronts with the same value, is given
by λ = 2π/k, where the wave number k = ||~k||.

21Note that the macroscopic polarization ~P arises physically from the charge separation of electrons from the positive nuclei.
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(c) Show that the wavefronts (i.e., planes of constant wave value) propagate at the speed v in the
direction of the wave vector.

5.4 Write the Helmholtz equation in cylindrical coordinates, and derive expression for so-called cylindrical
waves. Describe their salient characteristics.

5.5 Show that a general separation of variables applied on a three-dimensional, scalar wave equation results
in the Helmholtz equation.

5.6 Derive the Helmholtz equation by taking the Fourier transform of the three-dimensional wave equation
against the time variable.

5.7 Consider a radial wave with a spatial dependence given by Eq. (5.22). Show that the wavefronts are
moving radially inwards or outwards depending on the algebraic sign exp[±ikr].

5.8 In the complex notation, the quantity |u(~r, t)|2 is proportional to the power transmitted by the wave per
unit area. Show that the energy transmitted by a radial wave through a spherical surface of radius R is
constant (and does not depend on R).

5.9 Repeat the derivations for the natural modes of a string, drum, and a spherical surface outlined in subsec-
tion 5.5.

5.10 Consider a 24-inch bass drum with a fundamental (n = 1,m = 0) resonance frequency of 74 Hz. What
is the speed of waves on the drum membrane? What are the frequencies of the modes (n = 1,m = 1)
and (n = 2,m = 0)?

5.11 Derive the normal modes for a solid sphere assuming the oscillation amplitude is zero at the surface of
the sphere (boundary condition). These modes (and hence the derivation problem) are encountered in
many different branches of physics. For example, they correspond to the natural oscillation patterns of
planets, and are hence excited by earthquakes; seismic waves are found to predominantly oscillate at
certain frequencies that coincide with the normal modes of the planet. Moreover, in optics, the normal
modes of a sphere correspond to so-called whispering gallery modes that can be excited with coherent
laser light in millimetre size dielectric spheres.
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6 Fourier wave propagation

In the previous Section, we have discussed wave equations and their general solutions. If we know the full
functional form u(~r, t) of a particular wave at all spatial points ~r and times t, we know everything about the
wave. In practice, we rarely have such complete knowledge a priori. We may rather know for example what
the wave looks like at some spatial plane of observation at some given time, and from this information, we may
need to deduce how the wave will propagate to some subsequent plane. Consider for example the diffraction of
a wave at an obstacle. If we know the profile of the wave at the obstacle, how can we predict the wave profile
at some distant observation plane? In this Section, we show that Fourier analysis provides an elegant solution
to the conundrum. In the context of optics, the methods are generally referred to as “Fourier optics”, and they
play a key role in the design and analysis of optical systems.

Throughout this Section, we consider a scalar, monochromatic22 wave u(~r, t) = ψ(~r) exp(−iωt) that sat-
isfies the Helmholtz Eq. (5.16). Our goal is to deduce how a given wave, whose spatial profile ψ(~r) is known
at some initial plane, propagates in space. To achieve this, we need to find a suitable solution to the Helmholtz
equation that satisfies our initial condition. The simplest solutions to the Helmholtz equation are harmonic
functions of the form exp(i~k ·~r). There are infinitely many solutions of this form, each associated with a differ-
ent wave vector ~k: the only constraint is that the magnitude of the wave vector satisfies the dispersion relation,
i.e., k = ||~k|| = ω/v. Because the Helmholtz equation is linear, superpositions of simple harmonic functions
are also solutions. In fact, recalling that harmonic functions form a simple, orthogonal set of basis functions,
we can express arbitrary solutions as superpositions (integrals) of harmonic functions.

Based on the discussion above, we may conclude that a general solution to the Helmholtz equation can be
expressed as a triple integral over the different cartesian vector components of the wave vector~k = [kx, ky, kz]

T,
with the integration limits chosen such that that the dispersion relation holds. This can be expressed in a much
simpler form by noting that the dispersion relation in fact stipulates that only two of the three components of
the wave vector are independent. Arbitrarily choosing the independent components to be kx and ky, we have

kz = ±
√
k2 − k2

x − k2
y, (6.1)

where the + and − signs correspond to forwards and backwards propagating waves (relative to the +z direc-
tion)23, respectively. This observation allows us to write an arbitrary solution of Eq. (5.16) as an integral over
different wave vector components kx and ky:

ψ(x, y, z) =
1

(2π)2

∫∫ ∞
−∞

I(kx, ky)e
i(kxx+kyy)e±iz

√
k2−k2x−k2y dkx dky, (6.2)

where the function I(kx, ky) is known as the plane wave spectrum of the wave (for reasons that will soon be
apparent). Note that the integration limits in Eq. (6.2) are allowed to extend to infinity, as Eq. (6.1) ensures that
the dispersion relation holds.

22The propagation of waves that are not monochromatic can be constructed as a Fourier integral over monochromatic frequency
components analysed in this section. Note also that we will be using the convention exp(i~k · ~r − iωt) to denote a plane wave; this
convention is different (complex conjugate) of the convention used in earlier sections. While the physics remains the same, it turns out
some of the problems are easier to analyse using this convention.

23Recall that the time dependence is exp(−iωt).
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To facilitate interpretation, let us consider the (x, y) plane where z = 0. Here we have

ψ(x, y, z = 0) =
1

(2π)2

∫∫ ∞
−∞

I(kx, ky)e
i(kxx+kyy) dkx dky. (6.3)

We can recognise this relationship as a two-dimensional (inverse) Fourier transform, with kx and ky represent-
ing spatial (angular) frequencies that describe how often sinusoidal components of the wave repeat per unit
distance. In analogy with the more conventional one-dimensional time-frequency Fourier transform, Eq. (6.3)
shows that an arbitrary 2D spatial profile of ψ(x, y, z = 0) can be obtained as an (infinite) sum of sinusoids
with different spatial frequencies kx and ky [see Fig. 17]. The plane wave spectrum I(kx, ky) describes the
amplitudes and phases with which the different spatial sinusoids contribute to the original function. It can be
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Figure 17: Illustration of plane wave decomposition of a 2D pattern. The superposition of co-sinusoidal oscillations in
the (a) x and (b) y directions result in (c) a pattern that varies both along x and y. The spectrum of the superposition,
obtained via 2D Fourier transform, shows four components as expected. In this example, the wavelengths of the patterns
are equal to λx = λy = 2 arb. unit, such that the spectral components manifest themselves at kx,y = ±2π/λx,y = ±π.
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obtained as the 2D Fourier transform of the original function ψ(x, y, z = 0), defined as

I(kx, ky) =

∫∫ ∞
−∞

ψ(x, y, z = 0)e−i(kxx+kyy) dx dy. (6.4)

We leave it as an exercise to show that Eqs. (6.3) and (6.4) indeed form Fourier transform pairs.

Notes about spatial Fourier transform

Spatial frequencies and spatial Fourier transforms may seem somewhat obscure at first, but they are not
all that scary. Consider a two-dimensional function u(x, y) = cos(kxx). The function is clearly con-
stant in the y direction and periodic in the x direction, with the periodicity λx = 2π/kx. The number
of oscillations the function exhibits in the x direction over some distance L is N = L/λx. Accord-
ingly, in analogy with ordinary frequency, the spatial frequency of the oscillations in the x direction is
N/L = 1/λx. This corresponds to the spatial frequency of the function, while kx = 2π/λx is the cor-
responding spatial angular frequency. As illustrated in Fig. 17, complex 2D functions can be expressed
as a superpositions of harmonic functions with different spatial (angular) frequencies kx and ky.

6.1 Propagation and evanescent waves

The discussion above shows that, at z = 0, the wave ψ(x, y, z = 0) can be described as a superposition of
different harmonic waves with different transverse wave vectors kx and ky. On the other hand, we recall that
the wave vector represents the direction of wave propagation, implying that the different harmonic components
of the wave will travel in different directions as a function of z. Because the original wave is comprised of plane
waves that are propagating in different directions, it should not be surprising that the transverse field profile of
the wave itself changes as we move from the plane z = 0 to some other plane z = d.

Let us now consider the situation where we know the field profile ψ(x, y, z = 0) at some input plane where
z = 0 and we wish to know the field profile ψ(x, y, z = d) at some output plane where z = d [see Fig. 18].
The transformation is described by Eq. (6.2). Assuming forward-propagating waves, we can write this equation
entirely in the spatial Fourier domain as

O(kx, ky) = I(kx, ky)e
id
√
k2−k2x−k2y = I(kx, ky)H(kx, ky, d), (6.5)

where O(kx, ky) = F2D[ψ(x, y, z = d)] denotes the 2D Fourier transform of the field profile at the output
plane where z = d and we defined the transfer function

H(kx, ky, d) = eid
√
k2−k2x−k2y . (6.6)

Equation (6.5) shows that the plane wave spectrum at the output plane is equal to the spectrum at the input
plane multiplied with the transfer function H(kx, ky, d). Physically, each plane wave component of the wave
whose spatial frequencies satisfy k2

x+k2
y < k2 acquires a pure phase shift as it propagates from the input plane

to the output plane. At higher spatial frequencies k2
x + k2

y > k2, the quantity under the square root in Eq. (6.6)
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?

Figure 18: Schematic illustration of the transformation of the wave spatial profile ψ(x, y, z) as it propagates from plane
x = 0 to some other plane z = d.

is negative such that the exponential function is real and the transfer function represents an attenuation factor24.
Such high-frequency components are known as evanescent waves, and they are unable to propagate into the
far-field as they are exponentially attenuated.

In practical terms, the propagation of a wave whose input profile is known can be analysed by following
the block diagram shown in Fig. 19. First take the 2D Fourier transform25 of the input ψ(x, y, z = 0) to obtain
the plane wave spectrum I(kx, ky); then multiply each spectral component of the plane wave spectrum with
the transfer function H(kx, ky, d) to obtain the spectrum O(kx, ky) at plane z = d; finally take the inverse 2D
Fourier transform of the product to obtain the output profile ψ(x, y, z = d). As an example, let us consider an

1. Calculate input spectrum

I(kx, ky)
=

F2D[ψ(x, y, z = 0)]

2. Propagate to z = d

O(kx, ky)
=

H(kx, ky, d)I(kx, ky)

3. Inverse FT to real space

ψ(x, y, z = d)
=

F−1
2D [O(kx, ky)]

Figure 19: Block diagram illustrating the propagation of a wave whose initial profile is known at some plane z = 0.

24Note: had we used the convention exp(iωt − i~k ·~r), we would have to choose different signs of the exponent for cases where
k2x + k2y < k2 and k2x + k2y > k2, respectively. This is a little bit cumbersome, which is why we chose to go with the alternate
convention.

25Software such as Python or Matlab have algorithms for calculating 2D Fourier transforms. For example, the numpy library for
Python has the function fft2 for this purpose.
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electromagnetic wave that has a Gaussian transverse profile at z = 0 and a wavelength of 800 nm propagating
in free-space. Assuming the beam is propagating along the z-axis, we have

ψ(x, y, z = 0) = Ae
−
x2 + y2

w2 , (6.7)

where w describes the spot size of the beam. Figure 20(a) shows the input transverse profile of the wave whilst
Fig. 20(b) shows the corresponding plane wave spectrum. Here the spot size was chosen to be sufficiently
small such that the plane wave spectrum contains high-frequency components for which k2

x + k2
y > k2 (see

caption). Figures 20(c) and (d) show corresponding profiles at the output plane after propagation of just one
wavelength (d = λ). We can see that the beam profile has grown significantly bigger. The reason for this is
that the high-frequency components corresponding to evanescent waves are attenuated [c.f. Fig. 20(d)], which
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Figure 20: Example of the low-pass frequency filtering of free-space wave propagation. (a) Spatial profile of a Gaussian
beam with width w = λ/4 where λ = 800 nm is the wavelength of the wave. (b) Plane wave spectrum corresponding
to (a). (c) Spatial profile after the beam has propagated for one wavelength, i.e., at z = λ. (d) Plane wave spectrum
corresponding to (c). The white circles in (b) and (d) have a radius of k = 2π/λ ∼ 8 rad/µm, highlighting how spectral
components with k2x + k2y > k2 are exponentially attenuated.
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reduces the width of the plane wave spectrum and hence increases the profile size26.
Even if the plane wave spectrum only contains low-frequency components (k2

x+k2
y < k2), the beam profile

will expand in size (albeit much more slowly). This is simply a manifestation of the well-known phenomenon
of diffraction. Physically, we can picture the input beam profile as being made of plane waves that travel in
different directions, hence resulting in expansion of the transverse profile. Mathematically, broadening arises
from the different phase shifts imparted by the transfer function H(kx, ky) on the different components of the
spectrum. The narrower the input beam, the faster the broadening, as the plane wave spectrum contains a wider
range of frequency components. An example is shown in Fig. 21; here, the initial beam width w = 10 µm, and
we see that the beam doubles in size after roughly d = 1.2 mm of propagation.
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Figure 21: Example of diffraction of a Gaussian beam with width w = 10 µm and wavelength λ = 800 nm. (a) Input
spatial profile at z = 0 and (b) corresponding plane wave spectrum. (c) Output spatial profile at z = 1.2 mm and (d)
corresponding plane wave spectrum. Note that k ∼ 8 rad/µm, and so all the spectral components satisfy k2x + k2y < k2.

