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S U M M A R Y
Seismic interferometry (SI) is a technique used to estimate the Green’s function (GF) between
two receiver locations, as if there were a source at one of the receiver locations. However, in
many applications, the requirements to recover the exact GF are not satisfied and SI yields a
poor estimate of the GF. For these non-ideal cases, we improve the interferometric GFs, by
applying singular value decomposition (SVD) to the cross-correlations before stacking. The
SVD approach preserves energy that is stationary in the cross-correlations, which is the energy
that contributes most to the GF recovery, and attenuates non-stationary energy, which leads
to artefacts in the interferometric GF. We apply this method to construct virtual shot gathers
(for both synthetic and field data) and demonstrate how using SVD enhances physical arrivals
in these gathers. We also find that SVD is robust with respect to weakly correlated random
noise, allowing a better recovery of events from noisy data, in some cases recovering energy
that would otherwise be completely lost in the noise and that the standard SI technique fails
to recover.

Key words: Time-series analysis; Image processing; Numerical approximations and analysis;
Interferometry.

I N T RO D U C T I O N

Seismic interferometry (SI), first suggested by Claerbout (1968),
can be used to estimate the Green’s function (GF) between two
receivers, as if there were a source at one of the receiver locations,
by cross-correlating the recorded seismic signal at the two stations
and stacking the cross-correlations over many sources. The sources
can be artificial sources (Schuster et al. 2004; Bakulin & Calvert
2006; van Wijk 2006; Mehta et al. 2007), earthquakes (Campillo
& Paul 2003) or uncorrelated noise (Sabra et al. 2005a; Shapiro
et al. 2005; Roux et al. 2005; Weaver 2005; Curtis et al. 2006;
Godin 2006; Stehly et al. 2006). Independent of the source type, a
requirement for accurate GF recovery is the receivers record energy
from all directions. Unfortunately, this assumption is often not met
in practice. As a result, we generally recover a partial estimate of
the true GF. This raises the questions: How good an approximation
to the GF can SI give in a particular scenario? Can we improve
this estimated GF? This work addresses the second question; we
present an approach to improve the accuracy of the estimated GF
when there is an incomplete source distribution.

There are two general scenarios where SI has been shown to
be useful. First, SI can be helpful in places where receivers can
be planted but active sources cannot, due to physical or economic
reasons. Secondly, even at places suitable for active sources, SI can

be applied to re-organize the data in such a way that portions of
the data that are normally not considered in traditional imaging
techniques can be used. An example of such this is imaging with
multiples. The majority of traditional imaging techniques use only
singly scattered data. SI can be used to redatum the data in such a way
that multiply scattered energy in the original data appears as single-
scattered data, allowing for interferometric data to be processed
with traditional tools. Generally, this increases the portion of the
medium that can be imaged.

To recover the exact GF between two receivers requires that these
receivers be surrounded by a closed surface of sources, with both
monopole and dipole sources required for accurate amplitude esti-
mates. A number of studies (see e.g. Schuster et al. 2004; Snieder
2004; Wapenaar et al. 2004a; Roux et al. 2005; Sabra et al. 2005b;
Snieder et al. 2006) show that the sources that provide the main
contribution to the GFs are the ones located along rays that pass
through both receivers, and those in the Fresnel zone around these
sources (Snieder 2004). This was shown by approximating the in-
tegral over sources using the stationary-phase method and showing
that these are the sources for which the phase of the integrand (cross-
correlations) is stationary. We refer to these sources as stationary
sources. Assuming full source coverage, the rapidly varying energy
emanated by sources outside the Fresnel zone destructively inter-
fere; we refer to these sources as non-stationary sources. Incomplete
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source coverage and lack of dipole sources results in a degradation
of the quality of the recovered GF, which then needs to be carefully
interpreted. Furthermore, since dipole sources are rarely available in
practice, and source coverage is generally incomplete, here we focus
on enhancing arrivals instead of recovering correct amplitudes.

There are various approaches to address the incomplete cover-
age problem and improve the accuracy of interferometric GFs (see
e.g. Bakulin & Calvert 2006; Snieder et al. 2006; Wapenaar 2006;
Mehta et al. 2007; Poliannikov & Willis 2011; van Wijk et al. 2011;
King & Curtis 2012). A brief description of most of these can be
found in the introduction section of King & Curtis (2012). Here we
present an approach to alleviate the incomplete coverage problem
in certain cases, using the singular value decomposition (SVD, see
e.g. Golub & van Loan 1996). This decomposition, as explained
below, identifies the stationary signal while suppressing the non-
stationary energy in the GF. In addition to these properties, we find
that SVD allows the recovery of phases obscured by noise in the
regular interferometric GF.

We refer to the collection of cross-correlated traces for a pair of re-
ceivers, as the cross-correlogram (one trace for each source). In 2-D
(in this work we only examine 2-D data), the cross-correlogram can
be viewed as a matrix whose dimensions are time lags from cross-
correlations and sources. Thus, by stacking the cross-correlogram
along the source dimension, we obtain an interferometric GF.
Poliannikov & Willis (2011) suggest viewing the cross-correlogram
as the building block for performing interferometry and propose
that it should be analysed and pre-processed when necessary before
stacking. Here we follow this idea. As mentioned above, in general,
there are two distinct types of energy in a cross-correlogram: energy
that contributes to forming the interferometric GF (stationary en-
ergy) and energy that does not contribute to the GF (non-stationary
energy). Stationary energy in the cross-correlogram is character-
ized by coherency, small wavenumber, and nearly in-phase events
along the source dimension. Non-stationary energy, by contrast, is
characterized by incoherency, larger wavenumber, and out-of-phase
events along the source dimension. It is by separating these two
parts of the energy in the cross-correlogram that we obtain more
accurate GF estimates for non-ideal source distributions. We use
SVD to perform this separation and enhance physical arrivals that
are not properly recovered using standard stacking in SI. In this way,
we can recover arrivals that would otherwise be obscured by noise.
This is similar to the approach used in Freire & Ulrych (1988) and
Ulrych et al. (1999) to increase the signal-to-noise ratio (SNR) and
filter linear events.

