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ABSTRACT

Resonant Ultrasound Spectroscopy (RUS) is a technique used to determine the ma-

terial properties of elastic bodies. The normal modes of a sample are measured and

the resonant frequencies inverted to calculate the elastic moduli. RUS enables the com-

plete elastic tensor to be calculated from a single measurement, �lls an experimental

gap between low frequency stress-strain methods and high frequency time-of-�ight mea-

surements and can provide a measure of attenuation. We investigate the experimental

di�culties associated with RUS, which include sample symmetry and transducer cou-

pling and provide a detailed discussion of the di�erences between vertical and horizon-

tal transverse isotropy; two symmetries that commonly occur in geological situations.

Codes are provided for a forward model and inversion method with the functionality to

deal with these and other symmetries. When measured in the frequency domain using

RUS and in the time domain with time-of-�ight methods, the elastic properties of a

shale sample display frequency dispersion.

Word Count: 11266
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Chapter 1

Introduction

1.1 Resonant Ultrasound Spectroscopy

Resonant Ultrasound Spectroscopy (RUS) uses the normal modes of an elastic body

to determine its elastic parameters (Migliori et al., 1993). The complete elastic tensor

can be inferred from a single measurement of the resonant frequencies (Zadler et al.,

2004). It is a non-destructive method that can be used on small, rare or hard-to-obtain

samples (Migliori and Sarro, 1997). Schreiber et al. (1970) used resonance methods to

measure the elastic moduli of glass spheres from the lunar surface. See Migliori and

Sarro (1997) for a comprehensive discussion of RUS methods, covering both theoretical

and experimental aspects. While RUS deals with frequencies at the high end of those

relevant to geophysics, it �lls an experimental gap between low frequency stress-strain

measurements and high frequency time-of-�ight experiments (Zadler et al., 2004). The

frequency domain of the method is partially dependent on the sample size. A 2 cm

sample of shale will have a fundamental mode of approximately 35 kHz whereas a 10

cm sample will have a resonant peak at about 7 kHz.

There are signi�cant experimental issues associated with RUS (discussed in Chapter

4 and Appendix A). The e�ects of loading the sample and the rate of sweep were

detailed by Zadler (2005) and are investigated further here. Contacting piezo-electric

transducers are used and the e�ects of transducer location and coupling are shown to

be important.

2



CHAPTER 1. INTRODUCTION 3

The symmetry of a sample strongly in�uences the normal modes. We consider

isotropic, hexagonal and orthorhombic models of symmetry with a focus on hexagonal

symmetry as this is commonly encountered in geological settings. Hexagonal symmetry

is seen when a sample has a single axis of rotational symmetry with perpendicular

isotropic planes (Tsvankin, 2001). It can result from preferential alignment of particles

due to an applied stress, from �ne layers formed by deposition or from parallel sets of

microfractures. Geological core samples are primarily cylindrical and are often drilled

parallel or perpendicular to layering, which is termed horizontal or vertical transverse

isotropy respectively. For spherical and cubic samples, horizontal and vertical transverse

isotropy can be described with a single model by applying a rotation of 90◦. However,

for a cylindrical sample the two symmetries are not identical under rotation of 90◦.

There are fundamental di�erences between the two as discussed in Chapter 3. In order

to model these di�erences, hexagonal symmetry must be further divided into the two

subcases, horizontal and vertical transverse isotropy.

Experimental issues notwithstanding, resonance experiments can be confusing and

there is signi�cant potential for the results to be misinterpreted. This is because the raw

observations are spectra of signal amplitudes versus frequency from which the normal

modes need to be determined and because the resonant frequencies are not coupled to

the sample elastic properties in a simple way (Zadler et al., 2004).

1.2 Shales

The 'shale gas revolution' in the United States has generated signi�cant interest in

understanding and quantifying the properties of shales. Technological advances and

the development of extraction techniques, such as horizontal well drilling and hydraulic

fracturing (fracking), have enabled economical recovery of natural gas from shale for-

mations (Horne et al., 2012), which comprise about 75% of the clastic �ll of sedimentary

basins (Tsvankin, 2001). These developments, combined with favourable geological con-

ditions, have caused US shale gas production to soar from less than 1% of domestic gas

production in 2001 to over 20% in 2010 (Stevens, 2012). Shale gas may be able to act as

a low carbon fuel reducing carbon emissions today and assisting with the transition to a
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renewable energy future. On the back of increased natural gas supply carbon emissions

from the United States energy sector have decreased by 700 million tons annually for

the past ten years (Nummedal and McCray, 2013).

Shale formations consist of thin layered sequences of aligned microscopic clay platelets

(Horne et al., 2012), which are responsible for the inherent anisotropy of shales. Shales

can be modeled as transversely isotropic (Tsvankin, 2001) with thin isotropic layers and

an axis of symmetry perpendicular to the layering. The degree of anisotropy depends

on factors such as porosity, kerogen content and microfractures (Dewhurst and Siggins,

2006) and can be characterized by �ve elastic constants (Thomsen, 1986a; Tsvankin,

2001). Shale anisotropy has important implications to seismic exploration and imaging

(Banik, 1983; Isaac and Lawton, 1999). Information about the elastic moduli of shales

is important in order to better exploit shale formations as reservoirs (Blum et al., 2013),

to understand the response and distribution of stress (Dewhurst and Siggins, 2006; Holt

et al., 2011) and to optimize hydraulic fracturing (Suarez-Rivera et al., 2006).

Shale anisotropy has been studied in the laboratory with a variety of methods (De-

whurst and Siggins, 2006; Sarker and Batzle, 2010; Holt et al., 2011). Here, resonant

ultrasound spectroscopy (RUS) is used to determine the complete elastic tensor of a

shale sample in the kHz frequency range. The aim of this dissertation is to extend upon

the time-of-�ight measurements performed by Blum et al. (2013) in the time domain

at MHz frequencies. A common cause of anisotropy is periodic thin layering on a scale

compared to the dominant wavelength (Tsvankin, 2001). It is hypothesised that mea-

surements at di�erent frequencies will produce di�erent estimates of the anisotropy and

elastic moduli as the wave will reveal di�erent scale structures depending on the wave-

length. Duranti and Ewy (2005) determined that a West African shale was frequency

dispersive whereas Sarker and Batzle (2010) observed no signi�cant dispersion in an

organic rich shale sample from Colorado.

Because our samples are measured dry and at room conditions, the anisotropy and

attenuation estimates made herein do not represent that of shales in situ (Blum et al.,

2013). When core samples are removed from depth the reduction in overlying pressure

can create microfractures within the sample causing induced anisotropy. Other mem-

bers of the Physical Acoustics Laboratory are working towards developing the capacity
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to perform similar measurements under in situ stress, both with laser-based methods

and contacting transducers.



Chapter 2

Theoretical Description

The underlying principle of resonant ultrasound spectroscopy is that the resonant fre-

quencies of a sample depend on the sample's geometry, density and elastic moduli

(Migliori et al., 1993). A larger body will have lower resonant frequencies than a

smaller sample. The Earth, for example, has a fundamental mode with a period of 36

minutes (Zadler et al., 2004) while a 5 cm cylinder of shale has a fundamental mode of

approximately 15 kHz. An increase in the elastic moduli of a sample will increase the

resonant frequencies (Zadler et al., 2004) whereas an increase in the sample density will

cause the frequency of the modes to decrease.

In order to determine the elastic moduli the forward problem of calculating the reso-

nant frequencies from the elastic constants and the sample's geometry and density must

�rst be solved. A nonlinear inversion algorithm, derived from the work of Levenberg

(1944) and Marquardt (1963), is used to �nd the elastic constants which correspond to

the measured resonant frequencies (Migliori and Sarro, 1997).

Initial resonance measurements in the early twentieth century were restricted to

certain geometries such as elongated bars which produced simple patterns of resonances

for which the forward problem could be solved analytically. As the length to diameter

ratio of a cylindrical sample decreases the resonances become more complicated (Zadler

et al., 2004). Advances in computing power and developments in algorithms, such as the

discovery by Visscher et al. (1991) that the powers of the Cartesian coordinates work

as a �exible and e�cient basis for computing the normal modes for arbitrary shaped

6
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bodies, allowed for more complicated geometries to be analysed. See (Maynard, 1996)

for a discussion of the history of resonant ultrasound spectroscopy.

Inverse problems are abundant in the �eld of geophysics and are concerned with

making inferences about the properties of a system based on measured data. RUS,

where the normal modes are measured and inverted to determine the elastic parame-

ters, is an example of an inverse problem. There are numerous challenges associated

with inverse problems; actual measurements of geophysical quantities are never exact

(Parker, 1994) and there are almost always many possible answers to an inverse problem

which cannot be distinguished by the available observations (Scales et al., 2001). This

leads to many geophysical inverse problems being ill-posed with an in�nite number of

possible models that will �t the available data. Choosing the 'best' model is a signi�-

cant challenge requiring a mis�t function, which quanti�es the di�erence between the

observed frequencies and their theoretical counterparts, as well as a tolerance, which

is a level of mis�t which is considered acceptable (Parker, 1994). An in-depth discus-

sion of inverse theory is outside the scope of this work. Scales et al. (2001) provides a

readable introduction to inverse theory, discussing the fundamental ideas and required

mathematical framework. Parker (1994) details how almost every geophysical inverse

problem can be framed as an optimisation problem and Tarantola (2005) addresses

inverse theory from a statistical viewpoint.

2.1 The Forward Problem

The forward problem is to calculate the expected resonances for a given sti�ness tensor

and known sample geometry and density. It is divided into three sections; variational

approximations for resonances, elastic energy and damping, and excitation calculations.

Details of the forward problem are discussed in Visscher et al. (1991), Migliori and Sarro

(1997) and Zadler et al. (2004). We follow the procedure and terminology of (Zadler

et al., 2004).
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2.1.1 Variational approximations for resonances

Let ν be a body bounded by a closed, stress-free surface with an elastic sti�ness tensor

cijkl and density ρ. Let ω be a non-negative real number and u(r) be a real-valued

function of position r in ν. {ω,u} is a free oscillation or resonance if the real-valued

displacement �eld

s(r, t) = IR(u(r)eiωt) (2.1)

satis�es the elastic equations of motion in ν and the stress-free boundary condition

on its surface.

