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Abstract

Multiple scattering of elastic waves in disordered media offers a complexity of the
wave field that is challenging to unravel. The subsurface is an example of a medium with
disordered inhomogeneity at all scales. However, because waves that bounce around for
a long time and/or distance sample the Earth well, they potentially offer great insight
into the structure of the subsurface.

A surface wave scattering model is presented to aid the understanding of multiple
scattering. Advantages of this model include accessibility of the wave field within the
scattering medium, tunable scattering strength, availability of phase and amplitude
information, and the relative longevity of surface waves. Accompanied by a state-of-
the-art non-contacting data acquisition scheme, this system proved ideal for unveiling
the effects of multiple scattering.

When a pulse is launched in a strongly scattering medium, it travels ballisti-
cally at first, but turns diffusive as multiply scattered waves interfere with the incident
pulse. Radiative transfer has proven to describe both the transmission of the coherent
pulse through the scattering media, as well as the diffusive energy that is dominant
at later times. Advances in the the understanding of radiative transfer theory both
experimentally, as well as theoretically, make it possible to quantify bulk properties
of this scattering medium, including independent estimates of scattering attenuation
and intrinsic absorption and energy velocity. Preliminary studies in full-waveform sonic
logging show potential of such an analysis in terms of radiative transfer.

Small amplitude variations caused by scattering were also observed and confirmed
by spectral-element numerical simulations. These included body-wave precursors to the
dominant surface waves and flexural resonance of the scatterers.

As an application of this work, a model is presented that proved to be a successful
test in applying a wave-equation based method to image, predict and subtract scattered
waves, when the interest is in other events than the scattered field.
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I’m pickin’ up good vibrations
B. Wilson and M. Love

SMiLE, 1966
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Chapter 1

Introduction

In geophysics many studies have been devoted to the topic of scattering from inho-
mogeneities in the Earth. Of course, we heavily rely on impedance contrasts in the Earth
to reflect seismic energy back to the surface, but heterogeneity on a scale smaller than the
dominant wavelength is known to influence the characteristics of the seismic signal. For
instance, O’Doherty & Anstey (1971) show that reflections within thin layers alter the fre-
quency content of the transmitted pulse, while Backus (1962) found that thin layering, or
any preferred orientation of scatterers, makes the seismic velocities angle-dependent (i.e.,
anisotropic). In Kennett (1984), scattering from heterogeneity in the Earth’s crust is shown
to transfer energy from the vertical component to the horizontal components. Could this
be an early report on a now well-known characteristic of multiple scattering called equipar-
tition (Hennino et al., 2001)? In addition, the scattering of energy due to inhomogeneities
in the subsurface is known to attenuate the coherent signal (often referred to as the first
arrival or ballistic peak). This mechanism for attenuation is coupled to intrinsic absorption.
Attempts to decouple these for earthquake measurements by Wu (1985), Wu & Aki (1985)
and Wu & Aki (1988) were noble and maybe ahead of their time, but hindered by limited
data, both in bandwidth, as well as coverage.

This thesis is a study of multiple scattering of surface waves. While multiple scat-
tering of elastic waves in the Earth is a growing topic of research (e.g., Margerin et al.,
1999; Hennino et al., 2001; Wegler & Lühr, 2001; Campillo & Paul, 2003), much of its char-
acteristics are still ill defined. The goal is to show that understanding multiply scattered
energy can aid our understanding of the disordered systems like the Earth. In practice,
however, exploiting multiply scattered waves to make inferences about a medium can be far
more complicated than using single-scattering theory such as the Born approximation. In
geophysics, nearly all data processing algorithms are based on single scattering theory (Aki
& Richards, 1980), but a highly heterogeneous near-surface (Campman et al., 2003), crust
(Campillo et al., 1999), and the boundary between core and mantle (Earle & Shearer, 1997;
Margerin et al., 1999) provide coherent and diffuse signal. In contrast, human tissue is such
a strong scatterer of light that only diffuse (i.e. multiply scattered) light can be measured
(Boas et al., 1995).