Hansen et al. (2006) explained the relationship between sin-
gular values and frequency; large singular values correspond to
low frequencies and small singular values correspond to high
frequencies (here frequency refers to source wavenumber in the
cross-correlogram.). The large singular values are associated with
events that are in phase along the source dimension in the cross-
correlogram. The nearly in-phase energy in the cross-correlogram
corresponds to energy emanated from the stationary sources. We
decompose the cross-correlogram using SVD, construct lower-rank
approximations of the cross-correlograms (using the singular val-
ues that correspond to the arrivals we are interested in) and stack
the lower-rank cross-correlogram to estimate the GF. This is based
on the idea of approximating a matrix by another of a lower-rank
presented in Eckart & Young (1936).

An intuitive justification for estimating interferometric GFs
through a low-rank cross-correlogram comes from the relation-
ship between singular values, frequency, and the stationary-phase
method. As mentioned above, interferometric GFs can be obtained

by approximating the integral over sources using the stationary-
phase method. A solution of an integral obtained through the
stationary-phase method is formed by keeping the slowly vary-
ing part of the integrand, which is where the integrand’s phase is
stationary. The stationary part of the integrand thus corresponds to
low frequencies in the cross-correlogram space. As demonstrated in
Hansen et al. (2006), low frequencies correspond to large singular
values. Therefore, in drawing a connection between the continuous
(GF obtained through an integral) and discrete (GF obtained through
summation) cases, solving the SI integral using the stationary-phase
method is related to stacking a low-rank approximation of the cross-
correlogram obtained through SVD. We illustrate this with both
synthetic and field data examples.

The examples we present here are based on the acoustic synthetic,
elastic synthetic, and field data from Mikesell et al. (2009a,b) and
Nichols et al. (2010), respectively. In the first example, we apply the
SVD technique described above to a version of the acoustic synthetic
data set used by Mikesell et al. (2009a) contaminated with weakly
correlated Gaussian noise. We find that the virtual shot gather ob-
tained through low-rank cross-correlograms created by retaining
only the largest singular value, as in a low pass filter, has a larger
SNR, thus enhancing the reflected wave that is obscured by the noise
in the standard virtual shot gather. In the second example, we apply
SVD to the elastic synthetic data set used by Mikesell et al. (2009b).
They show an improvement in the SNR in cross-correlograms (and
by consequence in the virtual shot gathers) in the presence of random
noise, by stacking groups of cross-correlograms under the assump-
tion of lateral homogeneity. We demonstrate further improvement
in the SNR in the virtual shot gathers by incorporating the SVD
technique. Finally, we present results obtained by applying the SVD
technique to the field data collected at the Boise Hydrogeophysical
Research Site (BHRS, Nichols et al. 2010). The source–receiver
geometry is similar to the synthetic example. Contrary to the syn-
thetic cases, in this example the reflected and refracted waves can
be better recovered by ignoring the largest singular value, as in a
high pass filter.

M E T H O D

In this section, we briefly review the SI method and the underlying
assumptions. Then we discuss the proposed SVD method to improve
the recovered GF.

Seismic interferometry

SI can be used with sources of different nature such as active sources,
earthquakes, noise sources, etc. Here we focus on the active sources
scenario. In this case, according to the theory, cross-correlation of
the wavefield recorded by two receivers due to a set of monopole
and dipole sources completely surrounding both receivers, followed
by stacking over all the sources, gives the true impulse response be-
tween the receivers. This scenario holds as long as the medium is
lossless. Later, we make assumptions and approximations to sim-
plify the SI integral equation, making it suitable for the case when
we have only monopole sources.

There are several derivations of the SI equations. For exam-
ple, they can be derived using time-reversal arguments (Derode
et al. 2003), representation theorems based on reciprocity the-
orems (Wapenaar et al. 2004b, 2006; Snieder 2007; Snieder
et al. 2007), superposition of incoming plane waves (Weaver &
Lobkis 2004), and the principle of stationary phase (Snieder 2004;
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Figure 1. Cross-correlogram matrix C. Stacking over sources gives the
interferometric GF.

Roux et al. 2005). Here we present a brief summary based on the
work of Wapenaar & Fokkema (2006) who derive SI equations
from representation theorems based on reciprocity (for derivations
of reciprocity, see e.g. Rayleigh 1896; Aki & Richards 1980; de
Hoop 1988; Fokkema & van den Berg 1993).

