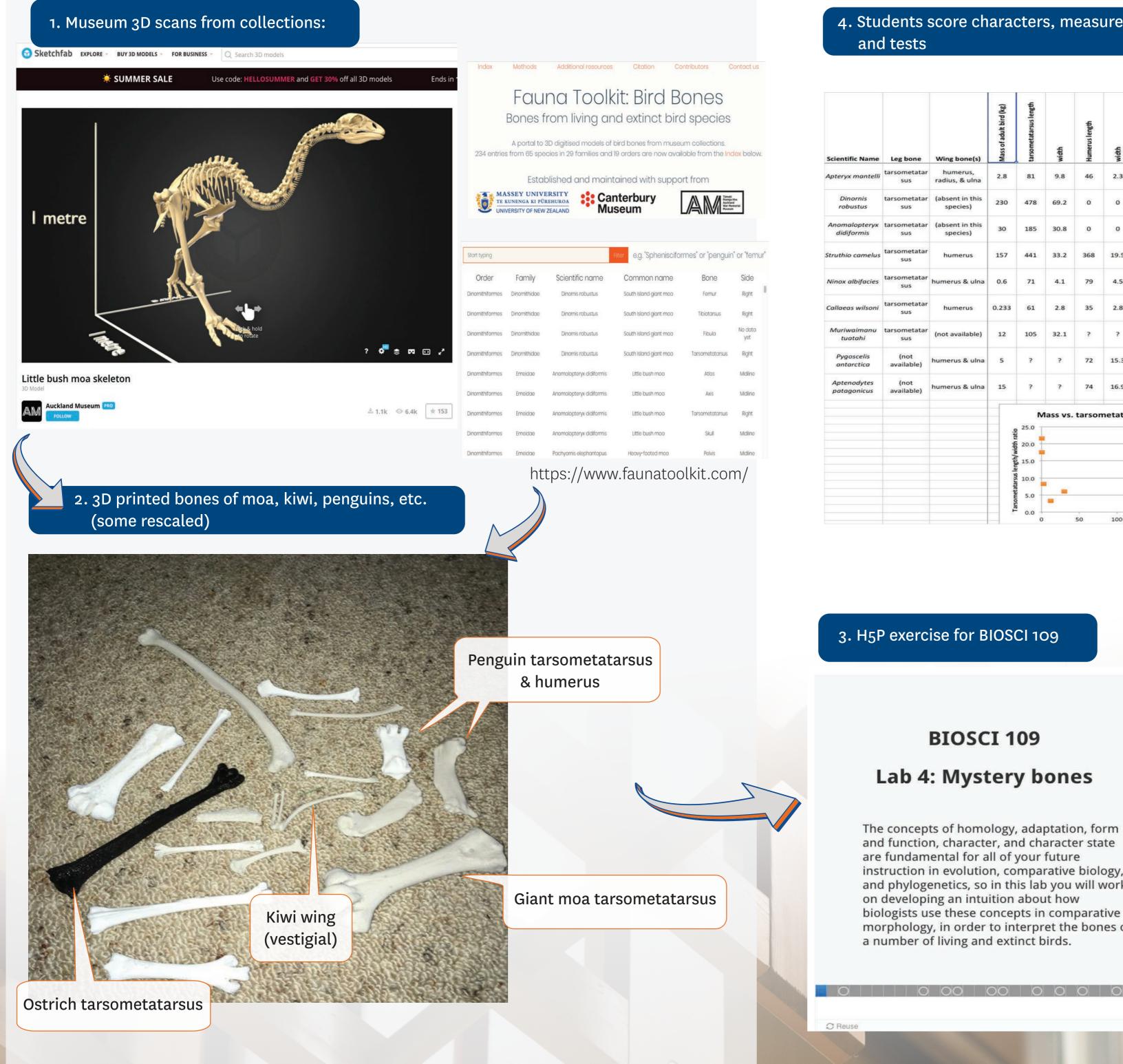
Evolution in 3D: students use 3D-printed moa bones to learn measurement and phylogenetic mapping of evolutionary characters

Nicholas J. Matzke,¹,* Caroline Aspden,¹,* Luke Liddell¹, *Amanda Harper,¹ Anna Santure,¹ Shane Lavery,¹ Matt Rayner¹,²


- ¹School of Biological Sciences, University of Auckland
- ²Curator of Land Vertebrates, Auckland Museum
- *Contributed equally

Abstract

For BIOSCI 109: Ecology and Evolution, we developed a new lab practical exercise that uses 3D-printed classroom sets of the bones of fossil moa, and other birds. The goal is to give students hands-on experience in testing hypotheses in evolutionary biology, focusing on the concepts of specimen, species, character, homology, character mapping, form vs. function, and adaptation.