The potential energy associated with the displacement �eld u is given by the strain

energy

Ep =
1

2

∫
ν

Cijkl∂jui∂lukdV (2.2)

where ui, i = 1, 2, 3 are the Cartesian coordinates of u. The corresponding kinetic

energy is given by

Ek = ω2K K =
1

2

∫
ν

ρuiuidV (2.3)

The quantity I

I = ω2K − Ep (2.4)

is stationary if and only if ω and u are a resonance of ν. This is the key to the

Rayleigh-Ritz method. We represent u by a prescribed basis {φλ(r), λ = 1, ..., N} by
de�ning

ui = ai,λφλ (2.5)

The choice of basis functions φλ is a signi�cant issue when using the Rayleigh-Ritz

method. Various trigonometric functions and orthogonal polynomials (Holland, 1968;

Demarest, 1969) were used. However, these choices were developed when algebraic and
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programming e�ort was regarded as cheaper than computer time. Substantial e�ort was

required to formulate and programme the integrals for each new sample or geometry

(Zadler et al., 2004) and the techniques were not able to keep pace with developments in

computing. Visscher et al. (1991) discovered that the products of powers of Cartesian

coordinates fuctioned as a simple and e�ective basis. The xyz algorithm

φλ = xη(λ)yζ(λ)zξ(λ) (2.6)

where l, m and n are positive integers, is numerically stable and very �exible. It

allows a general anisotropic tensor with any position dependence and any shape with

arbitrary density variation (Visscher et al., 1991). The stationary quantity I can be

written as

I = ω2α ·K · α− α · E · α (2.7)

where α is a vector of the juxtaposed components of ai,λ. As mentioned previously, I

is stationary, meaning that under any perturbation to α I will be unchanged to the �rst

order, provided the values of α are consistent with the stress-free boundary condition.

Therefore, {ω2, α} is a stationary solution if and only if they satisfy

ω2K · α = Eα (2.8)

This is the standard form for the generalized symmetric eigenvalue problem. There

will be six zero eigenvalues, corresponding to the three degrees of rigid-body translation

and the three degrees of rigid-body rotation. The remaining eigenvalues will be positive

and correspond to elastic resonances.

2.1.2 Elastic energy and damping

We are interested in how perturbations in the sample's material properties ρ and C

a�ect its resonance frequencies. If we perturb K and E
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K→ K + δK E→ E + δE (2.9)

and the perturbation in the squared frequency of the ith resonance is

ω2
i → ω2

i + δω2
i (2.10)

then the perturbation in the ith resonance can be computed by

δω2
i =

α(i) · (δE− ω2
i δK) · α(i)

α(i) ·K · α(i)
(2.11)

This equation does not contain terms in the perturbation of the eigenvector saving

signi�cant computational time.

2.1.3 Excitation calculations

Not all resonances will be observed with a particular experimental apparatus. It is

useful to be able to predict the response of a sample. Consider the experiment where

a sinusoidal excitation sweeping across a range of frequencies is applied at some point

on the sample and the response is measured at another location. For a force applied at

location rs with angular frequency ω let

f(r, t) = f0δ(r− rs)e
iωt (2.12)

where f0 is a constant vector. De�ne s(r, t) as the response of ν to f. As the applied

force is sinusoidal we expect the response to be sinusoidal.

s(r, t) = s(r)eiωt (2.13)

The resonance displacement eigenvectors

ν(i)(r) = α
(i)
λ φλ(r) (2.14)

form a complete basis for the set of all �nite elastic displacements in ν. Therefore,



CHAPTER 2. THEORETICAL DESCRIPTION 11

we can �nd coe�cients γ such that

s(r) = γiν
(i) (2.15)

It can be shown that

γi(ω) =
νi(rs) · f0
ω2 − ω2

i

(2.16)

which leads to the response s(r) at any point r as a function of the frequency ω of

the applied force

s(r) =
νi(rs) · f0
ω2 − ω2

i

νi(r) (2.17)

2.2 The Inverse Problem

The inverse problem is to compute the elastic moduli given the resonant frequencies

of the sample. A mis�t function, de�ned by equation (2.18) as the weighted di�erence

between the measured frequencies f (m) and those predicted by the forward model f (p),

is minimized using the Levenberg-Marquardt method. This elegant iterative method

varies smoothly between the steepest descent method far from the minimum and New-

ton's method as the minimum is approached (Press et al., 1986). The minimization

proceeds iteratively starting from given initial parameter values until F stops (or e�ec-

tively stops) decreasing. The details of the method are discussed in Fletcher (1980),

Migliori and Sarro (1997) and Press et al. (1986). We follow the treatment from Migliori

and Sarro (1997).

F =
N∑
i

wi(f
(p)
i − f

(m)
i )2 (2.18)

The resonant frequencies depend nonlinearly on the elastic parameters. Therefore,

we consider a model which depends nonlinearly on a set of M unknown parameters

xα, α = 1, 2, ...M where M is the number of cijs. Close to the minimum solution x0

the mis�t function can be approximated as a quadratic function by expanding F as a
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Taylor series and truncating the higher order terms. The Taylor expansion of F at the

vector of parameter values x is given by

F (x) ≈ F (x0) +
∑
α

(x− x0)α
∂F (x0)

∂xα
+

1

2

∑
α,β

(x− x0)α
∂2F (x0)

∂xα∂xβ
(x− x0)β (2.19)

The Taylor expansion in equation (2.19) is only valid for a limited domain about x0.

Therefore, it is important for the initial estimation of the parameters to be as accurate as

possible. The Levenberg-Marquardt method is an example of a restricted step method.

Far from the minimum the region about x where the Taylor series expansion is valid

does not include a minimiser of the function F . The step from one iteration to the next

is restricted by the region of validity of the Taylor series. It is also called a trust region

method where the trust region refers to the region where the Taylor series is a good

approximation.

If F is a minimum at x the �rst derivative in each parameter direction will be zero

∂F (x)

∂xα
= 0, α = 1, ...M (2.20)

leading to

∂F (x0)

∂xα
+
∑
β

∂2F (x0)

∂xαxβ
(x− x0)β = 0 (2.21)

which can be solved iteratively for x by Newton's method in M dimensions. Exact

expressions for the �rst and second partial derivatives are shown in equations (2.22)

and (2.23).

∂F

∂xα
=

∑
i

2ωi
∂f

(p)
i

∂xα
(f

(p)
i − f

(m)
i ) (2.22)
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∂2F

∂xαxβ
=

∑
i

2ωi
∂f

(p)
i

∂xα

∂f
(p)
i

∂xβ
+
∑
i

2ωi(f
(p)
i − f

(m)
i )

∂2f
(p)
i

∂xα∂xβ
(2.23)

≈
∑
i

2ωi
∂f

(p)
i

∂xα

∂f
(p)
i

∂xβ
(2.24)

In practice, the term proportional to the second derivative of the predicted fre-

quencies in equation (2.23) is often su�ciently small that it can be ignored to save

computation time (Migliori and Sarro, 1997). This is acceptable because it is multi-

plied by the di�erence between the predicted and measured frequencies (f
(p)
i − f

(m)
i ).

This term is the random measurement error and the positive and negative terms should

largely cancel. Additionally, inclusion of this term can have a destabilising e�ect on the

minimisation if the model �ts badly or if the data is contaminated by outliers (Press

et al., 1986).

We de�ne a vector B and a matrix A by

Bα =
1

2

∂F

∂xα
=

∑
i

ωi
∂f

(p)
i

∂xα
(f

(p)
i − f

(m)
i ) (2.25)

Aα,β =
1

2

∂2F

∂xαxβ
=

∑
i

ωi
∂f

(p)
i

∂xα

∂f
(p)
i

∂xβ
(2.26)

The iterative procedure for solving equation (2.21) is then

xα = x0α −
∑
β

A−1
αβBβ (2.27)

This is Newton's method and is only valid for x values close to the minimum where

the Taylor series expansion in equation (2.19) is a good approximation. Far from the

minimum the steepest descent method is used to take a step in the direction of the

gradient. The new x value can be calculated by

xα = x0α − k ·Bα (2.28)
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The Levenberg-Marquardt method is a combination of equations (2.27) and (2.28)

and can be written as

xα = x0α −
∑
β

GαβBβ (2.29)

where

G−1
αβ = Aαβ(1 + Ωδαβ) (2.30)

If Ω = 0 Gαβ = A−1
α beta and the Levenberg-Marquardt method in equation (2.29)

reduces to Newton's method shown in equation (2.27). For large Ω G tends to a diagonal

matrix and the method becomes similar to the steepest descent method. Therefore, by

choosing Ω appropriately a hybrid of the two methods is achieved.

2.3 Computational Methods

The forward and inverse calculations are performed using software developed by Zadler

and Le Rousseau (2005) at the Center for Wave Phenomena (CWP) at the Colorado

School of Mines. These codes have dependencies on Seismic Unix, a seismic processing

and research environment also developed at the CWP.

The forward code formod-aniso calculates the predicted resonant frequencies for

a sample with given density, geometry and elastic parameters. The inversion RUS-

inverse uses the Levenberg-Marquardt method to adjust the elastic parameters from a

starting estimate to a best-�t model that minimises the di�erence between the measured

and predicted frequencies. RUS-inverse requires two �les; freq_data which contains

two columns; the measured resonant frequencies in MHz and the associated weight

of each mode, and param_data which includes the dimensions, density and initial cij

values for the sample. For more information refer to the Installation and Help Guide

by Zadler and Le Rousseau (2005) available at http://physics.mines.edu/about/

downloads/software/mpl/manual.pdf. The inverse code prints to the terminal the

�tted cij values, the predicted resonant frequencies at the �tted cij values as computed

by a copy of formod-aniso nested inside RUS-inverse, and χ∗2, a measure of the mis�t

http://physics.mines.edu/about/downloads/software/mpl/manual.pdf
http://physics.mines.edu/about/downloads/software/mpl/manual.pdf
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between the measured and predicted frequencies de�ned by

χ∗2 = F =
N∑
i

wi(f
(p)
i − f

(m)
i )2 × 100 (2.31)

where f
(m)
i and f

(p)
i are the measured and predicted frequencies respectively mea-

sured in MHz and wi is the square of the weight associated with each measured mode, as

given in the second column of freq_data. The weight is usually taken as one for a mea-

sured mode and zero for a missed or repeated peak. For a reasonable �t χ∗2 = O(0.0001)

depending on the error. Note that equation (2.31) does not account for the number

of measured resonances and hence including more resonant frequencies will cause χ∗2

to increase. In order to calculate a 'true' χ2 value the standard deviation for each

peak must be determined and the number of modes taken into account. Unless stated

otherwise the quoted χ2 values are calculated using the traditional de�nition given in

equation (5.1).

The forward model and inverse code are able to cope with a range of symmetries from

isotropic to orthorhombic. However, for hexagonal symmetry there are two sub-cases

that are regularly encountered in geophysical measurements; anisotropic samples with

a single axis of rotational symmetry and perpendicular isotropy planes in the horizontal

or vertical direction termed VTI or HTI respectively (refer to Chapter 3). Previously,

no distinction was made between these two cases. For hexagonal models VTI symmetry

was assumed. We have extended the functionality of the code to include HTI symmetry.