26Recall from Heisenberg’s uncertainty principle or Fourier bandwidth limits that narrow features require broad spectral content.
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6.2 Paraxial (Fresnel) approximation

Wave propagation described by the full transfer function H(kx, ky) given by Eq. (6.6) is not amenable to
analytical treatment. The problem can, however, be simplified when the wave is predominantly travelling along
a single direction. In this subsection, we develop a paraxial approximation for wave propagation.

Our starting point is the Helmholtz Eq. (5.16), and we assume that the wave is predominantly propagating
in the z direction. We write the spatial dependence of the wave as the product of a carrier term exp(ikz) and
an envelope function f(x, y, z):

ψ(x, y, z) = f(x, y, z)eikz. (6.8)

Substituting this expression into the Helmholtz equation yields

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
+ 2ik

∂f

∂z
= 0. (6.9)

We now make the so-called slowly-varying envelope approximation. Specifically, we assume that the envelope
function f(x, y, z) changes slowly with z. [Indeed, the main evolution along z has been factored out by the
carrier term exp(ikz).] The meaning of “slow” change is that, over a distance of one wavelength, the envelope
does not change much. In particular, we have:

|δf | =
∣∣∣∣∂f∂z

∣∣∣∣λ� |f |, (6.10)

which implies that ∣∣∣∣∂2f

∂z2

∣∣∣∣� 1

λ

∣∣∣∣∂f∂z
∣∣∣∣ ∼ 2k

∣∣∣∣∂f∂z
∣∣∣∣ . (6.11)

Thus, |∂2f/∂z2| � 2k|∂f/∂z|, allowing us to drop the third term in Eq. (6.9). This yields the so-called
paraxial wave equation:

∂f

∂z
=

i

2k

[
∂2f

∂x2
+
∂2f

∂y2

]
. (6.12)

Analogies

Equations with forms similar to the paraxial wave equation [Eq. (6.12)] appear in numerous different
contexts. For example, the heat equation, which describes the flow of heat through a material body, is
written in three dimensions as

∂u

∂t
= α

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
. (6.13)

This equation has the exact same form as Eq. (6.12), with the propagation direction z playing the role of
time t of the heat equation (and the wave equation being 2D in space). Similarly, the diffusion equation,
which describes the behavior of the collective motion of micro-particles in a material resulting from the
random movement of each micro-particle, is equal to the heat equation (and hence the paraxial wave
equation) when the diffusion coefficient is constant. Other examples include the propagation of light
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pulses in optical fibres (relevant to e.g. telecommunications), time-dependent Schrödinger’s equation,
and even the Black-Scholes equation used to price financial instruments. Accordingly, knowing how to
solve the paraxial wave equation can prove very handy!

6.2.1 Solving the paraxial wave equation

The paraxial wave equation can be easily solved using Fourier analysis27. Specifically, taking the 2D Fourier
transform with respect to x and y of Eq. (6.12) we obtain

∂F̃

∂z
= − i

2k

[
k2
xF̃ + k2

yF̃
]
, (6.14)

where F̃ = F̃ (kx, ky, z) is the Fourier transform of f(x, y, z). The solution is trivial:

F̃ (kx, ky, z) = F̃ (kx, ky, 0) exp

[
− i

2k

(
k2
x + k2

y

)
z

]
. (6.15)

We see that, as the wave propagates, different spatial frequency components accumulate a quadratic phase; the
inverse Fourier transform then yields the profile f(x, y, z) in real space. Recalling that the carrier-envelope
decomposition in Eq. (6.8) also contains the exp(ikz) factor, we can write the total wave evolution in the
Fourier domain as

ψ̃(kx, ky, z) = Hp(kz, ky, z)ψ̃(kx, ky, z = 0), (6.16)

where the paraxial transfer function

Hp(kx, ky, z) = exp[ikz] exp

[
− i

2k

(
k2
x + k2

y

)
z

]
(6.17)

It is instructive to note that the transfer function in the paraxial approximation [Eq. (6.17)] can be obtained
from the approximation-free transfer equation [Eq. (6.6)] with the approximation

k2
x + k2

y � k2. (6.18)

27Okay, we should be a little bit more precise here. In general, the solutions of the paraxial wave equation (and other analogous
equations) depend on the initial and boundary conditions. The general method of solving these equations is to use separation of
variables, which readily allows one to deal with common types of boundary conditions, such as e.g. Dirilecht (Neumann) conditions
where the value (derivative) of the solution is fixed at the boundary. However, the approach is somewhat cumbersome, especially
when we want to just quickly simulate a particular problem. When we use Fourier transform to solve the equations, we are essentially
assuming the boundaries to be at infinity, and since the solution must be localized for the Fourier transform to exist, we do not need
to enforce any additional boundary conditions. A peculiar situation arises, however, when the Fourier transforms are calculated on
a computer using DFT. In this case, the computational domain is always finite, and so the boundaries cannot be at infinity. It turns
out that the DFT automatically enforces periodic boundary conditions, in line with the assumption of periodicity made when deriving
DFT. This means that, in computer simulations based on DFT, when a portion of a wave exits from one edge, it will reappear from the
opposite edge.

55



This observation shows that the z component of the wave vector is the dominant, such that paraxial approxima-
tion indeed describes waves that are paraxial, i.e., waves that are propagation almost parallel to the z axis.

The paraxial wave equation admits analytical solutions in the form of waves with Gaussian transverse
profiles28 Such solutions describe very well for example laser beams, and they are of significant value in the
design and analysis of optical systems. However, in general the evolution of an arbitrary transverse profile must
be solved numerically even in the paraxial approximation (following a block diagram similar to that in Fig. 19
but with a different transfer function). A considerable simplification can be obtained in the “far field” limit,
where z is very large. To develop this approximation, we explicitly write the slowly-varying transverse profile
f(x, y, z) as the inverse Fourier transform

f(x, y, z) =
1

(2π)2

∫∫ ∞
−∞

F̃ (kx, ky, 0)e−
i
2k (k2x+k2y)zei(kxx+kyy) dkx dky. (6.19)

Combining the exponentials and completing squares we can rewrite

f(x, y, z) =
ei

k
2z

(x2+y2)

(2π)2

∫∫ ∞
−∞

F̃ (kx, ky, 0)e−
i
2k
z(kx− kz x)2e−

i
2k
z(ky− kz y)2 dkx dky. (6.20)

In the far-field, we have z � λ, such that z/k � 1. In this case, the integrals can be evaluated using the sta-
tionary phase approximation. The basic idea is that only the points where the arguments of the exponentials are
zero contribute to the integral. When the argument is not zero, the oscillations are very rapid (since z/k � 1),
such that the sinusoids with different frequencies cancel out.

Since the arguments of the exponentials are zero at kx = kx/z and ky = ky/z, we may write the result as

f(x, y, z) ∝ F̃
(
k

z
x,
k

z
y, z = 0

)
. (6.21)

We have omitted the proportionality coefficient29 to facilitate the interpretation. Specifically, Eq. (6.21) shows
that the transverse wave profile in the far field is proportional to the 2D spatial Fourier transform of the profile
at z = 0! In other words, if a (paraxial) wave is allowed to propagate over a sufficiently large distance,
its profile will shape into its Fourier transform. When Eq. (6.21) is valid, we say we are operating in the
Fraunhofer approximation.

Real time spectrometers

As mentioned before, propagation of light pulses in optical fibres obeys an equation analogous to the
paraxial wave equation. This equation reads

∂A

∂z
= −iβ2

2

∂2A

∂t2
. (6.22)

28For further details, see lecture notes for “Physics 333 – Lasers and electromagnetic waves” by ME.
29It would be −k/(2πz) exp[−ik/2z(x2 + y2)] or something along these lines. It should be highlighted that, for many classes of

waves (such as light), the physically observable quantity is the absolute value squared of the wave: |ψ(x, y, z)| = |f(x, y, z)|. In this
case, the complex prefactor disappears altogether, and the profile observable in the far field corresponds to the absolute value squared
of the Fourier spectrum.
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Here A(z, t) is the slowly-varying envelope of the electric field, z is the propagation coordinate along
the fibre, t is time expressed in a reference frame that is moving with the pulse (at the speed of light),
and β2 is known as the group-velocity dispersion coefficient. If the fibre length L is sufficiently large,
we can reach the Fraunhofer limit where the temporal profile A(t, L) mimics the spectrum at z = 0:

A(t, L) ∝ Ã
(
ω =

t

β2L
, z = 0

)
. (6.23)

This implies that we can measure the spectrum of a light pulse by propagating it through a long segment
of fibre and recording the temporal pulse profile. This technique is known as the dispersive Fourier
transform.

The strength of the dispersive Fourier transform is that it enables extremely fast measurements
in real time. Conventional techniques (e.g. grating-based spectrometers) are typically quite slow, and
they are unable to resolve the spectra of individual pulses emitted by ultrafast lasers. Such lasers
can emit millions of pulses per second, and a conventional spectrometer will only be able to register
their ensemble average spectral features. Thanks to the availability of high-speed oscilloscopes and
photodetectors, it is straightforward to capture the individual pulses in the time domain however.
Accordingly, by propagating the pulses through a long segment of optical fibre (such that their temporal
profile shapes into their spectrum), it is possible to record the shot-to-shot spectra of an ultrafast pulse
train.

6.3 Diffraction

Diffraction, which refers to a wide variety of phenomena that occur when a wave encounters an obstacle or a
slit, is a fundamental property shared by all waves. In this subsection, we will see how the Fourier methods
described above allow us to straightforwardly predict the diffracted profile of a wave in the far-field.

Consider a wave ψb(x, y, z) that encounters an obstacle at z = 0 that has some finite aperture (i.e., region
that transmits the wave). The simplest theory of diffraction is based on the assumption that the incident wave
is transmitted without change at points within the aperture and not at all at points that are outside the aperture
(and hence blocked by the obstacle). If ψb(x, y, z = 0) and ψ(x, y, z = 0) represent the complex amplitudes
of the wave right before and after the obstacle, respectively, we may write

ψ(x, y, 0) = ψb(x, y, 0)p(x, y), (6.24)

where p(x, y) is called the aperture function. In accordance with our assumption above, we have

p(x, y) =

{
1, inside the aperture
0, outside the aperture.

(6.25)

With the transverse profile right after the obstacle known [ψ(x, y, 0)], we can calculate the transverse profile
in the far-field using the analyses presented above (assuming that the pertinent approximations hold). The
diffraction pattern in the far-field is known as Fraunhofer diffraction or Fresnel diffraction depending on the
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used approximations. Note that both approximations refer to “far-field”, as both neglect the evanescent waves
that would be present in the (really) near-field. Of course, based on our discussion, you should recognise that
the Fraunhofer regime is “more far-field” than the Fresnel regime. Computation of Fresnel diffraction patterns
generally requires numerics, while Fraunhofer diffraction offers a very straightforward analytical analysis.

6.3.1 Fraunhofer diffraction

Assume Fraunhofer approximation holds, such that the far-field transverse wave profile is given by Eq. (6.21).
Moreover, we assume that the incident wave is a plane wave travelling in the z direction so that ψb(x, y, 0) = A,
where A is a constant. At z = d, the far-field diffraction pattern

ψ(x, y, d) ∝ P̃
(
k

d
x,
k

d
y

)
, (6.26)

where P̃ (kx, ky) is the Fourier transform of the aperture function p(x, y). And so we see that the far-field
Fraunhofer diffraction pattern corresponds to the Fourier transform of the aperture function p(x, y).