Consider two independent acoustic states, at locations A and B,
inside a volume V with boundary S, within a time-reversal invariant,
lossless and arbitrarily inhomogeneous medium. Let Ĝ(x A, x B, ω)

be the frequency domain GF for a receiver at x A and a source at
x B , where ω is the angular frequency. Based on the reciprocity
theorem of the cross-correlation type and source–receiver reci-
procity. Wapenaar & Fokkema (2006) show that the sum of the
causal and anticausal GF for a receiver at x A and a source at x B is
given by

Ĝ(x A, x B, ω) + Ĝ∗(x A, x B, ω)

=
∮

S

−1

iωρ(x)
{Ĝ∗(x A, x, ω)∂i [Ĝ(x B, x, ω)]

−∂i [Ĝ
∗(x A, x, ω)]Ĝ(x B, x, ω)} ni dS, (1)

where Ĝ(x A, x B, ω) corresponds to the causal GF in the time do-
main, Ĝ∗(x A, x B, ω) is the complex conjugate corresponding to
the anticausal GF in the time domain, ρ(x) is the density and
ni are the outward-pointing normal vector to the surface S. The
physical interpretation of ∂i [Ĝ(x A, x, ω)] is the GF from a dipole
source at x recorded at x A and Ĝ(x A, x, ω) is the GF from a
monopole source at x recorded at x A [similar interpretation holds
for ∂i [Ĝ(x B, x, ω)] and Ĝ(x B, x, ω)]. Cross-correlation in the time
domain is equivalent to the product of these GFs in the frequency do-
main, as seen in the integrand terms, Ĝ∗(x A, x, ω)∂i [Ĝ(x B, x, ω)]
and ∂i [Ĝ∗(x A, x, ω)]Ĝ(x B, x, ω), of eq. (1).

The exact representation of the acoustic GF in eq. (1) requires
the computation of two cross-correlation products involving both
monopole and dipole sources. In order to make this representation

Figure 2. (a) Singular values, σ k; (b) stack coefficients, sk; (c) original cross-correlogram, C; (d) rank-1 cross-correlogram, C1; (e) standard interferometric
GF, G; (f) interferometric GF, G1, obtained from C1; (g) source–receiver geometry with 13 evenly distributed sources (red stars) around the stationary zone
to the left of the receivers (blue triangles); (h) first two singular vectors weighted by the respective stack coefficients. The GFs in (e) and (f) are similar. Even
though (a) shows that there are two significant singular values to represent C, (b) shows that G can be well represented with only one stack coefficient.
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Figure 3. (a) Singular values, σ k; (b) stack coefficients, sk; (c) original cross-correlogram, C; (d) rank-2 cross-correlogram, C2; (e) standard interferometric
GF, G; (f) interferometric GF, G2, obtained from C2; (g) source–receiver geometry with 3 and 7 sources (red stars) placed in two non-stationary zones with
respect to the receivers (blue triangles); (h) singular vectors 2 and 3, weighted by the respective stack coefficients. The singular value spectrum in (a) shows
a smooth decay and no significant singular value. The stack coefficient spectrum indicates two significant singular vectors, 2 and 3, contributing to the GF,
however, as seen in (h), neither of them resembles the GF, as expected.

more tractable, one can make simplifications in order to, first, re-
duce the representation to one cross-correlation and, second, to
require only monopole sources. First, assuming the medium is
homogeneous at and outside of S (with constant velocity c and
density ρ) and that no energy comes from outside into S, eq. (1)
simplifies to

Ĝ(x A, x B, ω) + Ĝ∗(x A, x B, ω)

≈ 2

iωρ

∮
S
∂i [Ĝ

∗(x A, x, ω)]Ĝ(x B, x, ω)ni dS. (2)

Secondly, assuming a high frequency regime and that the medium
is smooth in a small vicinity around S, the normal derivative
∂i [Ĝ∗(x A, x, ω)] in eq. (2) can be approximated as

∂i Ĝ(x A, x, ω)ni ≈ −iω

c
| cos[α(x)]|Ĝ(x A, x, ω), (3)

where α(x) is the angle between the ray emanated from x and the
normal to S. We assume that S is large enough so rays take off
approximately normal to the integration surface S making α(x) ≈ 0
and cos(α(x)) ≈ 1. With these assumptions, eq. (2) simplifies to

Ĝ(x A, x B, ω) + Ĝ∗(x A, x B, ω)

≈ 2

ρc

∮
S

Ĝ∗(x A, x, ω)Ĝ(x B, x, ω) dS. (4)

In summary, the assumptions in eq. (4) are:

(i) The medium outside the integration surface S is homogeneous,
such that no energy going outward from the surface is scattered back
into the system.

(ii) The medium around the source is locally smooth.
(iii) All sources lie in the far-field (i.e. the distance from the

source to the receivers and scatterers is large compared to the dom-
inant wavelength).

(iv) Rays take off approximately normal to the integration
surface S.

Due to these simplifications, the absolute amplitudes of the GF
are lost in eq. (4) and errors in amplitude can be large in general.
However, since the phase is unaffected, eq. (4) is considered suitable
for most applications of SI.

Because our goal here is to enhance arrivals, in the transition
from the continuous to the discrete case, we ignore the amplitude
factor 2

ρc in eq. (4). Thus, the interferometric GFs are obtained by
summation of cross-correlations for all sources

Ĝ(x A, x B, ω) + Ĝ∗(x A, x B, ω) ≈
N∑

i=1

Ĝ∗(x A, xi , ω)Ĝ(x B, xi , ω),

(5)
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Figure 4. (a) Singular values, σ k; (b) stack coefficients, sk; (c) original cross-correlogram, C; (d) rank-1 cross-correlogram, C1; (e) standard interferometric
GF, G; (f) interferometric GF, G1, obtained from C1; (g) source–receiver geometry with 13 sources (red stars) in the left-hand side stationary zone, and 3 and
7 sources in two non-stationary zones of the receivers (blue triangles). (h) Singular vectors 1 and 4 weighted by the respective stack coefficients. In (a), we
observe a decay that is less smooth than in Fig. 3(a), with a break after singular value 1. In (b) it is clear that the interferometric GF is well represented by the
first singular vector. In (f) the fluctuations are reduced and the GF is clearer than in (e). In (h) we see that the second most significant singular vector for the
GF, according to (b), is singular vector 4. However, since it corresponds to non-stationary energy in the cross-correlogram, it should be ignored.

