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1 Introduction

These lectures notes discuss selected topics on (modern) optics and lasers physics. The topics span both fun-
damental and applied directions, aiming to (i) elucidate the characteristics and behaviours of light in terms of
classical electromagnetism, and (ii) to describe the physics underpinning various optical devices that are key to
our modern society.

Lasers arguably represent (one of) the most important application(s) of modern optics. They are used in
every nook and cranny of modern society, and they play a key role in our everyday lives. Furthermore, many of
the other important “photonic” technologies (such as e.g. optical fibres and waveguides), are almost predomi-
nantly used with lasers. Compounded by the fact that the physics behind lasers already encapsulates numerous
key electromagnetic concepts (e.g. interaction of light and matter, Gaussian beams,...) and optical devices (e.g.
resonators, optical amplifiers,...), we will use lasers as an overarching theme to guide our discussion.

Following the philosophy outlined above, we begin by discussing the basic operation principles behind
optical amplifiers and lasers, starting from the interactions between light and matter. These interactions
will be examined from two different perspectives: Einstein’s photon picture and classical electromagnetism
described by Maxwell’s equations and its plane wave solutions. We will then discuss the physics of optical
resonators, which not only underpin laser operation, but also have many other applications. Subsequently, we
will discuss the properties of laser light outside of the resonator. In particular, we will describe the behaviour
of so-called Gaussian beams, which will allow us to analyse how realistic (laser) light behaves, diffracts, and
propagates through optical systems. When (Gaussian) laser beams are tightly focussed, very large electric field
amplitudes can be reached. In such situations, we find that light no longer interacts linearly with matter. We
will discuss the basic physics and applications of such nonlinear optical phenomena. Finally, we will close by
discussing briefly methods and devices that allow for the state of polarisation of electromagnetic waves to be
modified, and we will discuss how fluctuations of electromagnetic waves can be described and analysed using
coherence theory.

At the moment, these lecture notes cover almost all of the course topics, with the only exceptions being
(in 2020) methods of polarisation manipulation, which will be covered in another set of material. (Also, notes
pertaining to Gaussian beams, nonlinear optics, and coherence will be handed out at a later date.) There are a
number of excellent references from which the lectures, as well as the summarized lecture material contained
in this leaflet are derived:

Suggested reading

• Fundamentals of Photonics by B. E. A. Saleh and M. C. Teich. Available online via UoA library.

• Laser Physics by S. Hooker and C. Webb. Online material available via clever googling.

• Laser Physics by P. W. Milonni and J. H. Eberly. Available online via UoA library.

• Optics by E. Hecht

• Physics 326 Lecture Notes by S. Coen.

• Physics 726 Lecture Notes by S. Coen.

1



2 Special characteristics of laser light

Lasers are devices that emit coherent light through a process of optical amplification via stimulated emission of
radiation. They play a key role in our everyday lives, with applications ranging from long-distance telecommu-
nications and bar-code scanners to machining and manufacturing. Their usefulness originates from the many
attractive and unique characteristics possessed by laser light compared to other forms of light (generated by e.g.
light bulbs or stars). These characteristics include:

1. Monochromaticity: Lasers can produce very pure colours, i.e., electromagnetic waves with a very pre-
cise frequency. Light emitted by the sun or a light bulb is white, containing frequencies spanning hund-
reds of THz. In contrast, laser light can have a bandwidth as small as 1 Hz [see Fig. 1].

2. Directionality: While most light sources emit light in all directions, lasers can create narrow unidirecti-
onal beams that diffract (i.e., broaden) extremely slowly. In radians, the divergence (half-)angle of a
diffraction-limited laser beam is [see Section 8]:

θ ≈ λ

πw0
, (2.1)

where λ is wavelength and w0 is the initial width of the beam. For a typical red laser with λ = 633 nm
and spot size w0 = 5 mm, one obtains θ ≈ 4 × 10−5 rad. One can easily confirm that a propagation
length of more than 120 metres is needed for the spot size to double.

3. Coherence: The phases of the electromagnetic waves making up laser beams have fixed relationships
in space (spatial coherence) and time (temporal coherence). In contrast, the phases of EM waves corre-
sponding to other forms of light exhibit random fluctuations [see Fig. 2].

Temporal coherence can be quantified by the coherence time τc, which describes the time over which the
phase/amplitude does not wander significantly. One finds that the coherence time is inversely proportio-
nal to the bandwidth: τc = ∆f−1. Because of their narrow bandwidths, laser light can maintain constant
phase for very long times. For example, a laser diode with ∆f = 1 MHz would have a coherence time
τc = 1 µs, corresponding to more than 300 million oscillations of the electric field. In contrast, sunlight
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Figure 1: Comparison between spectral intensities of light emanating from (a) the Sun and (b)a He-Ne laser. Note the
different x-axis scales. (a) Corresponds to the spectrum of a black body at T = 5800 K.
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Figure 2: Electric fields for an EM wave with (a) high and (b) low coherence. The spectral bandwidth in (a) is 1 GHz,
whilst in (b) the bandwidth is 100 THz.

has a bandwidth ∆f ∼ 500 THz and a corresponding coherence time τc = 2 fs, which amounts to about
one electric field oscillation (for visible light).

4. Brightness/intensity: Because of their small beam size and ability to be focussed to very small spots
(thanks to spatial coherence), lasers can concentrate light energy very tightly, resulting in extreme brig-
htness / high intensities1.

Example.
The total solar intensity on earth is

Psun

A
≈ 1380

W

m2
, (2.2)

while the intensity of a 1 mW laser focussed to a 80 µm (radius) spot is

Plaser

A
≈ 50000

W

m2
. (2.3)

5. Short durations: Lasers can create very short bursts of light, i.e. pulses, with durations well below
100 fs (10−15 s) [see Fig. 3]. In fact, such ultrashort laser pulses correspond to the shortest events created
by humankind. Because of their short duration, ultrashort pulses can also possess extremely large peak
powers.

1Intensity is the rate of energy transfer per unit area, i.e., power per area.
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Figure 3: Schematic illustration of the electric field of an EM wave corresponding to a train of ultrashort pulses. Black
curve illustrates the electric field, while the red dashed curve depicts the envelope.

Example.
Commercial Ti:Sapphire lasers can readily produce ∆τ = 100 fs pulses at a repetition rate
frep = 80 MHz (i.e., 80 million pulses per second) with average power Pavg = 1 W. This cor-
responds to a peak power (per pulse) of Ppeak = 125 kW. Assuming a 5 mm beam spot, the
corresponding peak intensity is about

Ppeak

A
≈ 6400

MW

m2
. (2.4)

This is 100 times larger than the total solar intensity on the surface of the Sun.

All of these distinctive characteristics ensue from the fact that laser light originates from a fundamentally
different physical process than any other form of light. Specifically, whereas light generated in stars (e.g., the
Sun) or heated filaments (e.g., light bulbs) arise from spontaneous emission of photons by excited atoms/mole-
cules, laser light originates from a process known as stimulated emission. Hence the name: Light Amplification
by Stimulated Emission of Radiation. As we shall see in Section 3, spontaneous emission results in the ge-
neration of photons with random traits (phase, frequency, polarisation, direction), while stimulated emission
results in the generation of photons with identical characteristics. It should be evident that this fact (namely the
creation of photons with identical phase, frequency, direction) is sufficient to explain the unique characteristics
of laser light listed above.

2.1 Ultrashort history of lasers

The story of the laser arguably begins with the quantum hypothesis put forward by Max Planck around 1900.
In particular, he proposed that atoms can only absorb and emit radiation in discrete quanta. As we shall see
below, this behaviour is paramount for laser operation.

The concept of stimulated emission, which underpins laser operation, was hypothesised in 1917 by Albert
Einstein. Classical electromagnetism could only account for the processes of absorption and spontaneous
emission (as explained in Section 5), which had left stimulated emission undiscovered. Einstein considered
an atom in thermal equilibrium with a black body radiation field, and showed that Plank’s law (of black body
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radiation) could be re-derived only if the atom could undergo the hypothesised process of stimulated emission
(in addition to absorption and spontaneous emission).

Stimulated emission was first realised in the laboratory not in the optical but in the microwave domain. The
idea for a device utilising stimulated emission to realise coherent sources of microwave radiation (MASER:
microwave amplification by stimulated emission of radiation) was first conceived (independently) by Joseph
Weber, Charles Townes, Nikolay Basov, and Aleksandr Prokhorov around 1950. The first laboratory demon-
stration of a maser was reported in 1954 by Townes, together with J. P. Gordon and H. J. Zeiger.

Conceptually, lasers can be considered as masers operating in the optical domain. Their practical con-
struction is, however, technologically different. In 1957, Gordon Gould conceived the idea of building a laser
using an open-sided Fabry-Perot resonator (see section 6). Similar ideas were simultaneously pursued by Tow-
nes together with A. Schawlow.

The first actual laser was built and demonstrated by Theodore Maiman in 1960. Using a ruby crystal
pumped by photographic flash lamps, he realised pulsed laser operation with a wavelength of 694.3 nm (red).
From there onwards, numerous different lasers and laser technologies were quickly developed.

In 1964, Townes Basov, and Prokhorov won the Nobel Prize in Physics “for fundamental work in the field
of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser
principle.”

Problems

2.1 The wavelength of a Neodymium-YAG laser is 1064 nm, and the diameter of its beam is 5 mm. The
beam has full coherence and is diffraction limited. What is the diameter of the beam at a 100 km distance
from the laser? What should be done to the laser beam in order to significantly reduce its diameter at
distance of 100 km?

2.2 The beam from a ruby laser (λ = 694 nm) is sent to the moon after passing through a telescope of 1 m
diameter. Calculate the approximate value of beam diameter on the moon assuming that the beam has
perfect spatial coherence (the distance between earth and moon is approximately 384000 km).

2.3 The specifications of a commercial Ti:Sapphire laser (Spectra Physics Tsunami) reveal that the device
can readily produce pulses with a duration of ∆τ = 80 fs at a repetition rate frep = 82 MHz (i.e., 82
million pulses per second) with average power Pavg = 1 W. Give an estimate for the peak power of the
individual pulses. Hint: you can solve this problem without any actual knowledge of lasers, by just using
your brains and a little bit of dimensional analysis.

2.4 The 2014 Nobel prize was awarded for the invention of efficient blue light-emitting diodes. These diodes
are based on Gallium Nitride, which has a bandgap energy of about 3.4 eV. What is the frequency and
wavelength of light emitted when an electron transitions across the bandgap in Gallium Nitride? What is
the colour of the light? Hint: 1eV = 1.602 · 10−19 J.

2.5 The total intensity (power per unit surface area) radiated by a black body across all wavelengths is given
by Stefan-Boltzmann law:

P

A
= σT 4,
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where T is the temperature of the black body (in Kelvins) and the Stefan-Boltzmann constant σ =
5.67 × 10−8Wm−2K−4. The emission spectrum of the Sun is approximately that of a black body at
temperature T = 5800 K.

(a) Show that the solar radiation intensity reaching the surface of the Earth is approximately 1380 Wm−2.
Hint: No knowledge of laser physics is needed, you just need to use your brains!

(b) Considering a standard laser pointer with a power of 1 mW, at what beam radius does the laser’s
intensity match that of the solar radiation on Earth?

(c) The spectral bandwidth of solar radiation is about 500 THz, while the bandwidth of a typical laser
pointer is 1 GHz. How does the intensity per unit frequency of a laser pointer compare with that
of solar radiation?

(d) Although the sun emits approximately a continuous range of frequencies (as a black body does),
measurements of the solar spectrum on Earth reveals dark features today referred to as Franunhofer
lines. Explain the physical origins of these lines.
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3 Interaction of light and atoms

The energies of (electrons in) atoms, ions, or molecules are quantized to discrete values: they can only occupy
discrete energy levels [see Fig. 4]. The first experimental evidence of this fact was the observation, made
already in the 19th century, that a set of spectral lines (now referred to as Fraunhofer lines) were missing from
the solar emission spectrum. Full theoretical explanation for the discreteness of atomic energy levels came with
the development of quantum mechanics and the Schrödinger wave equation. The existence of discrete energy
levels is key to laser operation.

n = 1

n = 2

n = 3

n = 4

nucleus

Energy E1

Energy E2

Population N1

Population N2

electrons

Figure 4: Schematic illustration of discrete energy levels of atoms and molecules.

There are three processes through which light can mediate transitions between atomic energy levels [see
Fig. 5]: spontaneous emission, absorption, and stimulated emission. They can be intuitively described in the
photon picture, where light at angular frequency ω is understood to comprise of zero-mass particles (photons)
with energy h̄ω, where h̄ = h/(2π) is the reduced Planck’s constant2.

Below we will describe each of these processes, considering an ensemble of atoms and a single transition
involving two energy levels. The total population density of atoms is denoted Ntot, while the population
densities in the upper and lower (energy) levels are denoted N2 and N1, respectively (the units are [Ni] =
atoms/m3). For brevity, we will be referring to these quantities as populations, yet emphasise that “density”
should be understood.

3.1 Spontaneous emission

In spontaneous emission, an atom in an excited state3 spontaneously decays to a lower energy state, while
simultaneously emitting a photon with energy h̄ω21 = E2−E1, where E2 and E1 < E2 are the energies of the
atomic states. The emitted photon has random phase, is emitted in a random direction, and at a random time.

Spontaneous emission is behind almost all forms of light, including sun light and artificial lights. (The only
real exception is laser light.) It is so prevalent, that it has several names (depending on the mechanism that
has excited the atom in the first place). These include luminescence, fluorescence, and phosphorescence. The

2The wave picture of light will be discussed in section 4.
3An atom is said to be in an excited state if at least one of its electrons sits at an energy level above the ground state.
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Energy E2
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Population N2

(a) Spontaneous emission (b) Absorption (c) Stimulated emission

Figure 5: Schematic illustration of discrete energy levels of atoms and molecules.

inherent randomness of spontaneous emission explains the lack of coherence and directionality of these forms
of light.

Like radioactive decay, spontaneous emission occurs randomly: the probability that an excited atom will
undergo spontaneous emission during any time interval t...t+ dt is constant, and does not depend on how long
the atom has been excited (t). Denoting this probability as p = A21 dt, we may write

p = A21 dt =
N2(t)−N2(t+ dt)

N2
=
−dN2

N2
, (3.1)

where dN2 is the change in population N2. Rearranging yields:

(
dN2

dt

)
sp

= −A21N2. (3.2)

Thus, the population of the upper state decays exponentially,

N2(t) = N2(0)e−A21t. (3.3)

The coefficient A21 > 0 above is known as the Einstein A-coefficient, and it corresponds to the transition
probability per unit time. Its value depends on the characteristics of the atomic transition (i.e., of the energy
levels involved), but is independent of the radiation field (number of photons present); spontaneous emission
occurs whether or not photons are present.

The inverse of A21 describes the radiative lifetime of the transition: τ rad
21 = A−1

21 . The probability that
an atom decays from the excited state (2) to the lower state (1) via spontaneous emission in time t = τ rad

21 is
1− e−1.

3.2 Absorption

In the presence of a photon with energy h̄ω21 = E2−E1, an atom in the lower level can be excited to an upper
level by the absorption (annihilation) of the photon.
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Like spontaneous emission, probability per unit time is constant. However, unlike for spontaneous emis-
sion, the probability of absorption depends on the radiation field (number of photons). A large photon density
implies large absorption probability, while no photons implies zero absorption probability. It is worth empha-
sising that each absorption event reduces the number of photons by one.

It is found that the probability of absorption depends linearly on the radiation field. Accordingly, the rate
of change of the population on the lower energy state (due to absorption) is:

(
dN1

dt

)
a

= −W12N1 = −B12ρ(ω21)N1. (3.4)

The variables have the following meaning:

• W12 = B12ρ(ω21) describes the probability of absorption per unit time. Units: [W21] = s−1.

• B12 is known as the Einstein B-coefficient. Like the Einstein A-coefficient, it depends on the characte-
ristics of the transition, but is independent of the radiation field. Note that the radiation-dependence of
absorption rather enters explicitly through the ρ(ω21) term. Units: [B21] = m3J−1s−2.

• ρ(ω) is the energy density per unit frequency of the radiation field at frequency ω . Units: [ρ(ω21)] = Jm−3Hz−1.
Note that ρ(ω) is directly proportional to the density of photons per unit frequency φ(ω). In particular:

ρ(ω) = φ(ω)h̄ω. (3.5)

Accordingly, the total density of photons (in units of m−3) in a frequency interval ω...ω + δω is:

φ =
ρ(ω)

h̄ω
δω (3.6)

3.3 Stimulated emission

In the presence of a photon with energy h̄ω21 = E2−E1, an atom in the upper level can be stimulated to decay
to the lower level state by the emission of a second photon of energy h̄ω21. The stimulated photon is emitted
in the same “radiation mode” as the incident photon, and hence has the exact same frequency, direction, phase,
and polarisation of the incident photon.

Just like absorption, the probability of stimulated emission depends on the number of photons. But in
contrast to absorption, each stimulated emission event increases the number of photons by one. Because of
stimulated emission, the population on the upper state changes with a rate of

(
dN2

dt

)
st

= −W21N2 = −B21ρ(ω21)N2. (3.7)

The coefficients have meanings (and units) similar to those listed above: W21 = B21ρ(ω21) is the probability
of stimulated emission per unit time, while B21 is a second Einstein B-coefficient describing the transition.
Again, B21 depends on the properties of the transition, but it does not depend on the radiation field.
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3.4 Summary of interaction processes

In summary, the three processes through which light can mediate transitions between atomic energy levels are:

1. Spontaneous emission: An atom in the upper state spontaneously decays to the lower state, while si-
multaneously emitting a photon with energy h̄ω21 = E2 − E1.

2. Absorption: An atom in the lower state is excited to the upper state by the absorption (annihilation) of a
photon.

3. Stimulated emission: An incident photon with energy h̄ω21 stimulates an atom in the upper state to
decay to the lower state by the emission of a second photon of energy h̄ω21.

The occurrence of any one of the processes changes the populations on the different energy levels. The
rates per unit volume at which the populations change are:

Spontaneous emission:
(
dN2
dt

)
sp

= −A21N2

Absorption:
(
dN1
dt

)
a

= −B12ρ(ω21)N1

Stimulated emission:
(
dN2
dt

)
st

= −B21ρ(ω21)N2

Note that the rate equations above only relate to individual processes. To analyse the total rate of change of a
given population, the rate equations must be appropriately added up, such that the ensuing total rate equation
accounts for all of the different processes that change the population. Furthermore, when dealing with just two
energy levels, it should be clear that dN2/dt = −dN1/dt.

3.5 Non-radiative decay

The three processes described above are the only processes through which light can mediate transitions between
two energy levels. However, it is also possible that atoms decay to lower energy levels without emitting a
photon. During such non-radiative decay, energy is lost to a phonon, which corresponds to a quantum of
molecular/lattice vibration, and typically manifests itself as the generation of heat.

The rate at which atoms in the upper state decay via non-radiative decay is governed by en equation similar
to Eq. (3.2) (

dN2

dt

)
nr

= −C21N2, (3.8)

where C21 describes the probability of non-radiative decay per unit time. As for spontaneous emission, τ (nr)
21 =

C−1
21 describes the non-radiative lifetime of the transition. It should be clear that the total lifetime of the

transition 2→ 1 is a combination of radiative and non-radiative lifetimes, and can be obtained as

1

τ21
=

1

τ
(rad)
21

+
1

τ
(nr)
21

. (3.9)

10



Likewise the total rate of decay 2→ 1 through spontaneous emission and non-radiative decay can be written as(
dN2

dt

)
decay

= −Γ21N2, (3.10)

where we have defined the total decay constant

Γ21 = A21 + C21. (3.11)

3.6 Multiple energy levels and rate equations

Atoms always have more than two energy levels, and transitions can occur between many different pairs [see
e.g. Fig. 6]. However, we are typically interested only in a single transition – the laser transition – which is
responsible for the generation of the desired laser light. As we shall see below, it is often sufficient to just
consider the populations on the upper and lower states of the laser transition. This requires nonetheless that the
different decay channels are appropriately accounted for.

0→ 3 absorption

3→ 0 sp. emission 3→ 2 nr. decay

1→ 0 nr. decay

2→ 1 sp. emission

1→ 2 absorption

2→ 1 st. emission

N0

N1

N2

N3

laser 
transition

Figure 6: Example transitions between four different energy levels.

To analyse the populations involved in the laser transition, we will often start by writing down so-called
rate equations that describe the total rate of change of the transition populations. These equations are obtained
simply by combining all the different processes that contribute to changes in the population under study.

Example.
Considering the transitions depicted in Fig. 6, the rate equations for populations N2 and N1 are:

dN2

dt
= B12ρ(ω21)N1 + C32N3 −B21ρ(ω21)N2 −A21N2, (3.12)

dN1

dt
= B21ρ(ω21)N2 +A21N2 −B12ρ(ω21)N1 − C10N1. (3.13)
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Note that these rate equations are not closed (N1 + N2 6= Ntot), and additional equations would be
needed for N3 and N0 to obtain closed-form solutions. Indeed, because we are no longer dealing with
just two energy levels, dN2/dt 6= −dN1/dt. However, as we shall see, we can often make simplifying
approximations that allow us to neglect levels other than those involved in the laser transition.

3.7 Relations between Einstein coefficients

The probabilities of spontaneous emission, absorption, and stimulated emission are governed by the three
Einstein coefficients A21, B12, and B21. These coefficients are not independent of one another. Their inter-
relationship can be found by using the fact that the coefficients do not depend on the radiation field, and by
considering one special case in which the relative populations of the upper and lower states are known. The
following derivation echoes the original 1917 re-derivation of Planck’s radiation law by Einstein, and considers
an ensemble of atoms immersed in a bath of blackbody radiation of temperature T and energy density ρ(ω).
Before proceeding, we shall first briefly recall what is meant with blackbody radiation.

3.7.1 Black body radiation

A black body is an idealised physical body that absorbs all incident electromagnetic radiation, regardless of
frequency or angle of incidence. In thermal equilibrium, a black body must also emit radiation (aptly named,
black body radiation); in fact, it must emit exactly the same amount of radiation that it absorbs (else it could
not maintain thermal equilibrium). While no ideal black bodies exist (the concept is an idealisation), there are
many objects that behave approximately as black bodies, and in particular, emit radiation with characteristics
similar to a black body. These include our own Sun, all the stars in the sky, and light bulbs. Even the cosmic
microwave background resembles black body radiation.

The characteristics of black body radiation depend only on the temperature of the body4. The energy
spectral density ρ(ω) of black body radiation is given by Planck’s law5:

ρ(ω) =
h̄ω3

π2c3

1

eh̄ω/(kT ) − 1
, (3.14)

where k is the Boltzmann constant and c is the speed of light in vacuum. Equation (3.14) gives the energy
spectral density (i.e., energy per unit frequency per unit volume) of radiation emitted by a black body at tem-
perature T at a given (angular) frequency ω. The energy density contained within a narrow frequency band dω
is ρ(ω)dω, and the total energy density emitted by the body is (in units of Joules per cubic metre):

ρtot =

∫ ∞
0

ρ(ω)dω. (3.15)

4For example, cosmic microwave background is like black body radiation at a temperature of 2.7 K.
5This is the law that started the whole quantum movement.
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3.7.2 2-level atoms in a bath of black body radiation

Consider an ensemble of 2-level atoms in thermal equilibrium, immersed in a bath of black body radiation. We
can combine the rate equations summarised above to obtain the total rates of change of the two populations:

dN2

dt
= −

(
dN1

dt

)
a

+

(
dN2

dt

)
sp

+

(
dN2

dt

)
st

, (3.16)

= B12ρ(ω21)N1 −B21ρ(ω21)N2 −A21N2 = −dN1

dt
. (3.17)

In thermal equilibrium, the populations on the upper and lower energy levels remain constant (on average):
dN1/dt = −dN2/dt = 0. Solving for the radiation field ρ(ω21) yields

ρ(ω21) =
A21/B21

B12

B21

N1

N2
− 1

. (3.18)

It is known from statistical mechanics that, in thermal equilibrium, the populations N1,2 obey Boltzmann
statistics. Specifically, the ratio N2/N1 between populations in two different levels with energy separation
E2 − E1 = h̄ω21 at temperature T is given by:

N2

N1
=
g2

g1
e
−
h̄ω21

kT , (3.19)

where g1,2 are the degeneracies of the energy levels6. Substituting Eq. (3.19) in Eq. (3.18) yields

ρ(ω21) =
A21/B21

B12

B21

g1

g2
eh̄ω21/(kT ) − 1

. (3.20)

Because the radiation field corresponds to black body radiation, the energy spectral density must be equal to
that given by Planck’s law, i.e., Eq. (3.14). Equating the two expressions gives:

h̄ω3
21

π2c3

1

eh̄ω21/(kT ) − 1
=

A21/B21

B12
B21

g1

g2
eh̄ω21/(kT ) − 1

. (3.21)

This equation must hold true for all temperatures T . Accordingly, the factors multiplying the exponential terms
must be equal:

B12

B21

g1

g2
= 1. (3.22)

6The degeneracy of an energy level is the number of distinguishable levels with the same energy. For example, in a hydrogen atom
states with different angular momentum have the exact same energy, governed by the principal quantum number alone. Accordingly,
the states are degenerate, as they can be distinguished by their orbital angular momentum.
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From now on, we will assume for the sake of simplicity that the degeneracies are the same (g1 = g2)7. The
relationship between the two Einstein B-coefficients then becomes particularly simple:

B21 = B12. (3.23)

Recalling that the probabilities of absorption and stimulated emission per unit time are pa = B12ρ(ω21) and
pst = B21ρ(ω21), respectively, Eq. (3.23) reveals that the probabilities of absorption and stimulated emis-
sion are exactly identical.

Using B21 = B12 and g1 = g2 in Eq. (3.21), we can also derive a relationship between the Einstein A- and
B-coefficients:

A21

B21
=
h̄ω3

21

π2c3
. (3.24)

3.7.3 Generality of relations

The above relations were derived assuming black body radiation and a 2-level atom. However, they are in fact
more general, and apply always (bearing in mind the approximation on degeneracies). Firstly, the coefficients
are independent of the radiation field by construction, and therefore limiting the analysis to black body radiation
does not bear any ill consequences. Secondly, whilst atoms certainly have many energy levels in general, and
transitions can occur between any one of them, in thermal equilibrium the transitions between any pair must
be in dynamic equilibrium8. This can be understood by considering the equilibrium of the radiation field.
Specifically, the energy density ρ(ω) must be constant (on average) at all frequencies, and therefore transitions
contributing to changes in photon number at a given frequency must be in dynamic equilibrium. Only transitions
between a pair of energy levels separated by h̄ω contribute to changes at ω, and therefore the populations of the
pair must be in dynamic equilibrium. This justifies the analysis based on 2-level atoms. Finally, neglection of
non-radiative decay channels is similarly justified by the fact that these transitions do not change the radiation
field.

3.8 Necessary condition of optical amplification: population inversion

As their names imply, lasers operate via light amplification by stimulated emission of radiation. The medium in
which the amplification takes place is known as the active or gain medium. Lasing can occur only if light in the
active medium experiences net amplification, i.e., a net increase in the number of photons (in the lasing mode9).
If the number of photons experiences net decrease there will be no lasing as all the photons will eventually be
lost. Key to laser operation is that amplification via stimulated emission exceeds loss.

We have seen that each stimulated emission event adds one new photon to the lasing mode. On the other
hand, each absorption event removes one photon from the lasing mode. Using the rate equations summarised
in Section 3, the rate of change of the photon spectral density φ(ω) can be written as

dφ(ω)

dt
= [B21ρ(ω)N2 −B12ρ(ω)N1]δ(ω − ω21). (3.25)

7This is not of course true in general, but makes conceptual understanding of the principal physics simpler.
8This principle is referred to as the principle of detailed balance by Hooker and Webb.
9We refer to lasing mode as the bunch of photons with the same phase, polarisation, and direction.
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Here δ(ω−ω21) is the Dirac delta function10, which simply enforces the fact that only photons with frequency
ω21 are generated. Note that the total density of photons (with units of m−3) is simply φtot =

∫∞
0 φ(ω)dω.

Because the dirac Delta-function is defined such that
∫∞

0 δ(ω − ω21)dω = 1, the total photon number evolves
as

dφtot

dt
= B21ρ(ω21)N2 −B12ρ(ω21)N1. (3.26)

Recalling that B21 = B12, and thus defining the probability of a stimulated transition Wst = B21ρ(ω21),
we can simplify the equation above:

dφtot

dt
= Wst[N2 −N1]. (3.27)

Given that Wst > 0, net amplification occurs precisely when

N2 > N1. (3.28)

A necessary condition for light amplification by stimulated emission of radiation is that the population
on the upper energy is larger than the population on the lower energy level. This situation is known as

population inversion.

3.8.1 The very unnatural nature of population inversion

Population inversion is a necessary condition for optical amplification. It corresponds to a very unusual situa-
tion, and one which does not spontaneously occur in nature. To highlight this, let us again consider the ratio of
populations at two energy levels E2 and E1 < E2. As in Eq. (3.19), Boltzmann statistics tells us

N2

N1
= e−

h̄ω21
kT . (3.29)

We see immediately that, for all temperatures T > 0, N2 < N1, and so population inversion cannot occur in
thermal equilibrium. The example below highlights the severity of the problem.

Example. Consider a transition corresponding to red laser light, with a wavelength of
λ = 2πc/ω21 = 633 nm, where c is the speed of light. At room temperature (T = 273 K), the ratios of
the populations on the upper and lower energy levels of the laser transition in thermal equilibrium is:

N2

N1
= e−

h̄ω21
kT ≈ 6.3× 10−37. (3.30)

That is 37 orders of magnitude away from population inversion (N2 > N1).

10Note that the unit of the Dirac delta function is the inverse of the unit of its argument. Thus, [δ(ω − ω21)] = Hz−1.
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3.8.2 Pumping

To reach population inversion, we must move away from thermal equilibrium. Specifically, we must externally
inject energy into the system, so as to force atoms to occupy the upper level. The process of doing so is known
as pumping.

Pumping is typically achieved either electronically or optically. Electronic pumping is mostly used for
gas lasers and semiconductor lasers, and is achieved by passing an electric current through the medium. For
example, in semiconductor lasers this results in direct addition of electrons in the conducting band, from which
they can transition to the valence band via stimulated emission. In gas lasers, the current causes electrons to
collide, with gas atoms, which leads to their excitation.

In optical pumping, atoms are excited directly through absorption: the frequency of a pump light source is
tuned to match with a transition, and absorption lifts atoms from the lower state to the upper state [see Fig. 7].

3 → 2 nr. decay

N0

N1

N2

N3

laser 
transition

Strong 
optical pump

0 → 3 absorption

Figure 7: Schematic illustration of optical pumping. The frequency of a strong pump light source (e.g. another laser) is
tuned to match with the transition ω30. Atoms from level 0 are then lifted to the state 3 via absorption. In this particular
example, the atoms then decay to the upper laser level non-radiatively.

3.9 Propagation of light through an active medium

We have seen that population inversion is required for light amplification. But how do we quantify this am-
plification? In Eq. (3.27), we have written the rate of change of the photon density. However, this is not a
particularly useful quantity for a laser beam that is travelling at the speed of light: the absolute number of
photons describes the whole history of the beam, depending on e.g. how long the laser has been on.

Power – particularly the rate at which light energy is transferred through a surface – is a more relevant
quantity for laser beams. But power of course depends on the cross-sectional size of the beam (spot size): a
beam with a large spot transfers more energy, and hence has larger power, though its apparent “brightness” is
the same as that of a beam with a smaller spot (hence, smaller power). An even better quantity is the optical
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Figure 8: Schematic illustration of a laser beam propagation through a thin segment of active medium.

intensity11, I , which is the rate at which energy is transferred per unit area. Intensity can be loosely12 defined
as

I(ω) =
P (ω)

A
=
E(ω)

tA
, (3.31)

where E(ω) = ρ(ω)V is the spectral energy transferred through a surface with area A in time t, and P (ω) =
E(ω)/t is the corresponding spectral power.

Let us now consider how a beam with cross-sectional areaA evolves as it propagates through a thin segment
of active medium with length dz [see Fig. 8]. The rate of change of the photon spectral density, φ(ω), with
units of photons/(m−3Hz), is given by Eq. (3.25). Because the beam is travelling at the speed of light, c, the
time it takes for it to travel through the active medium is dt = dz/c. Thus, we can rewrite Eq. (3.25) as:

dφ(ω)

dz
=
Wst

c
∆Nδ(ω − ω21), (3.32)

where we introduced the population difference ∆N = N2 − N1. We next note that φ(ω) = ρ(ω)/(h̄ω) =
I(ω)/(h̄ωc), where we used the relationship13 ρ(ω) = I(ω)/c. This yields

dI(ω)

dz
= h̄ωWst∆Nδ(ω − ω21), (3.33)

Finally, we recognise that the probability of stimulated transitions, Wst, depends on the intensity itself. Speci-
fically, Wst = B21ρ(ω) = B21I(ω)/c. Substituting this to the equation above yields our final result:

dI(ω)

dz
= σ(ω − ω21)∆NI(ω), (3.34)

where we introduced the interaction cross-section σ(ω − ω21), with units of m2 as:

σ(ω − ω21) = B21
h̄ω21

c
δ(ω − ω21) =

π2c2

ω2
21τsp

δ(ω − ω21). (3.35)

11Also known as irradiance.
12Not being pedantic about possible time/frequency dependencies.
13This relationship can be easily derived by considering a beam propagation for a length l in time twith a speed c = l/t. Specifically,

ρ(ω) = E(ω)/V = I(ω)At/(Al) = I(ω)/c.
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The latter form is obtained by using Eq. (3.24) and the fact that A21 is the inverse of the spontaneous emission
lifetime, i.e., A21 = τ−1

sp .
Assuming the population inversion ∆N to remain constant, Eq. (3.34) can be solved trivially14:

I(z, ω) = I(0, ω)eσ∆Nz = I(0, ω)egz, (3.36)

where we omitted the frequency dependence of σ(ω − ω21) for brevity, and defined the gain coefficient
g = σ∆N . We see that the intensity evolves exponentially as it propagates through the medium. Depending on
the population inversion, three different behaviours can be identified:

1. ∆N > 0: Population inversion leads to exponential amplification as stimulated emission prevails
over absorption.