As an example, let us consider a rectangular aperture with height Dy and width Dx. In this case,

p(x, y) =

{
1, |x| ≤ Dx/2 and |y| ≤ Dy/2
0, elsewhere.

(6.27)

The Fourier transform of the aperture function reads

P̃ (kx, ky) =

Dx/2∫
−Dx/2

Dy/2∫
−Dy/2

e−i(kxx+kyy) dx dy (6.28)

= DxDysinc
(
kxDx

2

)
sinc

(
kyDy

2

)
, (6.29)

where the sinc-function is defined as sinc(x) = sin(x)/x. Finally using Eq. (6.26), the diffraction pattern is
given by

f(x, y, d) ∝ sinc
(
πDx

λd
x

)
sinc

(
πDy

λd
y

)
. (6.30)

Figure 22(a) shows an example of the far-field diffraction pattern for a 2 mm slit, observed 2 m from the
aperture, as predicted based on Fraunhofer diffraction. Figure 22(b) shows the corresponding Fresnel diffraction
pattern obtained by numerically solving the paraxial wave equation, and we see that the result is identical with
Fig. 22(a).

6.4 Huygens-Fresnel principle

You have likely encountered the Huygens-Fresnel principle in your past studies. The principle states that every
point on a wavefront is itself the source of spherical wavelets, and the sum of these spherical wavelets forms
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the wavefront. It predicts that the waveform at a plane z = d can be understood to arise as a superposition of
all the spherical wavelets generated by a waveform at an earlier plane z = 0. How can we relate this principle
with our analysis above?

Consider the frequency-domain description of wave propagation in the paraxial approximation [Eq. (6.16)].
Taking the inverse Fourier transformation, we can write this expression in real space as a convolution

ψ(x, y, z) = [ψ(x, y, 0) ∗ hp(x, y, z)](x, y), (6.31)

where hp(x, y, z) = F−1
2D [Hp(kx, ky, z)] is the impulse response of the system. By explicitly calculating the

inverse Fourier transform [exercise], we obtain

hp(x, y, z) =
1

iλz
eikzei

k
2z (x

2+y2). (6.32)

In the paraxial limit, we have z2 � x2 + y2, allowing us to approximate [exercise]

hp(x, y, z) ≈ 1

iλz
eik
√
x2+y2+z2 , (6.33)

Let us substitute this approximation in Eq. (6.31) and write the full form of the convolution:

ψ(x, y, z) ≈
∫∫ ∞
−∞

ψ(x0, y0, 0)
1

iλz
eikrdx0dy0, (6.34)

where r =
√

(x− x0)2 + (y − y0)2 + z2 represents the distance between points (x0, y0, 0) and (x, y, z). By
further approximating z ≈ r in the denominator, we realise that the term inside the integral is exactly identical
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Figure 22: Diffraction pattern from a square-shaped aperture with 2 mm width and height, observed 2 m from the aperture.
(a) and (b) show predictions from Fraunhofer and Fresnel theory, respectively. Note that the full wave theory (without
paraxial approximation) yields a result identical to that in (b).
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to the spherical wave derived in Eq. (5.22). Thus, Eq. (6.34) shows that the wave at an arbitrary plane z can be
understood as a superposition of spherical waves generated at each point along the input wave profile at z = 0.
This is the Huygens-Fresnel principle.

Note that our analysis above may feel a bit strange in that we are approximating the paraxial wave result
(which in itself is an approximation) to get a form that resembles the Huygens-Fresnel principle. More rigorous
analysis would require us to forego the paraxial approximation, and compute the inverse Fourier transform of
the full transfer function given by Eq. (6.6). Does this yield an exact integral over spherical waves in accordance
with Huygens-Fresnel? You tell me [exercise].
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Problems

6.1 Consider a laser beam with wavelength λ = 1064 nm that assumes a Gaussian profile [Eq. (6.7)] at some
initial plane z = 0. An analytical solution based on the paraxial approximation predicts that the beam

stays Gaussian as it propagates, but its width evolves as w(z) = w0

√
1 + z2/z2

R, where w0 = w(0) and

zR = w2
0π/λ. In particular, assuming unity amplitude (at z = 0), the paraxial approximation predicts

that the beam profile satisfies

|ψ(x, y, z)| = w0

w(z)
e
−x

2+y2

w(z)

for all z. Test this prediction by writing a Matlab / Python code that allows you to compute the transverse
profile ψ(x, y, z = d) without the use of the paraxial approximation. Considering the scenarios listed
below, compare the outputs from your code and the analytical prediction to gauge the validity of the
paraxial approximation.

(a) Initial width w = 4.0 µm, propagation distance d = 2 mm.

(b) Initial width w = 1.0 µm, propagation distance d = 0.2 mm.

(c) Initial width w = 0.5 µm, propagation distance d = 0.02 mm.

(d) Initial width w = 0.1 µm, propagation distance d = 0.002 mm.

Note that a good way to compare the profiles is to plot 2D slices e.g. along y = 0.

6.2 Consider the Gaussian transverse profile given by Eq. (6.7).

(a) Use our definition of the 2D Fourier transform [Eq. (6.4)] to show that

F2D[ψ(x, y, z = 0)] ∝ e
−
k2
x + k2

y

4
w2

. (6.35)

(b) Derive an estimate for the diffraction limit, i.e., the minimum spot size w that a beam can have
while still propagating to the far field without significant attenuation.

6.3 By comparing the transfer functions given by Eq. (6.6) and Eq. (6.17), derive the following condition of
validity for the paraxial (Fresnel) approximation:

w

(
8π

d

)1/4

k3/4 � 1, (6.36)

where w is the width of the wave profile in real space.

6.4 Consider the convolutional relationship given by Eq. (6.31). Assume ψ(x, y, 0) is confined to a small
circular area of radius b. Show that the condition

kb2

2z
� π (6.37)

results in the Fraunhofer approximation.
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6.5 Show that a rectangular slit gives rise to the far-field diffraction pattern given by Eq. (6.30).

6.6 Compute the Fraunhofer diffraction pattern from a circular aperture of diameter d illuminated by a plane
wave along the z axis. Find where the first zero of the diffraction pattern occurs. You may find the
following identities useful

J0(z) =
1

π

∫ π

0
cos(z cos(θ)) dθ

zJ1(z) =

∫ z

0
tJ0(t) dt.

6.7 Repeat the derivation in subsection 6.4. In particular, show that the paraxial wave equation approximately
predicts the same thing as the Huygens-Fresnel principle. If you are brave enough, also analyse the more
general case that is not subject to the paraxial approximation (no analytical answer guaranteed).

62



7 Wave reflection and transmission at interfaces

So far, we have considered waves propagating in uniform, homogeneous media. In this Section, we consider
what happens when a wave is incident on the interface between two different media. Referring to the wave
equation, the only parameter that can be used to distinguish two materials from each other is the wave velocity
v. Physically, a difference in wave velocity arises from differences in more fundamental material properties
pertinent to the system under study, such as:

• refractive index n for electromagnetic waves,

• tension and mass for waves on a string,

• density and elasticity for seismic waves.

The question we wish to address is what happens when a wave meets the interface? We already know the
answer based on our prior experience: some part of the wave will be transmitted and some part of the wave will
be reflected. But how much is transmitted and how much is reflected? And in what directions if we have a 2D
or 3D system?

The behaviour of waves at an interface cannot be analysed using the wave equation alone. The physics of
the problem must rather provide additional information in the form of interface conditions that describe how the
wave disturbance reacts to a discontinuous change in material properties. For example, in electromagnetism,
one can show starting from Faraday’s law that the tangential component of the electric field vector ~E must be
continuous across the interface; for simple waves propagating along a string, the displacement of the string
must be continuous as otherwise the string would have to be broken.

Since the interface conditions are tied to the particular physical system under study, it is not straightforward
to present a fully general analysis of wave behaviour at an interface. However, once the interface conditions are
known, the analysis of the problem always follows (almost) identical ideas. In this section, we go through these
ideas by examining selected physically relevant situations. We first analyse a simple 1D scalar system where
a wave propagates through two different strings that are tied together. Subsequently, we consider a generic
3D system and show that the familiar laws of reflection and refraction emerge from an interface condition that
enforces the wave to be continuous across the interface. We close this Section by briefly summarizing the
main results relevant to a more complex vectorial 3D example, namely reflection and transmission of light (or
electromagnetic waves) incident on a dielectric interface.

7.1 General idea

The salient question we wish to answer is: what happens when a given incident wave meets a boundary between
two media with different wave velocities? Prior knowledge already tells us that some part will be reflected while
the rest will be transmitted; we wish to dig deeper and deduce what exactly do the transmitted and reflected
waves look like. The problem can be analysed as follows. We first separate the entire wave function into two
parts on either side of the interface:

~u(~r, t) =

{
~uL(~r, t), ~r on the one side of the interface
~uR(~r, t), ~r on the other side of the interface.

(7.1)

Here subscripts L and R refer to left and right, though in general the directions are of course arbitrary. The
partial waves in the two different regions (L and R) must satisfy two different wave equations associated with

63



different velocities. Considering the case of a single wave incident on the interface from the L side, the wave
in that region will consist of a superposition of the incident wave moving towards the interface and a reflected
wave moving away from the interface:

~uL(~r, t) = ~ui(~r, t) + ~ur(~r, t). (7.2)

On the other hand, on the R side of the interface, we only have a single transmitted wave that is moving away
from the boundary:

~uR(~r, t) = ~ut(~r, t). (7.3)

Let us assume that the incident wave function ~ui(~r, t) is known. The reflected and transmitted waves
represent two unknowns; to find them, we need two independent equations. These two equations must come
from the interface conditions specific to the particular system under study. Once the interface conditions are
known, we can solve for the reflected and transmitted wave functions, and then reconstruct the entire wave
at all ~r. In the following subsection, we demonstrate these ideas by considering a simple example of wave
propagation on a string.

7.2 1D scalar example: waves on a string

We begin with a brief recap of the derivation of the wave equation for a mechanical string. To this end, we
consider a string with length L and mass m held taught with a tension T . We can imagine the string to be
composed of small mass elements with mass µ∆x, where µ = L/m is the linear mass density of the string,
connected to each other with massless strings of length ∆x [c.f. Fig. 23]. Neglecting gravity, the nth mass
element is subject to two forces with equal magnitude T but (possibly) different directions: one towards the
(n−1)th and another towards the (n+1)th mass element. The equation of motion for the vertical displacement
un(t) of the nth element reads [see Fig.23]:

µ∆x
d2un
dt2

= Fnet,v (7.4)

= T sin θ2 + T sin θ1 (7.5)

= T

[
un+1 − un

∆x
+
un−1 − un

∆x

]
(7.6)

= T∆x

[
un+1 − 2un + un−1

∆x2

]
. (7.7)

In the continuum limit (∆x→ 0), the part in the brackets of the right-hand side of the final expression becomes
a second-order partial derivative. And so we get

∂2u(x, t)

∂t2
=
T

µ

∂2u(x, t)

∂x2
, (7.8)

which is of course the wave equation with the velocity v =
√
T/µ.
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Figure 23: Schematic illustration of a discrete system that in the continuum limit becomes a continuous string.

7.2.1 Separation into regions

Let us now consider a string that is composed of two sections with varying tension T1 and T2 and corre-
spondingly different wave velocities v1 and v2, respectively. As shown in Fig. 24, we assume the sections are
connected at x = 0, with the x < 0 (x > 0) region associated with tension T1 (T2). As above, we write the
vertical displacement of the string as uL(x, t) left to the boundary and uR(x, t) to the right of the boundary.
The overall displacement, or wave function, is then given by

u(x, t) =

{
uL(x, t), x < 0
uR(x, t), x ≥ 0.