Methods:


3D scan files were obtained from the FaunalToolkit and Aves3D databases. After training at UoA's MakerSpace, 20 classroom sets of bones were printed on 3D printers (2x Makerbot Replicator+ 3D printers; 1x Ender-3 Pro 3D printer). Bones that were too large (e.g. giant moa) or small (e.g. kiwi wings) for the printers were re-sized, with the scale recorded. Students were introduced to the exercise with an HP5 presentation, and had to (A) identify the bones by type (leg vs. wing), (B) match to species, (C) identify/score discrete characters and map onto a phylogeny, (D) measure predefined quantitative characters with calipers, and (E) graph this data and propose a hypothesized explanation, along with how they would test this hypothesis with new data.

4. Students score characters, measure with calipers, plot data, and propose hypothesis

Scientific Name	Leg bone	Wing bone(s)	Mass of adult bird (kg)	tarsometatarsus length	width	Humerus length	width	ulna length	width	tmt length/width ratio	hms length/width ratio		Scientific Name	Max. weight (kg)	tmt length/width ratio		
Apteryx mantelli	tarsometatar sus	humerus, radius, & ulna	2.8	81	9.8	46	2.3	21.0	1.7	8.2	20		Apteryx mantelli	2.8	8.2		
Dinornis robustus	tarsometatar sus	(absent in this species)	230	478	69.2	o	o	0	0	6.9	N/A		Dinornis robustus	230	6.9		
Anomalopteryx didiformis	tarsometatar sus	(absent in this species)	30	185	30.8	o	o	0	0	6	N/A		Anomalopte ryx didiformis	30	6.0		
Struthio camelus	tarsometatar sus	humerus	157	441	33.2	368	19.5	?	?	13.3	18.9		Struthio camelus	157	13.3		
Ninox albifacies	tarsometatar sus	humerus & ulna	0.6	71	4.1	79	4.5	86.0	4.4	17.5	17.4		Ninox albifacies	0.6	17.5		
Callaeas wilsoni	tarsometatar sus	humerus	0.233	61	2.8	35	2.8	35.0	2.2	21.5	12.7		Callaeas wilsoni	0.233	21.5		
Muriwaimanu tuatahi	tarsometatar sus	(not available)	12	105	32.1	?	?	?	?	3.3	?		Muriwaima nu tuatahi	12	3.3		
Pygoscelis antarctica	(not available)	humerus & ulna	5	?	?	72	15.3	46.0	12.9	?	4.7		Pygoscelis antarctica	5	?		
Aptenodytes patagonicus	(not available)	humerus & ulna	15	?	?	74	16.9	?	?	?	4.4		Aptenodytes patagonicus	15	?		
				Mass vs. tarsometatarsus length/width ratio								Mass vs. tarsometatarsus length/width ratio (log x-axis)					
				E 20.0								9 25.0 E 20.0					
				15.0							_	15.0					
			10000	10.0								13.0	13.0 10.0				
				15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0							_,	o.o —	Z				
			,	0.0	0	50 100 150 200 250						0.0	1	10)	100	100

instruction in evolution, comparative biology, and phylogenetics, so in this lab you will work biologists use these concepts in comparative morphology, in order to interpret the bones of

Conclusion:

3D-printing can revolutionise introductory evolution teaching because rare fossil specimens that are usually only seen in museums or textbooks can, as 3D-printed specimens, be handled, measured, and discussed by students.

Acknowledgements:

3D scan .OBJ files courtesy of: Daniel Thomas, Massey University (https://www.faunatoolkit.com/)

Kiwi leg/wing scans from Aves3D courtesy of: Leon Claessens, Scott Edwards, Abby Drake (https://www.aves3d.org/)

U. Auckland MakerSpace 3D printers & training: Sean Kelly, https://www.cie.auckland.ac.nz/unleash-space/

Funding: SEED Innovation in Teaching Grant 2020