2. ∆N < 0: Absorption prevails over stimulated emission, giving rise to exponential loss of inten-
sity.

3. ∆N = 0: Rates of absorption and stimulated emission are exactly equal, and so the intensity
remains constant. The material is totally transparent.

3.10 Population inversion in a 2-level system

And so we have seen that a population inversion is needed for optical amplification. Is it possible to achieve
population inversion in a 2-level system using optical pumping? To answer this question, we write and solve
the rate equations for the level populations N1,2:

dN2

dt
= Wst(N1 −N2)−A21N2, (3.37)

dN1

dt
= −Wst(N1 −N2) +A21N2. (3.38)

Note that, in a 2-level system, the lower level corresponds to the ground level, and hence cannot undergo
spontaneous emission. In steady-state, the populations are constant, such that dN1/dt = −dN2/dt = 0. It is
easy to solve for N2:

N2 =
WstN1

Wst +A21
. (3.39)

We can thus write
N1

N2
= 1 +

A21

Wst
. (3.40)

Clearly, N1 > N2 always, implying that population inversion cannot be achieved in a 2-level system
(via optical pumping). The best you get is half of the total population in the upper level (and the other half on
the ground level). This occurs as Wst →∞, i.e., as the optical pumping strength approaches infinity.

14As we shall soon see, this is not the case in general.

18



3.11 Population inversion in multi-level systems

As shown above, population inversion cannot be achieved (with optical pumping) in systems with just two
energy levels. Intermediate states are needed. Furthermore, at least one of these intermediate states must be
metastable: an excited state with a very long lifetime (e.g. microseconds). This metastable state will act as
the upper level of the laser transition. Its long lifetime ensures that a large number of atoms can be stored
on the level, thus favouring population inversion. Depending on the lower level of the lasing transition, lasers
can generally be divided into three categories: 3-level systems, 4-level systems, and quasi-3-level systems (see
Fig. 9).

fast decay

N0

N1

N2

N3

metastable state

fast decay

laser transitionPump

ground state

(b) 4-level system

fast decay

N2

N3

metastable state

laser transition

Pump

ground state

(a) 3-level system

N1

Figure 9: Schematic illustrations of energy levels for (a) 3-level system and (b) 4-level system. The key difference is
that, in a 3-level system the laser transition ends at the ground state, while in a 4-level state the transition ends at an
intermediate level above the ground state.

3.11.1 3-level systems

In 3-level systems [c.f. Fig. 9(a)], the ground state acts as the lower level of the laser transition. The upper level
of the laser transition (2) is a metastable state whose energy lies in between the ground state (1) and a second
excited state (3). Population inversion can be achieved by pumping atoms from the ground state to the higher
lying level, followed by a rapid (radiative or non-radiative) decay into the upper state of the laser transition.
Thanks to the fast decay, the third state remains empty all the time. This assists population inversion, since (i)
spontaneous emission 3 → 1 does not populate the ground state and (ii) pump absorption 1 → 3 prevails over
corresponding stimulated emission.

Taking N3 ≈ 0, it is clear that Ntot = N1 +N2. Thus, inversion requires N2 > Ntot/2; more than half of
the atoms are needed at the excited upper laser level. Compounded by the fact that the lower laser level is prone
to be highly-populated due to it being the ground state15, very strong pumping is needed to reach population

15Remember Boltzmann...
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inversion in 3-level systems. This makes 3-level systems inefficient.
Because of their inefficiency, 3-level lasers are not in wide use. There is one important historical exception:

the first laser ever demonstrated (by Maiman in 1960) used a 3-level laser medium, namely ruby.

3.11.2 4-level systems

4-level lasers overcome the inefficiency of 3-level lasers. In these systems, the lower level of the laser transition
is an excited state well-above the ground state (E1 � kT ). This ensures that, in thermal equilibrium, N1 ≈ 0,
thus making it easier to reach inversion. Ideally, the lower laser level also decays rapidly to the ground state, so
that N1 ≈ 0 even during laser operation. In this way, inversion is achieved by getting just a few atoms to the
upper lasing state.

Atoms are pumped from the ground state (0) to an excited state (3) that lies above the upper laser level (2).
As in 3-level systems, the pumped atoms quickly decay to the metastable upper laser level. This ensures that (i)
the upper laser level has large population and (ii) that atoms do not fall back to the ground state via spontaneous
emission and/or stimulated emission.

A good example of a 4-level active medium is the popular Nd:YAG (neodymium-doped yttrium alumi-
nium garnet), which typically emits light at 1064 nm. Such lasers have numerous applications in medicine,
manufacturing, and basic science.

In some “nominally” 4-level systems, the lower laser level is so close to the ground state that it possesses an
appreciable population even in thermal equilibrium. Such lasers are sometimes called quasi-3-level. Examples
include all ytterbium-doped active materials (e.g. Yb:glass used to realise fiber lasers at 1030 nm) as well as
erbium-doped media for emission around 1500 nm, including the extremely important Er:glass used for fiber
amplifiers and lasers around 1550 nm.

3.12 Quantitative analysis of 4-level rate equations

Population inversion can be reached in both systems described above. Here we will quantitatively analyse the
rate equations for a 4-level system to show that this is indeed the case. We will also find that the net gain that
can be achieved exhibits curious behaviour for high intensities.

3.12.1 Rate equations

For simplicity, we make the following assumptions:

• The population of the ground level N0 � N1, N2, N3. Therefore N0 will not be depleted, and can be
assumed constant.

• Atoms are pumped from the ground level to the third level at a constant rate of R3.

• The third level decays immediately, such that N3 ≈ 0. The atoms decay to the upper laser level (2) at a
rate of R2, but some of them may end up on the lower laser level (1) at a rate of R1 = R3 −R2.

• We assume that the rate of spontaneous (radiative and non-radiative) decay from the upper lasing level
to the ground state is very slow16. Accordingly, the corresponding Einstein coefficient A20 is very small,

16As expected for a metastable state.
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and the transition 2→ 0 can be neglected17.

With these assumptions, the rate equations for N1 and N2 read18:

dN2

dt
= R2 +Wst(N1 −N2)−A21N2, , (3.41)

dN1

dt
= R1 −Wst(N1 −N2) +A21N2 −A10N1. (3.42)

We are interested in steady-state behaviour, and set dN1/dt = dN2/dt = 0. Adding the two equations
together under these conditions yields:

R1 +R2 = A10N1 (3.43)

Solving for N1 yields

N1 =
R1 +R2

A10
. (3.44)

On the other hand, from Eq. (3.41), we can solve for N2:

N2 =
R2 +WstN1

A21 +Wst
(3.45)

Using the expression for N1, we can now calculate the population inversion ∆N = N2 − N1. After some
algebra, one finds:

∆N =
R

A21 +Wst
, (3.46)

where

R = R2

[
1− A21

A10

(
1 +

R1

R2

)]
(3.47)

corresponds to a reduced effective pump rate, accounting for the fact that some of the atoms pumped to level 3
decay to level 1, as well as the fact that the decay out of level 1 is not instantaneous. In the limit R1 → 0 or
A10 →∞, R→ R2.

Rearranging Eq. (3.46) yields important insights:

∆N =
R/A21

1 +Wst/A21
. (3.48)

Recalling that Wst = B21ρ(ω21) = B21I(ω21)/c, we can write the population inversion as

∆N =
∆N0

1 + I(ω21)/Isat
, (3.49)

17Note that the spontaneous transition 2→ 1 should not be neglected, since we do not want A21 to be too small. This is because the
rate of stimulated emission Wst ∝ B21 ∝ A21.

18Note that we neglect here non-radiative decays by using the Einstein coefficients Aij instead of the full transition decay rates Γij

defined in section 3.5. This does not change any of the conclusions.
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where we defined the small-signal inversion ∆N0 = R/A21 and the saturation intensity

Isat =
cA21

B21
=
h̄ω3

21

π2c2
. (3.50)

Several important conclusions can be drawn from Eq. (3.49):

1. The “small-signal” inversion ∆N0 can be positive, implying that population inversion can indeed
be reached in a 4-level configuration.

2. For small laser intensities I(ω21) ≈ 0, the population inversion corresponds to the small-signal
inversion ∆N = ∆N0.

3. As the intensity I(ω21) grows, the population inversion decreases. In the limit I(ω21) � Isat,
population inversion ∆N ≈ 0; the medium becomes transparent and there is no more amplifi-
cationa. This behaviour is known as gain saturation. Ultimately, gain saturation is the limiting
factor for laser intensities.

aRecall that I(z, ω) ∝ exp (σ∆Nz).

3.13 Line broadening

So far, we have assumed that the electronic energy levels are infinitely sharp. This is not true in practice: all
transitions have a finite spectral width. As a consequence, atoms do not only interact with photons whose fre-
quency matches exactly with the transition frequency ω21. Rather, they interact with photons whose frequency
falls within a certain (finite) range of frequencies [see Fig. 10]. Specifically:

• An atom can absorb a photon even if the photon’s frequency is slightly detuned from the (mean) transition
frequency ω21.

• An atom decaying to a lower energy level can emit a photon whose frequency is slightly detuned from
the (mean) transition frequency ω21.

The “strength” of the interaction19 depends on the detuning between the transition frequency and the photon
frequency. It is strongest when the the photon frequency matches exactly with the transition frequency, and
decreases as the detuning increases. For very large detunings, there is no interaction.

Line broadening can be quantitatively taken into account by multiplying the Einstein-coefficients with a
suitable “lineshape function” g(ω − ω21), which has a maximum at ω = ω21 and decays to zero as ω − ω0 →
±∞. Using spontaneous emission as an example, the physical meaning is as follows:

19For example, probability of absorption.
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(a) Spontaneous emission (b) Absorption (c) Stimulated emissionEnergy

Figure 10: Schematic illustrations of interactions between photons and atoms with broadened energy levels.

The probability that an excited atom will undergo spontaneous decay 2 → 1 (with energy separation
E2 −E1 = h̄ω21) during a time interval dt, while emitting a photon in the frequency interval ω + dω is

p(ω) = [A21g(ω − ω21)dω]dt. (3.51)

The lineshape function must be normalised such that∫ ∞
0

g(ω − ω21)dω = 1. (3.52)

This is because the total probability must remain constant:

p =

∫ ∞
0

p(ω)dω = A21dt. (3.53)

To understand this, note that the atom does not care what frequency the photon has. It will decay with
probability p = A21dt during time interval dt, no matter what. Thus the infinitesimal probabilities
associated with the emission of photons with different frequencies must all add up so that the overall
probability of decay is p = A21dt.

Mechanisms that cause deviations from infinitely sharp transitions are known as “line broadening mecha-
nisms”.20 They can be divided into two categories with distinct lineprofiles: homogeneous and inhomogeneous.

20For the plain reason that they broaden the absorption and emission lines observed for the atom.
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3.13.1 Homogeneous broadening: Lorentzian lineshapes

Broadening is said to be homogeneous if each atom is affected in the same way (on average), and if each atom
is associated with the same resonance frequency ω21. In this case, the lineshape function corresponds to a
Lorentzian21:

gH(ω − ω21) =
1

π

γ/2

(ω − ω21)2 + (γ/2)2
, (3.54)

where γ corresponds to the full-width at half maximum of the profile. An example is shown in Fig. 11.
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Figure 11: Lorentzian lineshape function gH(ω − ω21) as given by Eq. (3.54).

The most important example of homogeneous broadening is lifetime broadening. Specifically, all energy
levels have a finite width simply as a result of their finite (i.e. nonzero) lifetimes. Heisenberg’s uncertainty
principle states

∆E∆τ ≈ h̄⇒ ∆E ≈ h̄

∆τ
, (3.55)

where ∆τ is the lifetime of the excited state. We see that the larger the lifetime, the smaller the uncertainty in
the state’s energy (hence, width of the level). Considering now a transition between two states, we see that the
transition frequency will have an uncertainty

∆ω =
∆E2 + ∆E1

h̄
=

1

∆τ1
+

1

∆τ2
. (3.56)

And so photons with a range of frequencies ω21 ± ∆ω can be absorbed or emitted. A complete calculation
shows that the transition lineshape is given by Eq. (3.54) with γ = ∆ω. There are several mechanisms that can
contribute to lifetime broadening:

21The physics will be explained in Section 5.
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Processes responsible for lifetime broadening

1. Spontaneous emission naturally limits the lifetime of a state. Considering all possible spontane-
ous emission pathways, the radiative lifetime of a state j can be obtained from

1

τj,rad
=
∑
i 6=j

Aji. (3.57)

For any transition 2→ 1, spontaneous emission sets the absolute minimum linewidth:

γN =
1

τ2,rad
+

1

τ1,rad
. (3.58)

Broadening due to spontaneous emission is typically known as natural broadening, since it is
always present and cannot be avoided.

2. Non-radiative decay. As we have seen, atoms can also decay without the emission of a photon.
Just like spontaneous emission, this limits the lifetime of the state.

3. Collision broadening. When matter is in gaseous or liquid form, atoms (or ions or molecules)
tend to collide with each other. This can lead to the decay of excited states, thus affecting their
lifetimes.

3.13.2 Inhomogeneous broadening: Gaussian lineshapes

Sometimes different atoms in the ensemble are associated with slightly different resonance frequencies ω21.
Because the total absorption/emission spectrum is the average over millions of atoms in the ensemble, presence
of a range of resonance frequencies gives rise to an apparent linewidth. When broadening arises in this way, it
is said to be inhomogeneous.

Doppler broadening in gas lasers is a classic example of inhomogeneous broadening. Consider the sponta-
neous emission from atoms in a gaseous sample that is being detected by a spectrometer [see Fig. 12]. If the
atoms are all stationary, they will all emit radiation at the same resonance frequency ω21, leading to a narrow
naturally broadened lineshape. However, for nonzero temperatures the atoms will exhibit thermal motion: each
atom is moving in a random direction with a speed that is linked to the temperature. If a given atom has total
velocity ~v, such that its component in the direction of the spectrometer is vz , then the frequency of radiation
emitted by the atom will be shifted from ω21 due to the Doppler effect. Specifically, the spectrometer will detect
the Doppler-shifted frequency:

ω =
(

1 +
vz
c

)
ω21. (3.59)

Since the ensemble consists of millions of atoms with random motions (hence, different vz), a continuous
distribution of frequencies will be emitted (and detected). This is known as Doppler broadening.

We can obtain an expression for the lineshape function gD(ω−ω21) associated with Doppler broadening by
noting that, in thermal equilibrium, the velocities of atoms in gases obey the Maxwell-Bolzmann distribution.
Specifically, the probability that an atom picked at random has a velocity component between vz and vz + dvz
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spectrometer

ensemble of gaseous atoms 

Figure 12: Schematic illustration of Doppler broadening. Atoms in a gaseous sample exhibit random thermal motion.
Because of the Doppler effect, the frequency of a photon emitted by an atom depends on the emission direction relative
to the velocity of the atom.

is

f(vz)dvz =

√
M

2πkT
e−

Mv2
z

2kT , (3.60)

where M is the mass of the atom/molecule. Because the resonance frequency of the atom is determined by
vz [see Eq. (3.59)], this probability also equals the probability that an atom picked at random has resonance
frequency between ω and ω + dω. On the other hand, the latter probability corresponds by definition to the
lineshape function multiplied by dω, and so we get:

gD(ω − ω0)dω = f(vz)dvz. (3.61)

From Eq. (3.59), we obtain vz = (ω−ω21)c/ω21 such that dvz/dω = c/ω0, allowing us to rewrite the equation
above as:

gD(ω − ω0)dω =

√
Mc2

2πkTω2
21

e
− Mc2

2kTω2
21

(ω−ω21)2

dω. (3.62)

From here it easy to find a form for the lineshape function. It is typically written in the following form:

gD(ω − ω0) =
2

∆ωD

√
ln 2

π
e
−4 ln 2

(
ω−ω21
∆ωD

)2

,

∆ωD = 2
√

2 ln 2
ω21

c

√
kT

M
.

(3.63)

(3.64)

As can be seen, Doppler broadening gives rise to a Gaussian lineshape, with a full-width at half-maximum of
∆ωD. Example profile is shown in Fig. 13.

Another example of inhomogeneous broadening occurs for ions doped in crystals or glasses. Here the ions
experience a local electric field produced by the surrounding atoms of the material. This results in the shifting
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Figure 13: Gaussian lineshape function gD(ω − ω21) as given by Eq. (3.63).

and splitting of the ions’ spectral lines through the so-called Stark effect.22 Because of inhomogeneities in the
host medium (crystal or glass), the local electric field is different from ion to ion, giving rise to a distribution
of resonance frequencies. If the local field variations are fully random, one finds that the lineshape function is
again a Gaussian, following the general form given by Eq. (3.63). Of course, the full-width at half-maximum
is not given by Eq. (3.64), but is rather governed by the extent of variation in the resonance frequencies due to
the local field variations.

3.13.3 More complex lineshapes

Homogeneous broadening arises because the atoms’ energy levels are broadened due to their finite lifetimes,
while inhomogeneous (e.g. Doppler) broadening arises because different atoms are associated with different
resonance frequencies. But of course, these two broadening mechanisms can in general be present simultane-
ously; in fact, this is always the case for inhomogeneously broadened systems since natural broadening can
never be avoided. The total lineshape then arises as a superposition of multiple Lorenzians whose centres are
distributed according to the inhomogeneous lineshape function [see Fig. 14]. Mathematically, the composite
lineshape is given by a convolution between the natural and inhomogeneous profiles:

g(ω − ω21) =

∫ ∞
−∞

gD(ω′)gH(ω − ω21 − ω′)dω′ = gD(ω) ∗ gH(ω), (3.65)

where we avoided the introduction of a new variable and used gD(ω) to indicate a generic inhomogeneous
lineshape function. In the limit where the inhomogeneous broadening mechanism dominates (i.e., ∆ωD � γ),
we can replace gH(ω − ω21) ≈ δ(ω − ω21) and obtain g(ω − ω21) ≈ gD(ω − ω21), as expected. When the
widths of the homogeneous and inhomogeneous lineshape functions are of the same order of magnitude, similar
approximations cannot be performed, and the overall lineshape must be obtained from the convolution above.

22Stark effect described the phenomenon that atoms/ions/molecules subject to an external electric field will experience shifting and
splitting of their spectral lines.
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In the special case where gD(ω−ω21) is a Gaussian (as is the case for Doppler broadening), the total lineshape
emerging from the convolution is known as a Voigt profile23.
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Figure 14: Schematic illustration of how inhomogeneous broadening can be understood as a superposition of multiple
homogeneous lineshapes with different centre frequencies. Here, the dashed curve is the probability of finding an atom
with a particular centre frequency, while the solid blue curves correspond to the underlying homogeneous lineshapes.

The broadening mechanisms described above apply for a single transition. However, in many lasers –
particularly those based on transition metal ions24 – there is a very large number of possible energy levels that
are very close to each other. A situation like this can arise when each electronic energy level is associated
with a large number of vibrational states associated with “mechanical” vibrations of the ionic lattice. Optical
transitions can then occur between many different pairs of energy levels, accompanied by the emission of both
photons and phonons. Because the different vibrational states are so close to each other (in energy), and because
each of them exhibits some lifetime broadening, the result is a broad continuum of energy states. Lasers that
exhibit broad linewidths due to vibrational energy states are commonly referred to as vibronic lasers. Their
linewidths can be very large, exceeding hundreds of nanometres, which makes them extremely useful for the
realisation of tunable lasers and ultrashort-pulsed lasers. Because of the complexity of the underlying line
broadening, there are no simple analytic expressions for the lineshape functions of vibronic lasers.

23In other words, the convolution between a Gaussian and a Lorentzian yields a Voigt ptofile.
24Some important examples include Titanium-doped sapphire, alexandrite lasers, chromium forsterite lasers.
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3.13.4 Line broadening in amplification and rate equations

As we had some foresight, incorporating lineshape functions in our analysis of light propagation through an
active medium [Section 3.9] is very simple. Specifically, we only need to replace the Dirac delta function in
Eq. (3.35) with the desired lineshape function. Could not be easier.

To see why this is the case, one notes that, for transitions that are not infinitely narrow, photons can be
generated even at frequencies detuned from the transition frequency ω21. Thus, the Dirac delta function in (3.25)
should be replaced with something that characterises the relative likelihood that a transition results in the
generation of a photon with a given frequency: this is just the lineshape function. Thus, we may rewrite (3.25)
as:

dφ(ω)

dt
= [B21ρ(ω)N2 −B12ρ(ω)N1] gH(ω − ω21). (3.66)

Strictly speaking, this expression is only correct for homogeneously broadened transitions, which is why we
have assumed the lineshape function to be Lorentzian. For inhomogeneously broadened transitions, photons
at different frequencies may interact with different classes of atoms associated with different centre frequen-
cies. Thus, a complete description would require several equations similar to Eq. (3.66), with the total level
populations replaced by “sub-populations” describing atoms with different centre frequencies.25

It is straightforward to repeat the analysis in Section 3.9 using Eq. (3.66). One finds that, for atomic
transitions with nonzero linewidth, the evolution of the intensity spectral density obeys the following equations:

dI(ω)

dz
= σ(ω − ω21)∆NI(ω),

∆N = N2 −N1,

σ(ω − ω21) = B21
h̄ω

c
gH(ω − ω21) =

π2c2

ω2
21τsp

gH(ω − ω21).

(3.67)

(3.68)

(3.69)

Thus, the only difference is that the Dirac delta function in the transition cross-section is replaced with the lines-
hape function. We must note that a similar expression can be derived even for an inhomogeneously broadened
transition (except with gH → gD), provided that the underlying homogeneous linewidth is much narrower than
the inhomogeneous width (see e.g. Fig. 14).

A finite linewidth also affects rate equation analyses. Consider photons in the frequency interval ω...ω+dω.
These photons induce stimulated emission and absorption events that change the population densities on the
upper and lower laser levels. Focussing on stimulated emission (and assuming a homogeneously broadened
transition), the rate at which photons in the frequency interval ω...ω + dω change the upper level population is(

dN2,ω

dt

)
st

= −B21gH(ω − ω21)ρ(ω)N2dω, (3.70)

where the subscript ω in N2,ω highlights the fact that we are only interested in atoms emitting photons in the
frequency interval ω...ω + dω. To now find the rate of change of the total population, we must integrate over
all frequencies, yielding (

dN2

dt

)
st

= −B21

[∫ ∞
0

gH(ω − ω21)ρ(ω)dω

]
N2. (3.71)

25The sub-populations would then be linked to the total populations through the inhomgoeneous lineshape function.
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A similar equation can be argued to hold for absorption. Thus, the lineshape function can be included in rate
equation analyses by simply rewriting the stimulated transition probability as26:

Wst = B21

[∫ ∞
0

gH(ω − ω21)ρ(ω)dω

]
. (3.72)

Again, it should emphasized that this approach is only valid for homogeneously broadened transitions, and
things get somewhat more complicated for inhomogeneous lineshapes.

If the transition is infinitely narrow, such that gH(ω − ω21) = δ(ω − ω21), we recover our earlier transition
probability, i.e., Wst = B21ρ(ω21). On the other hand, often we are interested in situations where laser light
has a much narrower linewidth than the transition itself. In this case, we can write ρ(ω) = ρtotδ(ω − ωL),
where ωL is the centre frequency of the laser, obtaining

Wst = B21gH(ωL − ω21)ρtot = σ(ωL − ω21)
Itot

h̄ωL
. (3.73)

It is then straightforward to – for example – repeat the analysis in Section 3.12 using this stimulated transition
probability. Significantly, one finds that the steady-state population inversion can again be written in the form

∆N =
∆N0

1 + Itot/Isat
, (3.74)

but now with the saturation intensity incorporating the lineshape function:

Isat =
cA21

gH(ωL − ω21)B21
=

h̄ωLA21

σ(ωL − ω21)
. (3.75)

3.14 Gain coefficient and summary of equations

Often we may not have direct (experimental) access to the transition cross-section σ and/or the inversion ∆N .
To simplify the notation in this case, it is customary to define a gain coefficient g = σ∆N . Note that (i)
g should not be confused with the lineshape function and (ii) it exhibits a frequency-dependence due to the
frequency-dependence of the cross-section (omitted to simplify notation). Furthermore, the gain coefficient
saturates because the inversion saturates:

g =
g0

1 + I/Isat
. (3.76)

Here, g0 = σ∆N0 is the small-signal gain coefficient.

Summary of equations for optical amplification of total intensity of narrowband laser light

dItot

dz
= g(ωL)Itot = σ(ωL − ω21)∆NItot, (3.77)

g(ωL) =
g0(ωL)

1 + Itot/Isat(ωL)
. (3.78)

26Note that spontaneous emission does not require any tweaks, since the total probability per unit time remains A21.
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Problems

3.1 Consider a cylindrical laser beam with diameter d = 5 mm propagating through an active crystal of
length L = 2 cm. The energy spectral density of the light field in the active medium has a Lorentzian
shape, and is given by

ρ(ω) =
ρ0

π

γ/2

(ω − ω21)2 + (γ/2)2
,

where ρ0 = 2.5 ·10−5 Jm−3 describes the peak energy spectral density, γ = 2π ·1 GHz is the full-width
at half maximum of the Lorentzian, and the centre frequency of the beam is ω21 = 2π · 474 THz. What
is the number of photons inside the active crystal? Hint: it may not be a bad idea to Google “Lorentzian
function” and to approximate all the photons to have the same frequency ω21; if you’re brave enough,
you can numerically check the validity of this approximation.

3.2 An atomic transition occurs at 633 nm. What is the ratio between the populations of the upper and lower
states of the transition at room temperature (298 K)? Determine the temperature T so that 15% of the
atoms are in the upper states. Other states and degeneracies can be neglected.

3.3 The first maser (microwave ”laser”) was demonstrated in 1954, and it operated at a frequency f =
24 GHz. The first laser, on the other hand, was demonstrated in 1960 at the wavelength λ = 694 nm.
Estimate the ratio N2/N1 between the populations of the upper and lower states of the active transition
in both cases, assuming room temperature (298 K) and thermal equilibrium. How can the results explain
the historical development of masers and lasers?

3.4 An excited state of an atom has a radiative lifetime τ (rad) and a non-radiative lifetime τ (nr). These
lifetimes account for decay to all energy levels below the excited state. Show that the total lifetime τ2 of
the state (i.e., the time after which the population density has reduced by a factor of e−1) is given by:

1

τ2
=

1

τ (rad)
+

1

τ (nr)
.

3.5 The wavelength of the D-transition of sodium atoms is 589 nm, and the spontaneous emission lifetime of
the upper level of the transition is 10 ns. At what rate does a sodium atom absorb photons from the field
of a black body at 1200 K? You can neglect degeneracies of the energy levels.

3.6 When deriving the differential equation for optical amplification in a gain medium, we used the relations-
hip ρ(ω) = I(ω)/c. By considering a laser beam with cross-sectional area A propagating at the speed of
light for time ∆t, prove this relationship.

3.7 Consider a typical 3-level system where the laser transition is between states 2 and 1, as shown in the
figure below. Atoms are pumped into state 3 at a rate WpN1, where N1 is the population density of the
ground state. The spontaneous lifetime of level 3 is short, so atoms decay immediately to the upper laser
level 2. Accordingly, you can assume N3 ≈ 0.

(a) Write down the rate equations for the population densities in states 2 and 1.

(b) Show that the rate equations are closed, i.e., that

d

dt
(N2 +N1) = 0.
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Figure 15: Schematic illustration of a 3-level system.

(c) Assuming steady-state operation, derive an expression for N2/N1, i.e., the ratio of atoms in state
2 and state 1. Show that there exists a pump threshold above which population inversion can be
reached, and derive an expression for this condition.

(d) Assuming steady-state, derive an explicit expression for the population inversion ∆N = N2 −N1.
In particular, show that the inversion can be written in the exact same form as for a 4-level system,
and derive appropriate expressions for the reduced pump rate and saturation intensity.

3.8 A spectrally narrowband laser beam with small initial intensity I(0) = 0.2 Wm−2 propagates through an
active medium and interacts with a homogeneously broadened transition. The interaction cross-section at
the laser line is σ(ωL−ω21) = 3.7×10−19 cm2, the small-signal inversion is ∆N0 = 1.35×1017 cm−3,
and the saturation intensity Isat = 10 Wm−2. What is the intensity of the amplified beam at the medium
output, when

(a) The gain medium has a length of L = 2 cm? Hint: Be careful with the units...

(b) The gain medium has a length of L = 1 m? Hint: You’ll need a computer to solve this one... Why?

3.9 The transition energy between the ground state of helium and the first excited state is 21.3 eV

(a) Calculate the Doppler linewidth for this transition at room temperature (300 K), and compare it
with the corresponding natural linewidth. (The radiative lifetime of the excited state is 0.57 ns.)

(b) Calculate the interaction cross section at the line center.

3.10 A homogeneously broadened atomic transition has a centre frequency ω21 = 2π × 282 THz and a
linewidth γ = 2π×25 GHz. The lifetime of the upper state against spontaneous emission is τsp = 1.3 ms,
and the populations in steady-state operation are N2 = 1015 m−3 and N1 = 1014 m−3. The transition
interacts with a laser beam with a Gaussian energy spectral density:

ρ(ω) = ρ0e
−(ω−ω21)2/(2∆ω2),
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where ∆ω = 2π×5 GHz characterises the width of the Gaussian and ρ0 = 10−19 Jm−3Hz−1 is the peak
energy spectral density. Calculate the rate of change of the total photon density in the active medium due
to stimulated emission and absorption. Hint: computer...

3.11 In the lectures we examined the 4-level rate equations assuming that the states only decay via spontaneous
emission. Here, we will consider the more general case of arbitrary decay channels. Furthermore, we will
assume that the laser beam has narrow bandiwdth, centre frequency ωL, and that the atomic transition is
homogeneously broadened.

(a) Show that the rate equations for a 4-level system can be written as

dN2

dt
= R2 +

Itot

h̄ωL
(N1 −N2)σ(ωL − ω21)− N2

τ2

dN1

dt
= R1 −

Itot

h̄ωL
(N1 −N2)σ(ωL − ω21) +A21N2 −

N1

τ1
,

where τ1 and τ2 are the total fluorescnce lifetimes of the energy levels.

(b) Derive an expression for population inversion and saturation intensity.

(c) Comment on how the obtained expressions differ from those derived in the lecture notes.

3.12 Consider a 4-level system as in Fig. 9(b) of the lecture notes, where the rates of spontaneous emission
between levels 0, 1, 2 are governed by the Einstein coefficients A21, A20, A10. You can neglect other
decay channels.

(a) What should be the relative magnitudes of the coefficients to ensure efficient laser operation? In
particular, which of the coefficients should be largest, and which of them should be smallest?

(b) Is it possible to achieve population inversion in a 4-level system where the spontaneous emission
lifetimes of the upper and lower states are τ21 = 1 µs and τ10 = 5 µs?

3.13 In the absence of population inversion, i.e., when ∆N = N2−N1 < 0, a light beam propagating through
(an active) medium is absorbed according to the Beer-Lambert law:

dI

dz
= −αI, (3.79)

where α > 0 is known as the liner absorption coefficient with units of m−1. You can assume the light
beam to be spectrally narrowband.

(a) Derive an expression for α in terms of the interaction cross-section σ(ω − ω21) and population
inversion ∆N .

(b) Especially in fibre optics, it is conventional to express loss with units of dB/km. Find an expression
for loss αdB with units of dB/km as a function of α (with units of m−1). Remember that dBs are
defined as

10 log10

Iout

Iin
.
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4 Maxwell’s equations

So far, we have considered the interactions of light and matter in the photon picture, where light is described as
a bunch of zero-mass particles. But of course, we know that light can also be described as an electromagnetic
wave, consisting of electric and magnetic fields that are oscillating in time and space perpendicular to one
another. In the framework of classical physics, the most general description of any phenomena involving
electric or magnetic fields is given by Maxwell’s equations27: a set of four equations that form the foundations
of classical electromagnetism.

Maxwell’s equations can be written in many different forms. Here we will use the so-called macroscopic
Maxwell equations in differential form:

Maxwell’s equations

Gauss’ law (electricity): ∇ · ~D = ρf (4.1)

Gauss’ law (magnetism): ∇ · ~B = 0 (4.2)

Maxwell-Faraday law of induction: ∇× ~E = −∂
~B
∂t

(4.3)

Ampere’s law (with Maxwell’s correction): ∇× ~H = ~Jf +
∂~D
∂t

(4.4)

The physical quantities have the following meaning:

• ~E(~r, t): Electric field (in units of V/m).