A solid block of aluminum contains a number of surface wave models. Each face of the
block represents a model with a certain level of complexity in surface wave propagation. In
a way, this block is a mini-laboratory for the study of surface waves. Overall, each face of
the block is large compared to the dominant wavelength, while surface scatterers are smaller
than a wavelength. The smooth face of the block is used to determine the material and
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source properties. One side of the block with a single groove is used to study the reflection,
transmission and diffraction from such a scatterer, before we tackle the problem of surface
wave propagation on a face with a multitude of such grooves. This model is a surface-wave
equivalent of studies of seismic body waves in finely-layered structures that show multiple
scattering by layers much smaller than the dominant wavelength determine the amplitude
and the spectrum of the wavelet (O’Doherty & Anstey, 1971; Asch et al., 1991) and cause the
effective medium to be anisotropic (Backus, 1962). The final model in this mini-laboratory
is a face of the aluminum block with cylindrical holes to test near-surface scattering in
higher dimensions.

The reasons for studying surface waves are plentiful. First, surface waves travel – as
their name suggests – along the surface of a solid. This makes them available to mea-
sure as they propagate, as opposed to body waves that typically can only be detected in
transmission or reflection. Secondly, to make surface waves scatter, holes or grooves at the
surface are easy to construct and describe. Tertiary, measurements of surface waves consist
of phase and amplitude information, which is a crucial advantage over optic studies in mul-
tiple scattering where one typically only has measurements of the light intensity. Finally,
surface waves decay less rapidly than body waves, because their energy spreads over only
two dimensions as they propagate along a surface, while body waves spread spherically.
This makes surface waves tractable for relatively large times and distances.

Especially the fields of optics and condensed matter have seen a growing interest in
using effective medium theories such as radiative transfer to model the transport of energy in
random media (Lemieux et al., 1998). It is in these cases of strong scattering where phases
become randomized, that the single scattering model loses its relevance. Radiative transfer
models describe the coherent signal at early times and the diffuse waves at later times,
providing information about the mean free scattering and absorption lengths as well as the
diffusion constant. Beautiful examples of the transition from ballistic to diffuse propagation
are presented in the propagation of bulk phonons at low temperature (Narayanamurti et al.,
1978), while time-resolved images of this transition in random media such as rocks have
been presented in Scales & Malcolm (2003).

1.0.1 Matter of Scales

The chapters are divided by the level of detail describing the model and the multiple
scattering phenomena. The coarsest level is called the macroscopic regime. It describes
the model in terms of bulk properties, like attenuation and scattering strengths, group and
phase velocity. At this scale, diffusion of energy is an accurate description of the energy in
a strong scattering model beyond the scattering mean free path. Details about the multiple
scattering that are at the microscopic level show the interaction between a single scatterer
and the surface waves, i.e. on a scale much smaller than the scattering mean free path. This
regime is governed by the wave equation, describing reflection, transmission and diffraction
from a single groove and flexural resonance of scatterers.

In between these regimes is the mesoscopic regime. In multiple scattering of waves,
this regime hinges on the scattering mean free path. While the macroscopic description of
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the model is on length scales beyond a mean free path, and the microscopic scale is much
smaller than that, the mesoscopic regime covers the length scale around one mean free path.
Energy propagation in this regime is described by the theory of radiative transfer of energy.

1.1 Wave propagation in (grooved) aluminum

Chapter 2 concerns the theory of Rayleigh waves in a homogeneous elastic half-space
and experiments in a (finite) aluminum block with and without a single groove. Both the
end of the block and the groove diffract surface waves to body waves, but the finite depth
of the groove makes reflection and transmission of the Rayleigh wave frequency dependent.
In addition, the non-contacting data acquisition is introduced. Much experimental surface
wave research is done in non-destructive testing, where one looks for small cracks in materials
(see Hess, 2002, for an overview), but also in geophysics where surface waves are used in
tomographic inversion for the structure of the Earth (Dahlen & Tromp, 1998), the influence
of topography on seismic waves is tested (e.g., Komatitsch et al., 1999) and dispersion
curves of ground-roll are used to invert for layered models in near-surface geophysics (e.g.,
Xia et al., 1999).