(7.9)

We can write this expression in a single equation by using the Heaviside step function H(x):

u(x, t) = uL(x, t)H(−x) + uR(x, t)H(x). (7.10)

The wave functions uL(x, t) and uR(x, t) satisfy the wave equation (7.8) with string tensions T1 and T2 (or
equivalently, velocities v1 and v2), respectively. Assume the incident wave approaches the boundary from the
left, i.e., from x < 0. The total wave in that region consists of a superposition of the incident wave moving
towards the boundary and a reflected wave moving away from the boundary. Recalling the general solution to
the 1D wave equation [see Eq. (5.10)], we may write

uL(x, t) = ui(t− x/v1) + ur(t+ x/v1). (7.11)

Here ui(t − x/v1) and ur(t + x/v1) correspond to the incident and reflected waves, respectively; they are
written in the general form of arbitrary (for now) profiles moving to the right or left with velocity v1. In the
region x > 0, we only have a single transmitted wave that is propagating to the right at speed v2:

uR(x, t) = ut(t− x/v2). (7.12)

Figure 24: Schematic illustration of a composite system consisting of two strings held at different tensions T1 and T2.
Because of the different tensions, the two different regions exhibit different wave velocities v1 and v2 as shown.
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Note that the transmitted wave propagates with speed v2, whilst the reflected and incident waves propagate at
speed v1. To find the reflected and transmitted wave functions ur(t + x/v2) and ut(t − x/v2), respectively,
we need two independent equations. To find these equations, we must consider the interface conditions of the
system.

7.2.2 Interface conditions

The first interface condition is easy to deduce: the wave must be continuous across the interface. Were this
not the case, there would have to be a gap in the string and then no wave could propagate anyway. Since the
interface is at x = 0, we have:

ui(t) + ur(t) = ut(t). (7.13)

To obtain the second interface condition, we consider the mass element at the boundary with vertical displace-
ment un. Since the element is attached to its neighbouring elements with differing tensions, the equation of
motion reads

µ∆x
d2un
dt2

= T2
un+1 − un

∆x
+ T1

un−1 − un
∆x

. (7.14)

In the continuum limit, we can identify the terms on the right-hand-side of this expression to represent first
order spatial derivatives [df/dx ≈ (f(x+ h)− f(x))/h]:

µ∆x
d2u

dt2
= T2

∂uR

∂x

∣∣∣∣
x=0

− T1
∂uL

∂x

∣∣∣∣
x=0

. (7.15)

However, in the continuum limit, we also have ∆x→ 0, which implies that the left-hand-side goes to zero! We
can thus obtain our second interface condition by requiring that also the right-hand side is zero. Substituting
the expressions for uR and uL, and evaluating the derivatives at the interface (x = 0) using the chain rule, we
obtain

T2

[
− 1

v2

dut

dt

]
= T1

[
− 1

v1

dui

dt
+

1

v1

dur

dt

]
(7.16)

d

dt

[
T2

v2
ut +

T1

v1
ur −

T1

v1
ui

]
= 0. (7.17)

By noting that the term inside the brackets must be constant for the derivative to be zero, we obtain our second
interface condition [at x = 0]:

T2

v2
ut(t) + cnst =

T1

v1
[ui(t)− ur(t)] . (7.18)

7.2.3 Reflection and transmission

We can set the integration constant in Eq. (7.18) to be zero without loss of generality, as this only represents an
overall offset of the entire T2 string segment. Then substituting Eq. (7.13) into Eq. (7.18), we obtain

T2

v2
[ui(t) + ur(t)] =

T1

v1
[ui(t)− ur(t)] . (7.19)
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Solving for the reflected wave yields

ur(t) =

(
Z1 − Z2

Z1 + Z2

)
ui(t), (7.20)

where Zn = Tn/vn is known as the impedance of the string segment. For the transmitted wave, we have

ut(t) =

(
2Z1

Z1 + Z2

)
ui(t). (7.21)

The equations above show that the profile of the reflected and transmitted waves are identical to the incident
wave, but their amplitudes are decreased. It is common to define reflection and transmission coefficients as

r =
Z1 − Z2

Z1 + Z2

t =
2Z1

Z1 + Z2
,

(7.22)

(7.23)

such that ur(t) = rui(t) and ut(t) = tui(t). It is noteworthy that the reflection coefficient can be either positive
or negative depending on the impedances Z1 and Z2. The physical implication is that the reflected wave may
exhibit a 180 degree phase shift upon reflection, as illustrated in Fig. 25.

With the reflected and transmitted wave functions known at x = 0, we can reconstruct the entire wave at
all x and t using Eq. (7.10). In fact, this is precisely how Fig. 25 was constructed [for parameters, see figure
caption]. It is worth noting that the reflection and transmission coefficients do not add up to unity, which may
seem strange in light of energy conservation. However, we must emphasize that the reflection and transmission
coefficients are only amplitude coefficients: careful analysis shows that the power propagating in a string is in
fact proportional to the product of the string impedance and the oscillation amplitude squared. When all things
are considered, energy is found to be conserved during reflection and transmission [exercise].

Impedance and impedance matching

Impedance is a concept that is used widely in different contexts of physics. In mechanical systems
such as the one described above, impedance is a measure of how much a structure resists motion when
subjected to a harmonic force. More specifically, mechanical impedance relates forces with velocities
acting on a mechanical system as Z(ω) = F/v. If a large force is required to induce a small velocity
v, the impedance is large (and vice versa). In acoustics, impedance similarly describes the opposition
that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system.
Impedance is also (more frequently) encountered in electronics, where it represent the opposition that
a circuit presents to a current subject to time-varying voltage. It can therefore be understood as the
generalization of resistance for alternating currents.

It is interesting to note that, regardless of the system, the reflection and transmission coefficients
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Figure 25: Reflection and transmission of a Gaussian pulse from the boundary between two strings held at different
tension. The impedances Z1 = 0.5 and Z2 = 1 while the wave velocities v1 = 140 m/s and v2 = 100 m/s

for a wave moving from medium 1 to medium 2 can very often be written as a function of the material
impedances as in Eqs. (7.22) and (7.23) respectively. In addition to waves on a string, this is also
the case for electrical transmission lines as well as light reflecting (and transmitting) from dielectric
boundaries at normal incidence. An important observation is that the reflection coefficient is zero if the
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two media have the same impedance. For the case of two strings held at different tension, this would
require that the linear mass density of the strings are different. Tailoring the impedances to be identical
so as to avoid reflections is known as impedance matching, and is widely used in many contexts, in
electronics in particular.

7.3 2D and 3D: Law of reflection and refraction

The example above encompasses only a single spatial dimension x, and so there is no question about the
directions of propagation of the waves. Let us now consider a more general 3D situation where the incident
wave can strike the interface from an arbitrary direction, such that it makes an arbitrary angle with the surface
that forms the interface. The question we wish to answer is: what are the directions of the reflected and
transmitted waves? We consider a scalar wave u(~r, t) and assume the wave to be continuous across the
interface. We must emphasize that the continuity of the wave is a very common interface condition.

Figure 26 shows a schematic illustration of the scenario under study. A wave ui(~r, t) is incident on an
interface of two media associated with initial and final wave velocities v1 and v2, respectively. The incident
wave will give rise to a reflected wave ur(~r, t) in the initial medium and a transmitted wave ut(~r, t) in the final
medium. The continuity condition enforces that, at the interface, the wave amplitudes at both sides are equal.
Since the incident region consists of two waves (incident and reflected), we have at all points~r on the interface

ui(~r, t) + ur(~r, t) = ut(~r, t), (7.24)

Waves on each side of the interface independently satisfy the respective wave equation. As we are interested
in wave directions, we consider them to be plane waves whose direction is unambiguous. The equation above
then reads

Aie
i(ωit−~ki·~r) +Are

i(ωrt−~kr·~r) = Ate
i(ωtt−~kt·~r), (7.25)

1 2

Figure 26: Schematic illustration of wave reflection and transmission at the interface between two media associated with
different wave velocities v1 and v2. Note that, for simplicity, the figure assumes all the wave directions to lie on the same
plane, which also contains the surface normal. As described in the main text, continuity of the field across the interface
happens to instil this condition.
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where ωn and ~kn are the (angular) frequencies and wave vectors of the different waves. Equation (7.25) must
hold at all times t and positions ~r (on the interface). This implies that the time and space dependencies of the
different terms are all equal30. In other words,

ωit− ~ki ·~r = ωrt− ~kr ·~r = ωtt− ~kt ·~r (7.26)

For the time part, the condition above is satisfied iff

ωi = ωr = ωt. (7.27)

In other words, the frequency of a wave is unchanged during reflection and transmission.
Looking now at the relationship between the incident and reflected wave vectors, we have

~ki ·~r = ~kr ·~r (7.28)

(~ki − ~kr) ·~r = 0. (7.29)

Now consider two points ~r1 and ~r2 on the plane that represents the interface. Both points must satisfy the
equation above, and so we have

(~ki − ~kr) · (~r1 −~r2) = 0. (7.30)

Since the positions ~r1 and ~r1 are on the plane, the vector (~r1 − ~r2) is parallel to the plane and the null dot
product shows that the vector (~ki−~kr) must be perpendicular to the plane. In other words, (~ki−~kr) is parallel
to the surface normal n̂. Accordingly, we may write n̂ = a~ki − a~kr, where a is a constant scalar. This form
reveals that n̂ lies on a plane defined by the incident and reflected wave vectors. Extending the analysis to the
transmitted wave vector allows us to conclude that all the wave vectors and the surface normal lie on the
same plane, the so-called plane of incidence which contains the surface normal and the wave vector of
the incident wave [see Fig. 26]. The only question then is: what are the angles of the wave vectors relative to
the surface normal.

To obtain the angle of reflection, we recall that the cross product of two parallel vectors is zero, so we can
write

n̂× (~ki − ~kr) = 0 (7.31)

n̂× ~ki = n̂× ~kr (7.32)

ki sin θi = kr sin θr, (7.33)

where ki = ||~ki|| and kr = ||~kr|| are the incident and reflected wave numbers, respectively, and θi and θr are the
angles that the wave vectors make with respect to the surface normal. Since both the incident and the reflected
waves propagate in the medium where the wave velocity is equal to v1, and since the frequencies of the waves
are identical, we have ki = kr = ω/v1. Thus, we obtain the law of reflection:

θi = θr. (7.34)

30Otherwise a change in~r or t would change the terms unequally, which would destroy the equality.
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To put the result in words: the angle that the incident wave makes with the surface normal is equal to the
angle that the reflected wave makes with the surface normal. No surprises there.

We can repeat the steps above to find the relationship between the incident and the transmitted waves,
obtaining

ki sin θi = kt sin θt. (7.35)

In contrast to the case of reflection, the incident and transmitted wave numbers are not the same, as the wave
velocities are different in the two different media. Substituting the wave numbers ki = ω/v1 and kt = ω/v2

we obtain the law of refraction:

1

v1
sin θi =

1

v2
sin θt. (7.36)

It is easy to see that, if v2 > v1, we have sin θt > sin θi, implying θt > θi (and vice versa). In words, a wave
transmitted into a medium with larger wave speed will be refracted away from the surface normal (and vice
versa).

Equation (7.36) should be very familiar: it corresponds to the well-known Snell’s law. It is applicable in all
systems where the wave (or one of its vector component) is continuous across the interface. In the context of
electromagnetic waves (e.g. light), the wave speed in a medium is given by v = c/n, where c is the speed of
light in vacuum and n is the refractive index of the medium. Equation (7.36) can then be written as

n1 sin θi = n2 sin θt. (7.37)

This is the common form of Snell’s law encountered in optics.

7.4 Reflection and transmission of EM waves: Fresnel equations

As a final example, we consider a full 3D vectorial situation of particular importance: reflection and transmis-
sion of EM waves (e.g. light) at dielectric interfaces, such as air-glass or air-water boundaries. Only the main
steps and results are presented, with the full analysis left as exercise.

The physics of EM waves is governed by Maxwell’s equations, from which one can readily derive the
following wave equations for the electric and magnetic fields ~E(~r, t) and ~B(~r, t), respectively:

∂2~E(~r, t)
∂t2

=
c2

n2
∇2~E(~r, t),

∂2~B(~r, t)
∂t2

=
c2

n2
∇2~B(~r, t),

(7.38)

(7.39)

where c is the speed of light in vacuum and n is the refractive index of the medium under study. From Maxwell’s
equations, one can also derive the interface conditions that must be met at the boundary of two dielectrics:

• The vector component of ~E that is tangent to the interface must be continuous.