• ~B(~r, t): Magnetic field (in units of T).

• ~D(~r, t): Electric displacement field (in units of C/m2).

• ~H(~r, t): Magnetic displacement field (in units of A/m) 28.

• ~Jf(~r, t): Density of free current (in units of Am−2).

• ρf : Density of free charge (in units of Cm−3).

Each of the field variables in Eqs. (4.1)– (4.4) is a vector with three cartesian components. The symbol ∇
describes a vector differential operator, defined in three cartesian coordinates (with unit vectors x̂, ŷ, ẑ) as

∇ =
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ. (4.5)

27An even more general description is offered by quantum electrodynamics (QED), which is beyond the scope of these notes.
Maxwell’s equations correspond to an approximation of some aspects of QED. This approximation is extremely good; deviations
typically arise only for extremely small light intensity levels, when behaviours of individual photons becomes important.

28Historically, ~H is often called the magnetic field, while ~B is referred to as the magnetic flux density. This is a remnant of times
when magnetism was described to arise from magnetic poles. Today, it is understood that currents generate magnetism, such that ~B is
the more fundamental quantity, and hence referred to as the magnetic field here.
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In Eqs. (4.1) and (4.2) we take the dot product between ∇ and one of the field vectors. The result ∇ · ~A is
known as the divergence of ~A29, and roughly speaking describes the vector field’s tendency to converge toward
(∇ · ~A < 0) or diverge from (∇ · ~A > 0) a point. In Eqs. (4.3) and (4.4) we take the cross product between ∇
and one of the field vectors. The result ∇ × ~A is known as the curl of ~A, and roughly speaking measures the
degree to which the vector field is rotating about a given point.

The physical meaning of the different Maxwell’s equations may not be so apparent from their differential
form. The integral forms are perhaps clearer in that sense, but unfortunately not so useful for the analysis of
EM waves30. The meanings are roughly as follows:

• Gauss’s law for electricity: Net electric flux through a closed surface is proportional to the electric
charge enclosed within the surface.

• Gauss’s law for magnetism: As above, but since there are no magnetic monopoles, the net magnetic
flux through a closed surface is zero.

• Maxwell-Faraday law of induction: A changing magnetic field gives rise to an electric field.

• Ampere’s law (with Maxwell’s addition): A changing electric field (or a current) gives rise to a mag-
netic field.

4.1 Polarization and magnetization

The Maxwell’s equations (4.1)–(4.4) correspond to the “macroscopic” form of the equations: unlike their “mi-
croscopic” counterparts, they do not explicitly include electric charges or magnetic dipoles bound to individual
atoms (hence the only charges and currents appearing are “free”). Rather, charges and currents associated with
individual atoms are averaged into electric and magnetic dipoles described by macroscopic polarization and
magnetization fields ~P and ~M, respectively. This averaging considerably simplifies the analysis of macroscopic
situations31, as we can ignore details on a fine (atomic) scale.

The macroscopic polarization and magnetization fields come into play through the definitions of the displa-
cement fields ~D and ~H:

~D(~r, t) = ε0
~E(~r, t) + ~P(~r, t)

~H(~r, t) =
1

µ0

~B(~r, t)− ~M(~r, t)

(4.6)

(4.7)

The variables have the following meaning:

• ~P(~r, t): density of permanent or induced electric dipole moments.

• ~M(~r, t): density of permanent or induced magnetic dipole moments.

• ε0: vacuum permittivity.

• µ0: vacuum permeability.
29Here ~A is just a generic field vector.
30Note nevertheless that the integral and differential forms are fully equivalent.
31Note that “macroscopic” here can still be extremely small; we are only averaging over individual atoms, whose spacing is several

thousand times smaller than typical wavelength of light.
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4.1.1 Constitutive relations in linear optics

To apply the macroscopic Maxwell’s equations, we need to specify the dependence of the polarization ~P (hence
the bound charges) and the magnetisation ~M (hence the bound currents) on the applied electric and magnetic
fields, as well as the distributions of free charges ρf and currents ~Jf . The equations specifying these relations
are known as constitutive relations. In general, the relations can be complicated, but luckily we are interested
only in materials relevant to optics, and light intensities that are not outrageous32. Under a wide range of typical
conditions encountered in the study of optics, the constitutive equations read

ρf(~r, t) = 0

~M(~r, t) = 0

~P(~r, t) = ε0χ~E(~r, t)

~Jf(~r, t) = σ~E(~r, t)

(4.8)

(4.9)

(4.10)

(4.11)

These relations describe materials that have no free charges (ρf = 0) and that are non-magnetic (~M = 0). The
materials are also homogeneous and isotropic33, and respond linearly to the electric field (~P = ε0χ~E), where χ
is known as the linear electric susceptibility. This last condition implies that the electric dipoles induced by the
electric field align (linearly) with the electric field, with χ describing the degree of polarization in response to
an applied electric field. Finally, the free current is assumed to obey Ohm’s law in the form ~Jf = σ~E, where σ
is the conductivity of the material. We will be mostly interested in dielectrics (i.e., insulators), for which σ = 0,
but include the possibility of σ 6= 0 for completeness.

4.2 EM wave equation

Equations (4.3) and (4.4) show that a changing magnetic field can induce an electric field and vice versa, already
hinting at the possibility of a self-sustaining EM wave. To show that Maxwell’s equations indeed have solutions
in the form of waves, we shall first manipulate the equations using the constitutive relations introduced above
so as to derive a wave equation. We assume here the medium to be dielectric (σ = 0) for simplicity, and leave
it as an exercise for the reader to analyse the situation σ 6= 0.

We first take the curl of both sides of Eq. (4.3):

∇×∇× ~E = −∇× ∂~B
∂t

(4.12)

We then change the order of curl and time derivative34, and with the help of Eq. (4.9) write ~B = µ0
~H. This

yields:

∇×∇× ~E = −µ0
∂

∂t
(∇× ~H). (4.13)

32With large intensities, the material polarization ~P becomes a nonlinear function of the applied electric field; the resulting nonlinear
optical effects will be considered later.

33Such that χ and σ do not depend on position.
34Both operators are linear and commute, allowing us to do this.
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Using now Eq. (4.4) with ~Jf = 035, we obtain

∇×∇× ~E = −µ0
∂2~D
∂t2

. (4.14)

Using the definition of the displacement field [Eq. (4.6)] and the constitutive Eq. (4.10) we get

∇×∇× ~E = −µ0ε
∂2~E
∂t2

, (4.15)

where

ε = ε0εr = ε0(1 + χ) (4.16)

is the permittivity of the material and εr = 1 + χ is the relative permittivity. Finally, we make use of the
following vector calculus identity36:

∇×∇× ~E = ∇(∇ · ~E)−∇2~E, (4.17)

which together with Eqs. (4.1), (4.6), and (4.10) allows us to rewrite Eq. (4.15) as

∇2~E− µ0ε
∂2~E
∂t2

= 0. (4.18)

The operator∇2 is known as the Laplacian, and is defined in Cartesian coordinates as

∇2 =
∂

∂x2
+

∂

∂y2
+

∂

∂z2
. (4.19)

Note that an identical equation can be derived for the magnetic field ~B.

4.2.1 Link to wave equations in general

Equation (4.18) has the generic form of a wave equation. Analogous equations arise for the description of all
kinds of different waves, such as sound waves, waters waves, waves on a string and so on. To gain some general
insights before investigating EM waves in particular, we write the wave equation in one space dimension,
describing e.g. the mechanical disturbance on a guitar string [denoted u(x, t)]:

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0, (4.20)

where v is a fixed constant. The most general solution of the one-dimensional wave equation has the following
form37:

u(x, t) = F (x− vt) +G(x+ vt), (4.21)
35Recall that we are considering a dielectric, such that σ = 0.
36Valid for arbitrary vector fields, not just ~E.
37This solution is only valid when v is constant. As we shall see below, in optics this is not typically the case as v depends on

frequency. In this case, Eq. (4.21) is not valid in general, but only applies for monochromatic waves.
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where F andG are arbitrary disturbance profiles. These profiles travel along the x-direction, with a speed given
by v; assuming v > 0, F moves towards positive x, while G moves toward negative x. To see why this is the
case, consider an arbitrary point x0 at time t = 0, where the disturbance has the value F (x0). After some time
t, this point along the disturbance moves to x = x0 + d [see Fig. 16] such that

F (x0) = F (x0 + d− vt). (4.22)

From this, we obtain

v =
d

t
. (4.23)

The right-hand side is obviously the definition of velocity (displacement/time).
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Figure 16: Two example solutions to the wave equation. In (a) the disturbance is sinusoidal, u(x, t) = cos [2πf(x− vt)],
with f = 0.1 m−1 while in (b) the disturbance is Gaussian, u(x, t) = e−(x−vt)

2

. In both cases, the wave velocity
v = 3 m/s and the disturbances are plotted at two different times t = 0 s and t = 1 s as indicated.

4.3 Speed of light and refractive index

Comparing Eqs. (4.18) and (4.20), we see that the solutions of the EM wave equation will travel at a speed of

v =
1
√
µ0ε

=
1

√
µ0ε0εr

(4.24)

In vacuum χ = 0 and εr = 1, and so we get the speed of EM waves in vacuum:

c =
1

√
µ0ε0

≈ 2.998× 108 m/s. (4.25)

This is, of course, the speed of light38

38We arrived at this observation from an educated background, so the surprise may not be so great. But consider what it must have
been like in 1862, when people did not know that light is an EM wave, and Maxwell showed that general equations of EM fields can
be recast into a wave equation, with a speed very close to the known speed of light. Physics really doesn’t get more beautiful than that!
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In media (i.e., outside of a vacuum), the linear susceptibility χ 6= 0, and accordingly εr 6= 1. From
Eq. (4.24), the velocity of EM waves becomes:

v =
c
√
εr

=
c√

1 + χ
. (4.26)

We can recognise the refractive index of the medium as

n =
√
εr =

√
1 + χ. (4.27)

4.3.1 Frequency-dependence of refractive index

The analysis above suggests that refractive index is a constant. This is not true in real life, however, as refractive
indices are known to depend on frequency [see e.g. Fig. 17]. The discrepancy arises from the fact that the
constitutive equation (4.10) approximates polarization to react instantaneously to the electric field. In reality,
polarization arises with some delay, and can be more formally represented as a convolution between a time-
dependent susceptibility χ(t) and the electric field:

~P(~r, t) = ε0

∫ t

−∞
χ(t− t′)~E(~r, t′)dt′, (4.28)

where χ(t) is a time-dependent susceptibility, describing the material’s temporal response to an electric field.
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Figure 17: Refractive index of fused silica glass as a function of wavelength λ = f/c = ω/(2π).

The relationship can be written in a prettier form in the frequency domain. Specifically, considering a
monochromatic EM wave with frequency ω and complex amplitude Ẽ(ω), such that E(t) = Ẽ(ω)eiωt, the
convolution can be easily computed to yield P (t) = P̃ (ω)eiωt, where the polarisation amplitude

P̃ (ω) = ε0χ̃(ω)Ẽ(ω), (4.29)
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and χ̃(ω) is the Fourier transform of χ(t). Thus, in general, the simple constitutive Eq. (4.10) applies at all dif-
ferent frequencies ω, connecting the complex amplitudes of the polarisation and the electric field oscillating at
that frequency. However, in general the susceptibility varies with frequency; in the time domain, the frequency-
dependent susceptibility manifests itself as a convolution. Note that mathematically these relationships are
simply manifestations of the convolution theorem:

The Fourier transform of a convolution of two functions is equal to the product of the function’s Fourier
transforms.

Using the above formalism, the refractive index is also found to have a frequency-dependence:

n(ω) =
√

1 + χ̃(ω) (4.30)

In what follows, we will for simplicity assume polarization to respond instantaneously, but reserve the right
to make use of frequency-dependent refractive indices. While this may appear phenomenological, the author
assures that identical results are obtained when using the full polarization convolution above.

4.4 Plane EM waves

We will now proceed to derive an important class of EM wave solutions: plane waves. To this end, we look for
monochromatic plane wave solutions of Eq. (4.18) by using the following ansatz:

~E(~r, t) = ~E0r cos (ωt− ~k ·~r + φE), (4.31)
~B(~r, t) = ~B0r cos (ωt− ~k ·~r + φB). (4.32)

Here ~E0r and ~B0r are the amplitudes of the electric and magnetic fields, respectively, ω is the (angular) fre-
quency of the wave, φE,B are arbitrary phases, and ~k = kxx̂ + kyŷ + kz ẑ is known as the wave vector. As we
shall soon see, the wave vector defines the direction of propagation of the plane wave. Note that the magnitude
of the wave vector, k =

√
k2
x + k2

y + k2
z , is known as the wave number. In what follows, we will only examine

the electric field for simplicity.
Dealing with trigonometric functions is a little bit cumbersome, and a better way is to express the electric

field in (complex) phasor form:

~E(~r, t) = Re
[
~E0e

i(ωt−~k·~r)
]
, (4.33)

where we defined the complex amplitude ~E0 = ~E0re
iφE . Because the Maxwell’s equations are linear and only

involve simple derivatives39, we can neglect the real part in our calculations and simply analyse the complex
field:

~E(~r, t) = ~E0e
i(ωt−~k·~r) (4.34)

When dealing with EM waves, we almost always use this complex notation, as it greatly simplifies the analyses.
It should nevertheless be borne in mind that the electric field must be a real quantity, and so in any calculations,
the physical values will be given by the real part of the solution.

39Derivatives of the fields are equal to the derivatives of the real part of the complex field.
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For the plane wave defined by Eq. (4.34) to be a solution of the Maxwell’s equations, the different variables
(~E0, ~B0, ~k, ω) must satisfy a set of conditions. The conditions can be found by injecting the ansatz (4.34)
into the Maxwell’s equations. This calls for a big bunch of differential operations. Luckily, for complex plane
waves of the form ~E(~r, t) = ~E0e

i(ωt−~k·~r), the differential operators are very easy to deal with40:

∂~E
∂t

= iω~E,

∇ · ~E = −i~k · ~E,
∇× ~E = −i~k× ~E,
∇2~E = −k2~E.

(4.35)

(4.36)

(4.37)

(4.38)

Or in more concise form:

∂

∂t
→ iω,

∇ → −i~k.

(4.39)

(4.40)

4.4.1 Dispersion relation

The first condition to derive is the relationship between the wave vector ~k (and in particular the wave number)
and the frequency ω, i.e., the dispersion relation41. To this end, we inject our ansatz (4.34) into Eq. (4.18).
Using the differential operations summarised above, we obtain

−k2~E + µ0εω
2~E = 0. (4.41)

For nontrivial solutions (~E 6= 0), we must have

k2 = µ0εω
2. (4.42)

This is the dispersion relation of EM waves in dielectric media. Using the definition of the refractive index, we
have

k(ω) = ±nω
c
. (4.43)

Note that± simply implies that the wave can be travelling either along or against ~k42. For our plane wave to be
a solution to the Maxwell’s equations, the wave number and frequency must be related by Eq. (4.43).

4.4.2 Other requirements

By injecting our ansatz into the full Maxwell’s equations, we find additional conditions (note that Eqs. (4.35) –
(4.38) significantly simplify the equations):

40It is left as an exercise to verify these relations.
41Dispersion relations are of principal importance to all forms of waves, as they specify the relationship between frequency and wave

number.
42Note that ~k = kk̂.
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Conditions between field amplitudes

∇ · ~E = 0 ⇒ −i~k · ~E0 = 0 ~E0 is perpendicular to ~k.

∇ · ~B = 0 ⇒ −i~k · ~B0 = 0 ~B0 is perpendicular to ~k.

∇× ~E = −∂
~B
∂t

⇒ −i~k× ~E0 = −iω~B0
~E0 is perpendicular to ~B0.

∇× ~B =
∂~D
∂t

⇒ −i~k× ~B0 = iωµ0ε~E0
~B0 is perpendicular to ~E0.

The first two conditions show that ~E and ~B must oscillate in directions perpendicular to ~k; the last two
conditions show that ~E and ~B must be mutually perpendicular. Given that ~k defines the direction of propagation
of the EM wave, the conditions show that the following well-known fact derives directly from Maxwell’s
equations:

Electromagnetic waves consist of electric and magnetic fields that oscillate perpendicular to one another
and perpendicular to the direction of wave propagation.

Note that the direction of electric field oscillations by convention defines the polarization of the EM wave.
The polarization of a plane EM wave can in general have any direction (i.e., the vector ~E0 can point to any
direction), provided that direction is transverse to the direction of the wave vector ~k.

The final two conditions listed above also enforce that the complex amplitudes ~E0 and ~B0 must be related
to each other. The example below illustrates the conditions in action.

Example.
Consider an EM wave propagating in the +z-direction, so that ~k = kẑ = [0, 0, k]T . Since the fields
must be perpendicular to ~k, this implies that ~E0 = [Ex, Ey, 0]T and ~B0 = [Bx, By, 0]T . From the third
(or fourth) condition above, ~k× ~E0 = k[−Ey, Ex, 0]T = ω[Bx, By, 0]T = ω~B0. Thus we conclude that
the cartesian components of the field amplitudes must satisfy the following ratios:

Ey
Bx

= −Ex
By

= −ω
k
. (4.44)

Provided that these ratios are fulfilled together with the dispersion relation, then the following EM waves
satisfy the Maxwell’s equations:

~E(~r, t) = ~E0e
i(ωt−~k·~r), (4.45)

~B(~r, t) = ~B0e
i(ωt−~k·~r). (4.46)
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4.4.3 Properties of plane waves

1. At any fixed time t, the field ~E(~r, t) = ~E0e
i(ωt−~k·~r) has the same value at each ~r for which the phase is

constant, i.e., ωt− ~k ·~r = cnst. Consider now two such points,~r1,2. They both satisfy~k·~r1,2 = ωt−cnst,
and so

~k ·~r1 − ~k ·~r2 = ~k · (~r1 −~r2) = 0. (4.47)

This defines a plane that is perpendicular to ~k [see Fig. 18]. In other words, the points of equal field
value of ~E form planes in space.43 Along each plane in space that is perpendicular to ~k, the EM field
takes the same value.

O

Figure 18: Schematic illustration of a plane of constant phase.

2. Planes of equal phase repeat periodically in space44. The period – i.e., the distance over which the wave’s
shape repeats itself – is simply the wavelength λ. In other words, if the phase at a point~r is φ = ωt−~k ·~r,
then at a point~r + λ k̂ the phase must be φ− 2π. Mathematically:

ωt− ~k · (~r + λ k̂) = ωt− ~k ·~r− 2π, (4.48)

λk(k̂ · k̂) = 2π. (4.49)

And so we get

λ =
2π

k
=

2πc

nω
=
λ0

n
, (4.50)

where λ0 = 2πω/c is the wavelength in vacuum.

43Hence the name plane waves.
44Recall that eωt−~k·~r is periodic with a period of 2π.
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Figure 19: Planes of constant phase repeat in space with a period of one wavelength. For simplicity, here the wave vector
is aligned with the z-axis, i.e., k̂ = ẑ

3. The wave fronts (planes of constant phase) are moving in the direction of the wave vector. In time dt, the
fronts travel across the displacement ~dr = dr k̂ such that the phase remains constant:

ωt− ~k ·~r = ω(t+ dt)− ~k · (~r + ~dr), (4.51)

0 = ω dt− k dr(k̂ · k̂). (4.52)

And so the wave’s phase velocity v is

v =
dr

dt
=
ω

k
=
c

n
(4.53)

4.4.4 Intensity of EM waves

EM waves transport energy as they travel. The rate of energy transfer per unit area is described by the following
vector:

~S =
1

µ0

~E(~r, t)× ~B(~r, t), (4.54)
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Figure 20: Planes of constant phase move in space as time progresses. During a short time interval dt, the planes are
displaced along the wave vector by the amount dr.

which is known as the Poynting vector, and comes with units of Wm−2. Given that ~S arises as the cross product
of ~E and ~B, it is perpendicular to both; for a plane wave, the Poynting vector must therefore be parallel to the
wave vector ~k. Furthermore, since ~E and ~B are perpendicular, the magnitude of the Poynting vector is

S(~r, t) =
1

µ0
E(~r, t)B(~r, t), (4.55)

where E and B represent the corresponding scalar magnitudes of the electric and magnetic field vectors45. The
conditions between field amplitudes for plane waves, outlined in section 4.4.2, show that

B(~r, t) =
k

ω
E(~r, t) =

n

c
E(~r, t), (4.56)

and the magnitude of the Poynting vector is thus

S(~r, t) =
n

cµ0
E2(~r, t), (4.57)

45In other words, if ~A(~r, t) = [Ax(~r, t), Ay(~r, t), Az(~r, t)]T then A =
√
Ax(~r, t)2 +Ay(~r, t)2 +Az(~r, t)2.
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Because the electric field oscillates very fast (with typical optical frequencies in the 300 THz range), we
are not typically interested in the instantaneous magnitude of the Poynting vector. Rather, we are interested
in the time averaged value, obtained by averaging the Poynting vector over several oscillation cycles. This
time-average corresponds precisely to optical intensity:

I(~r, t) = 〈S〉T =
1

T

∫ T/2

−T/2
S(~r, t) dt (4.58)

Because the Poynting vector involves a product of the field, we cannot use complex notation46. Instead, we
must use the form

~E = ~E0r cos (ωt− ~k ·~r + φ). (4.59)

The time average can be easily calculated47, yielding

I(t) =
n

cµ0

E2
0r

2
. (4.60)

And so the intensity of an EM wave is simply proportional to the square of the wave’s amplitude. In complex
(phasor) notation, the field amplitude squared is replaced by the absolute value squared of the complex
amplitude.

4.4.5 Complex wave number

Our analysis above has assumed the wave number to be real. This is not always the case, as the material
permittivity ε (hence, refractive index) can in general be complex [see Eq. (4.43)]. We can then write

k = kR − ikI. (4.61)

The real part of the wave number, kR, defines the wavelength and phase velocity of the wave. To see the effect
of the imaginary part, we consider a plane wave propagating in the positive z direction:

~E(~r, t) = ~E0e
i(ωt−kz), (4.62)

~E(~r, t) = ~E0e
−kIzei(ωt−kRz). (4.63)

And so we see that the wave amplitude decreases (kI > 0) or increases (kI < 0) as the wave propagates.
The wave’s intensity would correspondingly decrease or increase as I ∝ exp (−2kIz). In other words, the
imaginary part of the wave number accounts for attenuation or amplification of the wave.

4.5 Do plane EM waves really exist

No they do not. Plane EM waves are idealizations that can never be created in practice. This can be readily
understood by noting that the “planes” of constant field value ~E of the wave extend everywhere: they have infi-
nite extent, and hence carry infinite energy. Such a situation is clearly unphysical. Real light beams have some

46This is because z1z2 6= Re[z1z2].
47〈cos2(ωt− ~k ·~r)〉T = 1/2.
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finite transverse structure (e.g. Gaussian profile) and they diffract: the beam width broadens with propagation
distance. Moreover, plane EM waves are monochromatic. As we have already argued, there is no such thing as
a monochromatic wave. All waves have some temporal structure, which gives rise to a finite spectral width; to
the very least, the wave must start somewhere and end somewhere.

So why do we bother with plane waves? The reason is that plane waves are good approximations of real light
beams (with finite width and nonzero bandwidth) when the beam width is much larger than the wavelength, and
the wave is quasi-monochromatic. Because plane waves are fairly simple solutions of the Maxwell’s equations,
they allow us to gain important (and simple) insights into the behaviour of real light beams.

4.5.1 Introduction to Fourier transforms

Another important feature of plane waves is the fact that any real beam can be represented as a superposition
of plane waves. This is because any arbitrary function E(t)48 can be represented as a sum of sine and cosine
functions:

E(t) =

∫ ∞
−∞

Ẽ(ω)eiωt dω, (4.64)

where the complex amplitudes Ẽ(ω) are obtained from the Fourier transform of the original function:

Ẽ(ω) =
1

2π

∫ ∞
−∞

E(t)e−iωt dt. (4.65)

Essentially, the Fourier transform decomposes the original time-domain signal into different frequency com-
ponents, with Ẽ(ω) describing the relative amplitudes of the different monochromatic waves that make up the
original signal. That original signal can then be written as a superposition of monochromatic waves with ampli-
tudes Ẽ(ω). This is precisely what is done in Eq. (4.64), which is typically referred to as the inverse Fourier
transform.

Equations (4.64) and (4.65) should make immediate sense in terms of constructing temporal profiles of
real light beams with a finite bandwidth from purely monochromatic plane waves. Indeed, (4.64) shows that
an electric field with arbitrary temporal profile can be written as the superposition of monochromatic (plane)
waves with different frequencies. Arbitrary temporal profiles, on the other, can have arbitrary spectral widths
and profiles; these profiles are fully described by the complex amplitudes Ẽ(ω), given by the Fourier transform
Eq. (4.65). Significantly, the spectrum (i.e., frequency content) of any light source is simply governed
by the Fourier transform Eq. (4.65). If you know the time-domain wave profile, you can figure out the
spectrum by calculating the Fourier transform (and vice versa). In practical terms, the spectrum that can be
easily measured (using e.g. spectrometers or spectrum analysers) corresponds to the absolute value squared of
the Fourier transform, i.e.,

S(ω) = |Ẽ(ω)|2. (4.66)

4.5.2 Spatial Fourier transforms

Fourier transforms are most commonly used with functions of time t as in Eqs. (4.64) and (4.65). However,
there is nothing that prevents us from doing a Fourier transform with functions of spatial coordinates. In this
case, we can write a signal, e.g. E(x), that exhibits some spatial dependence as a superposition of plane waves

48Here we use the symbol resembling the electric field for familiarity, but the arguments hold any function.
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associated with different spatial frequencies kx. Furthermore, when our function depends on several spatial
coordinates, e.g. E(x, y, z), we can generalize the superposition to multiple dimensions. Long story short, a
monochromatic light waveE(x, y, z, t) = A(x, y, z) exp (iωt) with an arbitrary spatial distributionA(x, y, z)
(no longer a simple plane wave) can be written as

E =

∞∫∫∫
−∞

Ã(kx, ky, kz)e
iωte−ikxxe−ikyye−ikzzdkx dky dkz, (4.67)

=

∞∫∫∫
−∞

E0e
iωt−~k·~rdkx dky dkz, (4.68)

where the second equation highlights that the whole construction is nothing but superpositions of plane wa-
ves with different wave vectors ~k and amplitudes E0 = Ã(kx, ky, kz). This picture should give an intuitive
explanation as to why real beams diffract: they are made out of plane waves that propagate in different di-
rections determined by their different wave vectors ~k! Furthermore, a (spatially) narrower beam has a broader
spatial spectrum, i.e., its composition will include plane waves traveling at large angles. A narrower beam will
therefore broaden faster than a broad beam [see Eq. (2.1)]!

4.6 So where do EM waves come from?

In the preceding discussion, we have covered the basic characteristics and properties of (plane) EM waves.
But where do these EM waves come from? As with all electromagnetic phenomena, the answer is (of course)
that they arise from electric charges (somehow). In fact, it turns out that all EM waves can be understood to
originate from accelerating electric charges (or equivalently, changing electric currents).

EM waves correspond to a form of radiation: energy flows irreversibly away from the source and out
“to infinity”. For energy to “reach infinity”, the total power passing through a spherical surface centred at a
radiation source must stay constant as the radius r of the sphere (distance from the source) increases. If the
power would increase with r, energy would not be conserved; if the power would decrease with r, energy would
not be able to reach infinity, as the total radiated power Prad = lim

r→∞
P (r) would approach zero.

The total EM power passing through a surface is given by the surface integral over the Poynting vector:

P (r) =

∮
~S · d~a =

1

µ0

∮
~E× ~B · d~a. (4.69)

Because the area of a sphere increases as 4πr2, we see that for radiation to occur (Prad 6= 0), the Poynting
vector must decrease (at large r) no faster than 1/r2. We know, however, from Coulomb’s and Biot-Savart’s
laws that electrostatic and magnetostatic fields fall off like 1/r2, implying S ∼ 1/r4 for static configurations.
Thus, we see that neither static charges nor currents radiate EM waves.

Detailed analysis of Maxwell’s equations shows that, when charges are accelerating, terms that decay as
1/r appear in the formulae describing the electric and magnetic fields. It is these terms that are responsible
for the generation of EM waves. In fact, for very large r, all other terms can be neglected, since they fall
off as 1/r2 or faster. Although a detailed analysis is beyond the scope of the present course (the keen reader
is recommended to open “Introduction to Electrodynamics” by Griffiths), we present and discuss below the
equations describing EM radiation from a time-varying electric dipole, which arguably represents the most
important form of “elementary” EM radiation.
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4.6.1 Dipole radiation

Let us consider a charge distribution characterised by a time-varying electric dipole moment ~p(τ) located at the
origin.49 At a position ~r that is far away from the charge (such that all terms decaying faster than 1/r can be
neglected), the electric and magnetic fields can be (approximately) written as [see Griffiths]:

~E(~r, t) =
µ0

4πr
[(̂r · ~pττ )̂r− ~pττ ] ,

~B(~r, t) = − µ0

4πrc
[̂r× ~pττ ] ,

(4.70)

(4.71)

where r = ‖~r‖ =
√
x2 + y2 + z2 is the distance from the source, r̂ is a unit vector along ~r, and ~pττ is the

second derivative of the dipole moment, evaluated at a retarded time τ = t− r/c:

~pττ =
d2~p(τ)

dτ2

∣∣∣∣
τ=t−r/c

. (4.72)

The expressions can be significantly simplified by considering a dipole moment ~p(τ) = [0, 0, p(τ)]T pointing
along the z-axis and expressing the fields in spherical coordinates. We find:

~E(~r, t) =
µ0pττ

4π

(
sin θ

r

)
θ̂,

~B(~r, t) =
µ0pττ
4πc

(
sin θ

r

)
φ̂.

(4.73)

(4.74)

In these coordinates, the Poynting vector reads

~S ≈ 1

µ0
(~E× ~B) =

µ0p
2
ττ

16π2c

(
sin2 θ

r2

)
r̂. (4.75)

It is clear that, in the far-field radiation zone, the electric and magnetic fields are non-zero only when
the second-derivative of the electric dipole moment is non-zero. On the other hand, this situation requires
accelerating charges. For example, for a single moving point charge (with displacement ~d(τ) relative to the
origin), we have ~p = q~d(τ), and thus ~pττ = q~a(t− r/c), where ~a is the acceleration of the charge. Moreover,
from the expressions in spherical coordinates, it is clear that the electric and magnetic fields are (i) mutually
perpendicular and (ii) transverse to the direction of propagation (Poynting vector). This is quite satisfying.

It is interesting to emphasise that ~pττ is evaluated at the “retarded” time τ = t − r/c. This is simply
because electromagnetic news travel at the speed of light. Specifically, when evaluating the fields at time t and
displacement~r that is a distance r away from the source, the state of the source “right now” does not matter, as

49For a physical dipole consisting of two electric charges ±q separated by a displacement ~d, we have ~p = q~d. For a single point
charge, we have ~p = q~d, where ~d is the displacement from the origin.
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Figure 21: Snapshot of the (a) electric field and (b) Poynting vector of an EM wave with wavelength λ = 600 nm
emitted by a harmonically oscillating dipole. The dipole is oscillating along the z-axis, and the fields are calculated in the
yz-plane.

it will take a time r/c for the electromagnetic news to travel from the source to the position of interest. Rather,
it is the source’s state at an earlier time t− r/c that contributes to the fields at time t.

Arguably the simplest source of EM waves is that of an oscillating electric dipole. In this arrangement,
two opposite charges are separated by a distance, and either their values or their separation exhibits harmonic
oscillation. The dipole moment ~p(τ) = ~p0 cos(ωt). Figure 21 shows a typical radiation pattern emitted by such
an oscillating dipole, calculated from Eqs. (4.70) and (4.71). It is noteworthy that the frequency of the emitted
radiation is equal to the oscillation frequency of the dipole.

In practice, it is straightforward to make charges accelerate: one can simply connect conducting rods to a
source of alternating voltage. This will give rise to an alternating current in the conductors, which amounts to
accelerating charges and hence emission of EM radiation (with frequency identical to that of the alternating
voltage source). In fact, this is how antennas work50. This simple scheme underpins the generation of EM
radio- and microwaves, whose frequencies range from kilohertz to gigahertz. It cannot, however, be used to
create EM waves in the infrared or visible spectral regions, where the EM wave frequencies are measured in
(hundreds of) terahertz. This is simply because it is not possible to create alternating voltages (or currents) that
would oscillate at such high frequencies: electronic circuits are far too slow. Rather, EM waves in the infrared
and visible spectral regions arise from transitions between different atomic or molecular energy levels, and they
can be coherently generated only by leveraging those transitions (as is done with lasers).

50The simplest and most widely used class of antenna is the so-called “dipole antenna” whose radiation pattern is very similar to that
of an ideal electric dipole.
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Problems

4.1 During the lecture, we derived the wave equation for the electric field ~E.

(a) Show that an identical wave equation can be derived for the magnetic field ~B.

(b) Explicitly write the wave equation for each of the different cartesian components of the magnetic
field vector.

(c) When studying linearly polarized electromagnetic waves, it is sufficient to only consider a single
cartesian component of the electric and magnetic fields. Assuming an EM wave polarized along
the x-direction and propagating along the z-direction, write down a scalar wave equation for the
magnetic field.