An additional parameter is required in the fourth entry of param_data. The value of

this parameter is one for VTI symmetry or two for HTI symmetry and for a hexagonal

model any other value will cause an error. The value of this parameter does not matter

for other symmetries but it needs to be included in order for the other values to be read

into the correct parameters. Comments have been added to the code (see Figure 2.1

and 2.2) to provide additional information about the optimisation routines used and

aid readability. The updated version of formod-aniso and RUS-inverse are available at

the Physical Acoustics Laboratory webpage https://www.physics.auckland.ac.nz/

research/pal/contrib/.

https://www.physics.auckland.ac.nz/research/pal/contrib/
https://www.physics.auckland.ac.nz/research/pal/contrib/
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Figure 2.1: Section of the updated version of RUS-inverse with additional comments.



CHAPTER 2. THEORETICAL DESCRIPTION 17

Figure 2.2: Section of the original version of RUS-inverse.



Chapter 3

Elastic Properties

The properties of an elastic medium are determined by the sti�ness tensor (Cijkl) which

relates the stress (σ) applied to a sample with the strain (ε) experienced. The sti�ness

tensor has 81 components. However, for the most general model of anisotropy (triclinic)

it has 21 independent parameters. This can be reduced further for higher degrees of

symmetry; to �ve parameters for a hexagonal medium or two parameters for isotropy.

σik = Cijklεkl (3.1)

Due to the symmetry of the stress (σij = σji) and strain (εij = εji) tensors the

3 × 3 × 3 × 3 elastic tensor Cijkl can be expressed as a 6 × 6 matrix Cαβ by replacing

pairs of indices ij or kl using the Voigt recipe (Thomsen, 1986a).

ij or kl

↓ ↓
α β

:

11 22 33 32 = 23 31 = 13 12 = 21

↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6

(3.2)

3.1 Isotropy

A medium is isotropic if it has uniform physical properties in all directions. Therefore,

seismic waves will travel at the same speed in all directions. Isotropy is the highest

possible degree of symmetry and the sti�ness tensor for an isotropic medium can be

18
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expressed by two independent parameters (Tsvankin, 2001).

cISOij =



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(3.3)

where λ and µ are Lamé's �rst and second parameters respectively. µ is also referred

to as the shear modulus. Lamé's parameters can be related to components of the

sti�ness tensor by c11 = λ + 2µ and c44 = µ and can be converted into P (Vp) and S

(Vs) wave velocities using the following equations

Vp =

√
λ+ 2µ

ρ
=

√
c11
ρ

(3.4)

Vs =

√
µ

ρ
=

√
c44
ρ

(3.5)

where ρ is the density of the material. The relationships between Lamé's parameters

and the more traditional Young's modulus (E), Bulk modulus (K) and Poisson's ratio

(ν) are

E =
µ(3λ+ 2µ)

λ+ µ
K =

3λ+ 2µ

3
ν =

λ

2(λ+ µ)
(3.6)

3.2 Hexagonal

A medium is called anisotropic with respect to a certain parameter if this parameter

changes with the direction of measurement (Tsvankin, 2001). Inhomogeneities in physi-

cal properties, such as density and sti�ness, cause seismic waves to travel faster in some

directions than others. An anisotropic medium is called hexagonal if it has a single

axis of rotational symmetry with perpendicular isotropic planes (Tsvankin, 2001). The
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sti�ness tensor for a hexagonal medium can be expressed in �ve independent elastic

constants.

3.2.1 Vertical Transverse Isotropy

Vertical transverse isotropy (VTI) is a special case of hexagonal symmetry (Figure

3.1) where the symmetry axis aligns with the vertical direction (x3). The VTI model

frequently applies to shale formations due to the preferential alignment of clay platelets

(Horne et al., 2012) and other sedimentary rocks where layers are deposited horizontally

as the rock forms. The sti�ness tensor for a VTI medium is de�ned by �ve independent

parameters, c33, c23, c12, c44 and c66 (Tsvankin, 2001).

cVTIαβ =



c12 + 2c66 c12 c23 0 0 0

c12 c12 + 2c66 c23 0 0 0

c23 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66


(3.7)

Seismic wave speeds vary with direction in an anisotropic medium. For a VTI sample

the velocity of the P and vertically and horizontally polarized S waves depend on the

angle of propagation θ to the symmetry axis. The relationship is given by equations

(3.8) to (3.10) (Rüger, 2001).

2ρV 2
P = (c11 + c44) sin2 θ + (c33 + c44) sin2 θ +K (3.8)

2ρV 2
SV = (c11 + c544) sin2 θ + (c33 + c44) sin2 θ −K (3.9)

ρV 2
SH = c66 sin2 θ + c44 cos2 θ (3.10)

where
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Figure 3.1: Schematic diagram of VTI medium. The symmetry axis is aligned with
the vertical (x3) direction. This geometry can be caused by alignment of clay platelets
in shales or horizontal deposition of layers in sedimentary rocks.

K =
√

((c11 − c44) sin2 θ − (c33 − c44) cos2 θ)2 + 4(c23 + c44) sin2 θ cos2 θ

These equations can be evaluated to determine the seismic velocities parallel to

(θ = 0) and perpendicular to (θ = 90) along the symmetry axis.

VP0 =

√
c33
ρ

VSV 0 =

√
c44
ρ

VSH0 =

√
c44
ρ

(3.11)

VP90 =

√
c11
ρ

VSV 90 =

√
c44
ρ

VSH90 =

√
c66
ρ

(3.12)

The degree of anisotropy can be characterized by Thomsen's parameters ε, δ and

γ and the P and S velocities along the symmetry axis de�ned by equations (3.13) to

(3.17). ε approximates the fractional di�erence between the horizontal and vertical P

wave velocities. It provides a measure of the P wave anisotropy. γ is similar to ε but

for the SH wave. ε and γ are positive quantities that are commonly quoted as the

'anisotropy' of a material. The meaning of δ is less clear but it is the most signi�cant
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term for near-vertical re�ection surveys. δ relates to the angular dependence of the P

wave velocity in the vicinity of the vertical direction. The velocity increases away from

the vertical if δ is positive and decreases if δ is negative. ε, δ and γ are dimensionless

parameters that go to zero in the isotropic case (Thomsen, 1986a; Tsvankin, 2001).

VP0 =

√
c33
ρ

(3.13)

VS0 =

√
c44
ρ

(3.14)

ε =
c11 − c33

2c33
(3.15)

δ =
2(c23 + c44)

2 − (c33 − c44)(c11 + c33 − 2c44)

2c233
(3.16)

γ =
c66 − c44

2c44
(3.17)

Wave speed in a solid depends on how resistant the solid is to deformation. In a

sti� solid that is highly resistant to deformation, waves will travel quickly whereas in a

less resistant material waves will be slower (Winterstein, 1992). A P wave parallel to

the symmetry axis (VP0) compresses the space between layers more easily and hence is

slower than the compressional wave parallel to the isotropic planes (VP90). Thomsen

(1986b) explained the relative speed of shear waves propagating within a hexagonally

symmetric medium using the analogy of a pack of cards. Shear motion is perpendicular

to the direction of propagation and can be parallel or perpendicular to the face of

the cards (where the cards represent the isotropic planes). By geometric considerations

there are three di�erent S waves polarised parallel to the layers and one polarised across

the layering. It takes less energy to slides the cards over each other than it does to

bend them perpendicular to the face. Therefore, the S waves polarised parallel to the

layering are slower than the S wave polarised across the isotropic planes and hence there

are three slow S wave polarisations and one fast polarisation. It follows that c11 > c33

and c66 > c44 = c55, in agreement with the requirement that ε and γ are positive.
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3.2.2 Horizontal Transverse Isotropy

Horizontal transverse isotropy (HTI) is another special case of hexagonal symmetry

(Figure 3.2) commonly encountered in geological settings. The symmetry axis of the

sample is aligned with one of the horizontal axes (taken as x2 in this analysis) while

the planes of isotropy are in the vertical direction. HTI symmetry can be caused by

near-vertical parallel sets of fractures which can form when the overburden pressure is

removed as the rock is brought to the surface. The sti�ness tensor for a HTI medium

has �ve independent components, c11, c33, c12, c44 and c66 (Tsvankin, 2001).

cHTIαβ =



c11 c12 c12 0 0 0

c12 c33 c33 − 2c44 0 0 0

c12 c33 − 2c44 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c66 0

0 0 0 0 0 c66


(3.18)

HTI symmetry is often treated as a rotation of VTI symmetry. This is appropriate

for spherical or cubic samples where the two situations are physically indistinguishable,

bar the 90◦ rotation. The predicted resonant frequencies for VTI and HTI spheres

and cubes are identical once the appropriate coordinate transformation, as detailed in

equation (3.19), has been applied to account for the rotation. Equation (3.19) assumes

that the symmetry axis of the VTI sample is aligned with x3 and that isotropic planes

of the HTI sample are parallel with the x3 axis.

VTI

l
HTI

:

c11 c12 c13 c33 c44 c66

l l l l l l
c33 c23 c12 c11 c66 c44

(3.19)

The velocity equations become

VP0 =

√
c11
ρ
, VSV 0 =

√
c66
ρ
, VSH0 =

√
c66
ρ

(3.20)
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VP90 =

√
c33
ρ
, VSV 90 =

√
c66
ρ
, VSH90 =

√
c44
ρ

(3.21)

The subscript 0 indicates a direction of propagation parallel to the symmetry axis

while 90 means the wave travels perpendicular to the symmetry axis. Thomsen's pa-

rameters transform to

VP0 =

√
c11
ρ

(3.22)

VS0 =

√
c66
ρ

(3.23)

ε =
c33 − c11

2c11
(3.24)

δ =
2(c12 + c66)

2 − (c11 − c66)(c33 + c11 − 2c66)

2c211
(3.25)

γ =
c44 − c66

2c66
(3.26)

The same arguments for the relative wave speeds in VTI symmetry can be applied to

HTI. Hence, it can be deduced that the P wave parallel to the symmetry axis is slower

than the P wave which travels parallel to the isotropic planes and that there are three

slow and one fast S wave polarizations. It follows that c33 > c11 and c44 > c66 = c55, in

agreement with the transformation detailed in equation (3.19).