• The vector component of ~B/µ, where µ is the magnetic permeability, that is tangent to the interface must
be continuous.
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The plane wave solutions to the EM wave equations above read

~E(~r, t) = ~E0e
i(ωt−~k·~r),

~B(~r, t) = ~B0e
i(ωt−~k·~r),

(7.40)

(7.41)

where ~E0 and ~B0 are the vector amplitudes of the electric and magnetic fields, respectively, and the wave vector
satisfies the dispersion relation k = ||~k|| = nω/c. The full Maxwell’s equations instil additional requirements
that the electric and magnetic field amplitudes ~E0 and ~B0 must satisfy31. First, the electric and magnetic fields
amplitudes ~E0 and ~B0 are perpendicular to the wave vector ~k and each other. Second, the directions of the wave
vector and the field amplitudes follow from the right-hand rule, and the magnitudes of the field amplitudes
satisfy E0 = ||~E0|| = c/n||~B0|| = B0. Mathematically

~k× ~E0 = ω~B0. (7.42)

Depending on the polarization of the EM wave (i.e., the direction of ~E0), there are two different cases
to consider. Specifically, as shown in Fig. 27, we can either have the electric field polarized perpendicular
[Fig. 27(a)] or parallel [Fig. 27(b)] to the plane of incidence (and vice versa for the magnetic field). The
polarization in the former situation is referred to as s polarization and in the latter as p polarization. They are
also referred to as transverse electric (TE) and transverse magnetic (TM) polarizations.

7.4.1 Case 1: s polarization

For s polarization [see Fig. 27(a)], the electric field is parallel to the interface32. In other words, the electric
field is entirely tangent to the interface, and our first interface condition can therefore be written as

~Ei(~r, t) + ~Er(~r, t) = ~Et(~r, t), (7.43)

(a) s-polarisation (b) p-polarisation

Figure 27: Schematic illustration of reflection and transmission of an electromagnetic wave at the interface of two dielec-
tric media with refractive indices n1 and n2.

31See lecture notes for “Physics 333 – Lasers and electromagnetic waves” by ME.
32Recall that the plane of incidence contains the surface normal, and so being transverse to the plane of incidence implies being

perpendicular to the surface normal, hence parallel to the surface itself.
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where the subscripts refer to incident, reflected, and transmitted waves. Following the analysis in subsection 7.3,
the exponential terms exp(iωt− i~k ·~r) cancel out, yielding a condition for the vector amplitudes:

~E0i + ~E0r = ~E0t. (7.44)

It can be shown that both the reflected and transmitted waves are also s polarized, and so we can write the
equation in scalar form:

E0i + E0r = E0t, (7.45)

where E0n = ||~E0n||.
To proceed, we invoke our second interface condition: continuity of the tangential component of ~B/µ.

Referring to Fig. 27(a), we have

− cos θi
B0i

µi
+ cos θr

B0r

µr
= − cos θt

B0t

µt
. (7.46)

Note that the negative signs come from the convention used in Fig. 27(a), where we have chosen down to
be negative, and we have made a guess for the direction of the electric fields of the reflected and transmitted
waves (there are two options); if our guess is wrong, the sign of the reflection/transmission coefficient will fix
it. Assuming the materials to be non-magnetic, such that the permeability of both materials is equal to the
free-space permeability µ0, and recalling that θr = θi, we obtain

(B0i −B0r) cos θi = B0t cos θt (7.47)

Finally using B0 = E0n/c and the first interface condition [Eq. (7.45)], we obtain the following amplitude
reflection and transmission coefficients:

rs =

(
E0r

E0i

)
s

=
n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
,

ts =

(
E0t

E0i

)
s

=
2n1 cos θi

n1 cos θi + n2 cos θt
,

(7.48)

(7.49)

where n1 and n2 are the refractive indices of the incident and the final media, respectively. These equations, in
conjunction with Snell’s law, provide the amplitude reflection and transmission coefficients for s-polarized light
incident on dielectric boundaries, allowing us to deduce the amplitudes of the electric fields corresponding to
the reflected and transmitted waves. It is worth noting that the coefficients can be negative — or even complex
— which simply imply phase shifts for the EM waves. It is also worth noting that equations very similar to
those in Eqs. (7.48) and (7.49) can be derived for the reflection of acoustic waves.

7.4.2 Case 2: p polarization

Let us now consider the case where the electric field is polarized along the plane of incidence [see Fig. 27(b)].
The continuity condition of the tangential component of the electric field reads

E0i cos θi − E0r cos θr = E0t cos θt. (7.50)
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The magnetic field ~B0 is now fully tangential, and so the second interface condition reads

B0i

µi
+
B0r

µr
=
B0t

µt
. (7.51)

Again assuming the materials to be non-magnetic and using B0 = E0n/c, we can combine the two interface
conditions to yield the following amplitude reflection and transmission coefficients:

rp =

(
E0r

E0i

)
p

=
n2 cos θi − n1 cos θt

n1 cos θt + n2 cos θi
,

tp =

(
E0t

E0i

)
p

=
2n1 cos θi

n1 cos θt + n2 cos θi
,

(7.52)

(7.53)

Fresnel equations

Equations for the reflection and transmission amplitude coefficients rs,p and ts,p presented above are
known as the Fresnel equations. They can be used (together with Snell’s law) to deduce the amount
of light reflected (and transmitted) from a given dielectric boundary. It is worth noting that arbitrary
polarization states can be expressed as a liner superposition of s and p polarizations, and so the Fresnel
equations can be used to evaluate the reflection and transmission of light with arbitrary polarization.

As an example, consider light incident from air (n1 = 1) to glass (n = 1.45) at normal inci-
dence θi = 90◦. The magnitude of the reflection coefficient for both the s and p polarizations
is

|r| =
∣∣∣∣n2 − n1

n1 + n2

∣∣∣∣ ≈ 0.184. (7.54)

7.4.3 Energy conservation

It is straightforward to see that the Fresnel reflection and transmission coefficients do not add up to unity. As
with our earlier example of reflection and transmission of waves at the boundary of two strings, this observation
does not imply that energy conservation is violated.

It can be shown that a plane EM wave transfers energy in the direction of its propagation (i.e., along the
direction of its wave vector ~k). The rate of energy transfer (power) per unit area is described by the intensity of
the wave33. For a plane EM wave with complex amplitude E, the intensity is given by

I =
n

cµ0
|E|2. (7.55)

33More technically, instantaneous energy transfer of an EM wave is described by the so-called Poynting vector. This vector is parallel
to the wave vector (i.e., energy is transferred along the wave vector), while its time-averaged magnitude corresponds to intensity.
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Importantly, this quantity describes the rate at which energy passes through a surface that is perpendicular to
the wave propagation direction. If we wish to know the rate of energy transfer per unit area through some other
surface that is not perpendicular to the wave, we need to project the wave vector on the normal of the surface,
i.e.,

In = I k̂ · n̂ = I cos θ, (7.56)

where n̂ is the unit vector along the surface normal and θ is the angle between the wave vector and that surface
normal.

In light of the above discussion, the intensity incident on the surface can be written as

Ii,n =
n1

cµ0
|E0i|2 cos θi. (7.57)

Similarly, the intensities of the reflected and transmitted waves projected along the surface normal can be
written as

Ir,n =
n1

cµ0
|r|2|E0i|2 cos θi = RIi,n, (7.58)

It,n =
n2

cµ0
|t|2|E0i|2 cos θt = TIi,n. (7.59)

Here we have introduced the intensity reflection and transmission coefficients:

R = |r|2,

T =
n2 cos θt

n1 cos θi
|t|2.

(7.60)

(7.61)

It is straightforward to show that the intensity reflection and transmission coefficients do add up to unity [exer-
cise], as expected on the basis of energy conservation.

7.4.4 Angular dependence

The Fresnel equations show that the reflection and transmission coefficients depend on the incident angle θi. In
Fig. 28(a) and (b), we respectively plot the magnitude and phase of the reflection coefficients as a function of the
incident angle for the case where n1 < n2. For s polarized waves, a π phase shift occurs for all incident angles
(i.e., rs < 0), while the magnitude of the reflection coefficient increases monotonically, reaching |rs| = 1 at
θi = 90◦. In contrast, for the p polarization, we see that the magnitude of the reflection coefficient initially
decreases, and becomes zero before starting to increase. The incident angle for which the reflection coefficient
of the p polarization is zero is known as Brewster’s angle and denoted θB. It can be shown that the Brewster’s
angle corresponds to the incident angle for which the sum of the incident and transmitted angles is 90 degrees.
Mathematically,

θB + θt = 90◦. (7.62)

At the Brewster’s angle, a p polarised EM wave is totally reflected (zero transmission), and the reflected EM
wave undergoes a π phase-shift.
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In Fig. 28(d) and (c) we show the magnitude and phase of the reflection coefficients for the case where
n1 > n2. There is one significant difference compared to the n1 < n2 case: the magnitudes of both reflec-
tion coefficients are equal to unity above a certain critical angle θc < 90◦. This corresponds to the familiar
phenomenon of total internal reflection, where all light incident on the surface is reflected. The critical angle
corresponds to the incidence angle for which the transmitted angle is equal to 90◦. Using Snell’s law, we have

θc = sin−1

[
n2

n1

]
. (7.63)

It is left as an exercise to show that, for all angles θi > θc, the amplitude reflection and transmission coefficients
are complex numbers with unity magnitude. The phases of the coefficients are not zero [c.f. Fig. 28(d)], which
implies that the reflected waves acquire a non-trivial phase-shift during total internal reflection.
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Figure 28: Magnitude (a, c) and phase (b, d) of the amplitude reflection coefficient r for s-polarised (solid black curve)
and p-polarised (dashed red curve) EM waves. (a, b) corresponds to the situation n1 < n2 while (c, d) corresponds to the
situation n1 > n2. The indices used are n = 1 and n = 1.4 which correspond to air and glass, respectively. θB and θc
highlight the Brewster’s angle and the critical angle of total internal reflection.
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Problems

7.1 All waves carry energy. In this exercise, we will consider a mechanical wave u(x, t) = A cos(ωt− kx)
propagating along a string with linear mass density µ, and we will investigate the energy carried by
the wave. The end goal is to show that energy is conserved when a mechanical wave is incident on a
boundary between two strings with different tensions.

(a) Because the wave is associated with (transverse) motion of the string, it possesses kinetic energy.
Starting from an infinitesimally small segment of the string, show that the kinetic energy contained
within one wavelength λ is equal to

Kλ =
1

4
µA2ω2λ. (7.64)

(b) Because displaced segments of the string experience a harmonic force towards their equilibrium
state, the wave also possesses elastic potential energy. A small segment on the string exhibits har-
monic oscillation in time akin to a mass attached to a spring with spring constant ks = ω2∆m,
where ∆m is the mass of the segment. Show that the potential energy contained within one wave-
length is equal to

Uλ =
1

4
µA2ω2λ = Kλ. (7.65)

(c) Show that the power transferred by the wave is equal to

P =
1

2
ZA2ω2, (7.66)

where Z is the impedance.

(d) Use the analysis above together with Eqs. (7.20) and (7.21) to show that energy is conserved when
a mechanical wave is incident on a boundary between two different strings.

7.2 Starting from Maxwell’s equations, derive the interface conditions used in subsection 7.4.

7.3 Repeat the derivations of the Fresnel reflection and transmission coefficients summarised in subsec-
tion 7.4.

7.4 The impedance for electromagnetic waves is defined as Z = cµ0/n, where c is the speed of light,
µ0 is the vacuum permeability, and n is the refractive index of the medium. Consider the reflection
of p-polarised electromagnetic waves at normal incidence θi = 0. How does the amplitude reflection
coefficient compare with that of two strings tied together [i.e., Eq. (7.22)]? What about s-polarised
waves?

7.5 Show that Fresnel’s intensity reflection and transmission coefficients given by Eqs. (7.60) and (7.61),
respectively, add up to unity for both s- and p-polarized waves.

7.6 Write a Matlab/Python code that plots the Fresnel intensity reflection and transmission coefficients as a
function of the incident angle θ for an EM wave that is incident from air (n = 1) to glass (n = 1.45).
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7.7 Show that the Brewster’s angle can be written as

θB = tan−1

[
n2

n1

]
. (7.67)

Further show that the Brewster’s angle satisfies θB + θt = 90◦.