4.2 Show that a complex refractive index gives rise to attenuation or amplification of an EM wave.

4.3 Consider an EM plane wave polarized along the z-direction and propagating in the +x-direction in a
material whose refractive index n = 1.4. The wave’s angular frequency is ω = 2π · 200 THz and the
amplitude of the electric field is

~E0 = 10 Vm−1ẑ.

Write the full plane EM wave solution, defining the numerical values of all parameters.

4.4 The electric field of a monochromatic (not necessarily plane) EM wave can be written as ~E(~r, t) =
~A(~r)eiωt.

(a) Show that the vector amplitude ~A obeys the Helmholtz equation

(∇2 + k2)~A = 0.

(b) Explicitly write down the Helmholtz equation for each of the cartesian components of the EM field.

(c) Assuming the EM wave is polarized along the x-direction, write the Helmholtz equation in scalar
form.

4.5 Consider a plane wave in free space defined by

~E(~r, t) = ~E0e
i(ωt−~k·~r).

(a) Write down explicit expressions for the x, y, and z components of the electric field.

(b) Show that the electric field satisfies∇ · ~E = 0 if ~E0 · ~k = 0.

(c) Find an associated magnetic field such that Faraday’s law is satisfied.

(d) Find a dispersion relationship such that Ampere’s law is satisfied.

4.6 Consider the vector function given by

~F(~r, t) = ~F0e
i(ωt−~k·~r).

(a) What is the relationship between ω and ~k that would allow this to be a plane wave solution to
Maxwell’s equations for an electric field in a dielectric medium with refractive index n?
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(b) If the vector field above is to represent a plane EM wave, what should the value of the dot product
~F · ~k be?

(c) Suppose that ~F given above and a vector field ~G represent the electric and magnetic fields for a
plane wave in a vacuum. What is the value of the dot product ~F · ~G?

(d) Are plane waves physical or not? Provide a reason why?

4.7 Consider a plane EM wave with frequency ω that is propagating along the +x direction and that is
polarized along the z-direction.

(a) Show that the electric field can be written (in complex notation) as

~E(~r, t) = E0e
i(ωt−kx)ẑ.

(b) Find a corresponding magnetic field such that the resulting pair satisfies all of Maxwell’s equations.

4.8 Consider a plane electromagnetic wave ~E0e
i(ωt−~k·~r). Prove the following differential operations that were

used to derive the properties of plane EM waves:

∂~E
∂t

= iω~E

∇ · ~E = −i~k · ~E
∇× ~E = −i~k× ~E
∇2~E = −k2~E.

4.9 Consider a plane EM wave propagating in the +z direction and that is polarized along the x-axis:

~E(~r, t) = E0e
i(ωt−kz)x̂.

(a) For the electric field above, find a suitable magnetic field so that the resulting pair satisfies all of
Maxwell’s equations.

(b) Write down an equation for the electric and magnetic fields for a wave travelling in the−z direction,
but with a different polarization and arbitrary phase to the one above.

4.10 In the lecture notes, we have derived the wave equation for a dielectric material, i.e., assuming that the
electrical conductivity σ = 0.

(a) Derive the electromagnetic wave equation in the general case when σ 6= 0.

(b) Derive the dispersion relation for this more general case.

(c) Show that electromagnetic waves experience strong losses in conductors, i.e., in materials for which
σ 6= 0. In particular, derive an expression for the imaginary part of the wavenumber.

(d) The distance over which the field amplitude impinging on a conductor decreases by a factor of e is
known as the skin-depth. This represents a typical “penetration” depth for the EM wave, i.e., the
depth to which the EM wave can survive without being totally dissipated. Derive an expression for
the skin-depth of a good conductor, i.e., one for which σ � εω.
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(e) Calculate the skin-depth (in nanometers) of a good conductor like copper (σ ≈ 107 Ω−1m−1) in
the visible range (ω ≈ 1015 s−1).

4.11 Because electrons do not move instantaneously in response to an applied electric field, the simple consti-
tutive relation

~P(~r, t) = ε0χ~E(~r, t)

is not correct in general. Indeed, as argued in the lecture notes, this simple relationship cannot model
dispersion, i.e., the fact that refractive index depends on frequency. In this exercise, you will consider the
more general constitutive relation

~P(~r, t) = ε0χ(τ) ∗ ~E(~r, t) = ε0

∫ t

−∞
χ(t− t′)~E(~r, t′)dt′, (4.76)

where ∗ denotes convolution.

(a) Show that for a monochromatic wave ~E(~r, t) = ~E0(~r)eiωt, the polarization can be written as

~P(~r, t) = ε0χ̃(ω)~E(~r, t),

where χ̃(ω) is the Fourier transform of χ(t). Hint: the response must be causal, such that χ(t −
t′) = 0 for t′ > t.

(b) Derive the EM wave equation for a monochromatic wave using the general constitutive relationship
in Eq. (4.76).

(c) Show that the refractive index now depends on frequency.

4.12 Show that, at a fixed spatial position ~r0, the electric field of a monochromatic EM wave polarised along
the x̂ direction can be written as

~E(~r0, t) = E0e
iωtx̂.

4.13 (a) Use Eqs. (4.73) and (4.74) to derive the Poynting vector of the EM wave generated by a time-varying
electric dipole [Eq. (4.75)].

(b) Use the Poynting vector to derive an expression for the total power radiated by the dipole.

(c) Derive the total power radiated by an oscillating electric dipole p(t) = p0 cos(ωt)̂z.

(d) For a point charge, the electric dipole moment ~p = q~d(t), where ~d(t) is the (time-dependent)
displacement of the charge. Derive an expression for the total power radiated by an accelerating
point charge. The result is the famous Larmor formula.
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5 Classical electron oscillator

In this Section, we will examine light-matter interactions from the classical perspective, where light is inter-
preted as an EM wave. The key parameter that describes the interaction is the refractive index: it fixes the
wavelength of an EM wave in a medium, the wave’s phase velocity, and even gives rise to attenuation or am-
plification if complex. But physically, where does refractive index come from? Well, we have already seen that
n =
√

1 + χ, where χ is the susceptibility that determines the relationship between the material polarisation ~P
and the electric field, viz. ~P = ε0χ~E. So what we really need to explain is: how does the electric polarisation
~P arise? If we can physically model how a given electric field ~E induces a polarisation ~P, we should be able to
extract χ and subsequently the refractive index n. This is the aim of this Section.

To simplify the analysis, we will assume the electric field to be linearly polarised along the x-axis: ~E =
Ex̂→ ~P = P x̂. It is then sufficient to only consider the scalar amplitudes E and P .

5.1 Origins of polarisation

Polarisation P is the average electric dipole moment per unit volume in the medium:

P =
∆p

∆V
. (5.1)

At a microscopic level, an electric field E applied to a dielectric material displaces the electron charge clouds
– bound to individual atomic nuclei – from their equilibrium positions [see Fig. 22]. On the other hand, the
displacement of an electron out of its equilibrium position induces an electric dipole moment

pe(t) = −ex(t), (5.2)

where e is the elementary charge and x(t) is the displacement of the electron51. Assuming we haveN displaced
electrons per unit volume, then the total polarisation

P (t) = Npe(t) = −Nex(t). (5.3)

Thus, to model the relationship between polarisation and the applied electric field, we must model how
an electron is displaced by a given applied (EM) field.

5.2 Electron on a spring

We model the motion of an electron very classically, using Newton’s second law:

m
dx2(t)

dt2
= Fnet =

∑
F. (5.4)

Below we list the different forces acting on the electron.
51Note that for EM waves the electric field is continuously oscillating in time, and hence the displacement will similarly depend on

time.
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Figure 22: Schematic illustration of the microscopic origins of material polarization. An electric field displaces the
elctron cloud of an atom, giving rise to an atomic dipole moment. A bunch of such dipole moments then give rise to a
macroscopic polarization.

1. First, the electron is very comfortable at its equilibrium position; it does not want to move away. We
therefore assume that there is a restoring force that pulls the electron back to its equilibrium position. We
take this restoring force to be directly proportional to the displacement:

Frestoring = −mω2
0x (5.5)

Here the frequency ω0 should be understood as the transition frequency between the atom’s two energy
levels.

2. Second, as for all charges in an electric field, there is a simple driving force due to the applied electric
field:

Fdriving = −eE(t). (5.6)

3. Third, because the applied EM wave oscillates in time, so does the electron. But all oscillating charges
emit electromagnetic radiation, and therefore there has to be some loss of energy. This is accounted for
by a damping term analogous to friction/drag:

Fdamping = −γmdx

dt
, (5.7)

where γ is the damping coefficient.

With these forces, the equation of motion for the electron becomes

m
dx2(t)

dt2
= −mω2

0x− γm
dx

dt
− eE(t). (5.8)
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This equation is analogous to the equation of motion for a driven damped simple harmonic oscillator. In other
words, we are modelling the electron as if it is attached to a spring and driven by an oscillating electric field.
One might think that such a spring-electron model is an extremely naive approach to the analysis of light-matter
interactions. However, it turns out that the model is extremely successful, faithfully reproducing the results of
considerably more complex quantum mechanical calculations. To quote Feynman:

You may think that this is a funny model of an atom if you have heard about electrons whirling
around orbits. But that is just an oversimplified picture. The correct picture of an atom, which
is given by [quantum mechanics] says that, so far as problems involving light are concerned, the
electrons behave as though they were held by springs.

5.3 No driving field

Let us first consider the case where there is no applied electric field, i.e., E = 0. The general solution for our
driven damped harmonic oscillator is:

x(t) = c1e
λ1t + c2e

λ2t, (5.9)

where c1,2 are constants that depend on the initial conditions while λ1,2 solve the characteristic equation

mλ2 + γmλ+mω2
0 = 0. (5.10)

Assuming the damping to be light, such that γ � ω0, one obtains after some algebra:

λ1,2 = −γ
2
± iω0. (5.11)

The general solution is thus
x(t) = e−γt/2

(
c1e

iω0t + c2e
−iω0t

)
. (5.12)

Since the displacement has to be real, we choose the constants as c1 = 1
2A exp (iδ) = c∗2, yielding

x(t) = Ae−γt/2 cos (ω0t+ δ). (5.13)

The equation above shows that, in the absence of an applied electric field, an initially displaced elec-
tron (A 6= 0) will undergo exponentially damped oscillations. This gives rise to an electric dipole moment
p(t) = −ex(t) that is similarly exhibiting damped oscillations. On the other hand, as described in Section 4.6.1,
oscillating dipole moments emit EM waves. Far away from the dipole, the amplitude of the EM wave will be
proportional to d2p(t)/dt2 [see Section 4.6.1]. Thus, for t ≥ 0 the EM wave will have the form

E(t) ∝ Ae−γt/2 cos (ω0t+ δ), (5.14)

where we again used γ � ω0.
We have just learnt that (i) an initially displaced atom will undergo exponentially decaying oscillations

with frequency ω0, while simultaneously (ii) emitting EM waves with frequency ω0 that similarly undergo
exponential decay. This is the classical description of spontaneous emission: an excited atom decays back
to its equilibrium displacement while emitting EM waves.
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Figure 23: Electric field corresponding to the far-field EM wave radiated by an initially excited atom.

5.3.1 Spectrum of spontaneous emission

Figure 23 shows the EM wave described by Eq. (5.14). Because of the exponential decay, this wave does not
correspond to a monochromatic wave52. Rather, it corresponds to a superposition of a range of monochromatic
waves with different frequencies. It is interesting to consider the spectrum of the wave, i.e., the relative magni-
tudes of the different frequency components that superpose to create the wave. The spectrum can be obtained
by taking the Fourier transform of E(t):

Ẽ(ω) =
1

2π

∫ ∞
0

E(t)e−iωt dt (5.15)

=
1

2π

∫ ∞
0

E0e
−γ/2t cos (ω0t+ δ)e−iωt dt. (5.16)

The integrals can be calculated without too much tears. Doing this, and using γ � ω0, one finds

Ẽ(ω) =
E0e

iδ

4πi

1

(ω − ω0)− iγ/2
. (5.17)

The corresponding spectral intensity is

S(ω) ∝ |Ẽ(ω)|2 (5.18)

= S0gH(ω − ω0), (5.19)

where S0 is a constant amplitude and

gH(ω − ω0) =
1

π

γ/2

(ω − ω0)2 + (γ/2)2
. (5.20)

The shape of gH is Lorentzian, centred at ω0 with a full-width at half maximum given by γ.
52A monochromatic wave would just oscillate away forever; only a pure (co)sinusoidal oscillation is monochromatic.

57



The spring-electron model predicts that EM waves emitted via spontaneous emission follow a Lorentzian
frequency spectrum – exactly as confirmed by experiments. Spring-electron 1 - Everyone else 0.

5.4 Yes driving field

Let us now consider the response of a spring-atom to a monochromatic EM wave, E(t) = E0e
iωt. Note that we

omit the ~k ·~r phase term since the atom is not moving: we can set its fixed position as~r = 0.53 Equation (5.8)
becomes:

m
dx2(t)

dt2
+ γm

dx(t)

dt
+mω2

0x(t) = −eE0e
iωt. (5.21)

We anticipate a harmonic solution, i.e., that the electron oscillates at the same frequency as the driving:

x(t) = X(ω)eiωt, (5.22)

where X(ω) is a complex amplitude that can, in general, depend on frequency. Injecting this ansatz into
Eq. (5.21), evaluating the derivatives, and removing the common exponential terms, we derive

−mω2X(ω) + iγωmX(ω) +mω2
0X(ω) = −eE0. (5.23)

The solution is easy to find:

X(ω) =
e

m

E0

(ω2 − ω2
0)− iγω

. (5.24)

And so we see that the amplitude of the electron oscillations depends on the frequency ω of the driving field.
The amplitude has the largest magnitude when ω = ω0. In this case, the frequency of the driving laser matches
the atom’s resonance frequency. However, nonzero oscillation amplitudes can be achieved even if the driving
frequency is detuned from the resonance frequency. This is the classical description of the fact that atomic
transitions have finite linewidths.

5.5 Susceptibility

With the electron oscillation amplitude evaluated, we can calculate the polarisation using Eq. (5.3):

P (t) = −Nex(t) (5.25)

= −NeX(ω)eiωt (5.26)

= −Ne
2

m

1

(ω2 − ω2
0)− iγω

E0e
iωt. (5.27)

Thus, we see that, just like everything else, also the polarisation will oscillate at the driving frequency ω.
Furthermore, we clearly see that the polarization amplitude is linearly proportional to the incident electric field

53Also note that we will be using complex notation, and so only the real part of the solution describes the physical displacement.
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E(t) = E0e
iωt. From our earlier relationship P = ε0χ(ω)E, we can identify the linear susceptibility that we

set out to find:

χ(ω) = −Ne
2

mε0

1

(ω2 − ω2
0)− iγω

. (5.28)

It should be clear that the susceptibility depends on the frequency of the incident plane wave, thus faithfully
predicting the effects of dispersion. Furthermore, the susceptibility is a complex quantity: χ(ω) = χR(ω) −
iχI(ω). Below we first discuss the physical significance of the real and imaginary parts, and then consider
the values of the susceptibility in two different limits: far from a transition frequency and close to a transition
frequency.

5.5.1 Physical interpretation

We have seen that a plane EM wave in a medium has the form54

E(z, t) = E0e
i(ωt−kz), (5.29)

E(z, t) = E0e
−kIzei(ωt−kRz), (5.30)

where the wave number satisfies the dispersion relation

k(ω) =
ω

c

√
1 + χ(ω). (5.31)

Typically we are interested in frequencies far from an atomic resonance; the only exception comes when we
deal with lasers, but in this case the number of active atoms/ions is typically small, N ∼ 1012 m−3. In either
case, we have χR,I � 1, allowing us to approximate

√
1 + χ ≈ 1 + χ/2, yielding

k(ω) = kR(ω)− ikI(ω) ≈ ω

c

(
1 +

χR(ω)

2

)
− iω

c

χI(ω)

2
. (5.32)

To summarise:

kR(ω) =
ω

c

(
1 +

χR(ω)

2

)
,

kI(ω) =
ω

2c
χI(ω).

(5.33)

(5.34)

We can now assign physical significance to the real and imaginary parts of the susceptibility:

• By defining kR, the real part of χ(ω) sets the wavelength and phase velocity of an EM wave
propagating in the medium. In other words, χR(ω) defines the usual (real) refractive index of the
medium: n(ω) ≈ 1 + χR(ω)

2 .

• By defining kI, the imaginary part of χ(ω) is responsible for attenuation/amplification of the EM
wave.

54For simplicity, we assume linear polarisation and propagation along z.
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5.5.2 Off-resonance susceptibility

Far from the resonance frequency (|ω − ω0| � γ), we can approximate the susceptibility as55

χ(ω) = −Ne
2

mε0

1

ω2 − ω2
0

. (5.35)

The susceptibility is completely real:

If the frequency of an EM wave is far from a material resonance frequency, it will experience neither
amplification or attenuation. The material is transparent.

The refractive index will, however, depend on frequency, with a profile given by

n2(ω) = 1 + χ(ω) = 1− Ne2

mε0

1

ω2 − ω2
0

. (5.36)

An example of such a curve is shown in Fig. 24(a). Real materials have strong resonances at ultraviolet fre-
quencies, and so the refractive indices around optical (e.g. visible and infrared) frequencies typically follow
curves very similar to that shown in Fig. 24(a), i.e., they monotonically decrease (increase) with wavelength
(frequency), diverging at frequencies close to resonance. This is illustrated in Fig. 24(b), where we plot n(λ)
for several different materials.

Of course, real materials have resonances at many different frequencies, each corresponding to a transition
between a different pair of energy levels. In this case, the full susceptibility can be approximated as a superpo-
sition of susceptibilities arising from different transitions. Significantly, for frequencies far from the resonance
frequencies, the refractive indices of real materials can be well approximated by a Sellmeier equation56:

n2(ω) = 1−
∑
j

aj
ω2 − ω2

j

, (5.37)

where ωj is an atomic resonance and aj is a constant that describes the strength of the transition.57 By com-
paring with Eq. (5.36), it should be evident that each term of the Sellmeier equation represents an atomic
transition. The Sellmeier equation is of key importance in optical system design. At this point we highlight one
key conclusion that derives from our analysis so far:

Resonances between atomic energy levels underlie the fact that refractive indices depend on frequency.
In other words, chromatic dispersion originates from the fact that electrons can be excited from one
discrete energy level to another.

55ω2 − ω2
0 − iγω = ω[(ω − ω0)(ω + ω0)/ω − iγ]. Since (ω + ω0)/ω > 1 and |ω − ω0| � γ, the γ term is negligible.

56More often the Sellmeier equation is given in terms of wavelength λ.
57aj is similar toNe2/(mε0), but also has a quantum mechanical correction term. Normally both aj and ωj are obtained empirically.
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Figure 24: (a) Refractive index arising from a single Lorentzian resonance. Calculated for a resonance wavelength
λ0 = 116 nm and macroscopic density ρ = 2200 kgm−3. These values correspond to fused silica (SiO2). (b) Refractive
indices of various real materials.

Equation 5.36 predicts a curious phenomenon: for frequencies ω > ω0, the refractive index will be less
than unity. As resonances typically occur in the ultraviolet, this would suggest that the speed of an EM wave
in a medium can exceed the speed of light in vacuum (v = c/n) for frequencies beyond the UV. It turns
out that this is indeed possible, and X-rays for example can routinely travel faster than the speed of light. No
violation of special relativity or causality is taking place, however, as v = c/n is only the wave’s phase velocity;
information, it turns out, always travels slower than this, happily respecting relativity. Of course, it should be
emphasised that real atoms have many resonances and the actual refractive index arises through the interplay
of all the different resonances (as in the Sellmeier equation). Accordingly, one cannot conclude that the phase
velocity always exceeds the speed of light for frequencies below a resonance (another resonance may lift the
refractive index above unity).
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5.5.3 On-resonance susceptibility

Close to a resonance frequency ω ≈ ω0, allowing us to approximate (ω2 − ω2
0) = (ω − ω0)(ω + ω0) ≈

2ω0(ω − ω0). With this approximation, the susceptibility becomes

χ(ω) = − Ne2

2mε0ω0

1

(ω − ω0)− iγ/2
(5.38)

This time, the imaginary part is nonzero. Using the convention χ(ω) = χR(ω)−iχI(ω), the real and imaginary
parts read

χR(ω) = − Ne2

2ε0mω0

(ω − ω0)

(ω − ω0)2 + (γ/2)2
,

χI(ω) =
Ne2

2ε0mω0

γ/2

(ω − ω0)2 + (γ/2)2
,

(5.39)

(5.40)

with typical profiles depicted in Fig. 25. The first thing we note is that the imaginary part has the exact same
Lorentzian profile as the one we derived for spontaneous emission. To gain more insight, we write the evolution
of the intensity of our EM wave as

I(z, ω) = |E(t, z)|2 = |E0|2e−2kIz = |E0|2e−α(ω)z, (5.41)

where we used Eq. (5.34) to define
α(ω) =

ω0

c
χI(ω). (5.42)

Because all the coefficients multiplying the Lorentzian profile in Eq. (5.40) are positive, we have χI(ω) > 0 for
all ω. This implies that α(ω) > 0, allowing us to conclude:

Atoms modelled by the spring-electron model absorb EM waves whose frequencies are close to
the atom’s transition frequency. This constitutes the classical description of absorption.

The Lorentzian absorption profile signifies that, if a range of EM waves with different frequencies (but
identical amplitudes) are injected into the medium, then the spectrum coming out of the medium will have a
dip following the Lorentzian profile.

5.6 What about stimulated emission?

We have now seen that our simple spring-electron model correctly accounts for the (i) frequency-dependence
of the refractive index, (ii) spontaneous emission, (iii) the fact that atomic transitions have finite linewidths, and
(iv) absorption. But what about stimulated emission?

If the imaginary part of the susceptibility would be negative, the intensity of our EM wave would increase
exponentially with propagation (α(ω) < 0). As we have seen earlier in section 3.9, this would be a clear
signature of light amplification via stimulated emission. But unfortunately, we have just argued that, because
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Figure 25: Real (dashed black curve) and imaginary (solid red curve) parts of the normalised susceptibility χ(ω) close to
an atomic resonance. The normalisation is such that the maximum of the imaginary part is unity.

all the coefficients multiplying the Lorentzian in Eq. (5.40) are positive, χI(ω) < 0. No wonder that the
stimulated emission remained hidden until Einstein hypothesised it in 1917 using the photon description of
light!58

But wait a minute, what if N should not be interpreted as the density of atoms (which is always strictly
positive), but rather as the difference between populations in two energy levels: N = N1 − N2? Then we
would find that, under conditions of population inversion (N2 > N1), N < 0: hence the imaginary part of the
susceptibility becomes negative and our EM wave will be exponentially amplified! We get stimulated emission!

There is more. Using N = N1 − N2 = −∆N , where ∆N is the population inversion as defined in
Section 3.9, we can re-write the expression for exponential amplification from above:

I(z, ω) = |E0|2eσ∆Nz, (5.43)

where

σ(ω − ω0) =
ω0

c

χI(ω)

N
=

e2

2ε0cm

γ/2

(ω − ω0)2 + (γ/2)2
. (5.44)

58Note that the electron oscillator model is much older.
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By interpreting N = N1 − N2 as the difference in populations at the two energy levels of the atomic
transition, the spring-electron model not only predicts exponential amplification via stimulated emission,
but it even provides a classical prediction for the interaction cross-section σ(ω) defined in terms of
Einstein coefficients in Section 3.9! And the best part is that the prediction is very close to reality: a
fully quantum mechanical calculation yields

σQM(ω) =
σ(ω)

f
, (5.45)

where the constant factor f is the so-called “transition strength”. This shows that the spring-model
provides the correct qualitative picture, of light-matter interactions. Furthermore, for strong transitions
f ≈ 1, highlighting that even quantitative agreement is not beyond reach.

Problems

5.1 Consider a co-sinusoidal wave with angular frequency ω:

E(t) = E0 cos(ωt).

(a) Analytically compute the Fourier transform of the wave.

(b) Write a computer code that uses FFT (Fast Fourier transform) to calculate the wave’s Fourier trans-
form when ω = 2π × 200 THz and E0 = 1 V/m. Hint: the time grid used to sample the wave
should be an integer multiple of the wave period, i.e., tspan = N × 2π/ω. Can you explain why?

(c) Plot the numerically computed power spectrum as a function of frequency. Throughout all exercises
and assignments, you can normalize the spectrum to unity.

(d) Consider now a corresponding complex field

E(t) = E0e
iωt.

Repeat parts (a) and (b) and comment on the difference.

5.2 Consider a co-sinusoidal carrier wave with frequency ω0 = 2π×200 THz that is modulated with another
co-sinusoidal wave with frequency ∆ω = 2π × 10 THz:

E(t) = E0 cos(ω0t)× cos(∆ωt).

For the amplitude E0, you can pick whatever you want...

(a) Write a computer that code that plots the field as a function of time.

(b) Write a computer code that uses FFT to calculate the fields’s Fourier transform. Hint: the time grid
used to sample the wave should be an integer multiple of of both wave periods...

(c) Plot the numerically computed power spectrum as a function of frequency. You only need to consi-
der positive frequencies.
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(d) Interpret the power spectrum in light of what you know about beat signals / notes / frequencies...

5.3 Consider the classical electron oscillator model in the absence of a driving electric field:

m
dx2(t)

dt2
= −mω2

0x− γm
dx

dt
.

(a) Show that, in the limit of small damping (ω0 � γ), the general solution of the equation can be
written as:

x(t) = Ae−γt/2 cos (ω0t+ δ). (5.46)

(b) The oscillating electron gives rise to an oscillating dipole moment p(t) = −ex(t). It is well-known
that dipoles emit EM radiation, and that far away from the dipole, the radiation field obeys

E(t) ∝ d2p(t)

dt2
.

Show that, in the small damping limit, Eq. (5.46) results in the following far-field EM radiation
profile:

E(t) = E0e
−γt/2 cos (ω0t+ δ).

(c) Analytically prove that the spectrum of E(t) given above is a Lorenzian.

(d) Write a computer code that explicitly calculates the Fourier transform of E(t), and show that the
spectrum is a Lorentzian. For the numerical part, you can use the following parameters: γ =
2π × 15 THz, ω = 2π × 300 THz, and δ = 0.

5.4 (a) Write down the equation of motion for the classical electron oscillator model.

(b) Define all the terms in the equation, and describe their physical interpretation.

(c) Show mathematically that, for plane wave driving at frequency ω, this equation yields an expression
for the electric susceptibility χ given by

χ(ω) = −Ne
2

mε0

1

(ω2 − ω2
0)− iγω

.

(d) Derive expressions for the real and imaginary components of the electric susceptibility, following
the definition χ = χR − iχI, when ω ≈ ω0, i.e., near resonance.

(e) Sketch carefully labelled graphs of χR and χI as a function of (ω − ω0)/γ and describe, in one or
two sentences only, the physical effect each of these has on a propagating plane wave.

(f) With respect to the “real” world, what are the limitations of the electron oscillator model and why?
How can we extend its validity?

5.5 Consider a Gaussian pulse:
E(t) = E0e

−t2/T 2
0 , (5.47)

where T0 characterises the width of the pulse.

(a) Analytically compute the Fourier transform of the pulse.
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(b) How does the frequency bandwidth of the power spectrum (absolute value squared of the Fourier
transform) depend on the pulse duration?

(c) Interpret the relationship between the frequency bandwidth and pulse duration in light of Heisen-
berg’s uncertainty principle.

5.6 In the lecture notes, we derived an expression for the electron displacement x(t) in the absence of a
driving field [Eq. (5.13)]. In particular, we showed that, if the atom is initially excited (A 6= 0), it will
undergo exponentially damped oscillations. Furthermore, we showed that the electron’s Fourier spectrum
has a Lorentzian shape. Here we will perform an alternative derivation of all this.

(a) Show that the Fourier transform, as defined by Eq. (4.65), satisfies the following property:

F
[
dx(t)

dt

]
= (iω)X̃(ω),

where X̃(ω) = F [x(t)] is the Fourier transform of x(t).

(b) For the atom to be initially excited, there must some form of initial excitation. We will assume
this excitation occurs at t = 0, and we will model it using a Dirac delta function. In this case, the
equation of motion reads:

m
dx2(t)

dt2
= −mω2

0x− γm
dx

dt
− eE0δ(t).

Take the Fourier transform of both sides of the equation, and derive an expression for the Fourier
transform X̃(ω).

(c) Show that, with the usual assumption γ � ω0, the Fourier spectrum of x(t) (i.e., |X(ω)|2) has a
Lorentzian shape.

(d) If you are brave enough, take the inverse Fourier transform ofX(ω) to obtain the time-domain field.

5.7 Consider the equation of motion of the classical electron oscillator in the presence of a plane EM wave:

m
dx2(t)

dt2
= −mω2

0x− γm
dx

dt
− eE(t).

(a) Take the Fourier transform of both sides of the equation, and derive an expression for the Fourier
transform X̃(ω).

(b) Take the inverse Fourier transform of X̃(ω) to show that Eq. (5.22) [together with Eq. (5.24)] of the
lecture notes provides a general solution to the equation.

5.8 Write a computer code that uses the Sellmeier equation to calculate the refractive index of a given ma-
terial at a given wavelength. In particular, the code should take the relevant Sellmeier coefficients and
wavelength as inputs, and then return the correct refractive index. Use the code to plot the refractive indi-
ces of the following materials as a function of wavelength (λ = 350 nm...1600 nm): fused silica (normal
glass), magnesium fluoride (MgF2), and water (H2O). Hint: The website www.refractiveindex.info is
extremely useful for finding Sellmeier coefficients!
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6 Resonators

We have now seen from two different perspectives that the intensity of light propagating in an absorbing or
amplifying medium evolves as

dI(ω)

dz
= gI(ω). (6.1)

where we defined the gain coefficient59

g = σ21(ω − ω21)∆N. (6.2)

In general, the gain coefficient depends on both frequency (through the frequency dependence of the cross-
section) and on intensity (through the intensity dependence of the inversion ∆N ), but we omit both for simpli-
city. In the small-signal limit, where I � Isat, the population inversion is constant [see Section 3.12] and the
attenuation or amplification is simply exponential:

I(z, ω) = I(0, ω)egz. (6.3)

Laser operation typically starts from spontaneous emission, which creates a single “seed” photon that
is subsequently amplified via stimulated emission. A single photon carries insignificant energy, implying
I(0, ω) � 1. Compounded by the fact that the gain coefficient is typically close to unity, this would sug-
gest that the active medium must be enormously long (z � 1 m) to reach significant levels of intensity. As
this is not practical, an alternative solution is needed. That solution is to employ an optical resonator60, which
is a device in which light can be made to circulate back and forth. In this way, light can pass through the
active medium numerous times, being slightly amplified at each transit until some steady-state situation with
significant intracavity intensity is reached.

In addition to lasers, resonators have many other applications. For example, they can be used in absorption
spectroscopy to enhance the sensitivity of detection.61 They can also be used as very high-resolution spectro-
meters that allow the wavelength of light to be determined with great precision. Other applications include
sensing and nonlinear optics.

In this Section, we describe the basic physics of optical resonators. In particular, we will look at a resonator
that does not contain an amplifying or an attenuating medium, and that is simply comprised of two partially
reflective parallel mirrors as shown in Fig. 27: a Fabry-Perot resonator. To describe the characteristic resona-
tor behaviour, we consider the situation where light is externally injected into the resonator. Because partially
reflective mirrors are key to the operation of optical resonators, we begin by briefly considering their complex
reflection and transmission coefficients.

6.1 Phase shifts in lossless reflection and transmission

We consider a partially reflecting mirror, illuminated from left and right by two electromagnetic waves with
complex scalar amplitudesEa andEb (see Fig. 26). Both input waves will be partially transmitted and reflected,

59Be wary not to confuse the gain coefficient with the lineshape function.
60Also known as optical cavity.
61Even small absorption features can become visible when light passes several times through the sample.
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partially reflective
mirror

Figure 26: Partially reflecting mirror which transforms two input EM waves Ea and Eb (blue) into two output waves Ec

and Ed (red).

giving rise to output waves Ec and Ed. The output fields are related to the input fields as

Ec = racEa + tbcEb, (6.4)

Ed = rbdEb + tadEa, (6.5)

where rnm and tnm are the complex reflection and transmission coefficients describing the reflection/ transmis-
sion En → Em. Assuming that the mirror is lossless, energy must be conserved, which also implies that the
total intensity must be conserved. We can thus write

|Eout|2 = |Ein|2, (6.6)

|Ec|2 + |Ed|2 = |Ea|2 + |Eb|2. (6.7)

Expressing the reflection and transmission coefficients in polar form [e.g. rnm = |rnm| exp (iφnm)], we find
that the following two conditions must hold:

|rac|2 + |tad|2 = |rbd|2 + |tbc|2 = 1, (6.8)

φbd + φbc − φac − φad = π. (6.9)

Because only relative phases are important, we can choose the phases associated with transmission to be zero.
The condition above then reduces to φbd = φac + π, and we obtain our final result:

tad = tbc,

rac = −rbd.