Figure 5. Source–receiver geometry for acoustic synthetic example.

where N is the number of sources. Next we discuss the decompo-
sition of the collection of cross-correlations using SVD in order to
isolate energy from stationary sources.

SVD of the cross-correlogram

Let xi for 1 ≤ i ≤ N be the location of sources and τ be the time lags
from cross-correlations in the time domain. We consider the cross-
correlogram as the matrix C = C(xi , τ ) (Fig. 1) where each row
is the cross-correlation of the signals recorded at the two receivers
from each source. Even though the derivation of the SI equations

above are in the frequency domain, our implementation is in the
time domain. Thus, the cross-correlogram C can be written as

C(xi , τ ) =
∫

G(x A, xi , t + τ )G(xB, xi , t) dt. (6)

Assuming M time samples, C is an N × 2M − 1 matrix. The
interferometric GF is then obtained by stacking C over the source
dimension,

G = G(x B, x A, t) + G(xB, x A,−t) =
∑

i

C(xi , τ ). (7)
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(a) (b)

Figure 6. Receiver gathers for receivers r1 (a) and r18 (b).

Figure 7. Cross-correlograms and GFs for receivers r1 and r18: (a) singular values, σ k; (b) stack coefficients, sk; (c) original cross-correlogram, C; (d) rank-1
cross-correlogram, C1; (e) standard interferometric GF, G; (f) interferometric GF, G1, obtained from C1. The spectra in (a) and (b) show that there is one
significant singular value and stack coefficient. The corresponding singular vector has the same waveform as G1, so we do not display it here. Note the enhanced
reflection in (f) compared to (e). In (d), the cross-correlations for sources 68–75 have their phase reversed. This is because there are three events merging in
this zone in the original cross-correlogram as seen in (c). Arrivals 1 and 3 dominate the cross-correlations for sources 68–75 and their phase is approximately
the opposite of the linear event 2 in the merging zone. As SVD preserves linearity, it simply reverses the phases for these sources in C1.
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(a) (b)

(c)

Figure 8. (a) Modelled shot gather with a source placed at the location of receiver r1. We have convolved the modelled shot gather with a 40 Hz Ricker wavelet
used as a source to simulate the change in source signature from SI. (b) Interferometric virtual shot record, V, for virtual source at r1. Note the recovered direct
and reflected waves. (c) Virtual shot gather obtained through rank-1 cross-correlograms, V1. The reflection is enhanced when compared to the reflection in (b).

Next, we decompose C using SVD (see e.g. Golub & van Loan
1996, for a description of SVD). The SVD decomposition of the
cross-correlogram is C = U�V t , where U and V are the left and
right singular vectors, respectively, and � is the diagonal matrix
whose elements are the singular values of C. Now we construct
� j by keeping j singular values of � and obtain a lower-rank ap-
proximation C j = C j (xi , τ ) = U� j V t . As mentioned above, this

is based on the idea of approximating a matrix by another of a lower-
rank, as discussed in Eckart & Young (1936). Stacking the rows of
C (eq. 7) gives the standard interferometric GF, G, and stacking the
rows of the approximation C j gives the modified interferometric
GF, Gj.

G j = G j (x B, x A, t) + G j (x B, x A,−t) =
∑

i

C j (xi , τ ), (8)
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Figure 9. Cross-correlograms and GF for receivers r1 and r18: (a) singular values, σ k; (b) stack coefficients, sk; (c) original cross-correlogram, C; (d) rank-1
cross-correlogram, C1; (e) standard interferometric GF, G; (f) interferometric GF, G1, obtained from C1. Noise has been added to the synthetic data so that the
reflection is difficult to see in the standard virtual shot gather. Similar to the clean data set in Fig. 7, the spectra in (a) and (b) show that there is one significant
singular value and stack coefficient. The corresponding singular vector has the same waveform as G1, so we do not display it here. Again, note the enhanced
reflection in (f) compared to (e), as in Fig. 7. In (d), the cross-correlations for sources 68–75 have their phase reversed. This is because there are three events
merging in this zone in the original cross-correlogram as seen in (c). Arrivals 1 and 3 dominate the cross-correlations for sources 68–75 and their phase is
approximately the opposite of the linear event 2 in the merging zone. As SVD preserves linearity, it simply reverses the phases for these sources in C1.

According to the SVD based cross-correlogram decomposition,
we note that Gj can be viewed as a weighted sum of the left singular
vectors (rows of matrix V ). Let e be a vector of dimensions 1 × N,
whose elements are all equal to 1. Here e is just an auxiliary vector
we use to to write the stack of the rows of U� in matrix notation.
Then, the interferometric GF can be written in matrix notation as

G = eC = eU�V t = sV t , (9)

where s = eU� are the coefficients of the weighted sum of the
singular vectors in V . From here on we refer to these coefficients
as stack coefficients. Let uik correspond to the elements of matrix
U , vk correspond to the kth row of matrix V and σ k be the singular
values. Thus, eq. (7) can be rewritten as

G =
∑

k

σk

(∑
i

uik

)
vk =

∑
k

skvk, 1 ≤ k ≤ N . (10)

In the examples that follow, the singular vectors shown are the rows
of V , and when selecting sk’s we consider their absolute value.

We now illustrate this procedure with a synthetic acoustic homo-
geneous model. The model for this example is a constant velocity
and density model with no reflectors. Therefore, the GF consists of
the direct wave only. We examine how we can approximate the true
GF in three cases: (i) the case where there are stationary sources
only, (ii) non-stationary sources only and (iii) both stationary and

non-stationary sources. In all three cases there are gaps in the source
distribution and, for comparison, all the GFs are normalized to have
a peak amplitude of one.