7.8 Consider an s-polarised EM wave that is incident on the boundary between dielectric medium with
n1 = 1.5 and air n2 = 1. Derive an expression for the amplitude reflection coefficient that depends only
on n = n2/n1. Show that, for incident angles larger than the critical angle of total internal reflection
(θi > θc), the amplitude reflection coefficient can be written as

r =
cos θi − i

√
sin2 θi − n2

cos θi + i
√

sin2 θi − n2
, (7.68)

where the quantity inside the square roots is real and positive. What is the value of the intensity reflection
coefficient |r|2 for incident angles θi > θc?
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8 Waveguides

In the preceding Section, we have considered the reflection and transmission of waves at interfaces. We have
seen – in the context of EM waves – that a wave incident from a medium with lower wave velocity (large
refractive index n1) into a medium with higher wave velocity (small refractive index n2) can undergo total
internal reflection. Although our example focussed on EM waves, the phenomenon itself is more ubiquitous.
This can be appreciated from the fact that total internal reflection can be qualitatively inferred already from
Snell’s law, which applies to numerous systems subject to continuity of the wave (or its vector component) at
an interface, such as e.g. seismic waves and acoustic waves.

Total internal reflection gives rise to an interesting prospect. Specifically, consider a medium of low wave
velocity sandwiched between two media with larger wave velocity [Fig. 29]. The wave can be envisaged to
undergo total internal reflection at both surfaces, and hence remain trapped inside the medium of low wave
velocity. The resulting structure is known as a waveguide, since it allows the wave to remain confined (in one
or more dimensions) and so be guided along a preferred direction.

Waveguides manifest themselves in numerous physical contexts. Arguably of greatest practical significance
are the cylindrical glass optical fibres that allow light to be guided from place A to place B. Such optical fibres
form the backbone of today’s telecommunication systems, underpinning everyday applications such as the
internet and all other forms of long-distance communication.

Waveguides come in many different geometries, and the precise physics that underpins wave behaviour
within them can vary between different physical systems (e.g. due to different interface conditions). However,
in all situations, the basic approach to analysing waveguides is essentially the same. In this Section we first
cover the general idea, and subsequently consider what is arguably the simplest possible waveguide for the sake
of simplicity: a symmetrical infinite slab waveguide like the one shown in Fig. 29. We assume (i) the wave
velocity v1 in the “core” to be smaller than the wave velocity v2 in the “cladding”, and (ii) the slab to be infinite
in extent and homogeneous in the yz-plane. The slab waveguide is clearly an idealization of real waveguides,
which are not infinite in width. However, the methods needed to solve real waveguides are essentially the same

Figure 29: Schematic illustration of an infinite slab waveguide consisting of a medium of low wave velocity v1 sand-
wiched between two regions of larger wave velocity v2. Thanks to multiple total internal reflections, a wave can propagate
in the low-velocity layer without escaping.
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as those used to analyse the slab waveguide (just a bit more complicated), so the latter forms a good starting
point. Indeed, we will end this Section by putting together a variety of the topics covered in these lecture notes
and analyse the wave behaviour of light in a cylindrical optical fibre.

8.1 General idea

We assume that our wave propagates along the z-axis of the waveguide. Our aim is to find the modes of the
waveguide: waves that maintain constant transverse spatial distribution at all distances along the waveguide
axis. Mathematically, we look for solutions to the entire waveguide system that have the form

~u(~r, t) = ~g(x, y)eiωt−iβz, (8.1)

where~g(x, y) is the transverse distribution of the mode, ω is the angular frequency of the wave, and β is known
as the propagation constant of the mode. As this equation shows, the modes of the waveguides only accumulate
a phase shift as they propagate, but their transverse distribution remains constant: what goes in comes out. We
note that the concept of a waveguide mode is reminiscent of the normal modes covered in Section 5. The main
difference is that the normal modes studied in Section 5 are non-propagating in all dimensions in the sense
that the spatial pattern only oscillates with time; in other words, normal modes correspond to standing waves.
Waveguide modes, in contrast, are propagating in one dimension (z), and only “maintain” their spatial structure
in the two other dimensions (x and y). In a sense, waveguide modes can be understood as 2D standing waves
that propagate, with the propagation constant β corresponding to an “effective” wave number.

To find the modes of a particular waveguide, we first note that the entire wave ~u(~r, t) must simultaneously
satisfy the wave equation both in the core and in the cladding. Referring to Fig. 29, the two wave equations
read

∇2~u(~r, t) =
1

v2
1

∂2~u(~r, t)
∂t2

, in the core (8.2)

∇2~u(~r, t) =
1

v2
2

∂2~u(~r, t)
∂t2

, in the cladding. (8.3)

Substituting ~u(~r, t) from Eq. (8.1) yields two Helmholtz-like equations

∇2
⊥~g(x, y) =

[
β2 − k2

1

]
~g(x, y), in the core (8.4)

∇2
⊥~g(x, y) =

[
β2 − k2

2

]
~g(x, y), in the cladding. (8.5)

Here ∇2
⊥ is a transverse Laplacian, defined as ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2, while k1,2 = ω/v1,2 are the wave
numbers of plane waves in the different media. To find the modes, we:

1. Solve the Helmholtz-like equations above to obtain the possible transverse distributions ~g(x, y) in the
core and in the cladding, and

2. pick those solutions that satisfy the interface conditions relevant to the physical system under study.

Waveguide modes correspond to those field distributions that simultaneously satisfy (i) wave equations in both
media and (ii) the interface conditions at the boundary. One typically finds that only a discrete set of propa-
gation constants β permit these conditions to be simultaneously satisfied; each waveguide mode is associated
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with a unique propagation constant, and an essential step in waveguide analysis is to actually find what these
propagation constants are. The analysis typically results in a transcendental eigenvalue equation from which
the propagation constants (and hence the field profiles) can be obtained. We again note the similarity with
the normal mode analysis presented in Section 5. The main difference is that now we are dealing with two
Helmholtz-like equations in two different regions, and the “boundary” conditions will be such that solutions in
the different domains “merge” appropriately at the interface.

In practice, solving the Helmholtz-like equations above requires consideration for the geometry of the
waveguide. For example, for cylindrical optical fibres, the equations are convenient to be solved in cylindrical
coordinates. For more complex geometries, analytical solutions may not exist, and the computations must be
carried out numerically. Moreover, it should be evident that the interface conditions play an important role in
determining the waveguide modes. In the next subsection, we present an example that illustrates the general
ideas by considering a particularly simple waveguide geometry and interface conditions that are physically
relevant.

8.2 Modes of a slab waveguide

We consider a symmetrical slab waveguide34 like the one shown in Fig. 29, consisting of a medium of width
2d and wave velocity v1 sandwiched between two layers of a medium with wave velocity v2. We assume the
wave to be polarized along the y-axis such that ~g(x, y) = ψ(x, y)ŷ, and that the interface conditions of the
system assert that both ψ(x, y) and ∂ψ(x, y)/∂x are continuous across the boundary. It is worth noting that
these interface conditions arise e.g. if ~g(x, y) is interpreted as the electric field of an EM wave [exercise]; the
resulting modes are known, in the context of optics, as the transverse electric (TE) modes of the slab waveguide.

Since the waveguide extends to infinity in the y-direction, it is reasonable to assume that the waveguide
modes do not depend on y, i.e., ψ(x, y) = ψ(x). Writing p2 = k2

1 − β2 and q2 = β2 − k2
2 , we can rewrite

Eqs. (8.4) and (8.5) as35

d2ψ

dx2
= −p2ψ, |x| < d,

d2ψ

dx2
= q2ψ, |x| ≥ d.

(8.6)

(8.7)

The nature of the solutions of these equations depends on whether p and q are real or imaginary; it can be shown
[exercise] that, for guided modes, k1 > β > k2 such that p, q ∈ IR. Oscillatory functions solve Eq. (8.6), and
the general solution reads

ψ(x) = A cos(px) +B sin(px). (8.8)

It can be shown [exercise] that sine and cosine functions cannot simultaneously fulfil the interface conditions.
Hence, we have two separate sets of waveguide modes: even and odd (or symmetric and anti-symmetric). In
the core, the profiles read

ψcore(x) =

{
A cos(px) even modes
B sin(px) odd modes

(8.9)

34The waveguide is “symmetrical” since both cladding layers are assumed to have identical wave velocities. The more general case
involving three different media is left as an exercise.

35We assume x = 0 in the middle of the core.
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In the cladding region, the wave profiles are given by exponential functions; the general solution of Eq. (8.7)
reads

ψ(x) = Ceqx +De−qx. (8.10)

Solutions that diverge to infinity as |x| → ∞ can be ignored as unphysical, and so the profile in the cladding
reads

ψcladding(x) =

{
Ce−qx x ≥ d
Deqx x ≤ −d. (8.11)

Next, we use interface conditions to find the values of the different coefficients. For the even modes, we have
ψcore(d) = ψcore(−d), and the condition of continuity of ψ(x) and dψ/dx yields

A cos(pd) = Ce−qd,

Ap sin(pd) = Cqe−qd.

(8.12)

(8.13)

By dividing the two equations from one another, we obtain

tan(pd) =
q

p
. (8.14)

For the odd modes, the interface conditions yield [exercise]

cot(pd) = −q
p
, (8.15)

where cot(pd) = 1/ tan(pd). These are the characteristic equations from which the mode propagation con-
stants β can be obtained for even [Eq. (8.14)] and odd [Eq. (8.15)] modes. Indeed, we recall that p =

√
k2

1 − β2

and q =
√
β2 − k2

2 , and so the only unknown in Eqs. (8.14) and (8.15) is the mode propagation constant β.
The equations are transcendental, requiring the solutions to be found graphically and/or numerically. As an il-
lustrative example, in Fig. 30(a) and (b) we plot the left- and right-hand sides of the two equations as a function
of β for parameters listed in the figure caption. As can be seen, the curves cross at discrete and finite values of
β, with each crossing corresponding to a distinct waveguide mode.

Once the mode propagation constant β is known, we may evaluate the coefficients p and q and then finally
construct the whole spatial wave profile ψ(x) using Eq. (8.9) and Eq. (8.11). Note in this context that the
mode amplitudes (A for even modes and B for odd modes) can be chosen freely; the continuity conditions
at the interface however enforce values for the coefficients C and D appearing in Eq. (8.11). In Figs. 31(a)
and (b), we plot spatial profiles of selected even and odd modes whose propagation constants can be inferred
from Figs. 30(a) and (b), respectively. These modes specifically correspond to the six modes with the largest
propagation constant.
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(b) Odd modes

Figure 30: Visual representation of the characteristic equation for (a) even and (b) odd modes of a symmetric slab
waveguide. Propagation constants for guided modes can be found from the intersection points of the different curves. The
parameters of the waveguide structure correspond to a dielectric optical waveguide with core half-width d = 4 µm and
wave velocities v1 = c/1.45 and v2 = c in the core and in the cladding, respectively, with c the speed of light in vacuum.
The mode has a vacuum wavelength of λ0 = 1 µm.

8.2.1 Number of modes

A given waveguide only supports a finite number of modes. As an example, let us consider the even modes in
our slab waveguide. We first write Eq. (8.14) as:

tan (pd) =

√
k2

1 − k2
2 − p2

p2
. (8.16)

Since propagation constants of guided modes must lie on the interval β ∈ (k2, k1), we have p ∈ (0,
√
k2

1 − k2
2).

In this interval, the right-hand side of Eq. (8.16) is a monotonously decreasing, positive-valued function, which
assumes the values of∞ and 0 at the two ends of the interval [see Fig. 32]. On the other hand, the left-hand
side of Eq. (8.14) repeats periodically with a period of ∆p = π/d. Since the tangent function traces through all
positive (and negative) numbers over a single period, the right- and left-hand sides of Eq. (8.16) must coincide
once each period. Thus, the number of even modes is

Neven =

⌈
d

√
k2

1 − k2
2

π

⌉
. (8.17)
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Figure 31: Spatial mode profiles for three (a) even and (b) odd modes of a symmetric slab waveguide. The parameters
are the same as in Fig. 30, and the modes shown here correspond to the six modes with the largest propagation constants.
The dashed vertical lines indicate the core-cladding boundaries at d = ±5 µm.

The necessity of the ceiling function can be understood by inspection of Fig. 32. It is straightforward to
show [exercise] that the number off odd modes is the same, except that the ceiling function becomes the floor
function. The total number of modes is then

N =

⌈
2d

√
k2

1 − k2
2

π

⌉
. (8.18)

Recalling that kn = ω/vn = 2π/λn, the number of modes can be written as

N =

⌈
4d

√
1

λ2
1

− 1

λ2
2

⌉
. (8.19)
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Figure 32: The characteristic equation for even modes of a symmetric slab waveguide plotted as a function of p/∆p,
where ∆p = π/d is the periodicity of the tangent function. Points where the two curves intersect (highlighted with solid
circles) correspond to guided modes. Each interval of width ∆p contains one mode.