Most geological samples of interest are cylindrical. The resonant frequencies for

VTI and HTI cylinders are di�erent and the samples cannot be treated as a simple

rotation of each other. For a VTI cylinder, where both S wave polarisations along the

symmetry axis have the same wave speed, the fundamental mode is often the reciprocal

of two-way travel-time of the S wave that propagates along the length of the cylinder.

For HTI the two S wave polarisations have di�erent speeds and the fundamental mode

is more complicated and depends on multiple cij's. For VTI cylinders �exural modes,
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Figure 3.2: Schematic diagram of HTI medium. The symmetry axis is aligned in
the horizontal plane (x1 and x2 plane) and the isotropic planes are in the vertical (x3)
direction. This geometry can be caused by parallel sets of near vertical fractures.

where energy travels along paths that are tilted with respect to the symmetry axis,

occur in pairs, called doublets, with the same resonant frequency (Zadler et al., 2004).

Doublets do not appear in the spectra of a HTI cylinder. This may be because a HTI

cylinder is not axisymmetric about the cylinder axis. However, the number of resonant

modes within a given frequency range is similar for both samples. Therefore, within

a given frequency range, for a HTI sample there are more distinct modes that are

able to be measured. This provides more information for the inversion but increases

the complexity of the spectrum creating challenges for identifying modes consistently

between repeated measurements.VTI and HTI symmetries are fundamentally di�erent

and cannot be treated as related by a simple rotation, except for spherical or cubic

samples that are of little interest to the exploration community.

3.3 Orthorhombic

This is the lowest order of symmetry that we consider. Orthorhombic symmetry consists

of three mutually orthogonal planes of mirror symmetry (Tsvankin, 2001) and can be

considered as a combination of VTI and HTI. Geologically, orthorhombic symmetry can

occur due to a set of parallel near-vertical fractures in a horizontally layered medium.
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The elastic tensor is described by nine independent components. If each coordinate

plane is a symmetry plane the sti�ness tensor can be written as (Tsvankin, 2001)

cORTHαβ =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


(3.27)

In principle, for a robust inversion code, an orthorhombic model should be able to

be �tted to a rock with a higher degree of symmetry, such as hexagonal or isotropic

(Migliori and Sarro, 1997). However, this is not always feasible as more data is required

to constrain the nine independent parameters.

3.4 Attenuation

Attenuation is a process that dissipates the energy of elastic waves and alters their am-

plitude and frequency content (Zhu and Tsvankin, 2006). Generally, attenuation varies

much more than seismic velocities. However, it is more di�cult to measure attenuation

than velocities experimentally (Toksöz et al., 1979). Attenuation can be used to sup-

plement velocity information when inferring saturation conditions or pore �uid (Toksöz

et al., 1979) and ignoring attenuation e�ects can lead to errors in amplitude variation

with o�set (Zhu and Tsvankin, 2006).

Attenuation depends on the saturation and physical properties of a sample. Mech-

anisms responsible for attenuation include friction on grain boundaries and in thin

cracks (Tao and King, 1990), dissipation in a saturated rock due to relative motion of

the frame with respect to �uid inclusions, and attenuation due to �uid �ow, as well as

geometrical e�ects such as scattering by small pores and large irregularities and selective

re�ection from thin beds (Johnston et al., 1979). Attenuation for �uid saturated rocks

is higher than for dry rocks and decreases with increasing con�ning pressure (Johnston

et al., 1979). Therefore, the attenuation estimates here, measured with dry rocks at
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atmospheric pressure, are not representative of what would be observed under reservoir

conditions.

Attenuation can be quanti�ed by the quality factor Q de�ned by

Q =
ω0

∆ω
(3.28)

where ω0 is the resonant frequency and ∆ω is the full width at half maximum. The

quality factor Q of a dry rock is not frequency dependent (Tao and King, 1990). Res-

onance methods allow the Q factor to be determined easily as ω0 and ∆ω can be read

from the measured spectra.

A MATLAB or SciLab package �tspectra (Zadler and Le Rousseau, 2005) can be

used to �t a Breit-Wigner model (Breit and Wigner, 1936) to the data:

A(f) = B0 +B1(f − f0) +
N∑
n

Cn +Dn(f − f0)
(f − fn)2 + 1

4
Γ2
n

(3.29)

where A(f) is the displacement amplitude which is a function of frequency and

B0 and B1 describe a constant and linear background to the model. Each mode is

described by an amplitude Cn, skewness Dn, eigenfrequency fn and full width at half

max Γn (Zadler et al., 2004). This assumes that each mode has a Lorentzian shape and

that multiple overlapping modes can be considered as a superposition of Lorentzians

(Zadler et al., 2004). The Q factor can be calculated from fn and Γn. For more details on

�tspectra refer to the Installation and Help Guide by Zadler and Le Rousseau (2005).



Chapter 4

Experimental Design and

Considerations

A function generator (DS345) sends a sinusoidal signal (10V peak-peak) to a contacting

piezo-electric source transducer, sweeping across a range of frequencies. The vibration

propagates through the sample and the response, as measured by the receiver trans-

ducer, is detected with a DSP (Digital Signal Processing) lock-in ampli�er (SR850).

The signal is divided into a component x in phase with the lock-in reference signal and

a component y out of phase. The magnitude of the two components R =
√
x2 + y2

is passed to the computer via a PCI digital oscilloscope card and the resonances de-

termined from this measurement. The experimental setup is shown in Figure 4.1 with

a schematic diagram (Figure A.1) included in Appendix A. For more details on the

experimental setup and RUS methodology refer to Appendix A.

4.1 Sample Geometry

Sample geometry a�ects data acquisition. Zadler et al. (2004) computed the theoretical

resonances for cylinders with a range of length to diameter ratios for generic soft rock

(Figure 4.2). Elongated samples (with a greater length to diameter ratio) have fewer

excited modes and a simpler spectra. As the length to diameter ratio decreases more

modes are excited and the spectrum becomes more complicated. The bottom spectrum,

28
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Figure 4.1: Experimental setup. The function generator and lock-in ampli�er are
shown in the top right corner. Below the function generator is a pre-ampli�er (SRS560)
that was used in our original setup.

for a squat cylinder, is much more complicated than for the elongated bar in the top

plot. The increasing complexity of spectra as the length to diameter ratio decreases is

why it took many years of algorithm development and computing advances before the

forward problem could be solved e�ciently for squat cylinders and for geometries other

than elongated bars.

At least �ve resonant frequencies should be measured for each parameter to be de-

termined (Migliori and Sarro, 1997). Compared to a short squat sample, measurements

must be made across a wider range of frequencies for an elongated sample in order to

measure the same number of normal modes. For the same frequency band displayed

in Figure 4.2 nine modes are measured for the squat bar in the bottom plot while only

three are observed for the elongated bar in the �rst plot. For an anisotropic sample

more data is needed in order to rigorously invert for the greater number of independent

components of the elastic tensor.

Geological samples of interest often have a low quality factor Q. Low Q materials

have fewer observable resonance frequencies than high Q materials (Ulrich et al., 2002).

A squat sample has a more complicated spectra providing more data for the inversion.

However, the complexity of identifying peaks consistently between repeated measure-
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Figure 4.2: The theoretical resonance response of a generic soft rock (ρ = 2.5 gm
cm−3, VP = 3.000 km s−1, VS = 1.400 km s−1) sample for several length to diameter
ratios. Frequency is plotted on the x-axis and amplitude of the response on the y-axis.
The spectra is simpler for elongated samples than for samples with reduced length to
diameter ratios. Adapted from Zadler et al. (2004).

ments increases as the closely spaced modes can become distorted by neighbouring

resonant modes, especially in geological materials with low Q factors and broad peaks.

4.2 Transducer Location

Measurements are made using contacting transducers. The coupling of the transducer to

the rock in�uences which modes are measured. When the sample is pinned on its edges

more modes are excited and the modes are better de�ned than when the transducers

are placed on the ends of the cylinder (Figure 4.3) The experimental apparatus is set

up so that the sample is balanced edge on between the transducers (Figure 4.4) in order

to excite the maximum number of resonances possible for a �xed geometry.

4.3 Loading

The derivation of the forward problem assumes a stress-free boundary condition on

the surface of the sample (Zadler et al., 2004). The sample is lightly pinned between
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Figure 4.3: The e�ect of transducer coupling for a sample of aluminum. If the sample
is pinned edge on between the transducers (Figure 4.4) more modes are excited and the
peaks are more clearly de�ned. If the transducers are pinned parallel to the �at ends
of the cylinder the resonances are weaker and less de�ned.

the source and receiver transducers in order to approximate this boundary condition.

However, the loading (the mass of the top transducer that rests on the sample) is non-

negligible and must be corrected for. The e�ect of loading is to increase the resonance

frequencies (Zadler, 2005). Measurements are made for di�erent values of loading in

order to determine a relationship between the loading mass on the sample and the

change in resonant frequencies. The relationship can be extrapolated to determine the

resonance frequencies that would be measured with zero loading.

Flexural modes occur in pairs called doublets or degenerate modes. Excess loading

can cause the two members of the doublet to experience di�erent frequency shifts so

that a single peak can be distorted into two distinct peaks in a loaded sample. This

can also occur due to poor sample preparation or inhomogeneities such as cracks or

inclusions (Ulrich et al., 2002).
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(a) Pinned edge-on between transducers (b) Pinned �at between transducers

Figure 4.4: Samples are pinned edge on to the transducers as shown in (a) and not
with the �at face of the cylinder parallel to the transducer surface (b) in order to excite
the maximum number of modes possible.

4.4 Sensitivity of modes

The low frequency resonances are strongly dependent on the S wave and only weakly

sensitive to the P wave moduli. Therefore, RUS experiments constrain the S wave

related cij's more than those associated with the P wave speed (Migliori et al., 1993;

Ulrich et al., 2002). The frequency of the �rst mode which is substantially sensitive to

VP can be decreased by reducing the length to diameter ratio of the sample. Hence,

squat samples enable the cij's associated with the P wave speed to be determined at

lower frequencies.

Zadler et al. (2004) computed the sensitivities of each mode to perturbations in VP

and VS for a sample of generic isotropic soft rock (ρ = 2.5 gm cm−3, VP = 3.000 km

s−1, VS = 1.400 km s−1, height = 3.099 cm, radius = 0.635 cm). The lowest frequency
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mode which is signi�cantly sensitive to VP is at approximately 150 kHz, well above the

upper frequency limit of our experimental apparatus. However, doubling the radius of

the sample decreases the frequency of this mode to 80 kHz, which is observable with

our equipment.
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Results: Aluminum

5.1 Aluminum

In order to test the quality of our apparatus and the accuracy of our methodology we

�rst tackled the problem of determining the elastic parameters of an aluminum cylinder

which is 5 cm high with a diameter of 3.82 cm and a density of 2.71 g/cm3. Aluminum is

a good test material as it is well studied, with reliable results available in the literature

to which our inversion results can be compared. Aluminum is an isotropic material

requiring only two independent elastic parameters (λ and µ or equivalently c11 and c44)

to describe the material. Fewer resonant peaks are required to con�dently estimate the

elastic tensor for an isotropic material than for a sample with a lower degree of symmetry

as the elastic tensor has fewer independent components. Additionally, aluminum has a

high Q factor so most resonances are well de�ned and the amplitude decreases rapidly

away from the eigenfrequency. Therefore, resonant peaks do not contribute signi�cantly

to neighbouring modes reducing issues associated with mode identi�cation.