First, we consider the case where the sources are only in the
stationary-phase zone, as in Fig. 2(g). The energy from these sources
contributes constructively to the GF. The spectra in Figs 2(a) and (b)
show that while there are two significant singular values to represent
C (Fig. 2c) only one stack coefficient, the first one, should be
required to well-approximate the GF. Fig. 2(d) shows C1 constructed
using only the first singular value/vector. Figs 2(e) and (f) show that
the GF obtained from C and C1 are quite similar. This is a case
where standard interferometry works well and the SVD technique
is not necessary, although it is not detrimental. The singular vectors
(Fig. 2h) are weighted by the corresponding stack coefficients (skvk)
and, again, is clear that the GF is well approximated by the first
singular vector.

In case (ii) we take only non-stationary sources (Fig. 3g). Ideally
(i.e. assuming full source coverage), all of the non-stationary energy
should cancel during the stack over sources. However, if there are
gaps in the source distribution, residual energy will remain because
of the imperfect cancellation of the non-stationary energy. The sin-
gular value spectrum in Fig. 3(a) shows a smooth decay, that is,
there is no obvious truncation point of significant singular values
other than when the values approach zero. On the other hand, the
stack coefficient spectra shows that there are primarily two singular
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Figure 10. (a) Modelled shot gather, similar to Fig. 8(a), contaminated with noise. (b) Standard virtual shot gather, V, similar to Fig. 8(b). (c) Virtual shot
gather obtained through rank-1 cross-correlogram, V1. Note the enhanced reflected wave compared to the reflected wave in the standard virtual shot gather in
Fig. 10(b).

vectors, 2 and 3, that contribute to the GF. Thus we construct a
rank-2 cross-correlogram approximation, C2, in Fig. 3(d). In this
case, C2 does not enhance any linearity and does not even resemble
C (Fig. 3c). Singular vectors 2 and 3, weighted by the stack coeffi-
cients, are shown in Fig. 3(h). They correspond to the non-stationary
energy and, contrary to the previous case, none of them resembles
the GF.

Case (iii) mixes the two previous cases. Fig. 4(g) shows sources
in stationary and non-stationary zones, but with gaps in between.
The cross-correlogram (Fig. 4c) thus has energy contributing to the
GF and energy that should cancel out completely. However, because
of the gaps, it does not. In the singular value spectrum (Fig. 4a) we
observe a mixture of the two previous cases, a break after the first
singular value followed by smooth decay. Fig. 4(b) again indicates
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Figure 11. Source–receiver geometry for group 1 of elastic synthetic example.

that the interferometric GF can be well represented with only the first
singular vector. Fig. 4(d) shows C1, constructed using only the first
singular vector, which corresponds to the stationary energy. This
rank-1 approximation thus suppresses the residual energy caused
by the imperfect cancellation of non-stationary energy, and G1 is
more accurate than G as seen in Figs 4(e) and (f). Fig. 4(h) shows
singular vectors 1 and 4 (the strongest stacking coefficients are
number 1 and 4) weighted by the respective stack coefficients. An
intuitive reason why SVD is able to capture stationary energy (here
and in the following examples) in the cross-correlogram is because
a rank-1 matrix obtained through SVD will consist of one row that
best represents the original matrix, thus, qualitatively speaking, it
will capture what is most in common among all rows, which is
stationary energy. The same argument can be made for columns.
We see again that, for instance, while singular vector 4 is significant
for representing C it has little contribution to G, and because it
corresponds to non-stationary energy in the cross-correlograms, it
should be ignored.

DATA A P P L I C AT I O N S

In this section, we present three examples—acoustic synthetic, elas-
tic synthetic and field data. We first apply the SVD technique to a
version of the acoustic synthetic data set used by Mikesell et al.
(2009a) contaminated with random noise. The virtual shot gather
obtained through decomposing the cross-correlograms using SVD
and retaining only the singular value corresponding to the largest
stacking coefficient in absolute value, as in a low pass filter, has a
larger SNR thus enhancing the reflected wave that is obscured by
the noise in the standard virtual shot gather. In the second example
we use the elastic synthetic data set used by Mikesell et al. (2009b),
where we obtain improvements in the virtual shot gather’s SNR by
incorporating the SVD technique. Both synthetic wavefields were
modelled using a spectral element method (Komatitsch & Vilotte
1998; Komatitsch & Tromp 2002). Finally, we present results ob-
tained by applying the SVD technique to the field data collected
at the BHRS (Nichols et al. 2010). In this case, the reflected and
refracted waves can be better recovered by ignoring the largest sin-
gular value/stacking coefficient, as in a high pass filter.

Acoustic synthetic example

Here we apply the SVD technique discussed above to the same
synthetic data set used by Mikesell et al. (2009a). Consider the
2-layer acoustic model shown in Fig. 5. The top layer has velocity
v0 = 1250 m s−1, the bottom layer has velocity v1 = 1750 m s−1

and density is constant throughout the model. A 2-D array of 110
sources is placed to the left of the receiver line (Fig. 5); the wavefield

generated by each source is recorded at each receiver. The source is
a 40 Hz Ricker wavelet.

Now, we create a virtual shot gather as if there were a source at
receiver r1 using SI. The receiver gather for receiver r1 is shown
in Fig. 6(a). The GF between r1 and each of the other receivers
is obtained with SI. For example, consider the cross-correlogram
between receivers r1 and r18. The receiver gather for receiver r18

is shown in Fig. 6(b). The spectra in Figs 7(a) and (b) show that
there is one significant singular value and stack coefficient. Figs 7(c)
and (d) show the standard and the rank-1 causal cross-correlograms
for receivers r1 and r18. Figs 7(e) and (f) show the standard cross-
correlogram stack, G, and the rank-1 cross-correlogram stack, G1.
The amplitude of the reflected arrival is enhanced in G1 in compar-
ison with G.