1.2 Multiple scattering at the macroscopic scale

To understand the different regimes of multiple scattering, describing the propaga-
tion of energy and their transitions, it is extremely useful to have a medium in which the
scattering properties can be easily adjusted. For example, with phonon scattering one can
control the mean free path via the temperature (Wolfe, 1998). If the mean free path is
greater or equal to the size of the sample, then the phonons propagate ballistically. The
more scattering between source and detector, the more diffusive the propagation. Chap-
ter 3, based on Scales & van Wijk (1999, 2001), introduces such a surface model in our
mini-laboratory. Here we use a face of the block with many grooves per wavelength. Waves
propagating parallel to the grooves propagate nearly attenuation and dispersion free, but
waves propagating normal to the grooves are dispersed and exponentially attenuated with
distance as waves bounce between the grooves. This means that energy is transferred from
the direct pulse to later times. This tail of energy is called the multiple-scattering coda. We
measure this attenuation length and show that there is, in addition, a scattering induced
anisotropy in the group and phase velocity.

By varying the source-receiver orientation with respect to the grooves and the dis-
tance between source and receiver, we are able to map out the transition from ballistic to
diffusive energy propagation and measure the angle-dependent macroscopic properties of
the medium, such as the group velocity, and the scattering mean free path. Finally, the
observations around a mean free path are fit in the macroscopic description of diffusion.
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1.3 Strong scattering at the mesoscopic scale

Chapter 4 is based on van Wijk et al. (2003b) and Haney et al. (2003), where radiative
transfer theory describes data around a mean free path. It shows how this model describes
both the coherent and the incoherent signal, while in Appendix B.1 the connection is made
between the coherent energy and classic results in wave propagation in a thinly layered Earth
(e.g., O’Doherty & Anstey, 1971; Banik et al., 1985; Shapiro & Zien, 1993). Appendix B.4
shows how the incoherent signal signifies diffusive propagation of energy at late times.
This radiative transfer model is thus a description of energy propagation in the mesoscopic
regime (van Rossum & Nieuwenhuizen, 1999). The main practical advantage of the analysis
of coherent and incoherent signal is the opportunity to separate scattering attenuation from
intrinsic absorption. A feasibility study of determining intrinsic attenuation (also known as
the Q-factor in geophysics), separately, is outlined in Appendix D.

1.4 Multiple scattering at the microscopic scale

Chapters 3 and 4 describe the model in terms of bulk properties, ranging from the
diffusion constant derived from late times, to average scattering attenuation from the entire
trace of observations. However, Chapter 5 concerns the small-scale features that are caused
by scattering. A numerical spectral-element code – that proved its strength in global seis-
mology (e.g., Komatitsch & Vilotte, 1998; Komatitsch & Tromp, 1999; Komatitsch et al.,
2002; Komatitsch & Tromp, 2002a,b) – is used to confirm these features that are often
not much larger than the background noise level. To understand the physics of these phe-
nomena, it is necessary to consider the governing wave equation with proper boundary
conditions. In other words, this Chapter – based on van Wijk et al. (2003a) – analyzes
scattering at the microscopic scale.

1.5 Near surface statics estimation

Current methodology in land exploration geophysics to correct for topographic or
near-surface material property variations often rely on static time shifts, based on strong
assumptions about wave propagation in the near surface. Chapter 6 – based on Campman
et al. (2003) – introduces a wave-equation based method to apply static corrections caused
by near-surface scattering. These corrections are true to the physics in the near-surface
and thus include amplitude corrections. All theory and processing in this Chapter originate
from Delft University of Technology, while the Physical Acoustics Laboratory provided the
models and data acquisition capabilities to test the theory.
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Chapter 2

Surface waves in theory and experiment

2.1 Summary

An aluminum block serves as a mini-laboratory for surface wave studies. It is large
compared to the dominant wavelength and the aluminum behaves nominally elastic for our
purposes. Grooves, which are small compared to the source wavelength, reflect, transmit
and even convert the incoming surface wave energy to body waves. However, before we
look at complicated interference of surface waves scattered on the face with a multitude of
grooves, let us examine the theory of Rayleigh waves, their characteristics on a smooth face
of the aluminum laboratory, and finally, on the face with a single groove.

2.2 Introduction

Quantifying the results of surface-wave scattering from lateral variations is of direct
interest in geophysics. Scattering caused by topographic variations introduces dispersion
of the early arriving energy, which competes with dispersion related to horizontally layered
structures. In addition, in global seismology, surface topography or sedimentary basins
can trap seismic energy (e.g., Komatitsch et al., 1999), posing seismic hazard, while in
exploration geophysics topography needs to be accounted for in terms of static corrections
(e.g., Campman et al., 2003).