18 resonant modes were recorded between 30 and 100 kHz. This was more than

enough information to accurately �t the two independent elastic parameters (Migliori

and Sarro, 1997; Ulrich et al., 2002). The sample was rotated, remounted and measured

six times with a loading of 30.6 ± 1.4 g in order to determine the frequency of each

mode and the associated error. Three sweeps were performed with V101 transducers

and three with V151 transducers. The V101 transducers are designed for P wave

34
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Figure 5.1: Resonant spectra of aluminum cylinder from 30 to 100 kHz. Blue solid
line is measured with V101 transducers and red dashed line with V151.

detection while the V151 transducers excite shear motion. Figure 5.1 shows how using

both types of transducers enabled more resonances to be observed than is possible with

only one transducer type.

18 of the �rst 24 modes were observed and the missing six resonances were �lled

in by the forward code. They were given zero weighting and acted as placeholders,

not contributing to the �nal mis�t value. χ2, the mis�t between the measured and

predicted frequencies, is de�ned by

χ2 =
1

N

N∑
i

wi(
f
(obs)
i − f (pre)

σ
(obs)
i

)2 (5.1)

where N is the number of measured modes, f (obs) and f (pre) are the measured and

predicted frequencies respectively, σ(obs) is the observed uncertainty in each mode and w

is the weight of the mode. w is included in the χ2 de�nition so that placeholder modes

with a zero weighting do not contribute. A curious feature of RUS measurements is

that the �rst one or two modes always give a bad �t, regardless of the apparatus, trans-

ducer type, sample, or other experimental considerations (Migliori and Sarro, 1997).

Therefore, the �rst mode, which makes a signi�cant contribution to the variance, is

given a weight of zero.

The measured and predicted frequencies and the observed error are shown in Table



CHAPTER 5. RESULTS: ALUMINUM 36

5.1. χ2 is calculated as 32.2 which is higher than expected for convergence (χ2=1). For

each resonant peak the measured frequency is the average of the frequencies observed

in the repeated measurements and the error is the standard deviation. Not all peaks

are observed in all measurements. For some resonant peaks the standard deviation

is calculated using a smaller data set which is likely to underestimate the error and

overestimate χ2. An average error is computed from the resonant peaks that were

observed in �ve or more sweeps. This results in χ2 decreasing to 8.3 which is closer to

unity.

Aluminum

f (obs) (Hz) f (pre) (Hz) σ(obs) (Hz) (f
(pre)−f (obs)
σ(obs) )2 # peaks obs. freq. #

31468 31356 16 49.00 3 1
37321 37450 47 7.53 6 2
48345 48774 42 104.33 3 3
50128 49773 95 13.96 5 4
54160 54159 46 0.00 3 5
58076 58236 62 6.66 3 6
61508 61555 21 5.01 5 7
62822 62712 21 27.4 2 8
70454 70257 16 151.60 5 9
74198 74095 18 32.74 3 10
75248 75127 38 10.14 3 11
77423 77788 35 108.76 2 12
79189 79292 159 0.42 6 13
81572 81550 89 0.06 2 15
83811 83708 85 1.47 5 16
93498 93307 30 40.53 4 19
94767 94808 13 9.95 4 23
99125 99285 31 26.64 4 24

Table 5.1: Comparison of measured (f (obs)) and predicted (f (pre)) resonant frequencies
of aluminum. σ(obs) is the uncertainty in each frequency calculated from repeated mea-

surements, (f
(pre)−f (obs)
σ(obs) )2 is the relative contribution of f (obs) to the total χ2, # peaks.

obs is the number of measurements that each mode was observed in and freq. # is the
number of the identi�ed mode.

The �tted cij values are shown in Table 5.3 and are similar to those quoted in the
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literature (Scruby and Drain, 1990; Zadler and Le Rousseau, 2005). Uncertainty in the

cij values was estimated from the inversion procedure. For a wide range of starting c44

values the inversion will converge to the same value. However, depending on the initial

value of c11 the iterations will converge to a wider range of possible c11 solutions. The

uncertainty is greater for c11 than c44 because the low frequency modes are only weakly

sensitive to VP (Zadler et al., 2004) but depend strongly on the shear moduli. Reducing

the error in c11 would require extending the work to higher frequencies (we were limited

by the 102 kHz upper operating limit on the lock-in ampli�er) or changing the sample

geometry to have a greater diameter to height ratio.

The Q factor for the �rst peak is 115. This is signi�cantly larger than for the shales

and is re�ected in the sharper peaks observed in Figure 5.1.
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5.2 Aluminum with Foil Jacket

Other members of the Physical Acoustics Laboratory are measuring the elastic proper-

ties of core samples under pressure. In order to do this the rock needs to be encased so

that the pressurising �uid does not seep into the pore space of the rock and distort its

properties. A signi�cant number of the rock samples available in the lab were covered,

or partially covered by various foils. Many exploration companies coat samples in wax

as they are removed from depth in order to preserve the sample. The wax is removed

while experiments are carried out and promptly reapplied. Understanding the e�ect of

a layer of wax on the resonant modes may enable RUS measurements to be made with-

out removing the coating. Understanding the e�ect of the foil jacket on measurements

is a preliminary step in this direction as well as towards making RUS measurements

under pressure. The aluminum cylinder with the foil jacket is shown in Figure 5.2. The

jacket consists of thin layers of foil approximately 1 mm thick which partially cover the

curved face of the cylinder.

Acquisition was performed using the same parameters as for the aluminum sample

without the foil jacket. Six sweeps were made with the sample remounted and rotated

between measurements. The loading was 37.8 ± 3.7 g, 7 g greater for the sample

without the jacket. The excess loading should cause the observed frequencies to be

higher for the jacketed sample by ∼10 Hz (Zadler, 2005). The measured and predicted

frequencies and the observed error are shown in Table 5.2 and the �tted cij values in

Figure 5.2: Aluminum sample with the foil jacket.
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Figure 5.3: Resonant spectra of aluminum cylinder with the foil jacket from 30 to 100
kHz. Blue solid line is measured with V101 transducers and red dashed line with V151.

Table 5.3.

The variance is dominated by modes one and eight. The �rst mode is given a

weight of zero as the �rst mode in RUS measurements is often a poor �t (Migliori

and Sarro, 1997). Peak eight has a very small uncertainty term (23 Hz) that may be

underestimated as the result of the mode only being observed in three sweeps. χ2 is

calculated as 6.7 using equation (5.1), with the �rst mode assigned a weighting of zero

and using an average error of 68 Hz. The average error is determined from the seven

resonances which are observed in all six sweeps.

The foil jacket makes a clearly measurable di�erence to the resonances as illustrated

in Figure 5.4. The e�ect of the jacket is to decrease the frequency of the resonant modes

by 425±230 Hz. If the loading was the same between measurements the di�erence would

be ∼ 10 Hz greater.

The e�ect is observable in the results of the inversion. The sample with the foil jacket

has a lower shear modulus. For the aluminum without the jacket c44 is calculated as

26.6 ± 0.1 and for the sample with the jacket c44 = 26.3 ± 0.1. The c11 values are the

same within errors bars. Extending the work to higher frequency modes with greater

sensitivity to c11 may result in observable di�erences in c11. However, within our range

of investigation, despite the resonant frequencies being higher for the sample without

the jacket for all modes only c44 di�ers between the jacketed and non-jacketed samples.
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Aluminum with foil jacket

f (obs) (Hz) f (pre) (Hz) σ(obs) (Hz) (f
(pre)−f (obs)
σ(obs) )2 # peaks obs. freq. #

31301 31150 15 128.88 3 1
37168 37238 50 0.12 6 2
48237 48475 29 77.75 5 3
49886 49455 67 41.05 6 4
53691 53805 32 17.62 5 5
57661 57867 119 3.54 6 6
61144 61156 46 3.01 6 7
62010 62300 23 294.76 3 8
69966 69818 43 5.60 6 9
73671 73631 56 1.20 6 10
74833 74663 75 5.60 4 11
77234 77351 43 5.45 3 12
78759 78632 47 27.74 3 13
81287 81110 94 7.89 4 15
83101 83233 44 0.09 4 16
92618 92710 99 1.51 6 19
94292 94214 90 0.13 3 23
98712 98777 45 0.48 3 24

Table 5.2: Comparison of measured (f (obs)) and predicted (f (pre)) resonant frequencies
of aluminum with foil jacket. σ(obs) is the uncertainty in each frequency calculated from

repeated measurements, (f
(pre)−f (obs)
σ(obs) )2 is the relative contribution of f (obs) to the total

χ2, # peaks. obs is the number of measurements that each mode was observed in and
freq. # is the number of the identi�ed mode.

Sample c11 c44 χ2

Aluminum 109.8 ± 2.0 26.6 ± 0.1 8.3
Aluminum with foil jacket 110.0 ± 2.0 26.3 ± 0.1 6.7

Table 5.3: Summary of elastic moduli (GPa) and χ2 (dimensionless) for aluminum
with and without a foil jacket.
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Figure 5.4: E�ect of foil jacket on the resonant frequencies of an aluminum cylinder.
The number of the measured mode is plotted on the x axis (the absolute frequency of
the mode increases to the right) against the di�erence between the resonant frequencies
with and without the foil jacket. All modes are higher in frequency for the sample
without the foil jacket. The average di�erence is 425 ± 230 Hz.
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Results: Shale

Shale MSH is an oil shale from an outcrop in Montana (Blum et al., 2013). We measured

two mutually perpendicular cores drilled within centimeters of each other. The shale

displays considerable heterogeneity. The density of the VTI core is 2.1 g/cm3 and for

the HTI core is 1.7 g/cm3. Therefore, the two cores do not provide complementary

information that can be used to constrain the inversion of the other.