Repeating this procedure for all receivers, we create a standard
virtual shot gather, V (Fig. 8b) and a modified virtual shot gather,
V1, from the rank-1 cross-correlograms (Fig. 8c) for a virtual source
at r1. For comparison, Fig. 8(a) shows the modelled shot gather for a
source at the location of receiver r1. As is expected from the results
in Fig. 7, the reflection is clearer in V1 than in V. The refraction
cannot be seen in either of the virtual shot gathers due to its low
amplitude. Each trace in the shot records (modelled and virtual)
are normalized individually such that all direct arrivals have a peak
amplitude of 1, and all gathers are displayed on the same grey-scale.

We now add weakly-correlated Gaussian noise to the data, before
cross-correlation, to test the SVD method’s robustness with respect
to noise. The noise level, about 1 per cent of the direct wave peak
amplitude, was just enough so the refraction is lost and the reflection
is very weak in the standard virtual shot gather. Similar to the clean
data set, the spectra in Figs 9(a) and (b) show that there is one
significant singular value and stack coefficient. Figs 9(c) and (d)
show again the standard and rank-1 cross-correlograms for r1 and
r18. Figs 9(e) and (f) show the respective interferometric GFs. We
again see that the amplitude of the reflected wave is enhanced in G1

in comparison with G. Fig. 10(a) shows the modelled shot gather
plus noise. Further, as seen in Figs 10(b) and (c), the reflection is
visible in V1 whereas it is obscured by noise in V.

Elastic synthetic example

Next, we move to a more realistic, noisy, elastic synthetic data.
Mikesell et al. (2009b) used this data set to show how to improve
the SNR in cross-correlograms and, consequently, in the virtual
shot gathers, by stacking groups of cross-correlograms under the
assumption of lateral homogeneity. When lateral homogeneity does
not hold, the same technique can be used if multiple-fold data is
available. Here multiple-fold data means that for each source we
produce multiple shot gathers that differ from each other only by
the addition of a different realization of random noise. Assuming
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(a)

(c)

(b)

Figure 12. (a) Example of a shot gather, for synthetic elastic data, corresponding to a source located at the position of receiver r1. (b) Standard virtual shot
gather, V, for noise-free elastic data set. The arrivals are poorly recovered other than the Rayleigh wave. (c) SVD-enhanced virtual shot gather, V1, for noise-free
elastic data set. Note how the arrivals are better recovered in comparison with (b).

that multiple-fold data is available, we study four different ways
to possibly improve the SNR in virtual shot gathers, including the
SVD technique presented above, then apply and compare the four
approaches to two different data folds.

The model consists of an array of sources and an array of re-
ceivers on the surface of a low velocity layer underlain by a faster
velocity layer as depicted in Fig. 11. The source and receiver arrays

are 296 and 152 m long, respectively, and the spacings are 4 and
0.25 m, respectively. The top layer is 20 m thick with velocities of
v0, P = 1000 m s−1 and v0, S = 400 m s−1. The lower half-space
has velocities v1, P = 1550 m s−1 and v1, S = 600 m s−1. In or-
der to help attenuate free-surface multiples and better represent a
near-surface of unconsolidated sediment, attenuation was included
in the modelling. The Q values for the top layer are Q1, P = 60 and
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Q1, S = 10, and for the bottom layer are Q2, P = 100 and Q2, S =
30. The wavefield was modelled using an impulsive vertical impact
source with a dominant frequency of 120 Hz. More details about
this data set can be found in Mikesell et al. (2009b).

We start by constructing virtual shot gathers from the noise-free
data, and then we proceed to study a noisy version of this data set.
Fig. 12(a) shows the shot gather for the source located at the position
of receiver r1. The SVD decomposition for all cross-correlograms
in this case generally follow the pattern in the acoustic case of
having the first stack coefficient as the most significant. Figs 12(b)
and (c) show the standard and the SVD-enhanced virtual shot gath-
ers, V and V1, respectively. Most arrivals are better recovered and
have correct arrival times in the SVD-enhanced virtual shot gather,
while many of the arrivals are distorted in the standard virtual
shot gather due to the presence of non-stationary energy that does
not cancel completely during the cross-correlogram stack. This is
clearly seen in the few annotated phases (direct, reflected P, and
refracted P) in Figs 12(b) and (c). Note that there is a systematic
phase difference in the source wavelet between the modelled and
the virtual shot gathers. This happens because the source wavelet
is squared in the cross-correlations (Snieder 2004; Wapenaar &
Fokkema 2006).

Assume now we have a n-fold data set. Each single-fold data set
consists of the clean data plus weakly correlated Gaussian noise,
with a noise level of about 40 per cent of the direct wave peak
amplitude, added to the modelled data before the cross-correlations.
Enough noise was added such that, for each single-fold data, the
events lose coherency in the cross-correlogram domain, and the
arrivals are completely obscured by noise in the corresponding

virtual shot gathers. To improve the SNR in virtual shot gathers,
we study four different approaches.

In approach one, we use a stacking procedure where virtual shot
gathers are constructed from stacked cross-correlograms, similar to
what is done in Mikesell et al. (2009b). For each single-fold data
we generate one cross-correlogram. Cross-correlograms are then
stacked to form an n-fold cross-correlogram, which are then used
to construct a standard virtual shot gather. The stacking greatly
enhances coherency in the cross-correlogram space allowing the
recovery of some of the events that were previously obscured
by noise. Examples of such virtual shot gathers for two differ-
ent folds (6 and 38) are shown in Figs 13(a) and 14(a). Compar-
ing these virtual shot gathers with the modelled shot gather for
the noise-free data in Fig. 12(a), we see that some events are still
missing.