The aluminum surface wave laboratory is 28 cm × 23 cm × 21.5 cm. A transducer
mounted on the surface of an aluminum block excites surface waves. For a detailed analysis
of the source characteristics, I refer you to Appendix A. The scattered wave field is recorded
with a laser Doppler vibrometer. This entire setup is positioned on a vibration isolation
table. This type of non-contacting data acquisition is used on a regular basis in non-
destructive testing (see Hess, 2002, for an overview of the literature).

2.3 Rayleigh waves in an elastic and isotropic half-space

Navier’s equation, the homogeneous equation of motion in a homogeneous elastic half-
space, follows from a balance of forces (e.g., Aki & Richards, 1980):

(λ+ µ)∇ (∇ · u) + µ∇2u = ρü, (2.1)
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where the displacement u is a function of space (x) and time (t), ρ is the density, the
partial derivatives with respect to scape are ∇ = (∂x, ∂y, ∂z) and (λ, µ) are the Lamé
coefficients. The dots over the displacement vector on the right hand side denote a double
partial derivative with time. Since u is a vector field, we can apply Helmholtz Theorem to
represent u in terms of two potentials:

u = ∇φ+∇×ψ, (2.2)

where ∇ · ψ = 0. In addition, the curl of the divergence of any vector is zero, so that

∇ · u = ∇2φ and ∇× u = −∇2ψ. (2.3)

Taking the divergence of equation (2.1), we find that the scalar potential satisfies the scalar
wave equation for compressional waves (P-waves):

∂2φ

∂t2
=

(
λ+ 2µ

ρ

)
∇2φ, (2.4)

where the P-wave velocity vp =
√

λ+2µ
ρ . The curl of equation (2.1) leads to the vector

potential satisfying the vector wave equation for shear waves (S-waves):

∂2ψ

∂t2
=

(
µ

ρ

)
∇2ψ, (2.5)

where the S-wave velocity vs =
√

µ
ρ . To simplify the notation, let us assume we are looking

for a plane wave solution (φ and ψ ∝ exp(iωt)) in 2 dimensions (2D). In this case, equations
(2.4) and (2.5) simplify to

∂2φ

∂x2
+
∂2φ

∂z2
+ kpφ = 0 and

∂2ψ

∂x2
+
∂2ψ

∂z2
+ ksψ = 0, (2.6)

where kp and ks are the compressional and shear wave numbers. If we consider solutions of
harmonic waves propagating in the x-direction, the solutions are of the form

φ = F (z) exp(i(kx − ωt)) and ψ = G(z) exp(i(kx − ωt)). (2.7)

Inserting these solutions in equation (2.6) gives us

d2F (z)

dz2
−
(
k2 − k2

p

)
F (z) = 0 and

d2G(z)

dz2
−
(
k2 − k2

s

)
G(z) = 0, (2.8)

with solutions of the form exp
(
±
√

(k2 − kp,s) z
)

. We will show later that k > kp > ks, so

physical solutions whose amplitude decays with depth are of the form:

φ = A exp(−qz) exp(i(kx− ωt)) and ψ = B exp(−sz) exp(i(kx− ωt)), (2.9)
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where q2 = k2 − k2
p, s

2 = k2 − k2
s and (A,B) are arbitrary constants. With the conditions

that at the boundary of the elastic half-space the stresses are zero: σzz and σxz = 0, we can
write B in terms of A, and find the characteristic relation between the k, s and q to be

4k2qs−
(
k2 + s2

)2
= 0. (2.10)

In terms of velocities, this is

(
2− c2

v2
s

)2

= 4

√
1− c2

v2
p

√
1− c2

v2
s

, (2.11)

where c = ω/k. This equation is known as the Rayleigh equation, named after J. W.
Strutt, Lord Rayleigh, who first published this in 1885 (Strutt, 1885). Mathematically,
this equation has six roots for c, but as the Poisson’s ratio lies between 0 and 0.5, and we
know that the surface wave has to decay with depth, each elastic isotropic medium has
one Rayleigh wave with a velocity cR that ranges between 0.87 to 0.96 times the shear
wave velocity, depending on the Poisson’s ratio of the medium. Once cR is known, we can
determine individually the inhomogeneous longitudinal and shear wave components from
equation (2.9) that are in a Rayleigh wave:

φ = −A exp(i(kx− ωt)− qz) and ψ = iA
2kq

k2 + s2
exp(i(kx − ωt)− sz). (2.12)

If we know vp and vs, the variables s, q are now known and A is a scaling term. From
these equations one can see that the shear component is 90 degrees out of phase with the
compressional component, due to the factor i. This causes the famous elliptical polarization
of the Rayleigh wave. Worth pointing out is that even though the assumed model here is
2D, the out-of-plane shear-component of the vector potential turns out to be zero in a 3D
analysis. Finally, equation (2.12) shows that the polarizations decay exponentially with
depth, governed by q and s, respectively. Because s and q are proportional to frequency,
low frequency Rayleigh-wave components sample the medium to a greater depth than high
frequency components.

2.4 Source and receiver in the laboratory

This Section discusses in general terms the excitation and detection of Rayleigh waves
in aluminum in the laboratory, but a much more detailed analysis of the source properties
is laid out in Appendix A.

2.4.1 The Rayleigh wave source

In the laboratory, waves are exited with a piezo-electric crystal that has the ability
to convert a voltage to a mechanical force. This crystal is mounted on a Lucite wedge
and this wedge is mounted on the aluminum model. The angle of the wedge is such,
that the horizontal component of the P-wave speed in Lucite matches the Rayleigh wave
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speed in aluminum. This angle is generally known as the critical angle. The P-wave
in Lucite propagates at 2681 m/s. Information about the experimental and analytically
determined Rayleigh wave speed in the previous section, makes that the critical angle α =
arcsin (2681/2870) = 69 degrees. This is close to the 68 degrees supplied by the Panametrics
transducer for generic aluminum.

2.4.2 The laser vibrometer detector

The wave field is detected by a scanning laser interferometer that measures absolute
particle velocity on the surface of the sample via the Doppler shift. The output of the
vibrometer-head is a beam of diameter less than 1 mm and a wavelength of 633 nm (red).
Once the beam reflects off a moving target, its frequency is Doppler shifted. The beat-
frequency of the output plus the reflected signal is decoded in the hardware to give an
absolute measurement of particle velocity, without contacting the medium. In contrast,
contacting transducers are part of the model and can act as scatterers. In addition, con-
tacting transducers of the size of the vibrometer beam are prone to ring: once excited, they
echo on, due to their light weight. This limitation is tolerable for first arrival measurements,
but pose a serious problem in multiple-scattering research.

The signal of the vibrometer is amplified with a low-noise preamplifier (SR 560 with
12 db/octave 10 kHz high-pass filter) and digitized at 14-bit resolution using a Gage digital
oscilloscope card, attached to a PC. However, to ensure high signal-to-noise, reflective tape
is applied to the model for a strong reflectivity of the interferometer beam. While stacking
(averaging) of multiple shots improves data quality, experience tells us that higher levels of
noise are mostly caused by a decrease in reflection strength of the interferometer beam. In
practice, this often means that there is either an air-bubble between tape and the model,
or the reflection strength of the tape is diminished by dirt.

The scanning head is programmed to move the beam after each measurement, so that
we can record dense arrays of data, automatically. This stands in sharp contrast with
time-consuming contacting transducer measurements, where individual receivers have to be
moved manually. The possibility to record at many locations per wavelength allowing a
dynamic data analysis (movies) and filtering techniques in space-domain, as are currently
being investigated in exploration geophysics (Baeten et al., 2000).

The flexibility of a small, non-contacting and programmable receiver, allows us to mea-
sure with relative ease and precision multiply-scattered waves, even between the scatterers.

2.5 Surface wave propagation in homogeneous aluminum

To study multiply scattered waves in grooved aluminum, we must first address wave
propagation in the background medium. Figure 2.1 is the top-view of the experimental
configuration (left) and the wave fields at each detector (right). The linear events are the
direct wave followed by the reflection off the end of the block. These ray paths are drawn
in the left panel. The direct arrival is followed by some weaker events that are caused by
ringing of the source (see Appendix A for details). The reflected wave is less energetic than
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Figure 2.1. Top-view of the experimental configuration (left) on the smooth face of alu-
minum. The shaded box represents the source and the circles represent 20 equi-spaced
detector locations. The wave field for each detector is shown on the right. The spot-size
of the interferometer beam has a diameter of 1 mm, the source is 42 mm wide, and the
dominant wave-length is on the order of 1 cm.

the direct wave, because energy is diffracted to body waves at the edge of the block. Since
the amplitudes of the direct arrival (or of the reflection) vary insignificantly with source-
detector distance, we consider the aluminum block to behave elastically and thus neglect
intrinsic absorption.