6.1 Horizontal Transverse Isotropic (HTI) Sample

Shale MSH (HTI) is 5.39 cm high with a diameter of 3.76 cm and a density of 1.70

g/cm3. 25 resonant modes were measured between 10 and 50 kHz with a rate of sweep

of 0.0005 Hz. Six measurements were performed, three with V101 and three with V151

transducers, with the sample rotated and remounted between sweeps. The loading of

the sample was kept at 9.9±1.5 g. Table 6.1 compares the measured and predicted

frequencies and the relative error contribution of each mode.

The resonant frequencies were determined from each measurement and the uncer-

tainty for each mode was calculated as the standard deviation of the measured data set.

Not all modes were measured in every sweep and hence for some peaks the standard

deviation was calculated using less data points. It is expected that this would result in

an underestimation of the errors and hence an overestimation of χ2. Further work is

required to improve the error estimation. The �rst mode dominates the relative uncer-

42
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tainty contributions. This is a common feature of RUS measurements in which the �rst

one or two modes do not �t well regardless of the apparatus, sample geometry or other

experimental considerations (Migliori and Sarro, 1997). Therefore, in the inversion the

�rst and second modes are assigned a weighting of zero and do not contribute to the

calculation of χ2.

Figure 6.1: Measured spectra of shale MSH HTI from 10 to 30 khz (top) and 30 to 50
kHz (bottom). The blue solid line is the response using V101 transducers which excite
and recorded compressional motion. The red dashed line is the measured spectra using
V151 transducers which measure the shear motion preferentially.

The �nal cij values and Thomsen's anisotropy parameters for a horizontally trans-

verse isotropic model are shown in Table 6.2. The χ2 value is 6.5 calculated from

equation (5.1) and is a signi�cant improvement over an isotropic �t with a χ2 of 154.

To partially account for the e�ect of the missing modes in some sweeps an average error

can be calculated from the peaks which were observed in most measurements. Using
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an average error of 186 Hz calculated from the thirteen modes which were observed in

four or more sweeps gives χ2 = 1.6.

The P and S wave speeds parallel to the symmetry axis are VP0 = 2590 ± 110

ms−1 and VS0 = 1110 ± 30 ms−1 respectively. Perpendicular to the symmetry axis

VP90 = 2920 ± 100 ms−1 and the fast S wave speed is 1590 ± 40 ms−1. ε and γ are

positive indicating that the P wave and a polarisation of the S wave increase in velocity

away from the symmetry axis. The negative value of δ shows that in the near-vertical

the velocity of the P wave decreases away from the vertical. δ has a larger error as

more operations are required to compute δ from the cij values (nine operations) than

for ε or γ (two operations) and the errors are ampli�ed as they are propagated through

the calculations.

The attenuation can be calculated from the amplitude spectrum (Section 3.4) using

equation (3.28). For shale MSH HTI the �rst normal mode occurs at 12473 Hz with

a full width at half maximum of 790 Hz. Therefore, the Q factor is 15.8 which, as

expected, is substantially less than for the aluminum.

Time-of-�ight measurements were used to provide initial estimates for the cij values

and to investigate the e�ect of frequency on the observed elastic moduli. In the time-

of-�ight measurements a pulse generator excited a contacting transducer which sent

a pulse propagating through the rock. The response, as measured by another piezo-

electric transducer, was displayed on an oscilloscope (Tectronix TDS 380). The pulse

has a dominant frequency of 500 kHz. The travel time and wave speed were determined

from the oscilloscope output. The use of contacting transducers enabled the S wave

speed to be measured, providing additional information to that determined by Blum

et al. (2013). However, the contacting source and receiver introduce coupling issues

and uncertainty if phase or group velocity is measured.

The velocities calculated from the time of �ight measurements are 3080± 90 ms−1

and 2690±100 ms−1 for the fast and slow P waves respectively and 1680±60 ms−1 and

1420±70 ms−1 for the fast and slow S wave polarisations. These correspond to cij values

of c11 = 12.3±0.9 GPa, c33 = 16.1±0.9 GPa, c44 = 4.8±0.3 GPa and c66 = 3.4±0.3 GPa.

The time-of-�ight measurements were a rough experiment to provide initial estimates

of the cij's. Errors in seismic velocities and cij values are estimated from the range of
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Shale MSH HTI

f (obs) (Hz) f (pre) (Hz) σ(obs) (Hz) (f
(pre)−f (obs)
σ(obs) )2 # peaks obs. freq. #

12473 11814 55 143.5640 3 1
14740 15000 70 13.7959 3 2
17150 16821 61 29.0892 3 3
17782 17665 74 2.4998 5 4
22108 21910 46 18.5274 4 6
22940 23033 88 1.1169 4 7
24182 24060 105 1.3500 6 10
25247 25244 87 0.0012 6 11
27473 27888 267 2.4159 4 12
28620 28184 82 28.2713 3 14
30307 30028 266 1.1001 3 16
31360 31151 246 0.7218 5 20
32743 33008 170 2.4299 3 21
34580 34670 56 2.5829 3 22
36100 36094 71 0.0071 2 26
37364 37549 148 1.5625 5 29
39126 38814 333 0.8779 5 31
39860 39725 368 0.1346 2 34
41072 40801 260 1.0864 4 38
42463 42624 251 0.4114 3 40
43535 43677 117 1.4730 4 43
45998 45887 451 0.0606 5 47
47120 47529 57 51.4869 2 50
48314 48603 201 2.0673 5 52
49617 49600 298 0.0033 3 57

Table 6.1: Comparison of measured (f (obs)) and predicted (f (pre)) resonant frequencies
of shale MSH HTI. σ(obs) is the uncertainty in each frequency calculated from repeated

measurements, (f
(pre)−f (obs)
σ(obs) )2 is the relative contribution of f (obs) to the total χ2, #

peaks. obs is the number of measurements that each mode was observed in and freq.
# is the number of the identi�ed mode.
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Shale MSH HTI

c11 c33 c12 c44 c66 χ2

11.4 ± 1.0 14.5 ± 1.0 4.9 ± 0.3 4.3 ± 0.2 2.1 ± 0.1 6.5

VP0 VS0 ε δ γ
2590 ± 110 1110 ± 30 0.14 ± 0.1 -0.4 ± 0.1 0.5 ± 0.1

Table 6.2: Summary of elastic moduli (GPa), seismic velocities (m s−1) Thomsen
anisotropy parameters (dimensionless) of Shale MSH HTI. Errors in cij values are esti-
mated from the inversion and propagated through to Thomsen's parameters.

possible travel times on the oscilloscope but are not rigorously determined.

Signi�cant frequency dispersion is observed in four of the elastic moduli (we are

not able to measure the o� diagonal entries in the sti�ness matrix using simple time-

of-�ight techniques). The average decrease in elastic moduli is 1.1 GPa. Comparison

with the time-of-�ight measurements from Blum et al. (2013) using non-contacting

laser methods gives bigger decreases in c11, c33, c44 and c66. The P wave anisotropy ε is

calculated as 14% using RUS compared to 30% as measured with laser-based time-of-

�ight measurements.
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6.2 Vertical Transverse Isotropic (VTI) Sample

Shale MSH (VTI) is 5.88 cm high with a diameter of 3.80 cm and a density of 2.1

g/cm3. 26 resonant modes were measured. The data was acquired between 10 and 70

kHz with a sweep rate of 0.001 Hz. Data had to be acquired over a wider frequency

range for the VTI sample than for the HTI sample in order to measure a comparable

number of modes. This is because the HTI sample does not have any doublet resonances

and so has more observable modes and the VTI shale has a slightly higher length to

diameter ratio. Seven measurements were made, three with V101 transducers and four

with V151 transducers, and the sample rotated and remounted between sweeps, similar

to the data acquisition for the HTI sample. The loading of the sample was 12.7 ± 1.6

g. Table 6.4 compares the measured and predicted frequencies and the relative error

contribution of each mode. The variance is dominated by the �rst mode due to the

small error estimation. This mode can be assigned a weight of zero and excluded from

the χ2 calculations (Migliori and Sarro, 1997).

Table 6.3 shows the results of the inversion; the �tted elastic moduli, the degree of

mis�t χ2 and Thomsen's parameters. For a VTI model χ2 = 8.6 which is a signi�cant

improvement over an isotropic model which has a χ2 value of 87. It is interesting to

note that the isotropic model is a substantially better, but still poor, �t for the VTI

Figure 6.2: Resonant spectrum for shale MSH VTI from 12 to 72 kHz. The blue solid
line is measured using V101 transducers and the red dashed line is measured with V151
transducers.
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sample than for the HTI. This is likely because both isotropic and VTI symmetries

are axisymmetric and have some of the same resonances whereas an HTI sample has

signi�cantly di�erent symmetry and hence resonant modes, as discussed in Chapter 3.

χ2 decreases to 3.9 when an average error of 223 Hz is used, calculated from the ten

modes measured in �ve or more sweeps.

The P and S wave velocities parallel to the symmetry axis are VP0 = 2880±70 ms−1

and VS0 = 1800± 30 ms−1. Perpendicular to the symmetry axis VP90 = 3120± 60 ms−1

and the 'fast' S wave polarisation has a velocity of 1770± 30 ms−1. The anisotropy of

the VTI sample is less than the HTI. There appears to be no shear wave anisotropy.

The 'fast' S wave polarisation (as predicted by the card model proposed by Thomsen

(1986b); Winterstein (1992)) has the same speed, within the margins of error, as the

'slow' polarisation. This is also shown by γ = −0.01±0.03. The sign of this is uncertain

but it indicates that between the horizontal and vertical shear wave speeds di�er by

at most 4%. This is signi�cantly di�erent to shale MSH HTI which displays 50%

anisotropy in the shear wave in RUS measurements. It is a further indication of the

inhomogeneity of shale MSH. Similarly, the large error in δ means the sign is uncertain.

It is likely to be positive as the P wave velocity is faster in the horizontal than in the

vertical direction. However, this does not exclude local variations in the near-vertical.

The P wave anisotropy is between 4% and 14%.

The Q factor of the �rst peak at 14897 Hz is 24.2, similar to the HTI sample. Despite

signi�cant variations in physical properties attenuation may be similar between the

samples. Further work needs to be done to determine the Q factor of more resonances

for each sample.