The second approach consists of reducing the noise by filtering
the multiple-fold data for every source–receiver pair using SVD.
Assume we have n-fold data. For every source–receiver pair, we
collect the n corresponding recordings. Data in these traces are the
same other than the noise, thus forming a rank-1 data set. Now
we simply apply SVD to this set of similar traces to suppress the
non-stationary energy, and use the first singular vector in the cross-
correlogram. Applying SVD in this manner is an alternative to the
common offset stack (as in approach one) and has the same goal of
increasing the SNR. The virtual shot gathers are then constructed
as normal. Figs 13(b) and 14(b) show the resultant virtual gathers
for 6- and 38-fold data. These gathers have a better SNR than
the respective gathers obtained through approach one, as seen in
Figs 13(a) and 14(a).

Figure 13. (a) 6-fold standard virtual shot gather; (b) virtual shot gather with 6-fold SVD-filtered data; (c) 6-fold SVD-enhanced virtual shot gather; (d) 6-fold
double-SVD enhanced virtual shot gather.
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Figure 14. (a) 38-fold standard virtual shot gather; (b) virtual shot gather with 38-fold SVD-filtered data; (c) 38-fold SVD-enhanced virtual shot gather;
(d) 38-fold double-SVD enhanced virtual shot gather.

The third approach is a combination of approach one and the
SVD technique. First, the n-fold cross-correlograms are constructed
through stacking, as in approach one. Then, we apply the SVD
technique to these n-fold cross-correlograms to form n-fold SVD-
enhanced virtual shot gathers (from rank-1 cross-correlograms).
Figs 13(c) and 14(c) show the resultant gathers for 6- and 38-fold
data. Comparing them with the respective gathers from the two
previous approaches (Figs 13a, b and 14a, b), we see that the n-fold
SVD-enhanced gathers converge faster with increased fold and have
a much better SNR, revealing events that are not recovered in the
previous two approaches.

The fourth approach is a combination of approach two and the
SVD technique. We first construct the cross-correlograms as in the
second approach and then apply the SVD technique. Here we also
use rank-1 cross-correlograms. We call these double-SVD enhanced
virtual shot gathers and they are shown in Figs 13(d) and 14(d). The
SNR is better than in the virtual shot gathers from approach one. In
addition, it is also generally better than the gathers from the approach
two. However, gathers from the third approach generally have a
better SNR and fewer phase reversals/oscillations, particularly at
larger offsets. We therefore conclude that the key place to apply
SVD is to the cross-correlograms and not to the common offset
sections.

In all the cases for this elastic data set we used rank-1 approxima-
tions for all cross-correlograms. We analysed different ranks for the
cross-correlograms in two different ways. First, we looked at SVD-
enhanced virtual shot gathers (approaches three and four) from
cross-correlograms of increasing ranks, but keeping the same rank
number for all cross-correlograms for a given virtual shot gather.

Secondly, we created virtual shot gathers from cross-correlograms
of different ranks: we defined thresholds and constructed each cross-
correlogram by keeping the stacking coefficients above a given
threshold, that is, each trace in the virtual shot gather comes from a
cross-correlogram of different rank. We found that for this particular
data set there was visually no improvement over the rank-1 results.
Therefore, we used the rank-1 cross-correlograms in all cases. For
other data sets, individual analysis of the stacking coefficient spectra
may be advantageous.

For this data set, in general, additionally applying SVD to the
cross-correlograms leads to a better noise suppression than only
stacking or SVD-filtering common offset data. Also, combining
the SVD-filtered common offset data with SVD decomposed cross-
correlograms gives, in general, little or no improvements.

Field data example

We now present the results from applying the SVD filtering tech-
nique to the field data set presented in Nichols et al. (2010). This
data set is from a 2-D seismic survey conducted at the BHRS. Here
we use data from an array of 108 receivers: 74 receivers with 1 m
spacing in the centre of the line and 17 receivers with 0.25 m spacing
at each end of the receiver line. The source is a 4 lb sledge hammer
and the source array extends for 39.9 m starting at 0.1 m to the left
of the first receiver; four shots were stacked every 0.1 m for the
first 1.9 m and then shot spacing was increased to 1 m for another
38 m. Fig. 15 shows the source–receiver geometry. A time sampling
interval of 0.25 ms was used. In general, energy from ground roll,
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Figure 15. Source–receiver geometry for field data example. Stars and triangles represent sources and receivers, respectively. The spacing for the receiver
array is 0.25 m for r1–r17, 1 m for r17–r91 and 0.25 for r91–r108. The spacing for the source array is 0.1 m for s1–s20 and 1 m for s20–s77. The average depth to
the water-table is 2 m.

(a) (b)

Figure 16. Examples of receiver gathers for receivers (a) r1 and (b) r43.

a refraction from the water-table (at approximately 2 m in depth),
and deeper reflections can be seen in the shot and receiver gathers.
The data were filtered and gained to suppress the ground roll and
emphasize events associated with a water-table interface. For more
details about these data the and geology of the field, see Nichols
et al. (2010) or Mikesell & van Wijk (2011).

Similar to the synthetic examples above, the goal here is to pro-
duce virtual shot gathers for a virtual source located at the first
receiver, r1. In virtual shot gathers of two-layered models with the
velocity in the deeper layer higher than in the shallower one, an arte-
fact named the virtual refraction arises from the cross-correlation
of head waves recorded at the two receivers. The virtual refraction
can be used to estimate the depth to the interface and the velocity
in the deeper layer (Mikesell et al. 2009a,b; Nichols et al. 2010) as
well as input for a delay-time statics method (Mikesell et al. 2012).
The virtual shot gather for the field data presented here has a very
strong virtual refraction. This artefact is not so prominent in the
synthetic examples above.