The phase velocity of the Rayleigh wave on the smooth face of aluminum is experi-
mentally determined from the move-out of a particular phase of the wave field, as a func-
tion of distance. Figure 2.2 shows the picks of the maximum energy in each trace and
the regression through the picks. This measured phase velocity of the Rayleigh wave is
vR ≈ 2870 ± 5 m/s. Even though the documented material properties vary from one alu-
minum to the next (Anderson, 1989), with the knowledge of vp and vs from transmission
measurements, equation (2.11) predicts the Rayleigh wave speed to be vR ≈ 2864 m/s.

2.6 When a surface wave meets a groove

A computer controlled milling machine etched a single 1-mm wide and 2.75-mm deep
groove on one face of the aluminum block. When a Rayleigh wave encounters this groove,
part of its energy is reflected and part is transmitted. However, just like the edge of the
block, the groove diffracts energy to body waves as well. The magnitude of these parts is
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Figure 2.2. Arrival times of the maximum energy as a function of offset on the smooth face
of aluminum and their regression. The regression shows that the Rayleigh wave velocity is
vR ≈ 2870 ± 5 m/s.

strongly dependent of the frequency content of the Rayleigh wave, but an analytic solution
determining the proportions of transmitted, reflected and diffracted energy is unknown for
this model. Viktorov (1967) describes the reflected and transmitted waves as a combination
of tunneling under the groove, energy following the circumference of the groove, and actual
oscillations of the two side-walls of the groove.

2.6.1 Measurements on the top

Figure 2.3 is the top-view of the experimental configuration that measures the reflected
and transmitted Rayleigh wave on top of the block. The resulting wave field for one detector
between the groove and the source (left) and for one past the groove (right) are depicted in
Figure 2.4. Both wave fields show two dominating events. The left panel shows the direct
Rayleigh wave followed by a reflection from the groove, while the right panel shows the wave
field transmitted past the groove followed by the reflection from the end of the aluminum
block. These ray paths are drawn in Figure 2.3. Overall, the amplitude of the transmitted
wave is a factor 7 smaller than the incident wave. The reflection from the groove contains
the high frequencies present in the source wavelet, because the higher frequencies sample the
top-layer of the block and are therefore stronger reflected than lower frequencies. Whereas
the lower frequencies dominate the transmitted energy, as that part of the incident energy
that tunnels under the groove.
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Figure 2.3. Top-view of the experimental configuration. The circles represent detector
locations. The spot-size of the interferometer beam has a diameter of 1 mm, the source is
42 mm wide, and the dominant wave-length is on the order of 1 cm. The recorded wave
field at these detectors is depicted in Figure 2.4.
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Figure 2.4. Reflection (left) and transmission (right) for a single groove. The primary peaks
are the direct arrival. In the left panel, the secondary peak is a reflection from the groove,
while in the right panel this secondary peak is the reflection from the end of the block.
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Figure 2.5. Left: experimental configuration, where the source is perpendicular to a single
groove on the top of the block, while the detector scans the side. Right: snap-shot of particle
motion in the scanned region after the incident field scattered off a single groove. Note that
the groove is 1-mm wide, and 2.75-mm deep; a fraction of the dominant wavelength.

2.6.2 Measurements on the side

In an isotropic and elastic half-space, Rayleigh waves only have particle motion in the
direction of propagation and in the vertical plane as shown in Section 2.3. However, placing
the source on the edge of the aluminum block, brakes the symmetry and excites an out-of-
plane component. This component is measured on the side in an area surrounding a single
groove (left panel of Figure 2.5). A snap-shot of the wave field (i.e. an image of the wave
field at a single point in time) shortly after the incident Rayleigh wave interacted with the
groove is shown in the right panel. The almost linear white event is the transmitted field,
with the S-wave at greater depth (see Appendix A for details about the source wavelet).
The other white event is the reflected Rayleigh wave. In the left side of the right panel one
can observe weak body waves excited by the source. The semi-circles centered around the
groove are body waves that are diffracted as the Rayleigh wave encounters the groove. This
body-wave energy is lost from the surface-wave energy, making the grooved model not truly
1D. In theory, these body waves can return to the surface, after reflecting off the bottom
of the block. However, for the time that we record, the body waves do not re-enter the
surface model. This is why the body-wave diffractions are treated as a loss term in a 1D
surface-wave model.
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Chapter 3