(6.10)

(6.11)

And so we see that the transmission coefficients are identical irrespective of the direction, while a π (relative)
phase shift occurs depending on the direction of reflection.
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mirror mirror

Figure 27: Schematic illustration of a driven Fabry-Perot resonator, consisting of two partially reflective mirrors separated
by a length L. The mirrors’ complex transmission and reflection coefficients are t1,2 and r1,2, respectively. For simplicity,
the field components reflected by the resonator, i.e., those exiting on the side of the driving field, are not shown.

It is worth highlighting that the condition above is an “abstract” requirement for energy conservation in
any partially reflecting mirror. In real mirrors the phases cannot be chosen arbitrarily, but they depend on the
construction of the mirror; however, if the mirror is lossless, the phase shifts must satisfy the general condition
above.

6.2 Fabry-Perot intensity transmission

We now describe the physics of a simple Fabry-Perot resonator, consisting of two partially reflecting mirrors
with amplitude reflection and transmission coefficients r1,2 and t1,2, respectively. To ensure that the mirrors
conserve energy (as per discussion above), we insist that reflections from the inner surfaces are positive (r1,2 >
0) while reflections from the outer surfaces are negative (−r1,2 < 0).62

A monochromatic EM wave E = Eine
i(ωt−kz) is continuously injected into the resonator, giving rise to

an intracavity field bouncing back and forth between the two mirrors. Some part of the injected field only
completes one transit before it escapes, while another part completes multiple bounces back and forth. The
field at the cavity output corresponds to the superposition of all the fields that are partially transmitted after
different numbers of transits around the cavity. In steady-state operation, we can find an expression for that
output by summing up all the fields that are partially transmitted after different round trips.

LettingEn correspond to the complex amplitude63 of the EM wave that is transmitted after n cavity transits,
we can write the total complex amplitude of the transmitted field as

ET = E1 + E2 + E3 + · · · (6.12)

During a full cavity transit (i.e., from mirror 2 to mirror 1 and back), the amplitude of the intracavity field is
62As we shall see, this decision does not play any role when evaluating the transmitted field, but becomes important when considering

the reflected field.
63The full field is E = Ene

i(ωt−kz).
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reduced by reflections at the two mirrors. Furthermore, the phase of the field changes as e−iδ, where δ = 2kL
and L is the length of the resonator64. Expressions for the complex amplitudes En are easy to find iteratively:

Complex amplitudes transmitted after n round trips in a Fabry-Perot resonator

E1 = t1t2e
−iδ/2Ein The injected field is transmitted by both mirrors and exits immediately.

E2 = r2r1e
−iδE1 The field reflects from mirror 2 and mirror 1 and is then transmitted.

E3 = r2r1e
−iδE2 The field reflects twice from both mirrors and is then transmitted.

...

It is easy to see that the total transmitted field can be written as a geometric series:

ET = t1t2e
−iδ/2Ein

(
1 + r1r2e

−iδ + (r1r2)2e−i2δ + · · ·
)
. (6.13)

As |r1r2| < 1, the sum converges and we obtain

ET = t1t2e
−iδ/2Ein

1

1− r1r2e−iδ
. (6.14)

Typically we are more interested in intensities than field values, and so we evaluate IT = |ET|2:

IT

Iin
=

T1T2

1 +R1R2 − 2
√
R1R2 cos(δ)

. (6.15)

Here T1,2 = |t1,2|2 and R1,2 = |r1,2|2 are the intensity transmission and reflection coefficients of the two
mirrors, respectively.65 After some algebra, we obtain the “standard” form for the intensity transmission of a
Fabry-Perot resonator:

IT

Iin
=

T1T2

(1−
√
R1R2)2

1

1 + F sin2(δ/2)
,

F =
4
√
R1R2

(1−
√
R1R2)2

.

(6.16)

(6.17)

64This phase shift simply arises because of the usual exp (−ikz) factor associated with the propagation of EM waves. Note that
we do not need to keep track of the exp(iωt) terms since this phase is common to all the waves; the propagation phase is not, since
different waves travel different distances (round trips).

65Energy conservation requires R1,2 + T1,2 = 1.
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Figure 28: Fabry-Perot transmission for two identical mirrors with R1 = R2 = R = 0.8.

When the mirrors are identical, such that R1 = R2 = R, the expressions simplify considerably:

IT

Iin
=

1

1 + F sin2(δ/2)
,

F =
4R

(1−R)2
.

(6.18)

(6.19)

6.3 Longitudinal modes

For fixed mirror parameters, the intensity transmission of a Fabry-Perot depends only on the round trip phase
shift δ. Figure 28 shows a typical transmission curve, calculated for parameters listed in the caption. As
expected based on the sinusoidal dependence on δ, the transmission is periodic. The transmission is maximised
when sin2(δ/2) = 0, i.e., for δ = 2mπ where m is an integer. This condition means that the roundtrip phase
shift is an integer multiple of 2π, implying that all the different waves corresponding to different round
trips will be in phase at each position along the cavity. As a consequence, the waves reinforce each other via
constructive interference, giving rise to a large intensity.

Because δ = 2kL = 4πL/λ, the transmission is maximised for wavelengths

λm =
2L

m
. (6.20)

These wavelengths are known as resonance wavelengths, and the corresponding frequencies

fm =
c

nλm
=

c

2nL
m (6.21)

are known as resonance frequencies (n is the refractive index). Just like for waves on a string, the resonances
correspond to arrangements in which an integer number of half-wavelengths fits in the resonator. Furthermore,
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as the EM wave is bouncing between the two mirrors, it is travelling in both directions in the cavity, thus
forming a standing wave pattern (just like waves on a string). These standing wave patterns are known as the
longitudinal modes of the cavity.

6.4 Reflected field

The analysis above reveals that only those wavelengths that are on-resonance66 will be transmitted by a Fabry-
Perot. If the wavelength of the injected field falls outside of a resonance, it will not be transmitted. In other
words, a Fabry-Perot acts as a spectral filter with a comb-like response. But of course, energy must be conser-
ved, so where does the light go if it is not transmitted? Let us look at the reflection side of things.

The analysis proceeds exactly as before. The only thing to note now is that the first partially reflected field
arises immediately from the reflection of the injected field from the outer surface of mirror 1. In keeping with
our previous convention, we assign a π phase shift to that reflection to ensure energy conservation. Therefore
the first reflected field isE0 = −r1Ein.67 As we are lazy, we assume for simplicity that the mirrors are identical,
such that r1 = r2 and r1 = r2.

Complex amplitudes reflected after n round trips in a Fabry-Perot resonator

E0 = −rEin The injected field is reflected immediately by mirror 1.

E1 = trte−iδEin The field transmits through mirror 1, bounces from mirror 2, and exits.

E2 = rre−iδE1 The field reflects twice from both mirrors and then exits.

...

The total reflected field is the sum of all of the partially reflected waves,

ER = E0 + E1 + E2 + E3 · · · , (6.22)

= −rEin + trtEine
−iδ
[
1 + rre−iδ + (rr)2e−i2δ · · ·

]
. (6.23)

The term in brackets can again be identified as a converging geometric series. After some algebra, we obtain
the following expression for the total reflected intensity IR = |ER|2:

IR

Iin
=

F sin2(δ/2)

1 + F sin2(δ/2)
, (6.24)

66Or close to a resonance.
67Notice that, in contrast to the analysis of the transmitted wave, there will now be waves transmitted and reflected in both directions

at mirror 1. Energy conservation requires that there is a π phase difference between reflection/transmission from the inner resonator
side and reflection/transmission from the outer side. We choose the reflection from the outer surface to carry that full phase shift, but
emphasize that this is an arbitrary choice.
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Figure 29: Fabry-Perot transmission and reflection curves for two identical mirrors with R1 = R2 = R = 0.8.

where F is given by Eq. (6.19). In Fig. 29 we plot the transmitted and reflected intensities given by Eqs. (6.18)
and (6.24), respectively, for parameters listed in the caption. As can be seen, wavelengths that are not transmit-
ted are reflected (and vice versa). Mathematically, it is a simple task to verify that IT + IR = Iin.

6.5 Basic properties of (Fabry-Perot) resonators

In this Subsection we discuss some key properties of (Fabry-Perot) resonators. For simplicity, we consider the
case where the two mirrors are identical, such that the reflected and transmitted intensities are governed by
Eqs. (6.18) and (6.24).

Energy storage

On resonance, the transmitted intensity is equal to the injected intensity, IT = Iin. On the other hand,
the intracavity intensity is given by

Icav =
IT

T
. (6.25)

Because T < 1, this implies that, on resonance, the intracavity intensity exceeds the injected intensity.
Thus, a (Fabry-Perot) resonator stores energy, acting as a light capacitor.
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Figure 30: Transmission for a symmetric Fabry-Perot resonator (R1 = R2 = R) with three different mirror reflectivity.

Free-spectral range

The resonance frequencies are equally-spaced, and the separation between two adjacent resonances is
known as the free spectral range (FSR). From Eq. (6.21), we find

FSR = fm+1 − fm (6.26)

=
c

2nL
(m+ 1)− c

2nL
m (6.27)

=
c

2nL
. (6.28)

And so the frequency spacing between adjacent longitudinal modes (i.e. the FSR) is fully determined by
the length of the resonator and the refractive index of the material inside it. Note that, strictly speaking,
the above equation is only true for a resonator consisting of two mirrors between which light is bouncing
back and forth. For arbitrary resonators, the FSR is given by

FSR =
c

nLc
, (6.29)

where Lc is the round trip length of the resonator. It should be clear that FSR = t−1
R , where t−1

R is the
time that it takes for light to complete one round trip. This is a general result that is applicable to all
kinds of resonators, even those that are made out of many different materials with different refractive
indices: the FSR is given by the inverse of the total round trip time.
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Resonance widths

The half-width at half-maximum of a single transmission resonance peak can be solved from

IT

Iin
=

1

1 + F sin2 (δ0.5/2)
=

1

2
. (6.30)

Rearranging, we obtain

sin2 (δ0.5/2) =
1

F
. (6.31)

This expression shows that the larger F , the narrower the resonances. On the other hand, F → ∞ as
the mirror reflectivity R → 1. The resonances are thus narrow for cavities made of mirrors that have
high reflectivity. Such cavities are said to have low loss, since only a small amount of light is lost each
round trip.a Figure 30 illustrates the trend, showing the transmission curves for a variety of R.

When F � 1, the resonance width δ0.5 � 1. We can then approximate sin2 (δ0.5/2) ≈ δ2
0.5/4,

obtaining the full-width at half-maximum

δFWHM = 2δ0.5 ≈
4√
F
. (6.32)

aRecall that the transmission T = 1−R.

Finesse and quality factor

The finesse of a resonator is defined as the ratio between the FSR and the resonance full-width at half
maximum (expressed in frequency):

F =
FSR
∆f

=
2π

2δ0.5
, (6.33)

where the second expression comes from the fact that one FSR corresponds to 2π in phase. Using
2δ0.5 ≈ 4/

√
F , we can write

F ≈ π
√
F

2
=

π
√
R

1−R
. (6.34)

For R ≈ 1, we can further approximate

F ≈ π

1−R
=
π

T
. (6.35)

The expression above shows that the finesse is governed by the mirror reflectivity R. In particular,
we see that a large reflectivity gives rise to large finesse; in others words, a low-loss cavity has high
finesse, and accordingly sharp resonances. This is a general property of all resonators. Indeed, one
finds in general that finesse is fully governed by the cavity losses. For arbitrary resonators, it can be
approximately written as

F ≈ 2π

1− ρ
, (6.36)
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where 1 − ρ is the total intensity lost per round trip. For our symmetric cavity, the total loss
1 − ρ = (1 − R2) = (1 − R)(1 + R) ≈ 2(1 − R) = 2T , yielding our earlier expression. It is worth
highlighting that all of the approximations above are valid in the good-cavity limit, for which the finesse
is large: F � 1

The finesse of an optical resonator is a very important characteristic. In fact, any given resona-
tor is fully characterised by its FSR and finesse; FSR describes the spacing of the longitudinal modes,
while the finesse characterises the cavity losses and the sharpness of the resonances. Furthermore, both
FSR and the finesse can be easily accessed experimentally, by simply measuring the transmission as the
frequency of the injected laser is scanned.

Another quantity – closely related to the finesse – that is often used to describe the losses of a
resonator is the resonator quality-factor (Q-factor). There are two definitions for Q-factor, which can
be shown to be equivalent in the limit Q � 1 (this is always the case for optical resonators). First,
the Q-factor can be defined as the ratio between energy stored in the resonator and the energy lost per
oscillation cycle; second, Q-factor can be defined as the ratio between the resonance frequency and the
width of that resonance. Mathematically:

Q =
ωpEst

Pdis
=

ωp
∆ω

, (6.37)

where Est is the energy stored, Pdis is the rate at which energy is lost, and ωp is the pth resonance
(angular) frequency with width ∆ω. It is easy to see that the relationship between the Q-factor and the
finesse is simply

Q =
ωpF

2πFSR
(6.38)

Cavity photon lifetime

Yet a third quantity describing the cavity losses is the cavity photon lifetime. It can be understood as
the average time that a photon persist in the resonator after the injected field is turned off. If we have
φ0 photons in the cavity before the injected field is turned off, then after one roundtrip we are left with
φ1 = R2φ0, after two roundtrips φ2 = R2φ1 and so on. We can thus write a rate equation for the photon
number:

∆φ

∆t
=
R2φ− φ

tr
, (6.39)

where tR = 2nL/c is the round trip time (i.e., the time it takes for light to complete one round trip). In
the limit ∆t→ 0, the finite differences become differentials:

dφ

dt
= − φ

τph
, (6.40)
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where the cavity photon lifetime

τph =
tR

1−R2
=

1

FSR(1−R2)
. (6.41)

Clearly the photon number decays exponentially, with a time constant corresponding to the photon
lifetime:

φ(t) = φ(0)e−t/τph . (6.42)

Thus, indeed, the photon lifetime describe the lifetime of photons in the cavity. For low-loss cavities
(R ≈ 1), the photon lifetime is related to the cavity finesse as

τph =
tR
2π
F . (6.43)

The larger the finesse the larger the photon lifetime, as expected. Last but not least, recalling that
tR = FSR−1 and F = FSR/∆f , we find that

τph =
1

2π∆f
, (6.44)

where ∆f is the width of the resonance.

Problems

6.1 Consider electromagnetic waves Ea and Eb incident on a partially reflecting mirror from different sides
of the mirror. Through reflection and transmission, the incident waves transform into output waves Ec

andEd [see Fig. 26]. Show that, for a lossless mirror, the complex transmission and reflection coefficients
must satisfy the following two conditions:

|rac|+ |tad| = |rbd|+ |tbc| = 1

φbd + φbc − φac − φad = π,

where the subscript ij denotes reflection or transmission from input waves Ei onto output wave Ej .

6.2 Consider a Fabry-Perot etalon made from two identical mirrors, with nothing but air in between the
mirrors. Answer the following questions:

(a) The Fabry-Perot’s free-spectral range is measured to be 10 GHz. What is its length, i.e., the distance
between the mirrors?

(b) The resonator’s finesse is F = 100. What is the spectral full-width at half-maximum of its trans-
mission peaks?

(c) Calculate the reflectivity of the mirrors.

(d) The measured power transmitted by the resonator is 1 mW. What is the optical power inside the
Fabry-Perot?
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6.3 A Fabry-Perot etalon can be used as a very high-resolution optical spectrum analyzer, i.e., a device that
can resolve closely-spaced optical frequencies. Devise a way to use a Fabry-Perot for this purpose.
Considering a Fabry-Perot composed of two identical mirrors with R = 0.99 separated by d = 10 cm,
answer the questions below. You can assume the light examined to be visible, such that λ0 ≈ 500 nm
and f0 = c/λ0 ≈ 600 THz

(a) What is the frequency resolution of the Fabry-Perot -based spectrum analyzer?
(b) What is the corresponding wavelength resolution?
(c) What is the resolving power of the spectrum analyzer? (You may need to google the definition.)

6.4 Consider a Fabry-Perot resonator composed of two identical mirrors. Write a computer code that shows
that the profile of a single cavity resonance can be approximated with a Lorenzian curve:(

IT

Iin

)
δ�2π

≈ (γ/2)2

δ2 + (γ/2)2
.

What should the variable γ be in terms of the cavity parameters? Compare the expression above with the
full “Airy” function [Eq. (6.18)] by plotting the two curves together.

6.5 Researchers at the University of Auckland are very interested in ultra-high-quality microresonators.
These are tiny ring resonators which exhibit characteristics similar to a Fabry-Perot resonator. The ex-
pression for the optical power inside such a ring resonator is given by:

Pcavity

Pin
=

T

(1−√ρ)2
[
1 + F sin2(δ/2)

] ,
where T is the power transmission coefficient of the coupler used to inject light into the resonator (akin
to a partially reflective mirror), Pin is the input power, F = 4

√
ρ/(1 − √ρ)2, and the coefficient ρ

corresponds to the fraction of power left after one round trip: accordingly, 1 − ρ represents the total
power lost per round trip.

(a) In a recent study,68 the researchers investigated a silica microsphere resonator whose major diameter
d = 250 µm. Calculate the resonator’s free-spectral range. Hint: Consider the round trip length
and remember that the refractive index of silica n ≈ 1.45.

(b) To measure the finesse of the microsphere resonator, the researchers scanned the frequency of a
tunable laser across a cavity resonance. From the measured signal, they inferred the resonance
linewidth to be about ∆f ≈ 5.2 MHz. Calculate the finesse of the resonator.

(c) Calculate the value of the parameter ρ, and comment on the amount of power lost per round trip.
(d) Calculate the photon lifetime of the resonator. How many round trips does a photon spend inside

the cavity on average without decaying?
(e) In their experiments, the power of the driving field was set to Pin = 80 mW. What is the intracavity

power when the driving laser is exactly on-resonance? You can assume that the coupling is critical,
such that T = (1− ρ)/2.

(f) When writing the constitutive relation P = ε0χE, we assumed light intensities not to be hu-
mongous. Do you think this is a reasonable assumption in this experiment?

68K. E. Webb et al., Opt. Lett. 41, 4613 (2016).
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7 Fabry-Perot Lasers

The preceding Section surveyed the basic physics and key characteristics of (Fabry-Perot) resonators. In the
analysis, the cavity was assumed to be filled with a material of refractive index n that was neither absorbing
nor amplifying. In this Section, we consider a full laser system, i.e., the situation in which an active medium is
placed inside the resonator. Without loss of generality, we assume the reflection coefficients r1,2 to be real and
positive.69

Figure 31 schematically illustrates the general situation. An active medium, with population inversion ∆N
and length lc, is separated from mirror 1 (mirror 2) by a distance l1 (l2). As the light passes through the active
medium, it will be exponentially amplified with a gain coefficient g = σ21(ω − ω21)∆N . For the sake of
generality, we also include the possibility of absorption or scattering losses in the active medium; these will
exponentially attenuate the beam with a loss coefficient α. Note that the frequency-dependence of the gain
and loss coefficients is not explicitly written for clarity. Furthermore, we assume that, during a single transit
through the active medium, the inversion ∆N stays constant; however, we allow the inversion to change over
consecutive round trips, implying the same for the gain coefficient g.

Figure 31: Schematic illustration of a simple Fabry-Perot laser. An active medium is placed in between two mirrors that
form a Fabry-Perot resonator. External pumping provides energy needed to achieve population inversion.

7.1 Threshold gain and inversion

Laser operation begins with spontaneous emission creating a small field with broad bandwidth70. We denote the
initial complex amplitude at frequency ω as E0(ω). During one round trip, the field is exponentially amplified
(or attenuated) in the active medium, reflected by both mirrors, and it acquires a phase shift due to propagation

69In other words, the π phase shift occurs somewhere else.
70Photons across the whole lineshape are created.

79



in air and in the active medium. Mathematically, after one round trip the field component is

E1(ω) = r1r2E0(ω)e(g−α)lc e−iδ. (7.1)

Here δ = δ1 + δ2 + δc is the total phase shift per round trip, with δ1,2 = 2k0l1,2 = 4πl1,2/λ0 representing
the phase shift due to propagation in air, and δc = 2klc = 4πnlc/λ0 the corresponding phase shift due to
propagation in the active medium.71

For the spontaneous emission seed to be amplified, the gain must be sufficiently high to overcome losses
arising from scattering in the active medium as well as mirror reflections. In particular, we require |E1(ω)| >
|E0(ω)|. This condition is achieved when

r1r2e
(g−α)lc > 1, (7.2)

Solving for the gain coefficient yields

g > gt = α− 1

lc
ln (r1r2), (7.3)

where we defined the threshold gain gt coefficient: the minimum gain required for laser oscillation.
The threshold gain allows us to obtain a corresponding threshold population inversion, i.e., the minimum

inversion needed for laser operation:

∆Nt =
gt

σ21(0)
=

1

σ21(0)

[
α− 1

lc
ln (r1r2)

]
=

αtot

2lcσ21(0)
, (7.4)

where we introduced the total exponential loss αtot
72 and set ω = ω21 as we are interested in the minimum

inversion required.73

71Note that the factors of two arise because the beam travels twice through the whole resonator length in one round trip; this factor
does not arise for the gain term, since we are writing the amplification of the electric field and not the intensity.

72The total loss per roundtrip is exp (−αtot). Check for yourself!
73max[σ21(ω − ω21)] = σ21(0).
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Good exercise

To get an order of magnitude estimate for the threshold inversion, we use Eq. (3.35) to write out σ21(0) =
π2c2ngline(0)/(ω2

21τsp), where gline(0) is the (maximum) value of the transition’s lineshape function.
As a first order estimate, we can approximate gH(0) ≈ 1/∆ω, where ∆ω is the width of the lineshape
function, obtaining

∆Nt =
αtotω

2
21τsp∆ω

2lcπ2c2n
(7.5)

This equation shows that, to minimise the inversion needed, the following characteristics help:

1. Short upper state lifetime τsp. On the other hand, this makes it more difficult to achieve the
inversion.

2. Small transition bandwidth.

3. Long wavelength (small frequency): lasers at blue are hard.

4. Small losses αtot.

7.2 Steady-state operation

An initial spontaneous emission seed will be amplified towards full laser operation when g > gt. This amplifi-
cation occurs over several round trips, but must ultimately stop; otherwise the laser intensity would unphysically
diverge to infinity. After N round trips, the laser oscillation reaches a steady-state, whereby the field inside
the resonator no longer changes. To see what the steady-state situation looks like, we note that the field in the
beginning of the (n+ 1)th round trip is related to the field in the beginning of the (n)th round trip as:

En+1(ω) = r1r2En(ω)e(g−α)lc e−iδ. (7.6)

In steady-state, the field does not change from round trip to round trip, hence En+1(ω) = En(ω). Injecting this
to the equation above yields

En(ω)
[
1− r1r2e

(g−α)lc e−iδ
]

= 0. (7.7)

The trivial solution En(ω) = 0 is not particularly interesting. The non-trivial solution is:

r1r2e
(g−α)lc e−iδ = 1. (7.8)

The condition above must hold in steady-state operation. It can be split into two separate conditions – one for
phase and one for amplitude.

7.2.1 Phase condition

In steady-state, the per roundtrip phase shift δ must be such that e−iδ = 1. This implies that

δ = 2πm. (7.9)

But this condition is exactly the same as the resonance condition for the Fabry-Perot cavity:
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Steady-state phase condition

Steady-state lasing occurs at wavelengths that are exactly on-resonance with the laser cavity. Thus,
the longitudinal modes of the cavity correspond to the longitudinal modes of the laser, and the laser
wavelength(s) are given by

λm =
2L

m
. (7.10)

7.2.2 Amplitude condition

Equation (7.8) shows that, in steady-state, the gain and loss must be balanced such that

r1r2e
(g−α)lc = 1. (7.11)

This condition should make intuitive sense: for the amplitude (intensity) to be constant (as expected in steady-
state), the gain and loss must be fully balanced74. However, what is less intuitive is that this condition is actually
exactly the same as the condition for threshold gain.

Steady-state gain condition

In steady-state operation, gain is just enough to overcome losses; the gain coefficient must be equal to
the threshold gain coefficient

g = gt = α− 1

lc
ln (r1r2). (7.12)

Similarly, in steady-state, the population inversion must be equal to the threshold inversion ∆Nt given
by Eq. (7.4).

7.2.3 Laser dynamics and gain saturation

For laser operation to begin, we need g > gt, yet in steady-state we must have g = gt. How is this possible?
The answer is simple: recalling our analysis of population inversion in a 4-level system (Section 3.12), the
inversion saturates for high intensities:

∆N =
∆N0

1 + I/Isat
. (7.13)

Seeing as g = σ21∆N , we can similarly conclude that the gain coefficient saturates with intensity:

g =
g0

1 + I/Isat
, (7.14)

where g0 is the small-signal gain coefficient. For laser oscillation to start, we must have g0 > gt. As the
intensity grows, the gain will become saturated, until it eventually reaches the threshold value gt and remains
clamped at that value. (The same applies for the population inversion.) This gain clamping is easy to under-
stand by considering what happens if the gain would not be clamped (assuming g0 > gt):

74Otherwise the intensity would either decrease or increase.
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1. If g > gt, intensity will grow. This, in turn, reduces the gain. The cycle goes on until g has reduced to gt.

2. If g < gt, intensity will be reduced. This, in turn, increases the gain. The cycle goes on until g has
increased to gt.

Dynamics of laser build-up and gain saturation

We can qualitatively examine the dynamical build-up of laser intensity and gain clamping by considering
how the intracavity intensity In evolves from roundtrip-to-roundtrip when the gain saturates as above.
As a simplifying assumption, we assume that the gain reacts instantaneously to changes in intensity.
Denoting as In and gn the intensity and gain coefficients in the beginning of roundtrip n, the dynamics
can be obtained by iterating the following map:

gn =
g0

1 + In/Isat
, (7.15)

In+1 = R1R2Ine
2gnlc , (7.16)

where R1,2 = r2
1,2 and we assumed α = 0 for simplicity. Furthermore, we assume a homogeneously

broadened laser transition, such that the intensities can be understood as total intensities. Figure 32
shows the dynamics of the intensity and gain for parameters listed in the caption. In the beginning,
I � Isat, and so the gain coefficient gn ≈ g0. As the intensity grows, the gain starts to saturate. After
numerous round trips, a steady state is reached with the intensity remaining constant. In that steady-
state, the saturated gain coefficient coincides precisely with the threshold coefficient, as highlighted.

7.2.4 Pumping and slope efficiency

In steady-state, the intracavity intensity can be simply solved from Eq. (7.14) with g = gt:

Ic =

Isat

(
g0

gt
− 1

)
= Isat

(
∆N0

∆Nt
− 1

)
g0 > gt

0 g0 ≤ gt,
(7.17)

where we highlight the fact that lasing occurs only if g0 > gt. The threshold gain and inversion only depend on
the losses in the active medium and in the resonator. Their small-signal counterparts depend, however, on how
hard the atoms are pumped to the excited laser level: g0 ∝ ∆N0 ∝ Rp, where Rp is the pump rate [see e.g.
Section 3.1275]. As a consequence, the laser intensity increases linearly with the pump rate.

It should be emphasized that Eq. (7.17) represents the intensity inside the laser cavity. The intensity at the
laser output is given by

Iout =
1

2
T2Ic, (7.18)

where T2 is the transmission coefficient of the mirror used for output coupling. The factor 1/2 accounts for
the fact that the intracavity intensity is a combination of intensities moving in opposite directions at any given

75Do not confuse Rp with the mirror reflectivity!
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Figure 32: Laser start-up dynamics. In the beginning the intensity is low, and so the small-signal gain leads to exponential
amplification. As the intensity grows, the gain saturates, ultimately leading to steady-state operation. In steady-state, the
gain is exactly clamped to the threshold value gt. The data was obtained by iterating Eqs. (7.16) and (7.15) with the
following parameters: lc = 2 cm, R1 = 0.999, R2 = 0.9, g0 = 6 m−1, Isat = 10 Wm−2.

time: in practice one only extracts the half moving towards the output coupler. In experimental situations, one
typically measures the output power rather than intensity. Assuming a uniform beam profile with area A, we
have Pout = IoutA. Figure 33 shows typical dependencies of the laser output power and population inversion
on the pump rate (assuming steady-state operation). As can be seen, the intensity is zero until the pump rate is
sufficiently high to push the population inversion to its threshold value. The inversion itself increases linearly
until that point (recall that for I = 0, ∆N = ∆N0 ∝ Rp). After the threshold inversion has been reached,
the laser output power begins to grow linearly with the pump rate, while the inversion remains clamped at
its threshold value. The slope of the resulting curve is known as the laser’s slope efficiency (or differential
efficiency). As the name implies, it describes how efficiently pump energy is converted into useful laser energy.
The zero-crossing of the curve is the laser threshold pump power (or current).
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Figure 33: Dependence of laser output power (a) and population inversion (b) on the pump power in steady-state ope-
ration. As long as the small-signal inversion ∆N0 < ∆Nt, the device is not lasing and hence I ≈ 0 and ∆N = ∆N0.
Once the small-signal inversion reaches the threshold inversion, it remains clamped at that value, while the laser output
intensity grows linearly.

7.3 Multimode operation

According to the steady-state (phase) condition, lasing can in principle occur at any of the resonator’s longi-
tudinal modes. However, in practice only those frequencies that experience gain larger than the threshold will
be amplified. The numbers of modes for which this (amplitude) condition is satisfied depends on the resona-
tor free-spectral range and the frequency-dependence of the gain coefficient; the latter being governed by the
lineshape function gline(ω − ω21) of the laser transition. Because the lineshape function is maximised at the
(mean) transition frequency ω21, lasing will always occur preferentially at the longitudinal mode closest to
peak of the lineshape function at ω21.

Figure 34 illustrates a situation where the unsaturated gain curve is above threshold for several longitudinal
modes. All of these modes will be amplified, but whether they remain oscillating in steady-state depends on
the line broadening mechanism. The laser is to be in multimode operation when several longitudinal modes
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oscillate simultaneously in steady-state. In contrast, when only a single longitudinal mode is lasing, operation
is said to be single-mode.

Figure 34: Schematic illustration of the origins of multimode operation. (a) The active medium has a broad spectral
line profile, such that several longitudinal cavity modes experience small-signal gain in excess of the threshold gain. (b)
Before the gain saturates, all the modes experiencing net gain may be amplified, leading to an output spectrum with
multiple emission peaks. What happens in steady-state depends on the lineshape broadening mechanism.

7.3.1 Avoiding multimode operation

Single-mode operation is typically more desirable than multimode operation. This is because the latter does
not possess the attractive monochromacity that underpins many laser applications. Furthermore, the different
longitudinal modes generally oscillate with random phase relationships, resulting in a chaotic intensity profile
in the time domain [see Fig. 38], which is again not very desirable.

There are many ways to force single-mode operation:

1. One can reduce the pump rate, thus reducing the small signal gain g0, until only the longitudinal mode
closest to ω21 is above threshold. The price to pay is that the intensity will be small.

2. One can reduce the cavity length, thus pushing the longitudinal modes further apart. [Recall that FSR =
c/(2nL).] Also this method can lead to a reduced intensity, as there will be less space for active atoms.

3. One can introduce an additional filter inside the laser cavity (for example, another shorter Fabry-Perot
resonator). Through careful design, this filter can be made to increase the losses for all except one
longitudinal mode, thus pushing them below threshold.
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7.3.2 Homogeneously broadened lasers are (almost) immune to multimode operation

If the laser transition is homogeneously broadened, then all the atoms are identical and they all interact with
all the different frequencies present. Accordingly, all of the different longitudinal modes “experience” the
same population inversion ∆N , and all of them contribute to saturating that one population inversion.
However, the gain coefficients associated with the different longitudinal modes will not be the same; they
will be scaled by the Lorentzian lineshape function gH(ω − ω21). The longitudinal mode closest to ω21 will
experience the largest gain, gmax, while all the other modes will experience a smaller gain g < gmax (both
saturated and unsaturated).

During the initial build-up of laser radiation, all modes whose small-signal gain coefficient76 exceeds the
gain threshold will be amplified. However, in steady-state the inversion will be saturated such that the gain
for the mode closest to ω21 is equal to the threshold value, i.e., gmax = gt. If this would not be the case (and
gmax > gt), then the intensity of the longitudinal mode closest to ω21 would be amplified; this would further
saturate the inversion until gmax = gt.

Now if the gain experienced by the longitudinal mode closest to ω21 is clamped at threshold (gmax = gt),
then it should be clear that all of the other longitudinal modes will have gain below the threshold value (recall
that g ≤ gmax). As a consequence only the longitudinal mode closest to the (mean) transition frequency
will oscillate in steady-state. Figure 35 illustrates this behaviour.

Spatial hole burning

In practice, it is still possible for homogeneously broadened laser to emit multiple longitudinal modes.
This is because the dominant oscillating mode (one closest to ω21) forms a standing wave within the
cavity. Population inversion will be saturated only close to the antinodes, where intensity is high; in
contrast, the mode will not saturate the inversion close to its antinodes. Thus, it may be possible for
another mode, whose standing wave antinodes match the nodes of the first mode, to oscillate. This
phenomenon is known as spatial hole burning.