This expression shows that the smaller the wavelength λ1 in the core, the larger the number of modes. This
makes sense, as the wavelength of the wave can be loosely understood as a measure of how tightly the wave
can be transversely confined36. If the wavelength is too large, the mode profile can be too big to fit in the core
and hence cannot be guided.

Optical waveguides

The results above apply to all physical systems that are subject to the particular interface conditions.
Notably, they apply to electromagnetic waves that are polarized along the surface (i.e., along the
y-direction). The resulting waveguide modes are known as transverse electric (TE) modes to highlight
the fact the electric field is transverse to the plane of incidence; it should be clear that the TE polarization
can be identified as the s polarization described in the context of wave reflection and transmission at
interfaces. For the p polarization, the interface conditions are somewhat different, leading to another set
of modes known as transverse magnetic (TM) modes.

For electromagnetic waves, we have λi = λ0/ni, where ni is the refractive index of medium i

36Consider for example the familiar diffraction-limited spot size for electromagnetic waves, ie., the smallest spot size to which light
can be focussed: d = λ/(2NA), where NA is known as the numerical aperture.
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and λ0 is the vacuum wavelength. The number of modes can now be written as

N =

⌈
4d

λ0

√
n2

1 − n2
2

⌉
. (8.20)

The factor
√
n2

1 − n2
2 is known as the numerical aperture (NA) of the waveguide, and it describes the

range of angles over which the system can accept or emit light. The numerical aperture is typically of
the order of unity (or smaller), which makes clear that the number of modes is indeed governed by the
size of the core relative to the wavelength.

8.2.2 Fundamental mode and cutoff wavelength

Inspection of Fig. 32 reveals that, regardless of parameters, there is always at least one root for Eq. (8.14). This
implies that our slab waveguide will always support at least one mode. This mode is known as the fundamental
mode, and it can be identified as the mode with the largest propagation constant β. It is straightforward to see
that the fundamental mode is an even mode; indeed, one can readily envisage a set of parameters for which
Eq. (8.14) has no roots. The top even mode shown in Fig. 31 corresponds to the fundamental mode of that
waveguide. When a waveguide is only supporting a single mode, it is said to be a single-mode waveguide.

In the context of optics, it is customary to define a cut-off wavelength λc: the vacuum wavelength above
which the waveguide only guides the fundamental mode. Using Eq. (8.20), we have:

λc = 4d
√
n2

1 − n2
2. (8.21)

As can be seen, a small waveguide width d implies a small cutoff wavelength λc and vice versa.

8.3 Quantum mechanical analogy

In the subsection above, we have solved the modes of an infinite slab waveguide by first finding the transverse
wave profiles in the core and in the cladding and then joining them at the interface using boundary conditions.
Under certain conditions, the physics of the problem may permit the waveguide problem to be analysed from a
somewhat different perspective. Here, one expresses the problem as a single wave equation that incorporates the
spatial-dependence of the wave velocity. Considering a one-dimensional scalar situation (e.g. a slab waveguide
with velocity variation along x), we have

∂2u(~r, t)
∂t2

= v2(x)∇2u(~r, t). (8.22)

Note the explicit dependence of the wave velocity on the position x. We must emphasize that this equation is
not guaranteed to be a universally valid description of the physical system under study. For example, in elec-
tromagnetism, Eq. (8.22) can be strictly derived [exercise] only in the case where the electric field is polarized
parallel to the interface (i.e., TE waves)37. More generally, Eq. (8.22) implicitly implies that the wave function

37Manipulation of Maxwell’s equations results in a wave equation for the electric field that contains a term that disappears when the
wave is polarised along the interface, but that does not disappear if the field exhibits a component that is perpendicular to the interface.
However, if the velocity differences are very small, this term can be neglected even for the latter case.
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is twice-differentiable at all spatial positions, which requires the continuity of the wave function and its first
derivative. Thus, Eq. (8.22) can be considered valid whenever the interface conditions require continuity of the
wave function and its first derivative38.

The form of Eq. (8.22) opens up an interesting analogy. To see this, let us again assume that the transverse
profile is constant in the y-direction and write u(~r, t) = ψ(x) exp(iωt − iβz). This yields the following
Helmholtz-like equation:

∂2ψ

∂x2
=
[
β2 − k2(x)

]
ψ, (8.23)

where k(x) = ω/v(x). Equation (8.23) is formally identical with the 1D time-independent Schrödinger’s
equation:

∂2ψ

∂x2
=

2m

h̄2 [−E + V (x)]ψ. (8.24)

Here E is the total energy of the particle and V (x) is the potential energy at each point x. The similarity
of the two equations reveals that the problem of finding waveguide modes is in fact analogous to finding
the bound states for a particle in a finite potential well. It is worth noting that the interface conditions in
quantum mechanics instil the continuity of the wave function ψ and its first derivative, which are captured by
the requirement of twice-differentiability manifest in Eq. (8.24).

In the quantum mechanical problem, and considering a rectangular potential well (analogous to a slab
waveguide) that assumes the values V1 in the well and V2 outside the well, the energies of bound states lie on
the interval E ∈ (V1, V2). Indeed, if E < V1, the kinetic energy of the particle would be negative everywhere,
which is unphysical. On the other hand, if E > V2, the kinetic energy outside of the well would be positive,
permitting the particle to enter that region. It is only for E ∈ (V1, V2) that the kinetic energy is positive in the
well and negative elsewhere, allowing the wave to remain localized in the well.

Using the analogy, we may identify β2 ≡ −E and k2(x) ≡ −V (x). Since bound states require that
E ∈ (V1, V2), our analogy now reveals immediately that guided modes similarly require β ∈ (k2, k1).

8.4 Mode dynamics

Our analysis above shows that a waveguide can sustain a finite number of eigenmodes that maintain constant
transverse shape as they propagate. But what if we launch a profile that does not match any of the eigenmodes
into a waveguide? What will happen? Short answer is that some part of the launched energy will reshape into
one or more of the eigenmodes, while some other part will escape into the cladding and not be guided.

To get an intuitive feel for this process, we consider a slab waveguide described by Eq. (8.22). We write
the wave in the form u(~r, t) = ψ(x, z) exp(iωt − ik1z) and use the paraxial approximation [see Section 6.2]
to derive [exercise]

∂ψ

∂z
= − i

2k1

∂2ψ

∂x2
− i

2k1

[
k2(x)− k2

1

]
ψ. (8.25)

38These conditions are satisfied by TE-polarized EM waves, but they are not satisfied by TM-polarized waves.
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Here we have a differential equation that tells us how a given incident wave, described by the initial condition
ψ(x, z = 0), will propagate along the waveguide. The equation cannot be solved analytically. Accordingly, we
solve it numerically, using the so-called split-step Fourier algorithm.

Split-step Fourier

If the right-hand side of Eq. (8.25) would only contain the first term, the differential equation could
be trivially solved in the Fourier domain. In fact, this would simply correspond to the paraxial beam
propagation Eq. (6.12) which we solved in Section 6.2.1. On the other hand, if the equation would only
contain the second term, we could trivially solve it in the real space domain. Unfortunately, because the
equation contains both terms, we must solve it numerically.

The split-step Fourier method is a scheme that allows us to find numerical solutions to equations
like Eq. (8.25). The idea is that, over a small interval h in z, we can assume that the two terms on
the right-hand side of Eq. (8.25) act independently. More specifically, propagation from z to z + h is
carried out in two steps. In the first step, the first term acts alone and the second term is zero. In the
second step, the first term is zero and the second term acts alone. After the first step, we have

ψ1(x, z + h) = F−1

{
ψ̃(kx, z) exp

[
i
k2
x

2k1
h

]}
, (8.26)

where ψ̃(kx, z) is the Fourier transform of ψ(x, z), kx is the (angular) frequency variable of the Fourier
transform, and F−1 indicates the inverse Fourier transform. In the second step, we use ψ1(x, z + h) as
the initial condition to obtain:

ψ(x, z + h) = ψ1(x, z + h) exp

[
−ik

2(x)− k2
1

2k1
h

]
. (8.27)

The two steps above can be used to give us the wave profile ψ(x, z + h) provided the profile
ψ(x, z) is known. Typically we know the initial condition ψ(x, 0), i.e., the wave profile at the input
facet of the waveguide. To obtain the profile at an arbitray z, we must apply the two steps iteratively:
0→ h→ 2h→ 3h... until the desired point is reached.

We must emphasize that the split-step Fourier scheme is not exact: the two terms on the right-
hand side of Eq. (8.25) do not act independently in reality. The assumption that they do act
independently is an approximation that is only valid for sufficiently small step size h. Accordinly, the
accuracy of the whole scheme depends on the step size h, with smaller step sizes giving better result.

8.4.1 Illustrative simulations

Let us now use the split-step Fourier scheme to examine how a given initial condition evolves as it propagates
along a waveguide. Figure 33(a) shows results from illustrative numerical simulations [for parameters, see
caption]. Here we consider a waveguide that supports one even mode and one odd mode, and assume the initial
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condition to correspond to a Gaussian function with a width two times larger than the waveguide core. As can
be seen, a considerable part of the wave energy is cast away from the core, while the part remaining in the core
reshapes into a profile that coincides with that of the fundamental mode of the waveguide [Fig. 33(b)]. It is
worth highlighting that, because the initial condition is an even function, only the even mode is excited.
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Figure 33: (a) Dynamical evolution of the wave profile ψ(x, z) as it propagates through a symmetric slab waveguide.
(b) Solid black curve shows the wave profile at the output of the simulation shown in (a), i.e., at z = 1 mm. Open red
circles show the fundamental waveguide mode constructed using the equations presented in Section 8.2. The waveguide
parameters mimic a dielectric optical waveguide with d = 1 µm and wave velocities v1 = c/1.45 and v2 = c/1.4 in
the core and in the cladding, respectively, with c the speed of light in vacuum. The mode has a vacuum wavelength of
λ0 = 1 µm.

Another example is shown in Fig. 34. Here we consider a waveguide that supports three modes (two even
modes and one odd mode). We see that a Gaussian initial condition gives rise to a transverse profile in the
core that oscillates along propagation. This is because the input excites both even modes of the waveguide39.
The oscillatory behaviour stems from the fact that the two modes are associated with different propagation
constants. Specifically, the spatial dependence of a wave comprised of two modes can be written as

u(x, z) = u1(x)e−iβ1z + u2(x)e−iβ2z, (8.28)

where un(x) and βn is the transverse profile and propagation constant of the nth even mode, respectively. The
absolute value squared [visualized in Fig. 34] reads

|u(x, z)|2 = |u1(x)|2 + |u2(x)|2 + 2|u1(x)||u2(x)| cos(∆βz + φ), (8.29)

where ∆β = β2 − β1 and φ is a phase factor. Thus, we indeed expect oscillatory behaviour with a period of
zper = 2π/∆β. With the parameters used in the simulation shown in Fig. 33, we have β1 ≈ 9.05 rad/µm and
β2 ≈ 8.82 rad/µm such that ∆β = 0.25 rad/µm. We thus predict the periodicity to be zper ≈ 25 µm. This
value is in close agreement with the periodicity seen in the simulation [see Fig. 34(b)].

39The odd mode is again not excited because the initial condition is even.

89



x−coordinate (µm)

z−
co

or
di

na
te

 (
m

m
)

(a) Propagation dynamics

−5 0 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

z−coordinate (mm)

|ψ
(x

=
0
,
z
)|
2

(b) Evolution at x = 0

|ψ
(x
,
z
)|
2
(a
rb
.
u
n
it
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 34: (a) Dynamical evolution of the wave profile ψ(x, z) as it propagates through a symmetric slab waveguide.
The parameters are the same as in Fig. 33 except for the waveguide width which is now set at d = 1.5 µm so as to permit
two even modes (dashed vertical lines in (a) highlight the core-cladding boundaries). (b) Evolution of the on-axis wave
intensity, i.e., |ψ(x = 0, z)|2, highlighting the periodicity of the wave evolution.