Similar to the synthetic examples above, GFs in the virtual shot
gathers here correspond to one strong stack coefficient from the
SVD decomposition. As an example, we study the SVD decom-
position for the receiver pair r1 and r43. Figs 16(a) and (b) shows
the receiver gathers for these two receivers. Fig. 17(c) shows the

cross-correlogram between receivers r1 and r43. The singular value
and stack coefficient spectra in Figs 17(a) and (b), respectively,
show one strong singular value and stack coefficient. The first five
(normalized) singular vectors are shown in Fig. 17(d). Note that
singular vectors 1–3 mostly correspond to energy up to 0.05 s,
whereas singular vectors 4–5, while also containing energy before
0.05 s, contain relatively more energy after 0.05 s compared to sin-
gular vectors 1–3. This indicates that higher order singular values
correspond to later events.

Fig. 18(a) shows the virtual shot record, V, for the virtual source
at r1. The amplitudes of the virtual refraction are considerably
stronger than the real refraction and reflection because the vir-
tual refraction has more stationary energy in the cross-correlogram.
Fig. 18(b) shows the virtual shot gather obtained through rank-1
cross-correlogram approximations, V1. The virtual shot gather V1

is dominated by the virtual refraction and the amplitudes of the real
refraction and reflection are weak. This indicates that the largest
singular value of the cross-correlogram corresponds primarily to
the virtual refraction. Thus, we must look at lower singular val-
ues/stacking coefficients to enhance the real refraction and reflec-
tion, as previously observed from the singular vectors in Fig. 17(d).
Fig. 18(c) shows a virtual shot gather, Vn − 1 (here there are 58
sources, thus n = 58), constructed by removing the largest singular
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Figure 17. SVD decomposition components of cross-correlogram between receivers r1 and r43: (a) singular values, σ k; (b) stack coefficients, sk; (c) original
cross-correlogram, C; (d) first five singular vectors. For this particular receiver pair, there is one strong singular value and stack coefficient, which correspond
to the first singular vector. Singular vectors 1–3 mostly correspond to energy up to 0.05 m, while singular vectors 4 and 5 contain relatively more energy after
0.05 s.

value of each of the SVD decomposition of the cross-correlograms.
Looking at these three virtual shot gathers we see that the physical
arrivals are enhanced in Vn − 1 compared to V and V1.

In this particular field data set, the first singular value corresponds
primarily to energy from the virtual refraction. Thus, contrary to the
synthetic examples, the reflection phases were enhanced by ignor-
ing the largest singular value. Even though the virtual refraction
is not a physical arrival, it is an event with stationary energy in
the cross-correlogram, so it is not considered to be noise as far as
the SI-SVD method is concerned. In addition, as mentioned above,
the virtual refraction can be used to invert for physical parame-
ters. As previously mentioned, a rank-1 matrix obtained through
SVD will consist of one row that best represents the original ma-
trix, thus capturing what is most in common among all rows. As
explained in Nichols et al. (2010), the critical offset for this data

set is near the beginning of the source array, so most sources are at
post-critical offsets. Therefore, the energy in the cross-correlogram
corresponding to the virtual refraction is present in many sources
(remember that each row in the cross-correlogram corresponds to
one source), more precisely, all the sources from the critical offset
until the end of the source array. Since the virtual refraction energy
is the strongest signal present across most of the sources, it is cap-
tured by the first singular value. Other than having energy at most
of the sources, the amplitude of the events in the cross-correlogram
also plays a role. The field data was pre-processed in order to re-
move ground-roll and emphasize events related to the water table
(refraction and reflection). Without this pre-processing, ground roll
dominates the shot gathers and the virtual refraction, as well as other
events corresponding to correlations between refracted and reflected
waves, are much weaker. In this case the first singular value may not
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(a) (b)

(c)

Figure 18. (a) Interferometric virtual shot record, V, for virtual source at r1. Note the virtual refraction (yellow ellipse), real refraction (red ellipse), and
reflection (blue ellipse). (b) Virtual shot gather obtained through rank-1 cross-correlogram, V1. This virtual shot gather is dominated by energy from the virtual
refraction. (c) Virtual shot gather, V − V1 = Vn − 1, obtained by ignoring largest singular value from the SVD decomposition of all cross-correlograms. The
deeper events are now enhanced.

correspond primarily to the virtual refraction. A further quantitative
study is necessary to determine in what situations which events are
associated with which singular values. Meanwhile one can study
this relationship by constructing virtual gathers with different sin-
gular values to see which events correspond to which singular
values.

CONCLUSIONS

The accurate estimation of the GF with non-ideal source cover-
age remains a significant problem in SI. We have shown how us-
ing lower-rank cross-correlogram approximations, obtained through
SVD, is a promising approach to alleviate this problem. The SVD
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approach preserves stationary energy in the cross-correlogram,
which is the energy that contributes most to GF recovery, and helps
to attenuate the non-stationary energy that contributes primarily to
artefacts in the interferometric GF. From the examples presented
here, we see that different arrivals may correspond to different sets
of singular values. This demonstrates that SVD is a powerful tool to
filter events in the cross-correlogram, not only removing artefacts
but also enhancing weaker arrivals. As a consequence, the lower-
rank cross-correlograms obtained through SVD can lead to virtual
shot gathers with clearer phases than standard virtual shot gathers,
and may recover phases that are obscured by noise in the standard
virtual gather.
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