7.3.3 Multimode operation for inhomogeneously broadened lasers

Multimode operation more generally occurs for inhomogeneously broadened lasers. This is because different
longitudinal modes do not all interact with the same ensemble of atoms. Rather, a longitudinal mode at ωm only
interacts with the sub-set of atoms whose central transition frequency ω21 satisfies |ωm − ω21| < ∆ωH, where
∆ωH is the natural linewidth of the transition. One can thus qualitatively understand that each longitudinal
mode is associated with its own population inversion ∆Nm, which is only being saturated by that longitudinal
mode. Accordingly, the dynamics of the mth mode is not greatly influenced by any other longitudinal mode;
each longitudinal mode behaves as if it was a totally independent laser.

During laser build-up, all modes whose gain exceeds the threshold value will be amplified. As the intensities
of the different modes grow, each of them starts to saturate their own population inversions. Ultimately, a
steady-state is reached, where the inversion of each longitudinal mode is independently clamped to the threshold
value. In this case, the laser emission spectrum consist of several peaks, each corresponding to a longitudinal
mode of the laser [see Fig. 36].

76g0(ω) ∝ ∆N0gH(ω − ω21).
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Figure 35: Schematic illustration of spectral startup dynamics in a laser with a homogeneously broadened transition.
Initially, the unsaturated gain is able to amplify several longitudinal modes, but as the total intensity grows, the gain
becomes saturated and the number of oscillating modes decreases. In steady-state, the gain is clamped to the threshold
value at the mode experiencing strongest gain (closes to line peak). (a) Gain and longitudinal modes. (b) Emission
spectrum.

7.4 Mode-locking

Mode-locking is a technique that allows for the generation of ultrashort laser pulses with huge peak intensities.
In brief, this is achieved by taking a multimode laser and forcing the different longitudinal modes to oscillate
with fixed phase relationships. Here we describe briefly the basic physics behind mode-locking.

As we have seen, the spacing between longitudinal modes is

∆ω = 2π FSR = 2π
c

2nL
=

2π

tR
, (7.19)

where tR is the cavity round trip time. The frequency of the pth mode is then simply ωp = ω0 + p∆ω. Let
us now assume a laser that is oscillating at N longitudinal modes, ωq0...ωq0 + (N − 1)∆ω, such that the total
emission bandwidth ∆ωG = (N − 1)∆ω. Furthermore, we assume for simplicity that the intensities of each
longitudinal mode are the same, I0(ω) = |E0|2. The laser then has a power spectrum similar to that shown in
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Figure 36: (a) Saturated gain profile during steady-state operation of an inhomogeneously-broadened laser. Different
longitudinal modes interact with different atoms associated with different resonance frequencies, leading to “spectral
holes” in the inversion and gain. (b) Corresponding steady-state emission spectrum.

Fig. 37.

Figure 37: Schematic illustration of spectral intensities of N oscillating modes with identical spectral identities.

We can write the total electric field at the output of the laser as a superposition of the electric fields corre-
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spond to all of the longitudinal modes:

Eout(t) =

q0+N−1∑
m=q0

E0e
i(ω0+m∆ω)t+iφm . (7.20)

For typical multimode lasers, the phases φm are totally random.77 In this case, the intensity profile Iout(t) =
|Eout(t)|2 is a chaotic pattern that repeats periodically. The period of the pattern corresponds to the cavity round
trip time tR = 2nL/c, while the shortest fluctuations have a duration of the order of 2π/∆ωG, as shown in
Fig. 38.
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Figure 38: Temporal intensity profile corresponding to the oscillation of 21 longitudinal modes with random phase
relationships. The mode spacing is ∆ω = 2π · 1 THz. The shortest temporal features have a duration ∆τ ≈ 2π/∆ωG,
where ∆ωG = (N − 1)∆ω is the total bandwidth encompassed by the oscillating modes.

If the phases are not random, but instead correlated as φm = mφ, we get something very different. Without
loss of generality, we can take φ = 0 such that the output field becomes

Eout(t) = E0e
iω0t

q0+N−1∑
m=q0

eim∆ωt. (7.21)

The sum is a converging geometric progression, and can be readily evaluated. After some algebra, we obtain

Eout(t) = E0e
iω̄t

[
sin (N∆ωt/2)

sin (∆ωt/2)

]
, (7.22)

77The phases can even randomly fluctuate with time.
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where ω̄ corresponds to the average frequency across the oscillating longitudinal modes:

ω̄ =
ωq0 + ωq0 + (N − 1)∆ω

2
(7.23)

The field described by Eq. (7.22) corresponds to a wave with a carrier frequency ω̄ multiplied by an
envelope. The corresponding intensity profile is simply

Iout(t) = |E0|2
[

sin2 (N∆ωt/2)

sin2 (∆ωt/2)

]
. (7.24)

A typical intensity profile is shown in Fig. 39, obtained using the same parameters as in Fig. 38 (except that we
assume the longitudinal modes to oscillate in-phase). As can be seen, the intensity profile now corresponds to a
perfectly periodic train of pulses, separated by the cavity round trip time tR. One should understand that there
is a single pulse circulating in the cavity, bouncing back and forth between the two mirrors, while a part of the
pulse is output after each round trip.
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Figure 39: Temporal intensity profile corresponding to the oscillation of 21 longitudinal modes with fixed phase relati-
onships. Other than the phases, the parameters are the same as in Fig. 38.

We can evaluate the peak intensity of the pulses by noting that, for t ≈ 0, we can approximate

Imax ≈ |E0|2
[
N2∆ω2t2/4

∆ω2t2/4

]
= |E0|2N2. (7.25)

Thus, the peak intensity isN times larger than the average intensity ofN modes with random phases (N |E0|2).
We can also estimate the duration of the pulses by looking for the time t = τp when the numerator in Eq. (7.22)
becomes zero, i.e.:

N

2
∆ωτp = π. (7.26)

Solving for the duration yields

τp =
2π

N∆ω
≈ 2π

∆ωG
. (7.27)
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Thus, we see that the larger the frequency bandwidth covered by the oscillating modes, the shorter the pulses. Or
alternatively, short pulses require large bandwidth, in agreement with Fourier limits, Heisenberg’s uncertainty
and whatnot.

Real lasers do not have flat spectra like that in Fig. 37, and so discrepancies arise in terms of the precise
formulae quoted above. However, the general conclusions remain the same. For example, mode-locked lasers
whose emission spectrum is Gaussian typically create pulses whose temporal shape is also Gaussian, with a
full-width at half-maximum duration

τp =
2.77

∆ΩG
. (7.28)

Ti:Sapphire example

Ti:Sapphire lasers have a very broad gain bandwidth of about ∆ωG ≈ 2π× 15 THz. They are typically
implemented with laser cavities that are about 3 m long, and thus have an FSR ≈ 80 MHz. The number
of oscillating longitudinal modes is then

N =
∆ωG

2π FSR
≈ 187500, (7.29)

resulting in pulses as short as

τp =
2.77

∆ωG
≈ 30 fs. (7.30)

7.4.1 Techniques for mode-locking

Mode-locking requires that all of the longitudinal modes oscillate with fixed phase relationships, and there are
several techniques to achieve this. The easiest way to understand their operation is perhaps not to consider the
locking of the different longitudinal modes, but rather the evolution of the pulse that must be circulating back
and forth in the laser cavity. In particular, mode-locking can be generically achieved by placing elements
in the laser cavity that favour the formation of ultrashort pulses and hinder the formation of “quasi”-
continuous wave radiation. Based on the precise operation of these elements, the mode-locking is said to be
either active or passive.

Active mode-locking

In active mode-locking, an element is placed in the cavity that modulates at least one of the cavity
parameters at a frequency determined by the user. For example, an amplitude modulator (e.g. a shutter)
can be used to induce time-dependent loss. If the shutter is synchronised with the round trip time, it
promotes the formation of a pulse that hits the shutter only when the shutter is open.
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Passive mode-locking

In passive mode-locking, an element whose transmission depends on the intensity of light is inserted in
the cavity. For example, a saturable absorber is an element whose absorption saturates with intensity:

α =
α0

1 + I/Isat
. (7.31)

High intensity pulses experience low losses and their formation is thus favoured. In contrast, any small
radiation components will experience large losses, and their formation thus hindered.

Problems

7.1 Consider a Fabry-Perot laser whose active medium has a length lc = 0.1 m, a small-signal gain coefficient
g0 = 1 m−1, and saturation intensity Isat = 10 kWm−2. One of the mirrors of the Fabry-Perot cavity
is perfectly reflecting (R = 1), while the other acts as the output coupler, reflecting 95 % of light and
transmitting 5 %. You can assume that there is no scattering losses in the active medium, such that α = 0.

(a) Calculate the threshold gain of the laser cavity.

(b) Based on your calculation in (a), explain whether steady-state laser oscillation is expected.

(c) Calculate the intracavity intensity in steady-state.

(d) Assuming that the laser beam (diameter 10 mm) has a uniform intensity distribution, calculate the
laser’s output power in steady-state.

7.2 The cross-section σ21 of a laser transition is σ21 = 2.8× 10−19 cm2 and the length of the active medium
is L = 2.5 cm. Pumping results in a small-signal population inversion ∆N0 = 7 × 1017 cm−3, and the
saturation intensity is Isat = 100 Wcm−2. The active medium is placed inside a Fabry-Perot resonator
with mirror reflectivities R1 = 0.99 and R2 = 0.9.

(a) What is the maximum value allowed for the internal losses α for the laser to oscillate?

(b) Assuming α = 0, what is the gain during steady-state operation?

(c) Further assume that the laser beam (diameter 10 mm) has a uniform intensity distribution, and that
the output is extracted with mirror R2. Calculate the output power in steady-state.

7.3 An active medium with an internal loss coefficient α = 0.1 cm−1, refractive index n = 1.5, and length
lc = 4 cm is placed inside a Fabry-Perot resonator with mirror reflectivities R1 = 0.99 and R2 = 0.9.
The laser transition has a central frequency ω21 = 2π × 280 THz, linewidth ∆ω = 10 GHz and a
spontaneous emission lifetime τsp ≈ 1.3 ms. Estimate the threshold inversion for laser oscillation.

7.4 Consider a multimode laser that is oscillating atN longitudinal modes with equal amplitudes. Show that,
under mode-locked operation, where all the longitudinal modes oscillate in-phase, the temporal intensity
profile emitted by the laser is given by Eq. (7.24).
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8 Ray transfer matrices and resonator stability

In the preceding sections, we have examined resonators and the physics that underpins the operation of simple
Fabry-Perot lasers. In the following sections, we will now start to examine how laser light propagates and
behaves outside (and inside) of the resonator. First, however, in this section we present a brief summary of
matrix methods for ray tracing, as this formalism turns out to be very useful for describing how actu al laser
beams propagate. Furthermore, the use of ray transfer matrices allow us to answer a simple question which
we have ignored so far: what kind of mirrors should we use to build our Fabry-Perot resonator. Specifically, it
should be clear that not just all mirrors will do. For example, consider a ray of light bouncing back and forth
between two convex mirrors facing each other. It should be clear that the ray cannot remain inside the resonator
for very long, but instead, will quickly escape to a position where the mirrors no longer extend. Indeed, it
turns out that only some mirror pairs allow us to construct stable Fabry-Perot resonators where light can persist
forever.

8.1 Ray optics

As seen in Section 4, light is an electromagnetic wave consisting of two vector fields (electric and magnetic
fields). In some situations, it is necessary to consider all the vectorial components of those fields. However,
in many situations light polarization remains constant, and in this case it is sufficient to only consider a single
scalar wavefunction. This approximate way of treating light is known as (scalar) wave optics.

Wave optics details how the wave character of light influences the behaviour and observation of light,
encompassing effects such as interference and diffraction. However, these wave phenomena only become
important when light interacts with objects whose dimensions are comparable with the wavelength of light.
For objects much larger than the wavelength, the behaviour of light can be described by rays that obey a set of
geometrical rules. This model of light is called ray optics, and it can be understood as the limit of wave optics
when the wavelength is very small. It is worth emphasising that the rays in ray optics can be understood as the
wave vectors of plane EM waves.

Ray optics is the simplest description of light. It is very much an approximation, but a useful one, for
it allows us to straightforwardly describe how different optical components (e.g. lenses, mirrors) work and
how light behaves at interfaces. It is worth emphasising that ray optics is founded on a set of (more or less)
empirically derived geometrical laws (e.g. law of reflection, Snell’s law); the first principles origins of those
laws can only be derived through rigorous analysis of Maxwell’s equations.

8.2 Ray transfer matrices

Ray transfer matrix analysis is a type of ray tracing technique that is used in the design of some optical systems.
It involves the construction of a ray transfer matrix which describes the optical system; tracing of a light path
through the system can then be performed by multiplying this matrix with a vector that represents the light ray.

In ray transfer matrix analysis, a light ray at a certain position is characterized by two parameters [see
Fig. 40]:

r ≡ Distance from optical axis

r′ ≡ Angle between ray and optical axis

94



Figure 40: In ray transfer analysis, a ray at a given position along the optical axis is characterised by the ray’s displacement
from the optical axis, r, and the angle between the ray and the optical axis, r′.

The ray is then described by a 2× 1 vector:

~r =

[
r
r′

]
(8.1)

We assume that the light is propagating “paraxially”, i.e., that the angle between the ray and the optical axis is
small. In this case we have r′ � 1, and therefore

tan(r′) ≈ sin(r′) ≈ r′. (8.2)

The sign convention is such that an angle corresponding to an anti-clockwise rotation (from the optical axis) is
positive, whilst a clockwise rotation is negative.

The ray vector~r1 at some location z1 can be found by multiplying the ray vector~r0 at some initial position
z0 with an appropriate ray transfer matrix. Different optical components are described by different matrices,
and they are referred to as ABCD matrices:

M =

[
A B
C D

]
(8.3)

ABCD matrix for straight propagation

Consider the straight propagation of a ray over a distance d, as schematically illustrated in Fig. 41(a). It
should be clear that the ray transforms as

r1 = r0 + tan(r′0)d ≈ r0 + r′0d

r′1 = r′0

Accordingly, the ray transfer can be written as a simple matrix product~r1 = M~r0 where

M =

[
1 d
0 1

]
(8.4)
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ABCD matrix for a thin lens

To find the ABCD matrix for a thin lens with focal length f , we consider two rays: one that is parallel
to the optical axis, and another one that starts a focal distance away from the lens [see Fig. 41(b)]. First,
it should be clear that passing through the lens does not affect the ray’s displacement, hence r1 = r0.
For our ABCD matrix, this implies A = 1 and B = 0.

Consider now the ray that is parallel to the optical axis. The lens will change the angle of the
ray such that the ray crosses the optical axis at the focal point. Thus, we have

r′1 ≈ tan(r′1) = −r0

f
, (8.5)

where the minus sign comes from the sign conventions: the angle is negative whilst f for a converging
lens is positive. From this, we see that, for our ABCD matrix, C = −1/f .

Considering finally the ray that originates from the focal point, we know that right before the
ray hits the mirror, its displacement will be r0 = tan(r′0)f ≈ r′0f . On the other hand, after the passing
the lens, the ray’s angle will be zero. Hence

r′1 = Cr0 +Dr′0 = − 1

f
r0 +

D

f
r0 = 0. (8.6)

From this, we see that D = 1. Thus, the ABCD matrix for a thin lens is

M =

 1 0

− 1

f
1

 (8.7)

ABCD matrix for a mirror

When dealing with mirrors in the framework of ray transfer matrices, we always ignore the change in
direction of propagation. Rather, we “fold” the ray by taking the mirror image of the output ray [see
Fig. 41]. Considering a planar mirror [Fig. 41(c)], it should be clear that the mirror changes neither
the displacement nor the angle. Thus, the ABCD matrix of a planar mirror corresponds to the identity
matrix:

M =

[
1 0
0 1

]
(8.8)

Considering then the more general case of a spherical mirror [Fig. 41(d)], we note that such mirrors
focus rays of light with a focal length f = 2/R, where R is the curvature of the mirror. (The sign
convention is such that R > 0 (R < 0) for a concave (convex) mirror.) Because we ignore the change
in direction by folding the ray, it should be evident that the ABCD matrix for a spherical mirror is the
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same as for a thin lens:

M =

[
1 0

− 2

R
1

]
(8.9)

Figure 41: Schematic illustrations for deriving ray transfer matrices for (a) free-space propagation through a distance d,
(b) thin lens, (c) planar mirror, and (d) spherical mirror with focal length f = 2/R, where R is the mirror’s radius of
curvature. Note that for the mirrors, we fold the ray by taking the mirror image of the true output ray, thus avoiding the
awkwardness of changing direction.

To summarise, arbitrary light rays can be represented as vectors ~r = [r, r′]T, while the effect of optical
components can be accounted for by simple matrix multiplications. Furthermore, propagation of rays through
complex systems consisting of multiple optical elements can also be simply achieved by just multiplying toget-
her the the ray matrices for all the different elements:

~rn = MnMn−1 · · ·M1~r0. (8.10)

Of course, because matrix multiplications do not commute, one must pay attention to the order in which the
different matrices are multiplied. In the above equation, for example, M1 would correspond to the first element
encountered by the ray, whilst Mn would be the last element in the sequence.
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8.3 Resonator stability

Figure 42: Schematic illustration of ray matrix analysis applied to examine resonator stability.

A particularly useful application of ray matrix analysis is that it allows for straightforward assessment
of laser resonator stability, i.e., whether a given mirror configuration allows for rays to persistently remain
confined to the cavity. Let us consider an arbitrary (laser) resonator [c.f. Fig. 42] consisting of two mirrors with
curvatures R1 and R2 (not to be confused with mirror reflectivities) spaced by length L. Considering a ray ~r0

that is just reflected from the surface of mirror 1, we can obtain an expression for the ray~r1 after one full round
trip:

~r1 = M4M3M2M1~r0. (8.11)

Here, M2 and M4 correspond to reflections from mirrors 2 and 1, respectively, whilst M3 = M1 each describe
propagation in free-space through a distance L. Writing out the ABCD matrices for the different components,
we have

~r1 =

[
1 0
− 2
R1

1

] [
1 L
0 1

] [
1 0
− 2
R2

1

] [
1 L
0 1

]
~r0. (8.12)

Performing the matrix multiplications yields

~r1 =

 1− 2L
R2

2L− 2L2

R2

− 2
R1

+ 4L
R1R2

− 2
R2
− 2L
R1

+ (1− 2L
R1

)(1− 2L
R2

)

~r0 (8.13)

This equation can be written in a simpler form as

~r1 = Mcavity~r0, (8.14)
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where Mcavity is the ABCD matrix describing one full cavity round trip. Its elements are

A = 1− 2L

R2

B = 2L− 2L2

R2

C = − 2

R1
+

4L

R1R2
− 2

R2

D = −2L

R1
+ (1− 2L

R1
)(1− 2L

R2
)

(8.15)

(8.16)

(8.17)

(8.18)

A given resonator is “stable” only if systematically |rn+1| < |rn|. If this is not the case, the ray’s displa-
cement rn increases from round trip to round trip, implying that the ray will eventually escape from the cavity.
The question of whether a given resonator is stable can be cast into an eigenvalue problem. Specifically, an
arbitrary ray~r0 can be expressed as a linear superposition of the eigenvectors~r± of the cavity ABCD matrix:

~r0 = a~r+ + b~r−, (8.19)

After n round trips, the ray vector will have transformed into

~rn = (Mcavity)n[a~r+ + b~r−]. (8.20)

Using now the fact that ~r± are eigenvectors of Mcavity, such that Mcavity~r± = λ±~r±, where λ± are the corre-
sponding eigenvalues, Eq. (8.20) can be simplified into

~rn = aλn+~r+ + bλn−~r−. (8.21)

It should be clear that, if |λ±| > 1, the ray’s displacement will diverge as n→∞. Thus, the resonator stability
requires that the eigenvalues satisfy:

|λ±| ≤ 1. (8.22)

The eigenvalues of the cavity matrix can be found from the usual equation det(Mcavity − λI) = 0. Using
the (easily verifiable78) fact that the determinant det(Mcavity) = 1, one can derive:

λ± =
(A+D)±

√
(A+D)2 − 4

2
(8.23)

= m±
√
m2 − 1, (8.24)

where m = (A + D)/2. It is easy to see that |λ±| > 1 iff |m| > 1. Accordingly, the condition for resonator
stability is |m| ≤ 1, or equivalently ∣∣∣∣A+D

2

∣∣∣∣ ≤ 1. (8.25)

78det(Mcavity) = det(M1)det(M2)det(M3)det(M4)
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Substituting the matrix elements from Eqs. (8.15) and (8.18) yields, after some algebra, the following condi-
tion:

0 ≤
(

1− L

R1

)(
1− L

R2

)
≤ 1

0 ≤ g1g2 ≤ 1,

(8.26)

(8.27)

where we defined the coefficients g1,2 = 1− L/R1,2.
Equations Eq. (8.26) and (8.27) can be used to deduce whether a given resonator (with given mirror cur-

vatures R1,2 and separation L) is stable or not. For example, the stability condition immediately reveals that a
cavity made out of two convex mirrors (with R1,2 < 0) is always unstable (g1g2 > 1). Of course, this result is
expected based on simple geometrical considerations. Figure 43 shows a map of stability regimes in the plane
formed by the parameters g1 and g2, together with configurations illustrative of the different regimes.

1 2 3 4

-4 -3 -2 -1

-4

-3

-2

-1

4

3

2

1

stable

stable

unstable

unstable

plane-parallel
(1, 1)

hemispherical
(0, 1)

concentric
(-1, -1) concave-convex

(2, 1/3)

Figure 43: Map of resonator stability as a function of g1 = 1 − L/R1 and g2 = 1 − L/R2. Gray areas correspond
to stable resonator configurations, while white areas are unstable. Four examples of stable resonators are shown. These
example configurations are from a figure by FDominec (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC
BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons.
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It is worth emphasizing that the stability condition derived above is an approximation (in keeping with the
fact that ray optics is an approximation). However, the approximation is very good. In fact, a more rigorous
analysis based on wave optics yields the exact same stability condition, expect that the limits become strict
inequalities: 0 < g1g2 < 1. This implies that, whilst the stability condition derived using ray optics predicts
that a plane-parallel mirror, comprised of two planar mirrors with R1,2 = ∞, is stable, this is not the case in
reality. Rather, at least one of the mirrors has to be curved.
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9 Paraxial wave equation and Gaussian beams

So far we have not discussed the transverse profile of real laser beams in any great detail. In Section 4, we
derived the plane wave solutions for Maxwell’s equations, and found that they can explain many of the salient
characteristics attributed to light (and other forms of EM waves). However, it was also noted that plane waves
cannot exist in reality. One of the reasons was that their transverse profile corresponds to an infinite plane,
implying plane waves to carry infinite energy. This is clearly unphysical, and indeed, real beams have a finite
transverse profile79. In this section, we discuss the transverse profiles of real laser beams, and describe how
they propagate through different optical components.

9.1 Paraxial wave equation

Our starting point is the EM wave equation:

∇2~E− µ0ε
∂2~E
∂t2

= 0. (9.1)

We assume a linearly polarized field ~E = Ex̂ and that the field does not interact with birefringent materials (such
that the polarization stays constant). In this case, we can simply consider the scalar amplitude E(x, y, z, t).
Furthermore, we assume the EM wave to be monochromatic, such that

E(x, y, z, t) = A(x, y, z)eiωt. (9.2)

Injecting this ansatz into our wave equation yields

∇2A+ k2A = 0, (9.3)

where we used the dispersion relation k = ω2µ0ε. This equation is known as the scalar Helmholtz equation.
It is a time-independent wave equation, obtained by separating the spatial and temporal dependencies.

Next, we assume that the the field is propagating “principally” in the z-direction. Recalling how arbitrary
fields can be represented as superpositions of plane waves with different wave vectors, this assumption implies
that the dominant plane wave contribution to the field comes from a plane wave with wave vector ~k = kẑ. We
can then write the field’s spatial dependence as:

A(x, y, z) = ψ(x, y, z)e−ikz, (9.4)

where ψ(x, y, z) is an envelope that evolves slowly (relative to kz) and k = nω/c = 2π/λ is the usual wave
number. Injecting this decomposition into the Helmholtz equation yields

∇2
⊥ψ +

∂2ψ

∂z2
− 2ik

∂ψ

∂z
= 0, (9.5)

where∇2
⊥ = ∂2/∂x2 +∂2/∂y2 is a transverse Laplacian. Finally, we invoke the paraxial approximation: the

field is propagating almost paraxially along z. Under this approximation, ψ evolves slowly with z. (Indeed, the
79Note that transverse profile here refers to the spatial distribution of the beam in a plane perpendicular to the direction of propagation

(e.g. x− y plane). This is the “spot” you see when a lases beam is shined on a wall.
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main z evolution has already been factored out with the exp(−ikz) term.) The meaning of “slow” evolution is
that, over a distance of one wavelength, the field does not change much. In particular, we have:

|δψ| =
∣∣∣∣∂ψ∂z

∣∣∣∣λ� |ψ|, (9.6)

which implies that ∣∣∣∣∂2ψ

∂z2

∣∣∣∣� 1

λ

∣∣∣∣∂ψ∂z
∣∣∣∣ ∼ 2k

∣∣∣∣∂ψ∂z
∣∣∣∣ . (9.7)

Thus, |∂2ψ/∂2z| � 2k|∂ψ/∂z|, allowing us to drop the second term in Eq. (9.5). This yields the so-called
paraxial wave equation:

∇2
⊥ψ − 2ik

∂ψ

∂z
= 0. (9.8)

Paraxial beam propagation

We can obtain more insights by writing the paraxial wave equation in “beam propagation” form:

∂ψ

∂z
= − i

2k
∇2
⊥ψ (9.9)

= − i

2k

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
(9.10)

From this form, it should be evident that the paraxial wave equation describes how a beam with a given
transverse profile ψ(x, y, z) evolves as a function of z. Specifically, if we know what the transverse
field profile is at some longitudinal coordinate z0 = 0, we can use the paraxial wave equation to deduce
what the profile will be like at another coordinate z1. As we shall see, the paraxial wave equation
indeed describes effects such as diffraction, i.e., the natural tendency of light beams to broaden as they
propagate.

It is worth highlighting that the paraxial wave equation is completely analogous to some fairly
famous equations encountered in other physical contexts. Indeed, one should recognise that the paraxial
wave equation has the exact same form as the time-dependent Schrödinger equation in empty space (the
longitudinal coordinate z representing time t of the Schrdöinger equation). In addition, an analogous
equation can be found to describe propagation of light pulses in optical fibres and waveguides. These
analogies should make clear that the ability to understand and solve the paraxial wave equation is
extremely valuable, not only because it allows us to infer how real laser beams behave, but also because
identical equations can be found in many other contexts.

9.2 General solution to the paraxial wave equation

As mentioned above, if we know the transverse profile ψ(x, y, 0) at some z0 = 0, we can use the paraxial
wave equation to obtain the transverse profile ψ(x, y, z) at any other location z. This is accomplished by using
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Fourier transforms. Specifically, let us consider the two-dimensional Fourier transform of ψ(x, y, 0). Referring
to Subsection 4.5.1, the transverse profile ψ(x, y, 0) can be written as an inverse Fourier transform:

ψ(x, y, 0) =

∞∫∫
−∞

ψ̃(kx, ky, 0)e−i(kxx+kyy)dkx dky, (9.11)

where the spectral coefficients are obtained from the forward Fourier transform ψ̃ = F [ψ]:

ψ̃(kx, ky, 0) =
1

(2π)2

∞∫∫
−∞

ψ(x, y, 0)ei(kxx+kyy)dx dy. (9.12)

It is easy to verify that Fourier transforms satisfy a derivative property, which in our notation reads:

F
[
∂ψ

∂x

]
= −ikxF [ψ]

F
[
∂ψ

∂y

]
= −ikyF [ψ].

(9.13)

(9.14)

In other words, the Fourier transform of a derivative of a function is equal to the Fourier transform of the original
function multiplied by−iω, where ω is the spectral variable corresponding to the variable in the derivative. This
property allows us to solve the wave equation. Specifically, taking the transverse Fourier transform of both sides
of Eq. 9.10 yields

∂ψ̃(kx, ky, z)

∂z
=

i

2k

[
k2
x + k2

y

]
ψ̃(kx, ky, z). (9.15)

Note that, since our transverse 2-dimensional Fourier transform does not involve the z-coordinate, it commutes
with the z-derivative on the left-hand-side of the equation. We can now integrate Eq. (9.15) trivially:

ψ̃(kx, ky, z) = ψ̃(kx, ky, 0) exp

(
i

2k

[
k2
x + k2

y

]
z

)
, (9.16)

where ψ̃(kx, ky, 0) = F [ψ(x, y, 0)] is the 2D Fourier transform of the field profile at z0 = 0. To now finally
obtain the transverse field profile at arbitrary z, we just take the inverse Fourier transform of ψ̃(kx, ky, z):

ψ(x, y, z) = F−1

[
ψ̃(kx, ky, 0) exp

(
i

2k

[
k2
x + k2

y

]
z

)]
. (9.17)
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Solving the paraxial wave equation using Fourier transforms

The procedure below allows us to find the transverse beam profile at arbitrary z when the profile is
known at some initial z0 = 0.

1. Take the 2D Fourier transform of the initial field profile:

ψ̃(kx, ky, 0) = F [ψ(x, y, 0)].

2. Use Eq. (9.16) to “propagate” the spatial spectrum to an arbitrary location:

ψ̃(kx, ky, z) = ψ̃(kx, ky, 0) exp

(
i

2k

[
k2
x + k2

y

]
z

)
3. Take the inverse Fourier transform to obtain the final transverse field profile:

ψ(x, y, z) = F−1[ψ̃(kx, ky, z)].

This procedure is general, and it works for arbitrary initial field profiles. The same procedure can also be
used to examine the time-evolution of wave packets in the Schrodinger equation, or pulse propagation
in optical fibers.

9.3 Gaussian beams

In principle, the transverse beam profile ψ(x, y, z) can have whatever shape, provided that the profile decays to
zero as x, y → ∞ so as to ensure that the beam does not carry infinite energy. There is, however, one profile
that is of particular importance, as lasers typically emit beams with that profile. This profile is the Gaussian
beam:

ψ(x, y, 0) = ψ0 exp

(
−x

2 + y2

w2
0

)
. (9.18)

Gaussian beams are defined by a Gaussian function (surprise surprise), and Fig. 44 shows an example profile.
The radius of the beam is described by the variable w0.

To see how a Gaussian beam propagates as a function of z, we must use the procedure outlined above. As
the Fourier transform of a Gaussian function can be calculated analytically, this procedure can be worked out
on pen and paper. First, the Fourier transform of ψ(x, y, 0) is:

ψ̃(kx, ky, 0) = ψ0
πw2

0

(2π)2
exp

[
−w

2
0

4

(
k2
x + k2

y

)]
. (9.19)
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Figure 44: Gaussian beam profile with w0 = 5 µm. Line profiles show projections along the x and y directions.

Next we evolve the spatial spectrum to arbitrary z using Eq. (9.16):

ψ̃(kx, ky, z) = ψ0
πw2

0

(2π)2
exp

[
−w

2
0

4

(
k2
x + k2

y

)]
exp

[
i

2k

(
k2
x + k2

y

)
z

]
(9.20)

= ψ0
πw2

0

(2π)2
exp

[(
−w

2
0

4
+

i

2k
z

)(
k2
x + k2

y

)]
(9.21)

We can see that the form of Eq. (9.21) is exactly the same as that of Eq. (9.19), but the beam width has
transformed as ω2

0 → ω2
0 − 2iz/k inside the exponential. Accordingly, it should be clear that the transverse

profile ψ(x, y, z) = F−1[ψ̃(kx, ky, z)] can be written as80

ψ(x, y, z) = ψ0
w2

0

w2
0 − 2iz/k

exp

(
− x2 + y2

w2
0 − 2iz/k

)
. (9.22)

Equation (9.22) is a general expression that describes the transverse field profile at arbitrary z for a beam
that has a simple Gaussian shape at z = 0 given by Eq. (9.18). Unfortunately, the expression is not too easy

80Probably the easiest way to confirm the result is to just compare the forms of the initial and transformed profiles and their Fourier
transform.
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to interpret. To obtain a more intuitive form, we must separate the real and imaginary parts inside and outside
of the exponential. After some serious although straightforward algebra, we obtain the standard form for a
Gaussian beam at arbitrary z

ψ(x, y, z) = ψ0
w0

w(z)
exp

[
−x

2 + y2

w2(z)

]
exp

[
−ikx

2 + y2

2R(z)

]
exp[iφ(z)]. (9.23)

Here we have defined the following important parameters

Gaussian beam parameters

Beam radius: w(z) = w0

√
1 +

z2

z2
R

(9.24)

Radius of wavefront curvature: R(z) = z

(
1 +

z2
R

z2

)
(9.25)

Guoy phase shift: φ(z) = tan−1

(
z

zR

)
(9.26)

Rayleigh range: zR =
w2

0k

2
=
w2

0π

λ
(9.27)

9.4 Properties of Gaussian beams

The expressions above allow us to gain physical insights into the evolution of Gaussian beams.

1. The beam radius w(z) describes the transverse localisation of the beam. The maximum intensity occurs
at x = y = 0, while at x2 + y2 = r2 = w2(z) the intensity (I ∝ |ψ|2) drops to e−2. Equation (9.24)
shows that the beam radius is smallest at z = 0, where w(z) = w0. This location, where the beam attains
its minimum value, is known as the beam waist.

2. A Gaussian beam remains Gaussian as it travels through free space. However, its spot size increases [see
Fig. 45(a)] due to diffraction as we move away from the beam waist. The factor w0/w(z) in the front of
the Gaussian formula accounts for energy conservation: as the beam gets wider, its maximum amplitude
decreases.