Time-of-�ight measurements were used to provide initial estimates of the cij val-

ues. The time-of-�ight measurements are less complicated than RUS, relying on simple

kinematics not Rayleigh-Ritz approximations and inverse theory. Therefore, they pro-

vided a useful con�rmation that the VTI sample had substantially di�erent physical

properties to the HTI sample. For the P and S waves along the length of the cylinder

the travel times were 19 ± 0.5 µs and 33 ± 1.5 µs respectively. These times correspond

to velocities of VP0 = 3090 ± 90 ms−1 and VS0 = 1780 ± 90 ms−1 and elastic moduli

of c33 = 20.1 ± 1.4 GPa and c44 = 6.6 ± 0.6 GPa. c33 decreases when measured using
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Shale MSH VTI

c33 c23 c12 c44 c66 χ2

17.4 ± 0.8 4.9 ± 0.6 7.3 ± 0.4 6.8 ± 0.2 6.6 ± 0.2 8.6

VP0 VS0 ε δ γ
2880 ± 70 1800 ± 30 0.09 ± 0.05 0.03 ± 0.14 -0.01 ± 0.03

Table 6.3: Summary of elastic constants (GPa), seismic velocities (m s−1) Thomsen
anisotropy parameters (dimensionless) for Shale MSH VTI. Errors in cij values are
estimated from the inversion and propagated through to Thomsen's parameters..

resonance methods at lower frequencies but no change is observed in c44. By measuring

travel times across the diameter of the cylinder the velocities VP90 = 3450± 110 ms−1

and VSH90 = 2110 ± 100 ms−1 are calculated. These correspond to elastic moduli of

c11 = 25.0 ± 1.6 GPa and c66 = 9.3 ± 0.9 GPa. For this VTI shale sample there is a

clear dependence of elastic moduli on frequency. Three of the elastic moduli decrease

by an average of 3.3 GPa. However, c44 is unchanged within the error margins.

The anisotropy estimates are di�erent in the di�erent frequency ranges. Time-of-

�ight measurements give the S wave anisotropy γ as 20% while RUS indicates no S

wave anisotropy. For the P waves the anisotropy is 12% by time-of-�ight compared to

9% calculated by resonance methods.
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Shale MSH VTI

f (obs) (Hz) f (pre) (Hz) σ(obs) (Hz) (f
(pre)−f (obs)
σ(obs) )2 # peak obs. freq. #

14897 15335 22 396.3719 4 1
16334 16131 136 2.2280 7 2
22977 22961 82 0.0381 6 3
24810 25860 259 16.4354 7 4
30587 30671 13 41.7515 4 5
35310 35060 118 4.4887 4 8
36550 37542 234 17.9718 5 9
38589 39018 104 17.0156 4 11
41706 41813 199 0.2891 7 12
42513 42638 225 0.3086 5 13
43800 43703 142 0.4666 3 15
46720 46006 85 70.5600 3 17
48027 48408 212 3.2298 2 18
49488 49581 59 2.4846 3 21
51342 50758 144 16.4475 6 22
52343 52339 240 0.0003 4 23
53490 53702 160 1.7556 3 24
54537 54803 253 1.1054 6 27
56273 55941 112 8.7870 4 28
59854 60285 380 1.2864 3 30
61740 61005 471 2.4352 6 34
64193 64164 194 0.0223 5 37
66320 65875 246 3.2723 3 40
67193 66743 247 3.3192 2 41
68042 68046 112 0.0013 3 42
69950 70062 154 0.5289 4 44

Table 6.4: Comparison of measured (f (obs)) and predicted (f (pre)) resonant frequencies
of shale MSH VTI. σ(obs) is the uncertainty in each frequency calculated from repeated

measurements, (f
(pre)−f (obs)
σ(obs) )2 is the relative contribution of f (obs) to the total χ2, #

peaks. obs is the number of measurements that each mode was observed in and freq.
# is the number of the identi�ed mode. Note that doublets are only counted as one
mode.
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Conclusion

Resonant ultrasound spectroscopy is shown to be a useful technique for determining the

physical properties of rocks. It can be used to determine the complete elastic tensor of

a sample as well as to provide attenuation information.

There are several experimental issues which are the main focus of this dissertation.

Sample geometry, transducer position, loading and rate of sweep must all be examined

when making RUS measurements. The symmetry of the sample is a major consideration

for geological samples, which are often hexagonally symmetric. VTI and HTI symmetry

have signi�cant di�erences and need to be treated separately.

The relationship between the elastic moduli and the measured resonant frequencies

is complicated with the forward problem solved using a variational approximation.

Inverse procedures pose numerous challenges even for a simple forward model. These

challenges are ampli�ed by a complicated forward model and can create confusion and

misinterpretation of results.

RUS �lls an experimental gap between low frequency stress-strain methods and high

frequency time-of-�ight measurements. The elastic moduli are calculated by resonance

methods and compared with the time-of-�ight results. Frequency dispersion is observed

with the elastic moduli decreasing with frequency.
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7.1 Future Work

There are several areas in which future work should focus.

• Measuring VTI and HTI cores of the same rock should enable better results

by providing complementary information. To test this theory additional shale

samples with less lateral inhomogeneity should be measured.

• Doublets are observed in isotropic and VTI but not in HTI cylinders. It is hy-

pothesised that this is because an HTI cylinder is not axisymmetric. However,

further work is needed to determine if this is the cause or not.

• Preliminary results indicate that the relationship between the loading and the

resonant frequencies of an HTI sample may be more complicated than for ax-

isymmetric samples. For shale MSH HTI the resonant frequencies decreased by

∼ 20 Hz for a ∼ 30 g increase the amount of loading. Further work is required

to investigate this, such as measuring the e�ect of loading of di�erent types of

normal modes.

• The work with the jackets should be extended to the shale samples. This would

be a further step towards making RUS measurements under pressure.
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Appendix A

RUS Methodology

Resonant ultrasound spectroscopy is a useful technique for determining the elastic prop-

erties of rock samples and quantifying anisotropy. However, the resonant frequencies

are not coupled to the sample's elastic properties in a simple way. Therefore, the tech-

nique can lead to confusion and misinterpretation (Zadler et al., 2004). We provide

a guide to making RUS measurements and discuss experimental and processing issues

not covered in the main text.

A.1 Experimental Setup

In order to perform RUS measurements several pieces of equipment are required:

• Transducers: a source and receiver transducer pair for applying the driving force
to the sample and measuring the response.

• Function Generator: for generating the driving force that is sent to the source

and transducer and to the lock-in ampli�er as a reference signal.

• Ampli�er: for amplifying and �ltering the response.

The equipment used was:

• V101-RM and V151-RB Olympus Panametric ultrasonic transducers with a fre-

quency of 0.5 MHz. The V101 and V151 transducers produce longitudinal and
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shear waves respectively.

• SRS DS345 Function Generator

• SRS SR850 Lock-in Ampli�er

A lock-in ampli�er is preferable to a pre-ampli�er as it is able to measure at the

exact frequency of the driving force enhancing the signal to noise ratio. Additionally,

measuring the magnitude of the response as opposed to the sinusoidal oscillations of

the signal eliminates the need to perform a Fourier transform. This removes the issue

of aliasing and allows for a reduced sampling rate, allowing for signi�cantly smaller

acquisition �les, decreased computation time and increased e�ciency. Data was fed

to a PC through a PCI oscilloscope card and acquisition was done in AlazarDSO. See

Figure A.1 for an overview of the experimental setup.

Figure A.1: Schematic diagram of experimental setup
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The function generator produces three signals; a 10 V peak-to-peak sinusoidal signal

to the source transducer which vibrates the sample of interest, a trigger signal to the

PC which initiates recording, and a sync signal (a square wave with the same frequency

as the signal sent to the transducer) which is passed to the reference-in channel of the

lock-in ampli�er. The sync signal allows the lock-in to phase-lock to the frequency of

interest eliminating other signals enabling a high signal-to-noise ratio.

The sensitivity/gain of the lock-in must be adjusted depending on the sample and

the coupling in order to get a measurable reading. If the output appears as random

noise an incorrect gain setting is the most likely culprit. For shale MSH (HTI) the

sensitivity was 100 mV f.s. with an associated gain of 40 dB.

A.2 Experimental Considerations

A.2.1 Sample Geometry

Sample geometry is a signi�cant consideration and can strongly in�uence the quality

of results that are achievable from a RUS experiment. Most geological samples are

cylindrical and cylindrical samples are the focus of this report. However, resonant

methods can be used to measure the properties of arbitrary geometries (Visscher et al.,

1991). In addition to cylinders formod-aniso and RUS-inverse are capable of dealing

with spheres and parallelepipeds.

Consider an elongated bar compared to a squat sample with a low length to diameter

ratio. The elongated bar will have a simpler spectra than the squat sample (Figure

4.2). While mode identi�cation and comparison between repeated measurements will

be easier there will be fewer normal modes within a given frequency range (Zadler

et al., 2004). Therefore, in order measure the same number of modes, acquisition must

be extended to higher frequencies. Additionally, the �rst mode which is sensitive to

VP is at a much higher frequency in an elongated bar than in a short squat cylinder

(Zadler et al., 2004) and to determine the elastic moduli associated with the P wave

speed higher frequency modes must be measured. Hence, for an elongated cylindrical

sample acquisition must be performed to higher frequencies. This is an issue if the

experimental apparatus has an upper limit on the frequency. This was the case with
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our setup as the lock-in ampli�er was unable to function above 102 kHz.

A squat sample will have more modes within a given frequency range and resonances

which are sensitive to VP at lower frequencies. However, the spectra will be more com-

plicated making mode identi�cation and comparison between repeated measurements

a challenge. Sample geometry is a compromise between the two extremes; requiring

acquisition to high frequencies or challenging mode identi�cation.

For samples with hexagonal symmetry there is another important consideration.

Hexagonal samples can be divided into two special cases; VTI and HTI symmetry. A

VTI cylinder is axisymmetric and will have doublets or degenerate modes which are

multiple normal modes with the same frequency. A cylindrical HTI sample does not

have degenerate modes. However, within a given frequency range there are the same

number of modes for both symmetries and hence for HTI there are more observable res-

onances within a given frequency range providing more data for the inverse procedure.

However, the spectra is more complicated than for a VTI sample.

Resonance methods were �rst used to measure the elastic properties of elongated

rods, with length to diameter ratios of ten or more, because those were the only geome-

tries where the forward resonance problem could be practically solved (Zadler et al.,

2004). In general, approximation procedures must be used to solve the generalized sym-

metric eigenvalue problem that arises from the resonance calculations in the forward

problem (Holland, 1968). The Rayleigh-Ritz method can be used, and the success

of this method often depends on the choice of basis functions. Holland (1968) and

Demarest (1969), amongst others, developed basis functions that enabled the forward

problem to be solved for a limited variety of geometries such as isotropic spheres and

parallelepipeds. The xyz algorithm discovered by Visscher et al. (1991) enabled the

forward problem to be solved for arbitrary geometries, including the squat cylinders we

investigate.