Multiple scattering at the macroscopic scale

3.1 Summary

This Chapter describes wave propagation on a face of our aluminum laboratory with
many grooves. Waves traveling parallel to the grooves do not encounter the scatterers, but as
I rotate the angle between the direction of propagation and the groove orientation, scattering
gets stronger, causing attenuation, dispersion and a decrease in seismic velocities. Ensemble
measurements of wave propagation perpendicular to the grooves are used to determine the
scattering mean free path. Energy propagation at source-detector distances of a mean free
path or beyond should – by definition – start to show diffusive behavior. The macroscopic
description of diffusion of energy is confirmed by fitting the data to the Green’s function
for the 1D diffusion equation.

3.2 Introduction

The influence of multiple scattering in wave propagation measurements can be seen
in many ways. There are subtle, long-wavelength effects such as anisotropy (if the scat-
terers are aligned) and attenuation (as energy is shifted from the ballistic pulse into the
multiple-scattering coda) (Groenenboom & Snieder, 1995). These effects are well known
in seismology (e.g., Backus, 1962; Aki & Chouet, 1975; O’Doherty & Anstey, 1971) and
have been used to interpret effective material properties from macroscopic measurements.
However, in most cases the same phenomenon can be looked at from different points of view
(such as ballistic propagation, diffusion or radiative transfer) depending, for example, on
the wavelength of the probing beam relative to the size of the disorder and on the distance
propagated. To understand these different regimes, a surface wave model is presented in
which the scattering properties are easily adjusted.

3.3 The grooved aluminum model

On one face of the aluminum block, a computer-controlled milling machine etched a
Fibonacci sequence1 of aligned linear grooves (Figure 3.1). These sequences are frequently

1From Liber Abbaci, 1202 but revised in 1228. meaning The Book of the Abacus (or The Book of
Calculating). One of the problems in this book was about reproducing rabbits, which introduced the series
1,1, 2, 3, 5, 8, ... . It was much later (around 1870) that Lucas named this series of numbers after Fibonacci.
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Figure 3.1. The grooved aluminum and the angle-beam transducer are positioned on the
optical bench with vibration isolation.

used in studies of disorder since they are quasi-periodic yet exhibit considerable complexity
as the order of the sequences increase (e.g., Toet et al., 1991; Carpena et al., 1995) and
have even been observed to have localizing behavior (e.g., Gellermann et al., 1994; Dal
Negro et al., 2003), meaning that certain wavelengths cannot be transmitted – and thus are
localized or trapped (Anderson, 1958)– in such a sequence, due to destructive interference
of the multiply scattered waves.

A Fibonacci sequence can be made by concatenating the previous two sequences in the
series. Let S(0) = A and S(1) = B be the base elements of the sequence. Then the n-th
order sequence is obtained via

S(j) = {S(j − 1), S(j − 2)} , j = 2, 3, ...n. (3.1)

The curly braces denote concatenation (as opposed to addition for the usual Fibonacci
numbers). For example, A and B might denote the value of some physical property char-
acterizing each of the base units of the sequence. In the present problem A and B are
used to denote the presence or absence of a groove; for example, the sequence ABB is a
groove followed by two non-grooves. If the basic unit of spacing (the width of a groove
or a non-groove) is h, then ABB denotes a groove of width h followed by a non-groove
of width 2h. Nominally, the grooves are h = 1 mm wide and 2.75 mm deep, while the
dominant wavelength of the surface waves on the smooth face of aluminum is on the order
of 15 mm, so there are many scatterers per wavelength as waves propagate perpendicular
to the grooves.
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Figure 3.2. Top-view of the experimental configuration that measures the wave field at
10 source-detector offsets for 10 angles between the source-detector line and the grooves,
ranging from 0 to 90 degrees.