3. When z = zR, we have w(z) =
√

2w0. Thus, the Rayleigh range zR corresponds to the distance from the
beam waist over which the beam radius increase by a factor of

√
2. As the beam area is approximately

πw(z)2, the Rayleigh range also corresponds to the distance from the beam waist over which the beam
area doubles. Overall, Rayleigh range describes how fast the beam loses collimation (or diverges): a
small zR implies that the beam diverges quickly and vice versa. Recalling that zR = w2

0πn/λ, we see
that a narrow beam (small w0) diverges more rapidly than a broad beam (large w0). Finally, it is worth
noticing that the beam waist can be understood as a focal point. The distance between the points ±zR is
known as the depth of focus or the confocal parameter.
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4. Far away from the beam waist, z � zR, allowing us to approximate

w(z) ≈ w0
z

zR
=

λ

w0π
z. (9.28)

We see that the beam radius increases linearly with z [see Fig. 45(a)]. We can compute the angle of
beam divergence as:

θ ≈ tan(θ) =
w(z)

z
=

λ

w0π
. (9.29)

This is precisely the divergence angle that was quoted as Eq. (2.1). As can be seen, a small spot diverges
strongly.

5. The wavefronts of Gaussian beams are not in general flat as they are for plane waves. Indeed, Fig. 45(b)
shows the full electric field, Re[ψ(x, 0, z) exp(−ikz)] in the x − z plane, and we can readily see how
the points of equal field value are curved. The radius of curvature of the wavefronts is given by R(z) as
defined in Eq. (9.25). Indeed, the phase at a given point can be written as [see Eq. (9.23)]:

φ =
kr2

2R
+ kz, (9.30)

where r =
√
x2 + y2. We can now solve for the points z at which the field assumes the same phase:

z = − r2

2R
+ φ. (9.31)

This is clearly a parabola with a radius of curvature R.

6. At the beam waist, the radius of curvatureR(0) =∞. Accordingly, the wavefronts are flat at the beam
waist.
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Figure 45: (a) Contours of exp(−1) field values, showing the evolution of the beam radius w0(z). (b) Electric field
Re[ψ(x, 0, z) exp(−ikz)], showing the curved wavefronts. To facilitate visualisation, the exp(−ikz) term has been scaled
as exp(−ikz/20). This increases the wavelength by a factor of 20, making it easier to visualise the wavefronts.
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9.5 Complex q parameter

Equation 9.23 describes how a Gaussian beam propagates in free-space. But of course, laser beams are often
shaped by various optical components, and so we are interested in knowing how those components affect the
beam parameters. For instance, knowing where the beam waist lies after a Gaussian beam passes through a lens
is crucial for figuring out where the focal point shall be.

When analysing the transformations of Gaussian beams, it is useful to introduce a complex q parameter that
describes the “state” of a Gaussian beam at a certain position z. This parameter is defined as:

q(z) = (z − zw) + izR, (9.32)

where zw is the position of the beam waist. (Above we assumed zw = 0, but it should be clear that z in
Eqs. (9.24) – (9.26) can be changed to z − zw when the waist is not located at z = 0.) It is easy to show that
the reciprocal of the q-parameter is given by

1

q(z)
=

1

R(z)
− i λ

πw2(z)
. (9.33)

As can be seen, the q parameter fully describes the state of the beam. Specifically:

1. If we know the value of q(z) at any point z, the real part immediately tells us how far the point is from the
beam waist, while the imaginary part gives us the Rayleigh range. On the other hand, from the Rayleigh
range we can compute the beam radius at the waist, w0. Together, these quantities will then allow us to
calculate the beam radius w(z) and radius of curvature R(z) using Eqs. (9.24) and (9.25), respectively.

2. The real part of 1/q(z) immediately gives us the reciprocal of the radius of curvature R(z), while its
imaginary part allows us to calculate the beam radius w(z).

9.6 ABCD law for Gaussian beams

When a Gaussian beam propagates through any optical element (e.g. free space, mirror, lens), its beam para-
meters change. These changes can be succinctly described by considering the complex q parameters before and
after the element. To get warmed up, let us first consider the propagation through free-space from a point zi to
a point zf . The initial and final q-parameters are qi = (zi − zw) + izR and qf = (zf − zw) + izR, respectively.
Denoting d = zf − zi, it is evident that

qf = qi + d. (9.34)

Interestingly, this expression can be written as

qf =
Aqi +B

Cqi +D
, (9.35)

where the coefficients A,B,C,D are the elements of the ABCD matrix that describes the propagation of light
rays through free-space. Maybe this was a coincidence.
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Let us now consider a Gaussian beam passing through a thin lens, and look at the complex q parameter just
before (qi) and after (qf ) the lens. Because the lens is thin, there is no change in the beam width: wi(z0) =
wf (z0), where z0 indicates the lens’ position. But what does a lens actually do to an EM wave? The answer is
that it imparts a quadratic phase shift on the transverse wavefront. Indeed, consider an EM wave propagating
through a lens made of a material with refractive index n, with the two sides of the lens being curved with
radii of curvatures R1 and R2, and with the lens’ thickness as a function of displacement from the optical axis
described by the function d(r) [see Fig. 46]. Because light passing through the off-axis portion of the lens
propagates through less glass, it acquires a smaller phase shift. Indeed, the phase shift as a function of the
radial distance is simply

∆φ = − [k0l1 + k0l2 + kd(r)] = −k0nd(r)− k0[d(0)− d(r)]. (9.36)

where k0 = ω/c and k = nω/c = nk0 are the wavenumbers in air and in the lens, respectively, and l1 and l2
are the distances that an off-axis portion of the EM wave propagate in air compared to an on-axis EM wave81.
Note that these phase shifts simply ensue from the usual exp(−ikz) phase evolution of an EM wave.

Figure 46: Schematic illustration of a lens with surface radii R1 and R2. d(r) is the thickness of the lens as a function of
the vertical displacement from the optical axis, r.

Simple geometrical arguments yield the following relationships between the lens curvatures R1,2 and dis-
tances l1,2:

R2
1 = r2 + (R1 − l1)2 ≈ r2 +R2

1 − 2R1l1 (9.37)

R2
2 = r2 + (R2 − l2)2 ≈ r2 +R2

2 − 2R2l2, (9.38)

where the approximations use l1,2 � r. From this we obtain the following expressions:

l1 ≈
r2

2R1
(9.39)

l2 ≈
r2

2R2
. (9.40)

81The second form of Eq.(9.36) comes from the relationship l1 + l2 + d(r) = d(0).
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Accordingly, we can write the the thickness as d(r) as

d(r) = d(0)− l1 − l2 = d(0)− r2

2

[
1

R1
+

1

R2

]
. (9.41)

For a thin lens, the lensmakers formula applies:

1

f
= (n− 1)

[
1

R1
+

1

R2

]
. (9.42)

Substituting Eq. (9.41) and (9.42) in Eq. (9.36), we obtain

∆φ = −k0nd(0) +
k0r

2

2f
. (9.43)

The first term on the right hand side of Eq. (9.43) is an absolute phase shift that does not influence the
Gaussian beam parameters. The second term, however, gives rise to different phase shifts across the transverse
wave front. If the Gaussian beam has the form ψi(x, y, z0) given by Eq. (9.23) (with k = k0) right before the
lens, then right after the lens the beam will have the form ψf (x, y, z0) = ψi(x, y, z0) exp(i∆φ). Neglecting
the absolute phase shift, this yields:

ψf (x, y, z0) = ψ0
w0

w0(z0)
exp

[
− r2

w2(z)

]
exp

[
−ik0

r2

2R(z0)
+ ik0

r2

2f

]
exp[iφ(z0)] (9.44)

It should be clear that the the lens modifies the radius of wavefront curvature. Specifically, we have

1

Rf (z0)
=

1

Ri(z0)
− 1

f
, (9.45)

where Ri and Rf are the wavefront curvatures right before and after the lens, respectively. Accordingly, the
inverse of the complex q parameter transforms as

1

qf (z0)
=

1

Rf (z0)
− i λ

πw2(z0)
=

1

qi(z0)
− 1

f
. (9.46)

Taking the reciprocal, we can write

qf =
qi

−qi/f + 1
=
Aqi +B

Cqi +D
, (9.47)

where A,B,C,D are the elements of the ABCD matrix derived for a thin lens!
The above analyses for a thin lens and for free-space propagation both show that the transformation of the

complex beam parameter q can be expressed using the ABCD matrices of the respective optical components.
This law turns out to be very general:
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ABCD law for Gaussian beams

The passage of Gaussian beams through various optical components can be described using a simple
ABCD law for Gaussian beams. Specifically, if the complex q-parameter of the Gaussian beam right
before the component is qi, the corresponding parameter right after the component is

qf =
Aqi +B

Cqi +D
, (9.48)

where A, B, C, and D are the elements of the ray transfer matrix describing the component.

9.7 Gaussian beams and resonators

Lasers typically generate Gaussian beams. This is because Gaussian beams correspond to eigenmodes of optical
cavities, i.e., transverse field arrangements that can persist in the cavity without changing from round trip to
round trip. This can actually be understood quite simply by recalling that the wavefronts of a Gaussian beam
are close to spherical. Indeed, if a Gaussian beam hits a spherical mirror whose radius of curvature matches the
beam’s radius of wavefront curvature, the mirror will simply return the beam exactly from where it came from.
Accordingly, if the beam’s radius of curvatures at both resonator mirrors matches the curvature of the mirrors,
the beam can happily bounce back and forth between the mirrors forever.

Figure 47: Schematic illustration of a Gaussian beam in a laser resonator. For a cavity eigenmode, the beam’s radii of
curvatures must match the mirrors’ radii of curvatures.

The requirement that the beam’s radius of wavefront curvature must match the radii of the resonator mirrors
allows us to deduce what the beam will be like inside and outside the cavity. Referring to Fig. 47, we have

−Rm1 = R(z1) (9.49)

Rm2 = R(z2), (9.50)

where Rm1 and Rm2 denote mirror curvatures, z1 and z2 are the displacements of the two mirrors from the
waist (the mirror separation is L = |z1| + |z2|), and the minus sign comes from sign conventions82. Injecting

82For example, concave mirrors always have positive curvature, while the sign of our Gaussian beam curvature depends on relative
position to the waist.
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the expressions for the wavefront curvatures, we obtain

−Rm1 = z1 +
z2

R

z1

Rm2 = z2 +
z2

R

z2

L = z2 − z1.

(9.51)

(9.52)

(9.53)

If we know the resonator parameters (mirror curvatures and their separation), we can solve for the waist position
(z1 and z2) and the Rayleigh range zR (three equations, three unknowns). One finds (exercise):

z2
R =

g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
L2

z1 =
−g2(1− g1)

g1(1− g2) + g2(1− g1)
L

z2 =
g1(1− g2)

g1(1− g2) + g2(1− g1)
L,

(9.54)

(9.55)

(9.56)

where gi = 1−L/Ri. From these equations, we can obtain expressions for the spot size at the waist w0 as well
as spot sizes at both mirrors.

An alternative way of finding the characteristics of a cavity eigenmode is to note that, after one full round
trip, the beam must come back to its original state. If the eigenmode’s q-parameter in the beginning of the
round trip is qi, then after one full round trip the parameter must transform as

qf =
Aqi +B

Cqi +D
= qi, (9.57)

where A, B, C and D are the elements of the ray transfer matrix Mcavity that describes one full round trip.
From this, we can see that the eigenmode’s q-parameter must satisfy

Cq2
i + (D −A)qi −B = 0. (9.58)

Solving for qi yields

qi =
(A−D)±

√
(D −A)2 + 4BC

2C
(9.59)

=
(A−D)±

√
(D +A)2 − 4

2C
, (9.60)
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where we used det[Mcavity] = AD − BC = 1. Noting that the q-parameter must have a nonzero imaginary
part, it follows that ∣∣∣∣A+D

2

∣∣∣∣ < 1. (9.61)

This is the same resonator stability condition as we found before [Eq. (8.13)], but now with a strict inequality.

9.7.1 Higher order transverse modes

Gaussian beams are not the only beams with suitable wavefront curvatures to be sustained in a given laser
resonator. In fact, there can be infinitely many such eigenmodes, and they are collectively referred to as the
transverse modes of the cavity. The particular transverse modes sustained by a cavity depends on the cavity’s
symmetry. For example, if the symmetry is restricted by a rectangular element, the modes can most conve-
niently be described using Hermite-Gaussian polynomials83:

ψlm(x, y, z) = ψ0
w0

w0(z)
exp

[
−x

2 + y2

w2(z)

]
exp

[
−ikx

2 + y2

2R(z)

]
exp[iφ(z)(1 + l +m)]

×Hl

[√
2

x

w(z)

]
Hm

[√
2

y

w(z)

]
, (9.62)

where Hn is the nth Hermite polynomial and l and m are nonnegative integers.
Each combination of integers l and m gives rise to a distinct transverse field pattern. These modes are

commonly labelled as TEMlm. In Fig. 48, we show intensity profiles corresponding to an assortment of TEMlm

modes. It should be evident that the TEM00 mode corresponds to our standard Gaussian beam. It is worth noting
that the Hermite-Gaussian polynomials form a complete set: an arbitrary transverse profile can be expressed as
a linear superposition of TEMlm modes.

The Gaussian TEM00 transverse mode is also known as the fundamental mode. In most applications, it is
desirable to have the laser output as close as possible to a clean TEM00. This is because the Gaussian profile is
clean and uniform, and does not contain any gaps. Furthermore, out of all the modes, the Gaussian beam has
the smallest spot size at the waist, and it exhibits the smallest angle of divergence.

To force the laser to emit a clean TEM00 mode, one can introduce a a narrow aperture inside the cavity.
This induces extraneous losses to the higher-order modes, which are spatially wider than the TEM00 mode. Yet
unfortunately, in practice lasers never produce 100 % true Gaussian beams, but there is always some residual
contributions from higher-order modes. The degree of variation of a beam from a Gaussian beam can be
quantified using the so-called M2 parameter, defined as

M2 = θ
πw0

λ
, (9.63)

where θ is the far-field divergence half-angle and w0 is the beam radius at the waist. For a pure Gaussian beam,
M2 = 1, whilst for all higher order modes M2 > 1. Thus, measuring the M2 of a real laser beam tells us

83If the cavity is cylindrically symmetric, the modes can be more conveniently described with Laguerre-Gaussian polynomials.
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Figure 48: Examples of Hermite-Gaussian transverse modes, |ψ(x, y)|2 at the beam waist. In all cases, w0 = 5 µm.

how close to a Gaussian the beam is: if M2 ≈ 1, the beam is almost a Gaussian, while higher values indicate
significant deviations.
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10 Nonlinear optics

Long time ago, all the way in Chapters 4 and 5, we considered the propagation of electromagnetic waves in
media. In Chapter 4, we introduced the constitutive equation

~P(~r, t) = ε0χ~E(~r, t) (10.1)

to describe the macroscopic polarization ~P(~r, t) induced in a dielectric medium by an applied electric field
~E(~r, t). With the help of this constitutive equation, we found that dielectric media can support EM waves
with velocity c/n, where the refractive index depends on the susceptibility χ viz. n =

√
1 + χ. Then, in

Chapter 5, we used the classical electron oscillator model to describe the interactions between light and matter,
and managed to derive the constitutive equation quoted above starting from fundamental “first principles”.

The constitutive equation (10.1) states that the induced polarization is linearly proportional to the electric
field. This simple linear relationship is sufficient to explain all optical phenomena that we encounter in our
daily lives: lenses, mirrors, refraction, reflection, diffraction, prisms, telescopes, and so on. Yet, as it turns out,
Eq. (10.1) is not universally valid: it breaks down when the amplitude of the electric field is sufficiently large.
A more general constitutive equation expresses the induced polarization as a power series with respect to the
electric field:

~P(~r, t) = ε0

[
χ(1)~E(~r, t) + χ(2)~E

2
(~r, t) + χ(3)~E

3
(~r, t) + ...

]
, (10.2)

where χ(n) is known as the nth order electric susceptibility of the material84.
The magnitudes of the electric susceptibilities decrease rapidly with order, which implies that terms beyond

the first order are significant only when the electric field amplitude is sufficiently large. When these higher-
order terms are not negligible, the dielectric polarization ~P(~r, t) is a nonlinear function of the electric field.
This nonlinear relationship results in altogether new – and sometimes unexpected – physical phenomena with
a rich variety of applications. Nonlinear optics is the branch of optics that describes the behaviour of light in
such nonlinear media.

Common light sources (such as stars, light bulbs etc.) do not emit radiation with electric fields sufficiently
strong to excite nonlinear optical effects, explaining why nonlinear optical effects are not encountered in our
daily lives. Only laser light can be sufficiently strong. As a consequence, the birth of nonlinear optics coincides
almost exactly with the birth of lasers: the first laser was demonstrated by Maiman in 1960, and the first
nonlinear optical effect – so-called second-harmonic generation [discussed below] – was observed by Franken
and co-workers in 1961. In what follows, we present a brief introduction to nonlinear optics, explaining some
of the salient physics and describing some of the key nonlinear phenomena and their applications. We begin
by briefly commenting on the mathematical structure that underpins the nonlinear constitutive Eq. (10.2), and
then underline the simplifications that we will be employing throughout our analyses.

10.1 The complex mathematics of nonlinear optics

The nonlinear constitutive Eq. (10.2) looks innocent enough, but in fact hides a rather complex mathematical
structure. The observant reader may already be cautious of the fact that the electric field is a vector and one
cannot (unambiguously) raise vectors to powers. Equation (10.2) should indeed be taken as a gross notational

84Do not confuse the index n as an exponent.
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simplification. In actuality, the electric susceptibility χ(n) is a tensor of rank (n + 1), and the ith Cartesian
component of the dielectric polarization ~P = [Px, Py, Pz]

T is given by

Pi = ε0

∑
j

χ
(1)
ij Ej +

∑
j,k

χ
(2)
ijkEjEk +

∑
j,k,l

χ
(3)
ijklEjEkEl + ...

 , (10.3)

Physically, this means that different components of the electric field vector (or products thereof) can contribute
to the different Cartesian components of the dielectric polarization.

The susceptibility tensor χ(n) can in general have 3n+1 non-zero components, but most materials exhibit
symmetries that reduce that number. Moreover, all of the susceptibilities depend on frequency – and not just
one frequency but several. All in all, the full mathematical formalism that underpins nonlinear optics [e.g.
Eq. (10.3)] is rather complicated. In this course, we will ignore much of these complications and focus on a
simplified scalar description. Specifically, we assume that the susceptibilities do not depend on frequency, and
that only their diagonal components are non-zero. Assuming further that the electric field is linearly polarized
along x̂, such that ~E(~r, t) = E(~r, t)x̂ we can write the dielectric polarization as ~P(~r, t) = P (~r, t)x̂, where

P (~r, t) = ε0

[
χ(1)E(~r, t) + χ(2)E2(~r, t) + χ(3)E3(~r, t) + ...

]
. (10.4)

Here the effective susceptibilities χ(n) correspond to complex-valued scalars that describes the diagonal com-
ponent of the susceptibility tensor along the x direction [e.g. χ(2)

xxx].

10.2 Classical anharmonic electron oscillator

In Chapter 5, we used the classical electron oscillator model to show that the dielectric polarization is linearly
proportional to the electric field, and we derived a classical prediction for the linear electric susceptibility. So
where does the nonlinearity originate from at a microscopic level? The answer is simple. When writing the
equation of motion for the electron in Chapter 5, we assumed a restoring force identical to Hooke’s law:

Frestoring = −kx, (10.5)

where x is the electron displacement, and k = mω0 with m the mass of the electron and ω0 the characteristic
frequency. However, Hooke’s law is only a first-order linear approximation to the real response of springs and
other elastic bodies. If the displacement is sufficiently large, the linear approximation becomes inaccurate, and
it becomes necessary to consider higher-order terms of the underlying Taylor series [exercise 10.1]:

Frestoring = −kx−max2 −mbx3 − ..., (10.6)

where a and b are constant coefficients.
Considering only the first-order correction term, the classical electron oscillator model would take the form

m
dx2(t)

dt2
= −mω2

0x−max2 − γmdx

dt
− eE(t). (10.7)
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This equation cannot be solved in closed form with the usual plane wave driving field E(t) = E0 exp(iωt);
perturbation expansion is needed [exercise 10.2]. We can nevertheless glean some obvious insights. First, we
can expect that an electric field oscillating at ω will to first order cause the electrons to oscillate at ω. But on the
other hand, the x2 correction term will in this case oscillate at 2ω, highlighting how the electron displacement
cannot just oscillate at ω: there also has to be some oscillations at 2ω.

A comprehensive analysis of the classical-electron oscillator model with a restoring force given by Eq. (10.6)
reveals that the electron displacement can be written as a power series

x(t) = c1E(t) + c2E
2(t) + c2E

3(t) + ..., (10.8)

where cn are constants. The power series representation of the macroscopic polarization, given in Eq. (10.4),
then follows from the definition of the dielectric polarization, P (t) = −Nex(t). The fact that the electron
displacement (and the polarization) depend on different powers of the electric field imply that the corresponding
waveforms do not simply mimic the electric field, but rather exhibit more complex behaviours [see Fig. 49(a)].

It is worth noting that the restoring force is related to the underlying potential energy function U(x) as
Frestoring = −dU/dx. Hooke’s law is clearly associated with a harmonic potential U = kx2/2, while a
more general restoring force of the form given by Eq. (10.6) is a signature of an anharmonic potential. This
situation in fact corresponds to the physical situation of electrons in real materials, as the actual potential
well experienced by the electrons is not perfectly parabolic [see Fig. 49]. It is only in the vicinity of the
potential minimum where the parabolic approximation is suitable [exercise 10.1]: for larger displacements, the
anharmonicity must be taken into account.

10.3 Electromagnetic wave equation with a source term

In Chapter 4, we derived the EM wave equation and wrote it in a simple form that clearly discloses the fact that
the speed of EM waves in a medium with refractive index n is given by c/n [see Eq. (4.18)]. It is insightful to
write the wave equation in a slightly different (and more general) form:

∇2~E− µ0ε0
∂2~E
∂t2

= µ0
∂2~P
∂t2

. (10.9)

Equation (4.18) is recovered with the substitution of the linear constitutive Eq. (10.1).
The left-hand side of Eq. (10.9) corresponds to the EM wave equation in vacuum, while the term on the

right-hand side can be understood as a source term that gives rise to EM waves. As an example, consider a
situation where the electric field and the polarization are both zero for times t < 0. If the polarization then starts
to undergo oscillations at time t ≥ 0, the right-hand side of the equation will become non-zero. But the equality
in Eq. (10.9) stipulates that also the left-hand side must become nonzero, which implies that an oscillating
electric field has been generated. Of course, this should not be particularly surprising: in Section 4.6.1, we
have argued that oscillating dipoles emit EM radiation and that the fields they generate are proportional to
the second time-derivative of the dipole moment. The right-hand side of Eq. (10.9) is nothing but the second
time-derivative of the macroscopic dipole moment.

Equation (10.9) leads to a peculiar interpretation for the propagation of EM radiation in media.
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Figure 49: Waveforms corresponding to an (a) electric field with a frequency of 400 THz and (b) the corresponding
nonlinear dielectric polarization. (c) Comparison of a parabolic potential characteristic to a harmonic oscillator (black)
and an anharmonic potential characteristics to a real atom (red).

Ewald-Oseen extinction theorem

We know that EM radiation incident from vacuum to a medium with refractive index n slows down and
propagates with the speed c/n. But why and how does this happen from a microscopic perspective?
Well, the electric field of the EM wave causes the bound electrons of the medium to oscillate in time,
giving rise to oscillating electric dipoles and a corresponding macroscopic polarization ~P. All of the
oscillating dipoles will emit EM radiation of their own, as described in Section 4.6.1 and evident from
Eq. (10.9). The total electric field inside the material can be obtained as the superposition of the incident
field and the fields generated by all of the oscillating dipoles:

~Em(~r, t) = ~Evac(~r, t) + ~Edip(~r, t), (10.10)

where ~Evac is the incident field and ~Edip is the field radiated by the dipoles. Re-arranging, we obtain

~Edip(~r, t) = ~Em − ~Evac(~r, t). (10.11)

Now, we know that the wave inside the material (~Em) corresponds to a single EM wave that propagates
with the speed c/n. The above expression shows that the oscillating dipoles radiate a field that exactly
cancels out the incident field and creates the transmitted field travelling within the medium at speed c/n.
This rather remarkable fact is known as the Ewald-Oseen extinction theorem.
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10.4 Nonlinear polarization

Let us divide the dielectric polarization in a linear and a nonlinear part:

~P(~r, t) = ~PL(~r, t) + ~PNL(~r, t), (10.12)

where ~PL(~r, t) = ε0χ
(1)~E(~r, t) and the nonlinear polarization ~PNL contains all the nonlinear terms. Substitu-

ting this expression in Eq. (10.9) allows us to derive the following nonlinear EM wave equation:

∇2~E− n2
0

c2

∂2~E
∂t2

= µ0
∂2~PNL

∂t2
, (10.13)

where n0 =
√

1 + χ(1). Here the left-hand side accounts for linear propagation effects while the right-hand
side corresponds to a nonlinear source term. The nonlinear EM wave equation allows us to rigorously study
the propagation of light through a nonlinear optical medium. In what follows, we provide a brief description
of various nonlinear optical effects by considering different forms of the nonlinear polarization. For the sake
of simplicity, we will consider the scalar approximation, where ~E(~r, t) = E(~r, t)x̂, ~P(~r, t) = P (~r, t)x̂, and the
constitutive Eq. (10.4) holds.

10.5 Second-order nonlinear effects I: second-harmonic generation and rectification

Consider a second-order nonlinear polarization of the form

P
(2)
NL(~r, t) = ε0χ

(2)E2(~r, t). (10.14)

We first note that second-order effects can arise only in materials that do not possess a center of inversion, i.e.,
materials that are non-centrosymmetric [exercise10.3]. The most important materials of this type are crystal
materials with certain symmetry, such as lithium niobate, lithium tantalate, and β-barium borate.

Let us assume that the incident wave is a plane EM wave propagating in the positive z direction such that

E(z, t) = E0e
i(ωt−kz) + c.c., (10.15)

where c.c stands for complex conjugate. Note that, since we will be calculating squares of the fields, it is
imperative that we express them as real quantities: it is for this reason that we include the complex conjugate
in our expression for the electric field.

Using Eq. (10.15) in Eq. (10.14), we obtain [exercise 10.4]

P
(2)
NL(~r, t) = ε0χ

(2)
[
E2

0e
2i(ωt−kz) + 2|E0|2 + c.c

]
. (10.16)

We see that the nonlinear polarization contains two terms; in what follows, we describe their physical meaning.
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10.5.1 Second-harmonic generation

The second time-derivative of the nonlinear polarization, which acts as a source in the nonlinear wave Eq. (10.13),
is given by

∂2P
(2)
NL

∂t2
= −4ε0χ

(2)ω2E2
0e

2i(ωt−kz) + c.c. (10.17)

We see that this source term oscillates at frequency 2ω, and as a consequence, it drives the emission of EM
waves with that frequency. This observation is quite surprising. An incident EM wave causes electrons to
oscillate in a way that their motion contains frequency components both at ω and 2ω; the latter results in the
generation of new EM radiation at 2ω. In essence, an EM wave with frequency ω enters the medium, and two
EM waves with frequencies ω and 2ω exit the medium [see Fig. 50(a)]. This phenomenon is known as second-
harmonic generation (SHG), and it was the first nonlinear optical phenomenon observed. SHG is widely used
to generate laser light at frequencies where it is difficult to directly build a laser (e.g. due to unavailability of
suitable active media). Green laser pointers are good examples: they start from a neodymium-doped active
medium that generates light at 1064 nm (infrared), and SHG is then used to convert that to 532 nm (green).

Second-harmonic generation can be understood in the photon picture as the annihilation of two photons at
frequency ω and creation of a new photon at frequency 2ω [see Fig. 50(b)]. In this picture, the incident photons
excite virtual energy levels of the atom, while the second-harmonic photons are emitted when the atom relaxes
down to its ground state. Energy is clearly conserved in the process: 2ω = ω + ω.

10.5.2 Optical rectification

The nonlinear polarization given by Eq. (10.16) also contains a DC (non-oscillating) term 2ε0χ
(2)|E0|2. The

second derivative of this term vanishes, and so it does not generate any EM waves. Rather, this term describes
the fact that, through the second-order nonlinearity, an EM wave oscillating at frequency ω induces a static
polarization in the material. Such a static polarization results in a static (internal) electric field: a voltage
appears across the medium [see Fig. 51(a)]. This phenomenon is known as optical rectification.

(a) (b)

Figure 50: (a) Schematic illustration of SHG. An incident beam at ω is frequency-doubled by the χ(2) nonlinearity to
produce a new signal at 2ω. (b) SHG can be understood in the photon picture as the annihilation of two photons at ω and
the creation of a single photon at 2ω. The dashed lines correspond to virtual energy levels.
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Figure 51: (a) Because of the χ(2) nonlinearity, an intense incident beam can induce a static voltage across the material.
Similarly, if an external voltage is applied across the material, the refractive index experienced by the beam can be
changed. Modulating the external voltage in time allows the phase of the incident beam to be modulated. When combined
with polarizers or interferometers, also amplitude modulation can be achieved (b). In (b), the red dashed curve represents
the modulation envelope, while black solid curve is the actual electric field.

10.6 Second-order nonlinear effects II: Pockels effect and modulators

Above we saw that a strong beam propagating through a second-order nonlinear material will give to a static
voltage across the material. But what if we externally apply such a voltage to begin with? In this case, the
electric field can be written [ignoring second-harmonic generation] as

E(z, t) = EDC + E0e
i(ωt−kz) + c.c., (10.18)

where the first term is real and corresponds to the static electric field, and the second (and third) term(s) cor-
responds to the EM wave. Substituting Eq. (10.25) into Eq. (10.14), we find that, in addition to the SHG and
rectification terms considered above, the nonlinear polarization contains a term that oscillates at frequency ω.
The total polarization at the incident frequency ω, including the linear term, then reads [exercise 10.4]

P (z, t) = ε0χ
(1)E0e

i(ωt−kz) + 2ε0χ
(2)EDCE0e

i(ωt−kz) + c.c

= ε0

[
χ(1) + 2χ(2)EDC

]
EEM(z, t) + c.c,

(10.19)

(10.20)

where we defined the EM waveEEM(z, t) = E0 exp[i(ωt−kz)]. Substituting this form of the total polarization
in Eq. (10.9), we can derive the following form for the EM wave equation [exercise 10.5]:

∇2~E− n2

c2

∂2~E
∂t2

= 0, (10.21)

where the refractive index n now obeys

n2 = 1 + χ(1) + 2χ(2)EDC. (10.22)
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Noting that the usual, linear refractive index n0 =
√

1 + χ(1), and that the term involving the susceptibility
χ(2) is generally much smaller than n2

0, we can express the refractive index in the form

n ≈ n0 +
χ(2)

n0
EDC. (10.23)

And so we see that an external voltage (electric field) applied across a medium can be used to modify the
refractive index experienced by light. This effect is known as the Pockel’s effect after the German physicist
Friedrich Pockels who studied the process around 1895. It is interesting to note that the Pockel’s effect was
discovered several decades before lasers were invented; this is because the effect is induced by a static electric
field rather than an EM wave. It is often considered a precursor of nonlinear optics, but the analysis above
nevertheless shows that the Pockel’s effect corresponds to a second-order nonlinear optical effect.

Pockel’s effect has important practical applications. Specifically, by modulating the DC voltage at some
radiofrequency ωm, such thatEDC ≡ EDC(t) = A sin(ωmt) the optical beam propagating through the material
can be phase-modulated:

Eout = Eine
−ikL = Eine

−ωL
c

[n0+AK sin(ωmt)], (10.24)

where K = χ(2)/n0 and we used k = nω/c with n given by Eq. (10.23). By using additional polarizers – or
by placing a Pockels phase modulator inside an interferometer – intensity modulation can be achieved as well
[see Fig. 51(b) and exercise 10.6]. Modulators based on the Pockel’s effect are widely used to modulate data
on an optical carrier wave: they are vital components in modern telecommunication systems.

10.7 Second-order nonlinear effects III: sum- and difference-frequency generation

Consider now a situation where two beams with different frequencies ω1 and ω2 are simultaneously launched
into a second-order nonlinear medium [see Fig. 52(a)]. The incident field is given by

E(z, t) = E01e
i(ω1t−k1z) + E02e

i(ω2t−k2z) + c.c.. (10.25)

Calculating the nonlinear polarization using Eq. (10.14), we find DC rectification terms and second-harmonic
terms induced by both waves. But in addition, we find two new terms that oscillate at frequencies that corre-
spond to the sum (ω1 +ω2) and difference (ω1−ω2) of the two incident waves. Since an oscillating polarization
results in the generation of EM waves whose frequency coincides with that of the polarization, these terms will
give rise to new EM waves at the sum- and difference-frequencies. The processes that result in the generation
of these two new EM waves are aptly known as sum- and difference-frequency generation.