A.2.2 Transducer Location

Our measurements were made with contacting transducers and transducer coupling

in�uences the excitation of normal modes. The sample was pinned edge on between the

transducer to excite the maximum number of modes (Zadler et al., 2004), as discussed
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in Chapter 4. The location of the transducer on the sample controls which modes are

excited. Rotating the sample between measurements can result in di�erent resonances

being excited and observed. In order to excite all possible resonances and to ensure

repeatability between experiments the sample must be rotated and remeasured multiple

times. The resonant frequencies are determined from the sum of the measured spectra.

The e�ect of rotation is most signi�cant for HTI samples. For VTI samples when

the sample is rotated the transducers stay on the same isotropic layer. There is little

variation in the observed resonances (Figure A.2). For HTI symmetry rotating the

sample can cause the transducers to align parallel to the planes of isotropy, or orthog-

onal, or at an arbitrary angle to them. This causes signi�cant changes in the measured

spectra (Figure A.3).

Figures A.4 and A.5 show the power spectra of two large earthquakes; the 1994

Bolivian earthquake Mw = 8.2 and the 2011 Tohoku event in Japan Mw = 9.0. An

earthquake can be considered analogous to the source transducer and the whole Earth

as the sample of interest. The two spectra are signi�cantly di�erent despite the reso-

nant modes of the Earth being the same. This shows that the location of the source

(transducer or earthquake) determines which modes are excited and can be measured.

In global seismology the spectra from earthquakes all over the world are summed to-

gether in order to determine the resonant frequencies of the Earth. This is analogous

to our approach where the location of the source and receiver are varied by rotation.

A.2.3 Loading

The derivation of the forward problem assumes a stress-free boundary condition on the

surface of the sample (Zadler et al., 2004). However, the sample is pinned between two

contacting transducers and the top transducer must exert a downwards force on the

sample to hold it it place. This applies pressure to the sample and can cause cracks

and micro-fractures in the rock to close, increasing the sti�ness and hence the seismic

velocities of the sample. The e�ect of this is to increase the resonant frequencies of

the sample. Therefore, under in-situ pressure the resonant frequencies are expected to

be higher and hence, the elastic moduli will be di�erent to those we have measured at

atmospheric pressure.
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Figure A.2: E�ect of transducer location on a VTI sample. Three sweeps are made
with the sample rotated approximately 120◦ each time. There is little variation in the
frequency of the two resonances between sweeps and all modes are excited equally in
all sweeps. Transducer location is not as important for VTI samples as it is for HTI.

Figure A.3: E�ect of transducer location on a HTI sample. Three sweeps are made
with the sample rotated approximately 120◦ each time. At 15 kHz there is a substantial
peak that is only excited in one of the sweeps. This shows that transducer location is
important for HTI samples. Di�erent transducer locations excite di�erent resonances.
In order to excite the maximum number of resonances multiple sweeps must be recorded
with the sample rotated between measurements. Resonances are then determined from
all sweeps.
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Figure A.4: Power spectra from 1994 Bolivian earthquake Mw = 8.2

Figure A.5: Power spectra from 2011 Tohoku earthquake Mw = 9.0

A scale is located underneath the sample in order to measure the loading. If the

experimental apparatus allows for variable loading measurements should be made for

di�erent loading values so that the frequencies can be extrapolated to the expected

value at zero loading.

For an axisymmetric cylinder the resonant modes observed will be either axisymmet-

ric (torsional or extensional) where the energy travels purely up or down the cylinder,

or non-axisymmetric or �exural where the energy travels along paths titled with respect

to the cylindrical axis. Flexural modes occur in pairs with the same resonant frequency

called doublets or degenerate modes. For axisymmetric modes loading causes the peak

to be shifted in frequency. For non-axisymmetric modes loading can in�uence the two

modes in a doublet di�erently causing di�erent shifts. The two members of a doublet

that would appear as a single peak in an unloaded sample can become spread into

two distinct peaks in the loaded sample (Zadler et al., 2004; Zadler, 2005). The same

phenomenon can occur as a result of a poorly manufactured sample with a crack in one

side or sub-parallel faces. For parallelepiped samples a 1% chip out of the corner of
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Figure A.6: Resonant modes can be shifted up in frequency when additional loading
is applied to the sample. The porosity could be correlated to the magnitude of the
change. From Zadler (2005).

Figure A.7: Showing the experimental apparatus. The top transducer is balanced
with a counterweight and is able to be adjusted accurately in order to minimize the
loading force that the sample experiences. The scale under the bottom transducer
measures the total mass of the system allowing us to calculate the external loading and
to keep the loading constant between successive measurements.

a sample can produce a 1% change in the frequency of resonant modes (Ulrich et al.,

2002).
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A.2.4 Rate of Sweep

Another important consideration is the rate of sweep. If the rate of sweep is too fast

the resonant modes will be shifted up in frequency. The correct rate can be chosen by

sweeping up and down in frequency. If the resulting spectra do not overlap exactly then

the rate of sweep is too fast (Zadler, 2005). Figure A.8 shows the spectra for shale MSH

from 10 to 20 kHz sweeping up and down in frequency at three di�erent rates of sweep,

0.05, 0.01 and 0.001 Hz. The di�erence in frequency of the resonant modes between the

up and down sweeps are 190, 55 and 7 Hz respectively. An error of 190 Hz due to rate

of sweep would signi�cantly increase the uncertainty in the frequencies. Therefore, the

rate of sweep should be as slow as possible so that the di�erence between up and down

sweeps is minimised. However, there may be a practical lower limit of the possible rate

of sweep due to time considerations or equipment restrictions.

Figure A.8: The rate of sweep is important. If the sweep is too fast the peaks
will be shifted upwards in frequency. Therefore, the correct rate of sweep is chosen by
measuring sweeps up and down in frequency and con�rming that the two spectra match
exactly.
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A.3 Data Acquisition

In order to make a RUS measurement the frequency bounds and rate of sweep must

be chosen carefully. It is important to measure the �rst resonant frequency otherwise

all modes will be incorrectly identi�ed and the inversion can give a grossly inaccurate

answer. In many samples (isotropic and VTI) the frequency of the fundamental mode

is given by the reciprocal of the two-way travel-time of the slowest S wave (for HTI

samples the situation is more complicated. However, the reciprocal of the two-way

travel-time of the slow S wave will give a ball-park estimation of the frequency of

the fundamental mode). For centimetre sized samples subtracting ∼5 kHz from the

estimated fundamental frequency provides an appropriate lower frequency bound on

the measurements. The upper frequency bound depends on how many resonant peaks

are required for the inversion and the geometry of the sample. There may be a limit

on the maximum frequency due to equipment constraints or because the consistent

identi�cation of peaks between repeated measurements is compromised as the modes

become more closely spaced at higher frequencies.

Once the frequency bounds have been determined the next step is to sweep up and

down in frequency, either over the whole frequency band or smaller subintervals. If the

peaks di�er between the up and down frequency sweeps then the rate of sweep should

be reduced until they agree. This ensures that the frequencies are not perturbed by the

sampling rate.

A measurement can now be performed sweeping between the chosen frequency

bounds at a determined rate. The sample should be remounted, rotated and remea-

sured as many times as possible to excite the maximum number of modes and to enable

uncertainties in the resonant frequencies to be calculated. Di�erent transducers (V101

and V151) can be used to excite di�erent modes (P and S wave modes respectively).

A.4 Inversion

Once the resonant modes have been measured the frequencies are passed to the inversion

by a text �le freq_data which contains two columns, the measured resonant frequencies

in MHz and the associated weighting of each observed mode. The weighting is generally
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one for observed modes and zero for peaks guessed at by the forward code. Intermediate

values can be used for observed but uncertain peaks. The overall structure of the inverse

procedure is to start with a few frequencies and slowly add more, updating cij values

and increasing the order of the �t as more modes are added. There are several tricks

to the inversion procedure which are outlined below.

• To begin the inversion start with the same number of frequencies as cij′s that are

being inverting for. This eliminates problems that occur in the inversion when

there are more unknowns than data.

• Add frequencies to the inversion one or two at a time. If a peak is missed there

are three options:

1. Let the forward code guess at the frequency of the missing mode. Insert

this frequency with a weight of zero. It will act as a placeholder and not

contribute to the �nal χ2 value.

2. Review the recorded data. The missing peak may be small or poorly de�ned

and have been overlooked. Insert this frequency with a weighting that re�ects

the con�dence with which the peak is identi�ed.

3. Remeasure and rotate the sample. The missing peak may not have been

excited. By changing the transducer location the mode may become observ-

able.

• Periodically update param_data with the revised cij values.

• Maintain the upper frequency bound as ∼10 kHz above the highest frequency

used in the inversion.

• As more frequencies are added increase the degree of the polynomial �t to achieve

more accurate results.

A curious property of RUS measurements is that independent of experimental ap-

paratus, sample geometry or other considerations the �rst one or two modes do not �t
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well (Migliori and Sarro, 1997). This is indicated by a large relative error contribution

(f
pre−fobs
σobs

)2. Therefore, the �rst one or two modes are often given a weighting of zero.

Limited analysis on the aluminum and shale samples has indicated that the cij's

have a greater radius of convergence below the true value than above. Therefore, it

is better to underestimate the elastic moduli than to overestimate. For additional

details on the inversion procedure refer to the Installation and Help Guide by Zadler

and Le Rousseau (2005) available at http://physics.mines.edu/about/downloads/

software/mpl/manual.pdf.

http://physics.mines.edu/about/downloads/software/mpl/manual.pdf
http://physics.mines.edu/about/downloads/software/mpl/manual.pdf


Appendix B

Recommendations

Two forward models are used in the computations. formod-aniso contains one copy

of the forward model that is called by a script �le mod-shell to compute the resonant

frequencies based on sample geometry and given elastic moduli. RUS-inverse holds

another copy of the forward model. It is this copy that is used to determine the predicted

frequencies in the inversion process. Having two identical copies of the forward model

in di�erent places can lead to confusion and introduce errors when one code is changed

but not the other. Therefore, it is recommended that only one copy of the forward

model is used and that the other is removed from the computational methods. The

preferred method would be to remove the forward model from RUS-inverse and make

the inversion call formod-aniso each time the resonant frequencies need to be computed.

For RUS experiments it is recommended that mutually perpendicular cores are cut

to produce HTI and VTI symmetries of the same rock. The two cores can be used

to provide complementary information. For example, HTI samples have more observ-

able resonances within a given frequency range which can provide more information for

the inversion. In VTI samples the �rst resonance is often determined by the two-way

travel-time of the slow S wave. Therefore, only a single peak needs to be measured to

determine c44. This technique will only work if there is not signi�cant lateral hetero-

geneities in the rock. It does not work for shale MSH as there are signi�cant physical

di�erences between the two samples despite being cut only a few centimetres apart.
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