8.5 Optical fibres

Above we have considered the modes of an infinite slab waveguide. Such waveguides do not really exist in
practice, but they offer arguably the simplest geometry for trying out the general approach for solving problems
related to waveguides. Let us now consider a geometry that is of far greater practical significance: a cylinder.
Optical fibres that underpin modern telecommunications represent an example of a cylindrical waveguide (for
light); motivated by their utility, we will base our discussion on EM waves, yet emphasise the generality of our
analysis.

A typical optical fibre consists of a cylindrical core with refractive index n1 and radius a surrounded by a
cladding with refractive index n2 [see Fig. 35]. To achieve total internal reflection required for waveguiding,
we have n1 > n2, such that the wave velocity in the core is smaller than that in the cladding (v = c/n). Both
in the core and in the cladding, the electric and magnetic fields satisfy the EM wave equations [see Eqs. (7.38)
and (7.39)] derived from Maxwell’s equations. Following the general approach outlined above, we substitute
Eq. (8.1) into the EM wave equations, and obtain the two Helmholtz-like equations given by Eqs. (8.4) and (8.5),
where the vector field ~g(x, y) now represents either the electric or magnetic field. Nothing new so far.

The electric and magnetic fields can contain six vector components in total. It should be evident from
Eqs. (8.4) and (8.5) that each of the vector components satisfy the scalar equations

∇2
⊥ψ(x, y) =

[
β2 − k2

1

]
ψ(x, y), in the core (8.30)

∇2
⊥ψ(x, y) =

[
β2 − k2

2

]
ψ(x, y), in the cladding. (8.31)

where ψ(x, y) now represents one of the six vector components of the EM field, while k1 = n1ω/c and
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cladding
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Figure 35: Schematic illustration of a cylindrical optical fibre waveguide. (a) Cross-sectional profile showing a core with
refractive index n1 surrounded by a cladding with refractive index n2. (b) Cross-sectional view of the refractive index.

k2 = n2ω/c are the wavenumbers in the core and in the cladding, respectively. As above, guided modes satisfy
k1 > β > k2.

Because of the cylindrical geometry, it is natural to write the equations in cylindrical coordinates. Let us
consider first the case where r =

√
x2 + y2 < a, i.e., the field within the core. Equation (8.30) can be written

in cylindrical coordinates as

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
+ (k2

1 − β2)ψ = 0. (8.32)

But hang on, we have already seen this equation when analysing the normal modes of a drum [see Eq. (5.27)].
Briefly, using separation of variables to write ψ(r, φ) = F (r)G(φ), we find that G(φ) = exp(±imφ), where
m is an integer, whilst the radial part solves the Bessel equation:

r2∂
2F

∂r2
+ r

∂F

∂r
+
[
r2(k2

1 − β2)−m2
]
F = 0. (8.33)

Defining p =
√
k2

1 − β2, the solution can be written in terms of Bessel functions:

F (r) = AJm(rp) +BYm(rp), (8.34)

where A and B are integration constants and Jm and Ym are Bessel functions of the first and the second kind,
respectively. Since Ym diverges at r = 0, it cannot contribute to a physical solution, and so we obtain

ψ(r, φ) = AJm (rp) eimφ, in the core. (8.35)

So far the modes look just like the normal modes of a drum. The difference comes from outside of the core.
For a drum, we (sensibly) assumed ψ(r, φ) = 0 for r > a, but this is not the case for a cylindrical waveguide.
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To find the transverse wave profile in the cladding, we simply repeat the analysis above with k1 → k2. A
complication arises from the fact that β > k2, such that

√
k2

2 − β2 is purely imaginary. To circumvent the
issue, we write the radial equation as:

r2∂
2F

∂r2
+ r

∂F

∂r
−
[
r2(β2 − k2

2) +m2
]
F = 0. (8.36)

One notes how the third term has inverted signs compared to Eq. (8.33). Equation (8.36) has the form of the
so-called modified Bessel equation. Defining q =

√
β2 − k2

2 , the solutions of the equation can be written as

F (r) = CIm(rq) +DKm(rq), (8.37)

where C and D are integration constants and Im and Km are the modified Bessel functions of the first and the
second kind, respectively40. In contrast to the standard Bessel functions, which exhibit oscillatory behaviour,
the modified Bessel functions grow (Im) or decay (Km) exponentially as their argument approaches infinity
[see Fig. 36]. Since Im diverges as r → ∞, it cannot represent a physically sensible cladding profile of a
guided mode. As a consequence, we may write the entire transverse profile of the fibre mode as

ψ(r, φ) =

{
AJm (rp) eimφ r ≤ a,
DKm (rq) eimφ r > a

(8.38)
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Figure 36: Modified Bessel functions of the (a) first (Im) and (b) second (Km) kind for ordersm = 0, 1, 2, 3 as indicated.

8.5.1 Weakly-guiding approximation

Equation (8.38) allows us to construct the spatial profile of a guided mode in an optical fibre. Following the
general idea outlined above, the next step is then to apply the interface conditions to deduce the propagation

40You should be able to convince yourself that the modified Bessel functions can be obtained from the standard Bessel functions by
using a purely imaginary argument, e.g., Im(x) = Jm(ix).
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and integration constants. This procedure turns out to be rather tedious in general, as the EM wave can have
up to six nonzero vector components, each of which obeys Eq. (8.38) but with different integration constants,
and each of which can contribute to the interface conditions. Luckily, a significant simplification can be made
in the weakly-guiding limit that is almost always valid in real optical fibres.

In weakly-guiding optical fibres, the refractive index difference is very small, i.e., n1 = n2 + ε, where
ε � 1. It can be shown that, in this case, the fields are approximately transverse, such that the longitudinal
components Ez and Bz are zero. Importantly, this implies that the interface conditions are approximately
equivalent to the continuity of the scalar function ψ(r, φ) in Eq. (8.38) – which describes now the transverse
components of the fields – and its first derivative. It is straightforward to see that these continuity conditions
imply the following characteristic equation:

pJ ′m(pa)

Jm(pa)
=
qK ′m(qa)

Km(qa)
, (8.39)

where the apostrophes refer to differentiation with respect to the argument, e.g.,

J ′m(pa) =
dJm(pa)

d(pa)
. (8.40)
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Figure 37: Visual representation of the characteristic equation for a cylindrical (optical fibre) waveguide. Propagation
constants for guided modes can be found from the intersection points of the different curves. The parameters of the
waveguide structure correspond to an optical fibre with core radius a = 30 µm and refractive indices n1 = 1.45 and
n2 = 1.445 in the core and in the cladding, respectively. The mode has a vacuum wavelength of λ0 = 1.55 µm.
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Note that, in practice, the derivatives of Bessel functions are easiest to evaluate using the following identities:

J ′m(x) =
Jm−1(x)− Jm+1(x)

2
, (8.41)

K ′m(x) = −Km−1(x) +Km+1(x)

2
. (8.42)

We can graphically or numerically solve Eq. (8.39) to obtain the propagation constant β. Figure 37 shows
a typical graph of the left- and right-hand side of the equations [for parameters see figure caption]. As was the
case for the slab waveguide considered above, we see that the two curves cross multiple times; each crossing
corresponds to a distinct guided mode. It is conventional41 to label the propagation constants of the different
modes as βml, where m refers to the order of the Bessel function and l to the order of the root of the charac-
teristic equation. The modes themselves are commonly referred to as the LPml modes, with LP referring to
“linearly polarised”.

With the propagation constant known, we can construct the full spatial profile of fibre LP modes using
Eq. (8.38). Note that one of the integration constants (A or D) can be chosen freely, whilst the other one
follows from the continuity of the field at the interface. Figure 38 shows an assortment of the different modes
supported by a fibre whose parameters were quoted in the caption of Fig. 37. Inside the core, the mode profiles
are identical to the natural modes of a drum [see Fig. 16], but in contrast to the drum, the fields in a waveguide
extend slightly into the cladding.

8.5.2 Number of modes

As seen above, an optical fibre can in general support a number of modes. The number of modes supported by
a given fibre can be approximated using the so-called normalized frequency defined as

V = a
√
k2

1 − k2
2. (8.43)

It can be shown that, in the limit where a given fibre supports a very large number of modes, that number is
approximately given by

M ≈ 4

π
V 2. (8.44)

In contrast, if V < 2.405, the fibre supports only a single mode that corresponds to the LP01 mode shown in
Fig. 38(a). This mode is known as the fundamental mode of the fibre, and it has an approximately Gaussian
shape. It is worth noting that x = 2.405 corresponds to the first root of the Bessel function J0(x); the author
kindly leaves it for you to figure out why the V parameter has to be lower than this value to ensure single-mode
operation [see Exercise 8.12].

41Well actually, most sources would probably swap the indicesm and l, but since the author here already usedm everywhere during
separation of variables, we will stick to our notation.
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(c) m = 1, l = 1
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Figure 38: Transverse spatial profiles of selected step-index fibre modes as indicated. The solid black circle indicates the
core circumference.

Problems

8.1 Derive the modes for an asymmetric slab waveguide that consists of a medium with wave velocity
v1 sandwiched between layers of two different media associated with wave velocities v2 and v3 with
v1 < v2 < v3. Assume the same interface conditions as in Section 8.2.

8.2 A dielectric, non-magnetic medium with refractive index n1 sandwiched between two layers of a medium
with refractive index n2 < n1 can act as a waveguide for EM waves. Assume Eq. (8.1) represents
the electric field of the EM wave, and that the refractive index variation is along the x-direction [see
Fig. 29]. Further assume that the EM wave is polarised along the y-direction such that the vector ampli-
tude ~g(x, y) = ψ(x)ŷ. Show that the EM interface conditions outlined in Section 7 imply the interface
conditions used in Section 8.2, i.e., the continuity of ψ(x) and dψ(x)/dx.

8.3 Consider a slab waveguide for EM waves as in Question 8.2. Now assume that Eq. (8.1) represents the
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magnetic field ~B of the wave, and that the wave is polarised such that the magnetic field points in the
y-direction, i.e., ~g(x, y) = ψ(x)ŷ. Answer the following questions.

(a) What are the interface conditions for this problem?
(b) Solve for the waveguide modes in this situation. The resulting modes are known as transverse

magnetic (TM), and should be contrasted with the transverse electric (TE) modes that are found
with the interface conditions considered in Section 8.2.

8.4 Consider Eqs. (8.6) and (8.7), and show that physically sensible guided modes only exist for k1 > β > k2.

8.5 Consider the general solution to the Helmholtz-like equation in the core of a symmetric slab waveguide
[Eq. (8.8)]. Show that sine and cosine functions cannot simultaneously (i.e., for the same β) satisfy the
interface conditions.

8.6 Show that Eq. (8.15) is the characteristic equation for the odd modes of a symmetric slab waveguide
(with interface conditions that stipulate the continuity of the wave function and its first derivative).

8.7 Show that the number of odd modes supported by a symmetric slab waveguide is given by

Nodd =

⌊
d

√
k2

1 − k2
2

π

⌋
. (8.45)

8.8 Show that a wave equation of the form given by Eq. (8.22) can be derived from Maxwell’s equations for
an electric field that is polarised along the interface (i.e., the y-direction).

8.9 Starting from Eq. (8.22), derive Eq. (8.25).

8.10 Consider a symmetric slab waveguide for EM waves characterised by width d = 5 µm and wave veloc-
ities v1 = c/1.5 and v2 = c in the core and cladding, respectively. Further assume an EM wave with
vacuum wavelength λ0 = 1 µm.

(a) Write a Matlab/Python code that allows you to find the propagation constants for the even and odd
modes of the waveguide.

(b) Use your code to plot the transverse spatial profiles of the three even modes with the largest propa-
gation constants.

8.11 Consider a symmetric slab waveguide for EM waves characterised by width d = 0.8 µm and wave
velocities v1 = c/1.5 and v2 = c/1.45 in the core and cladding, respectively. Further assume an EM
wave with vacuum wavelength λ0 = 1 µm.

(a) How many even and odd modes does the waveguide support?
(b) Write a Matlab/Python code that uses the split-step Fourier algorithm to simulate the evolution of a

given initial condition.
(c) Show that a given initial condition reshapes into one of the waveguide modes. Try to excite both

even and odd modes (if they exist!).

8.12 Using the characteristic equation (8.39), show that V < 2.405 corresponds to the single-mode condition
for a weakly-guiding optical fibre.
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