Sum-frequency generation (SFG) can be interpreted in the photon picture as the annihilation of photons
with frequency ω1 and ω2 and the subsequent creation of a single new photon with frequency ω3 = ω1 + ω2

[see Fig. 52(b)]. Difference-frequency generation (DFG) can similarly be interpreted as the annihilation of
one energetic photon at ω1 and the subsequent generation of lower-energy photons at ω2 and ω3 such that
ω2 + ω4 = ω1, where ω4 = ω1 − ω2 [see Fig. 52(c)]. Both processes clearly satisfy energy conservation.

As seen above, the nonlinear polarization can in general contain numerous terms that are oscillating at
different frequencies. However, not all of these terms result in the generation of EM radiation with significant
intensity. Indeed, it turns out that a stringent condition – known as the phase-matching condition – needs to be
satisfied for the wave to grow to significant intensity as it propagates. Such a phase-matching condition can be
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(a) (b) (c)

Figure 52: (a) Schematic illustration of sum- and frequency-difference generation. Possible second-harmonic waves are
not shown for clarity. (b, c) Photon energy diagrams for SFG and DFG, respectively. In SFG, photons at ω1 and ω2 merge
to produce one photon at ω1 + ω2. In DFG, a photon at ω1 splits into a photon at ω2 and ω1 − ω2.

satisfied for only one process at a time (if even). Accordingly, we may expect only one of the generated new
frequencies to be significant. Phase-matching will be considered in detail at a latter stage.

10.7.1 Parametric amplification

The photon interaction picture for DFG [see Fig. 52(c)] reveals that, for every interaction, a photon is generated
at the new frequency ω4 = ω1−ω2 and at one of the original frequencies ω2. This means that the incident beam
associated with frequency ω2 is in fact amplified as it propagates through the medium (at the expense of the
beam at frequency ω1). It is important to note that this amplification does not require an active gain medium;
rather, it occurs entirely via the nonlinear optical interaction between the incident (and the generated) beams.
Such nonlinear optical amplification is commonly referred to as parametric amplification.

Parametric amplification can occur even without the “signal” beam at ω2 present at the input [see Fig. 53(a)].
Here, a single intense pump ω1 = ω2 + ω4 launched into a nonlinear medium spontaneously breaks into new
photons at ω2 and ω4. It may feel strange that this can occur, as the nonlinear polarization with a single input
does not contain the DFG term. The conundrum is resolved by noting that the vacuum is not exactly empty:
it exhibits quantum fluctuations that manifest themselves as the appearance (and disappearance) of photons.
Photons at ω2 can emerge from such fluctuations and be parametrically amplified. The resulting spontaneous
process is known as parametric fluorescence.

Parametric amplification immediately implies an application. Specifically, it can be used to conveniently
convert laser light from one frequency to another. The process can be made very efficient by placing the
nonlinear medium inside a resonator. By driving the system at some pump frequency ω1, so-called signal and
idler beams that satisfy ω2+ω3 = ω1 can be generated [see Fig. 53(b)]. The precise signal and idler frequencies
that are generated depend on the phase-matching conditions, which can be modified by controlling the angle
or temperature of the nonlinear medium. In this way, it is possible to generate laser light whose frequency can
be tuned over broad spectral range. An oscillator device that achieves such operation is known as an optical
parametric oscillator (OPO).
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mirror mirror

Figure 53: (a) Schematic illustration of parametric fluorescence: an intense beam at ω1 propagating in a χ(2) nonlinear
medium can spontaneously generate photons at ω2 and ω4 such that ω2 +ω4 = ω1. (b) Schematic illustration of an optical
parametric oscillator (OPO). By driving a resonator that contains a χ(2) nonlinear medium with an intense pump at ω1,
new beams at ω2 and ω4 can be efficiently generated. For historical reasons, the generated beam with the higher frequency
is known as the “signal” beam whereas the beam with the lower frequency is known as the “idler”.

10.8 Third-order nonlinear effects

Consider now the third-order nonlinear polarization of the form

P
(3)
NL(~r, t) = ε0χ

(3)E3(~r, t). (10.26)

In contrast to second-order nonlinearities, which only manifest themselves in materials without inversion sym-
metry, the third-order nonlinearity is ubiquitous: it is present in all materials. Accordingly, for materials (such
as glass) that are centrosymmetric, it corresponds to the lowest-order nonlinearity.

In general, third-order nonlinear interactions can involve up to four different waves with different frequen-
cies. Their general analysis would require us to consider an incident wave made out of three different frequency
components. This analysis is quite tedious, as the number of terms in the nonlinear polarization is quite large.
Here we only consider the simplest situation, where a single monochromatic wave is incident on the material.
Substituting Eq. (10.15) into Eq. (10.26), we obtain [exercise 10.4]:

P
(3)
NL(z, t) = ε0χ

(3)
[
E3

0e
3i(ωt−kz) + 3|E0|2E0e

i(ωt−kz) + c.c
]
. (10.27)

We again see that the nonlinear polarization contains two terms.

10.8.1 Third-harmonic generation

The third-order nonlinear polarization exhibits a term that oscillates at frequency 3ω. This term will give rise
to EM radiation at that frequency. The process is known as third-harmonic generation, and it allows for an
incident wave with frequency ω to drive the generation of a secondary beam at the third-harmonic frequency
3ω [see Fig. 54]. Similarly to second-harmonic generation, three photons at the fundamental frequency are
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Figure 54: (a) Schematic illustration of THG. An incident beam at ω is frequency-tripled by the χ(3) nonlinearity to
produce a new signal at 3ω. (b) THG can be understood in the photon picture as the annihilation of three photons at ω and
the creation of a single photon at 3ω.

annihilated during the process, and a single photon at the third-harmonic frequency is generated, ensuring
energy conservation.

Second- and third-harmonic generation should highlight that each term in the total nonlinear polarization
[see Eq. (10.4)] is responsible for the generation of harmonics with higher and higher order. Of course, we must
emphasise again that efficient generation of any of the harmonics requires stringent phase-matching conditions
to be satisfied [more on that later]. Moreover, even under conditions of (almost) perfect phase-matching, the
efficiency with which harmonics can be generated tends to decrease with the order because of the decreasing
magnitude of the electric susceptibilities; in practice, harmonics beyond the third-order are rarely generated
with common incident intensities. When the incident intensities become sufficiently large, Eq. (10.4) actually
becomes invalid. In this regime, the electric fields are so strong that they can ionize the atoms, i.e., pull the
electrons out of their potential well altogether. Interestingly, as the electrons eventually recombine with the
positive nuclei, harmonics of very high-order can be efficiently generated – a phenomenon known as high-
harmonic generation. High-harmonic generation is beyond the scope of this course; here we stick to the
perturbative regime, where Eq. (10.4) is valid.

10.8.2 Nonlinear refractive index

The second term in the third-order nonlinear polarization [Eq. (10.16)] oscillates at the fundamental frequency
ω and is in fact proportional to the EM wave. This gives rise to an interesting phenomenon. Let us assume that
all other terms in the nonlinear polarization are negligible (which in fact is often the case unless special care is
taken to ensure phase-matching). The total polarization, including the linear term, then reads

P (z, t) = ε0χ
(1)E0e

i(ωt−kz) + 3ε0χ
(3)|E0|2E0e

i(ωt−kz) + c.c

= ε0

[
χ(1) + 3χ(3)|E0|2

]
E(z, t) + c.c,

(10.28)

(10.29)

where the latter form uses E(z, t) = E0 exp[i(ωt − kz)]. Following the analysis presented in Section 10.6,
when describing the Pockel’s effect, we find that the refractive index now obeys

n2 = 1 + χ(1) + 3χ(3)|E0|2. (10.30)
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Recalling that the usual, linear refractive index n0 =
√

1 + χ(1), and that the intensity of an EM wave is related
to the absolute value squared of the complex amplitude as I = 2n|E0|2/(cµ0), we can express the refractive
index in the form

n ≈ n0 + n2I. (10.31)

Equation 10.31 shows that, because of the third-order nonlinearity, the refractive index depends (linearly)
on the light intensity. This phenomenon is known as the Kerr effect or self-phase modulation, since the propa-
gating wave is nonlinearly modifying its own phase. In deriving Eq. (10.31), the nonlinear perturbation to the
refractive index was assumed small, which indeed is typically the case. The coefficient n2 is known as the non-
linear refractive index and it typically has very small value. For example, in silica glass, n2 ≈ 3×10−20m2/W,
highlighting how large intensities are required for the effect to be significant. Such large intensities are nevert-
heless often encountered, and effects of self-phase modulation observed. They are particularly important in
optical fibres, which can readily be several hundreds of kilometres long, such that the effect can accumulate
[exercise 10.7].

10.8.3 Self-focusing and solitons

Self-phase modulation underpins many important effects. Consider a Gaussian beam propagating in a third-
order nonlinear material. Assuming that the waist of the beam occurs before the material, we would expect
the beam to spread (diffract) as it propagates [see Fig. 55]. However, because of the Kerr effect, the refractive
index close to the intensity maximum of the beam will be larger than at the wings (assuming n2 > 0 which
is often but not always the case). In other words, the medium through which the beam propagates exhibits a
refractive index profile that varies along the transverse spatial dimension, reaching a maximum at the centre of
the beam. Such an index variation effectively acts as a (focusing) lens: the phase shift close to the beam centre
is larger than at the wings [see also discussion in Section 9.6]. As a consequence, if the intensity of the beam
is sufficiently large, the beam can undergo self-focusing in the medium [see Fig. 55]. We call this phenomenon
self-focusing, since the beam itself is responsible for the refractive index change.

If a beam undergoes self-focusing, the intensity will further increase (as energy is being confined to a
smaller area), which will give rise to even stronger self-focusing. However, as the beam gets narrower, the
impact of diffraction will also increase. A balance can be reached where the self-focusing exactly balances

self-focusing
dominates

diffraction compensates
self-focusing

spatial soliton

Figure 55: Schematic illustration of the formation of a spatial soliton. A beam propagating in a χ(3) medium undergoes
self-induced focusing, which can eventually be balanced by diffraction. This balance can give rise to a spatial soliton:
beam that maintains constant shape. After the medium, self-focusing vanishes and ordinary diffraction takes over.
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diffraction. In this case, the beam will propagate unchanged, i.e., without spreading or narrowing. Such a beam
is known as a spatial soliton: a wave that maintains constant shape as it propagates. Solitons are universal in
nature, manifesting themselves in a variety of nonlinear systems ranging from cold atoms and hydrodynamics
to optics. In addition to the spatial domain, in optics they can also manifest themselves in the temporal domain,
where the Kerr nonlinearity balances temporal broadening due to dispersion, allowing a short pulse to propagate
unchanged through a nonlinear material (such as an optical fibre).

Problems

10.1 Consider an arbitrary potential function U(x) with a minimum at x0. Use Taylor series expansion to
show that, for displacements close to the minimum (x ≈ x0), Hooke’s law arises.

10.2 Consider the anharmonic electron oscillator model described by Eq. (10.7) with a driving field given by
Eq. (10.15) Use perturbation theory to derive an expression for the second-order nonlinear susceptibility
χ(2)(2ω). To this end, replace the driving term E(t) → λE(t), where λ is a control parameter that will
be set to unity at the end of the calculation and expand the solution as a power series with respect to λ,

x(t) = λx(1) + λ2x(2) + λ3x(3) + ... (10.32)

For the above equation to be a solution for any value of λ, we require that the terms in Eq. (10.7)
proportional to λ, λ2, λ3 and so on satisfy the equation separately. You can thus solve for the terms x(n)

iteratively by first solving the equation for x(1) and using your solution to solve for x(2) and so on.

10.3 Use simple symmetry arguments to show that, for all centrosymmetric materials, χ(2) = 0. To this end,
use the fact that an inversion symmetry stipulates that inverting the direction of the electric field E(t)→
−E(t) must result in a similar inversion of the direction of the dielectric polarization, P (t)→ −P (t).

10.4 Explicitly show that the nonlinear polarizations described by Eq. (10.16), Eq. (10.20), and (10.27) are
correct for the incident waves quoted.

10.5 Derive Eq. (10.21) for the incident wave quoted, and show that the refractive index appearing in the
equation is given by Eq. (10.23).

10.6 Consider a device, where light is equally split into two paths with equal lengths, but one of the paths
contains a Pockels cell that gives rise to a phase-modulation as described by Eq. (10.24). Show that when
the two paths are combined, the superposition field exhibits an amplitude modulation. Devices of this
kind are known as Mach-Zehnder modulators.

10.7 Consider a 100 mW laser beam at 1550 nm propagating in a standard silica optical fibre with a core
diameter of 10.4 µm. Assuming the beam exhibits uniform spatial profile for the sake of simplicity,
estimate the propagation length L that results in a nonlinear phase shift of 2π. The nonlinear refractive
index of silica is about 3× 10−20 m2/W.
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11 Coherence

Coherence is an important property of all waves, and it is intimately related to waves’ ability to produce stable
interference patterns. It is, however, difficult to define in any concise and unambiguous manner. Indeed, the
concept of coherence broadly encompasses “all properties of the correlation between physical quantities of a
single wave, or between several waves or wave packets”. Here, we will only describe some basic principles of
coherence.

A single light field is said to be coherent when there is a fixed phase relationship between the electric
field values at different locations in space or at different times. If the phase relationships are not fixed, but
change randomly in time, we say that the light field is incoherent. If the phase relationship changes somewhat
with time (but is not totally random), we say that the field is partially coherent. Depending on whether we are
interested in the phase-relationships at constant time but different positions in space (or vice versa), we typically
distinguish between spatial and temporal coherence. Simple physical interpretations of these quantities are as
follows:

Interpreting coherence

• Temporal coherence: describes how well we can predict the phase (or value) of a wave at some
future time if we know the wave’s phase (or value) at some initial time. For a temporally coherent
field, we can easily predict the value of the field at any time: there is little or no randomness.

• Spatial coherence: describes how well we can predict the phase (or value) of a wave at some
spatial location~r2 if we know the wave’s phase (or value) at some other location~r1. For a spatially
coherent field, we can easily predict the value at any spatial location ~r2 based on the knowledge
the field value at~r1 at all times.

In this Section, we will be mostly interested in temporal coherence.

In more general terms, coherence always involves two waves, and basically describes how well those two
waves are “correlated”, or what they have in common. When talking about the coherence of single light fields,
we are really talking about the coherence between the light field and a delayed replica of itself (e.g. temporal
coherence) or the coherence between two waves corresponding to different spatial locations (spatial coherence).
So always two waves. In a nutshell, two beams of light are coherent when the phase difference between
their waves is constant; they are incoherent if there is a random or changing phase relationship. As we
shall see, stable interference patterns are formed only between fields that are coherent with one another.

11.1 Example of temporal coherence

Let us consider a monochromatic plane wave with frequency ω at some point~r0 in space. For brevity, we drop
the~r-dependence and assume linear polarization, which then allows us to consider a scalar field:

E(t) = E0e
iωt. (11.1)

This wave [see Fig. 56(a)] is perfectly coherent. Indeed, if we know that the phase at some time t0 is φ0 = ωt0
we can predict the phase at any other time: φ(t) = ωt = ω(t − t0) + φ0. Alternatively, consider the phase
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(a) Fully coherent wave

Figure 56: Electric fields corresponding to EM waves with (a) perfect and (b) partial temporal coherence. The electric
field in (b) is constructed such that, every τc in time, the wave undergoes a random phase shift. Different colours highlight
oscillations after different phase jumps.

difference between the wave and a replica of itself delayed by a time ∆τ . At any given time, we have

∆φ(t) = ωt− ω(t−∆τ) = ω∆τ. (11.2)

As can be seen, the phase difference is constant with time: the field is perfectly coherent with itself, and is thus
said to be perfectly coherent.

Let us now consider a wave of the form

E(t) = E0e
iωt+iφ(t), (11.3)

where φ(t) is a random process85 that changes the phase of the wave once every τc. In other words, after a time
τc has elapsed, the phase of the wave randomly changes to a new value [see Fig. 56(b)]. This wave no longer
displays perfect coherence. Indeed, if we know the phase at some time t0, there is no way for us to predict
what it will be after a time τc, since the phase will have changed randomly. We can, however, predict what the
phase will be after a time interval t− t0 < τc, so there is still some coherence in the wave. Accordingly, we say
that the wave is partially coherent. This observation allows us to roughly define what we mean with “partial”
temporal coherence:

85Function probably doesn’t make sense in this context!
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Classification of temporal coherence

• Perfect coherence: the wave is perfectly correlated with itself at all times. In other words, kno-
wing the phase at some time t0 allows us to predict the phase at any future time.

• Partial coherence: the wave is correlated with itself for times t < τc. In other words, knowing
the phase at some time t0 allows us to predict the phase for times t < t0 + τc.

• Full incoherence: the wave is not correlated with itself at any times t. In other words, we can
make no predictions of future times.

An alternative way to interpret the above is to note that the phase difference between the original wave and
a delayed replica of itself exhibits constant phase difference precisely for delays smaller than τc. For delays
larger than τc, the phase difference wanders in time.

11.2 Coherence time and coherence length

The time τc referred to above corresponds to a coherence time. In general, real light waves are influenced
by complex random processes (the random process introduced above was very simple), which stochastically
change the phase and amplitude of the wave. For arbitrary light waves, the coherence time τc is defined as the
delay over which the wave’s phase or amplitude of wanders by a significant amount (and hence the correlation
decreases by significant amount). Certainly, τc used in our little example above fits this definition, and hence
can be understood as a coherence time.

The distance that light travels in vacuum during one coherence time is known as the coherence length. It is
defined as

lc = cτc. (11.4)

We can rewrite our conditions for coherence/partial coherence/incoherence above in terms of the coherence
time and the coherence length:

Classification of temporal coherence using coherence time

• Perfect coherence: coherence time τc =∞.

• Partial coherence: coherence time τc finite but non-zero.

• Full incoherence: coherence time τc = 0.

It should be clear that all real light waves are partially coherent.
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11.3 Interference

Coherence plays a key role in interference. Let us consider two partially coherent waves with identical ampli-
tudes and frequencies:

E1(t) = E0e
iωt+iφ1(t), (11.5)

E2(t) = E0e
iωt+iφ2(t), (11.6)

where φ1,2(t) can be constant or they can depend on time in random (or not) fashion. They can also evolve
independently or in a perfectly correlated manner. Imagine that these two waves are superimposed together,
and we detect the resulting intensity using our eyes or a photodetector. The superposition wave E = E1 + E2

can be written as:

E(t) = E0e
iωt+iφ1(t)

[
1 + ei∆φ(t)

]
, (11.7)

where ∆φ(t) = φ2(t)− φ1(t) is the difference between the phases of the two waves.
Our eyes or photodetectors do not detect electric fields directly, but rather the intensity of the electromagne-

tic wave. A long time ago, we have argued that the intensity of a complex EM wave can be obtained by taking
the absolute value squared of the complex electric field. Thus, the intensity corresponding to our superposition
field is given by

I(t) = 2I0 [1 + cos(∆φ(t))] , (11.8)

where I0 = |E0|2. Below we will consider two different limit situations.
Assume that the waves are mutually coherent. This implies that the phase difference ∆φ(t) = ∆φ is a

constant: indeed, by definition, two beams of light are coherent when the phase difference between their waves
is constant. In this case, the superposition intensity I(t) will also be constant and not fluctuate with time. If
the constant phase difference is equal to ∆φ = 2mπ, with m an integer, we see that the waves will interfere
constructively, yielding a resultant intensity of I(t) = 4I0. On the other hand, if the phase difference is
∆φ = (m + 1)π, the waves interfere destructively, yielding a constant resultant intensity of I(t) = 0. The
key observation is this: the interference between two mutually coherent waves is stable and does not fluctuate
with time. If we can systematically change the phase-difference ∆φ, using for example a delay line for one of
the waves, we can trace an interference pattern consisting of periodically repeating minima or maxima. Another
key point to note is that the ability for two waves to stably interfere does not depend on how the individual fields
fluctuate: so long as they fluctuate in an identical way (e.g. such that the phase difference is constant), stable
interference ensues. This highlights the fact that coherence truly describes how well a given wave is correlated
with another.

Let us now assume that fields are not at all coherent with one another. The phase difference ∆φ(t) is
no longer constant. Furthermore, because φ1,2 are random processes, the phase difference ∆φ(t) will also
change randomly. This of course implies similar random fluctuations for the intensity I(t) [see Eq. (11.8)]. In
practice, we can only resolve intensity fluctuations that occur over sufficiently long timescales. This is because
all detectors come with some finite response time. For our eyes, the response is some milliseconds, whilst for
state-of-the art photodetectors we are talking about some tens of picoseconds. Mathematically, we can say the
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Eq. (11.8) gives us the “instantaneous” intensity, whilst the intensity we can actually detect is given by the time
average:

Id(t) =
1

2T

∫ T

−T
I(t), (11.9)

where T is a characteristic response time of a detector. Note that, in theoretical analyses, we often assume T to
be very large, and define the detected intensity as the limit when T →∞.

If the two waves are not mutually coherent, such that the phase difference ∆φ is totally random, the
cos(∆φ(t)) term averages to zero. In this case, the detected intensity from the superposition of our two waves
reads simply:

Id(t) = 2I0. (11.10)

In other words, there is no interference observed at all for waves that are mutually incoherent!

11.4 Characterising the temporal coherence of a wave of light

The above discussion suggests an experimental method to quantitatively examine the temporal coherence of
a light field. Specifically, let us consider a situation where a light wave is passed through an interferometer,
such as the Michelson interferometer shown in Fig. 57. Here, a beam splitter divides the input wave into two
arms. Each of those waves is then reflected back to the beam splitter, and the superposition wave is detected
using e.g. a photodetector. We denote the distances between the beam splitter and the mirrors as l1 and l2, and
further assume that one of the mirrors is fixed while the other one can be moved towards or away from the beam
splitter. In this way, the distance l2 can be continuously adjusted.

We write the EM wave just before it is split at the beam splitter as:

Ei(t) = E0e
iωt+iφ(t), (11.11)

where the additional phase factor φ(t) can be constant or depend on time. As the beams travel back and forth
their respective arms, they accumulate phase shifts exp(2ikln). Ignoring the common phase factor arising from
propagation to the photodetector, the superposition field at the detector will be

E(t) =
E0

2
eiωt+iφ(t−τ1)−2ikl1 +

E0

2
eiωt+iφ(t−τ2)−2ikl2 (11.12)

=
E0

2
eiωt+iφ(t−τ1)−2ikl1

[
1 + eiφ(t−τ2)−iφ(t−τ1)−2ik(l2−l1)

]
, (11.13)

where τn = 2ln/c is the time taken for each beam to travel to its respective mirror and back. Note that the
factor E0/2 ensures that the beam splitter divides intensity equally (also note that both beams pass through the
splitter twice). Further note that phase shifts from reflection and transmission through the beam splitter cancel
out since both arms will be reflected and transmitted once.

Calculating the instantaneous intensity is straightforward:

I(t) =
I0

4
[2 + 2 cos(∆φ(t) + k∆l)] , (11.14)
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Figure 57: Schematic illustration of a Michelson interferometer. A beam splitter divides an input EM wave into two arms
with lengths l1 and l2, and subsequently combines the two reflected waves. Time-averaged intensity of the superposition
field is then detected with a photodetector. By translating one of the mirrors, it is possible to probe the interference
between the input wave and its time-delayed replica. From the resulting interferogram, we can deduce the wave’s temporal
coherence.

where I0 = |E0|2 and ∆l = 2(l2 − l1) is the length difference between the two arms and ∆φ(t) = φ(t −
τ1) − φ(t − τ2). Note that, if the interferometer arms have exactly the same length, we have τ1 = τ2 and
hence ∆φ(t) = 0. It is traditional to write this equation in terms of the relative temporal delay between the two
interferometer arms rather than the path difference as:

I(t) =
I0

4
[2 + 2 cos(∆φ(t) + ω∆τ)] , (11.15)

where we used k = ω/c and defined the relative temporal delay ∆τ as

∆τ = τ2 − τ1 = 2c(l2 − l1). (11.16)

As in the preceding section, the actual detected intensity will be the time-average of Eq. (11.15). Depending
on the nature of the phase fluctuations φ(t) (and hence ∆φ(t)), we can obtain very different behaviours when
the delay is scanned by manually moving one of the mirrors:
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Temporal interference of partially coherent fields

• If the field exhibits perfect temporal coherence, φ(t) is constant. Accordingly, ∆φ(t) = 0 for
all t. Scanning one of the interferometer arms (i.e., continuously changing e.g. l2) results in the
detection of a perfect interference pattern, as shown in Fig. 58(a).

• If the field is exhibits total temporal incoherence, φ(t) is fluctuating at infinitely short timescales
(τc = 0). In this case ∆φ(t) = 0 only for ∆τ = 0, i.e., when the interferometer arms have
precisely the same lengths. For any other delay, the cos(∆φ(t) +ω∆τ) term will average to zero.
Accordingly, our detected intensity will be I(0) = I0 over an infinitesimally narrow range of
delays around ∆τ = 0, and I(t) = I0/2 for all other ∆τ [see Fig. 58(b)].

• For real, partially coherent light fields, φ(t) is fluctuating but not totally randomly. Rather, φ(t)
stays almost constant for delays much smaller than the coherence time τc, and only exhibits erratic
changes over delays larger than the coherence time. Accordingly, the phase-difference ∆φ(t) ≈ 0
for delays ∆τ � τc, giving rise to beautiful interference fringes [see Fig. 58(c)]. In contrast,
for very large delays ∆τ � τc, the phase-difference ∆φ(t) oscillates randomly, such that the
cosine term in Eq. (11.15) averages to zero and we lose the interference fringes. In between these
two limits (very small and very large delay), we find a uniform transition whereby the interfe-
rence fringes gradually disappear, as shown in Fig. 58(c). A key observation is the following:
We can measure the coherence time of a light source by passing it through a (Michelson)
interferometer, and by measuring at what delay do the interference fringes disappear!

11.5 Interferograms and fringe visibility

All real light fields are partially coherent, and therefore exhibit an interference pattern similar to the one shown
in Fig. 58(c). The time-scale over which the interference fringes vanish corresponds to the source’s coherence
time. Accordingly, the coherence time of a source can be measured by using a Michelson interferometer with
a variable arm-length, and gauging at what delay do the interference fringes vanish.

The time-averaged interference pattern observed when the relative delay between the interferometer arms is
changed [c.f. Fig. 58] is known as an interferogram. It can be shown (left as an exercise), that the time-average
of Eq. (11.15) can be written as:

Id(∆τ) =
I0

2
[1 + |g(∆τ)| cos(ω∆τ + φ)] , (11.17)

where φ = arg[g(∆τ)] and the quantity g(∆τ) is known as the complex degree of first-order coherence.
This quantity governs the ability of a wave to interfere with a time delayed replica of itself. It has a maximum
value of unity at zero delay, and vanishes for ∆τ � τc, i.e., when the optical path difference between the
interferometer arms is much greater than the coherence length lc = cτc.

The temporal periodicity of the interferogram is equal to the period of the EM wave: ∆τper = 2π/ω. If the
coherence time is much larger than this (as is typically the case), then the degree coherence g(τ) varies slowly
in comparison to that period. In this case, the magnitude |g(τ)| can be measured by monitoring the visibility of
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Figure 58: Detected (time-averaged) intensity as a function of interferometer delay ∆τ (bottom x-axis) and corresponding
interferometer path length difference ∆l (top x-axis). (a) Field with perfect temporal coherence (τc = ∞), (b) totally
incoherent field (τc = 0) and (c) partially coherent field with τc ≈ 15 fs. In general, interference fringes are observed for
delays ∆τ < τc.

the interference pattern as a function of time delay. Here, the visibility of the interference fringes is defined as:

V =
Imax − Imin

Imax + Imin
, (11.18)

where Imax and Iin are the maximum and minimum values that Id takes as ∆τ is slightly varied in the vicinity
of some fixed delay ∆τ0. Using |g(∆τ)| ≈ |g(∆τ0)| in Eq. (11.17), we easily obtain [exercise]:

V(∆τ0) = |g(∆τ0)|. (11.19)
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It should be clear that |g(∆τ)| can be understood as the envelope of the rapidly oscillating function 2Id(∆τ)/I0

[see Fig. 59].

11.6 Spectrum and coherence

The power spectrum and coherence of a light source are closely intertwined. In fact, it turns out that the power
spectrum of a light source is proportional to the Fourier transform of the complex degree of coherence86:

S(ω) ∝ F [g(τ)]. (11.20)

Furthermore, the proportionality coefficient is nothing but the time-averaged intensity of the light wave. This
relationship immediately raises interesting implications. Recalling from Fourier analysis that the more localized
a signal the more spread out its Fourier transform, we can draw the following conclusion:

Relationship between coherence time and spectral width

A field with a short coherence time [i.e., a highly localized g(τ)] must be associated with a broad
spectrum [i.e., a spread out Fourier transform of g(τ)]. Accordingly, the spectral width of a partially
coherent light source is inversely proportional to its coherence time:

∆f ≈ 1

τc
. (11.21)

The approximately equal sign ensues from the fact that we have not really defined what kind of widths we
are talking about. If we are referring to full-width at half maxima, then the relationship should include
a multiplicative factor (of the order of unity) that depends on the shape of the spectrum. Nevertheless,
from the inverse relationship, we can readily draw the following conclusions:

• The bandwidth of a perfectly coherent sources (with τc = ∞) is ∆f = 0. In other words, a
perfectly coherent source is monochromatic.

• The bandwidth of a totally incoherent sources (with τc = 0) is ∆f =∞. In other words, a totally
incoherent source would need to have infinite bandwidth.

• The bandwidth of a real partially coherent light field is finite (but non-zero). The source’s band-
width governs its coherence time.

The relationship between the power spectrum and the interferogram of a EM wave is illustrated in
Fig. 59.

86The reason it so turns out is that, formally, the complex degree of coherence corresponds to the autocorrelation of the field divided
by the total time-averaged intensity. Because the Fourier transform of a field autocorrelation is the power spectrum, the “turning out”
follows.
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Figure 59: (a,c,e) Power spectra and (b,d,f) corresponding interferograms for three different spectral widths (and hence,
coherence time): (a,b) ∆f = 2.5 THz and τc ≈ 260 fs, (c,d) ∆f = 5 THz and τc ≈ 130 fs, (e,f) ∆f = 10 THz and
τc ≈ 65 fs. As can be seen, a broad spectrum is associated with a localized interferogram (i.e., short coherence time) and
vice versa. The magenta curves in (b,d,f) correspond to 1 + |g(∆τ)|, highlighting how |g(∆τ)| describes the envelope of
the interferogram.

11.7 Applications

The ideas presented above can be harnessed for practical applications. For example, a Michelson interferometer
can be used to measure the spectrum of a light wave. Here, one simply measures the interferogram, and subse-
quently computes its Fourier transform to obtain the spectrum. This technique is known as Fourier transform
spectroscopy, and it is particularly popular in the infrared spectral region.

Optical coherence tomography is another interesting application of coherence. Here, one uses a source
with a low-coherence (i.e., short coherence time) in conjunction with a Michelson interferometer where one
(reference) arm can be axially scanned, whilst the other arm contains a sample under test. Because the source
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has such low-coherence, interference is observed only when the interferometer path-lengths are equal. When
the sample is moved laterally, the interferometer path length changes due to the sample’s non-uniform surface
(or wherever the reflection occurs from); recovering the interference requires the reference arm to be axially
scanned. Thus, the surface features can be mapped by laterally moving the sample in discrete steps, and
by adjusting the reference arm to recover the interference at each step. The motion of the reference arm
immediately gives the surface features.

11.8 Correlation functions

Our discussion above was fairly qualitative. Quantitative (or formal) analysis of coherence requires the use
of correlation functions. For example, considering the temporal coherence of a single EM wave, correlations
between the field and its time-delayed replica is described by the autocorrelation function, defined as:

G(∆τ) = 〈E∗(t)E(t+ ∆τ)〉. (11.22)

Here the angle brackets 〈·〉 denote an ensemble average taken over many realizations of the random field E(t).
This means that the wave is produced repeatedly under the same conditions, with each trial yielding a different
wavefunction. For waves that are statistically stationary87, the ensemble average can be shown to be equal to a
time average:

G(∆τ) = lim
T→∞

1

2T

∫ T

−T
E∗(t)E(t+ ∆τ). (11.23)

The autocorrelation function describes how correlated (i.e., “similar”) is the field with its own time-delayed
replica. If the two fields (original and replica) are fluctuating without any correlations, the autocorrelation is
zero. In the language of coherence theory, the autocorrelation function is known as the temporal coherence
function. It is easy to see that G(0) = Id. This means that the autocorrelation function carries information
on both the coherence (correlations) and averaged intensity of the field. To obtain a measure that describes
coherence alone, we can normalise the autocorrelation function to the average intensity. This turns out to
produce the complex-degree of temporal coherence used above:

g(∆τ) =
G(∆τ)

G(0)
=
〈E∗(t)E(t+ ∆τ)〉
〈E∗(t)E(t)〉

(11.24)

From this definition, it is easy to see that 0 ≤ |g(∆τ)| ≤ 1. Furthermore, we can now clearly appreciate
that |g(∆τ)| is indeed a measure of the degree of correlations between E(t) and E(t + ∆τ). Following these
ideas, it should be evident that formal examination of correlations between any two fields at any two points can
be achieved by considering appropriate cross-correlation functions.

87This means that the statistical properties of the wave do not depend on time. With the exception of pulsed light, most light fields
obey this condition fairly faithfully.
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