3.4 A tunable multiple-scattering system

The basic measurement consists of the vertical component of particle velocity measured
at 1-cm increments or offsets, along a line extending perpendicularly from the transducer
front to a maximum offset of 10 cm. Such a measurement is called a constant-angle section.
The line along which the measurements are made defines an angle relative to the orientation
of the grooves. Constant-angle sections range from 0 to 90 degrees, with 10-degree spacing;
0 degrees being parallel to the grooves. Thus there are a total of 100 traces (10 angles and
10 offsets). The experimental configuration is sketched in Figure 3.2.

Figure 3.3 contains the wave fields for propagation parallel to the grooves. It shows that
propagation at zero degrees with the grooves is essentially identical to propagation on the
smooth surface of aluminum in Figure 2.1; both are nominally attenuation- and dispersion-
free. An exception is the last trace, where the detector was positioned on the edge of the
surface. There, a complicated super-position of the surface wave and the diffraction at the
corner alter the measured wave field. However, as the angle of the propagation increases,
scattering becomes significant. Figure 3.4 the source-detector line at 50 degrees with the
grooves: an intermediate scattering strength. In this constant-angle section one can see
dispersion and attenuation of the early arrivals, and multiple-scattered energy arriving at
later times. Figure 3.5 shows the transition from ballistic propagation to strong multiple-
scattering as the angle between surface wave propagation and the grooves is increased.
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Figure 3.3. Surface wave propagation monitored at increasing source-detector offset, parallel
to the grooves. Essentially, the propagation is identical to that on smooth aluminum. The
final trace is distorted, being measured too close to the diffracting edge of the block.
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Figure 3.5. A constant-offset section (5 cm); that is, variable angles for a fixed
source-receiver distance.

In the absence of scattering, the dominant frequency is that of the source wavelet;
around 400 kHz. However, scattering reduces the high frequency power in the data in two
ways. First, because the 2.75 mm-deep grooves scatter the shallower traveling high frequen-
cies more effectively, they are poorly transmitted. Second, the interference of multiples in
a cyclic system (aluminum/air) is known to reduce the frequency of the transmitted pulse.
Basically, the multiples trailing in the forward direction have the same polarity, because
they have changed sign twice at a boundary between aluminum and air (e.g., O’Doherty
& Anstey, 1971; Mateeva, 2001). This means pulses of the same polarity arrive within a
dominant wavelength, broadening the cumulative wavelet.

3.4.1 Group velocity vs. scattering strength

The longer effective path lengths of the multiply-scattered waves result in a significant
slowing of the energy propagation. To estimate this group velocity as a function of angle,
the data is sorted into constant-angle sections and the energy envelopes of each trace are
computed. The peaks of these envelopes were picked automatically and the times taken to
be the arrival times of the pulse. This gives an arrival time for each offset, the set of which
were fit with a straight line to arrive at the group velocity (Figure 3.6). The error bars are
98% coverage intervals from the regression. Destructive interference or mode-conversion
causes intensities from 60-80 degrees to be weaker, making the error bars in the group
velocity estimate larger. The group velocity in the strongest scattering case (90 degrees) is
discussed in Appendix C.
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Figure 3.6. Group velocity decreases by 30 percent as the increasing scattering strength
shifts energy to the coda. Larger error bars at 60-80 degrees are the result of destructive
interference for the wave field at this angle.
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Figure 3.7. The wave field recorded on the grooved aluminum surface on each of the first
42 non-grooves.

3.5 Strongest scattering

Figure 3.7 contains the records of wave propagation normal to the grooves. The source
is located before the groove sequence and the detectors are between the first 42 grooves.
This area of aluminum is called a non-groove. Signal for the first traces in Figure 3.7 are
clipped in amplitude, so that the traces with a larger source-detector separation show ample
signal. This illustrates the strong attenuation of the first arrival, caused by scattering from
the grooves; not only is energy diffracted to body waves, it is also delayed by bouncing
around between grooves. This energy at late times is often called the coda.

The left panel of Figure 3.8 shows the peak amplitude of the first pulse as a function
of distance from the source. The decay is well fit by an exponential. The decay length
will vary according to the properties and distribution of the scatterers; in this particular
case the 1/e decay length is about 25 mm. For a quasi-1D system such as this, this decay
length can be taken to be the localization length (Scales & van Vleck, 1997). The right
panel of Figure 3.8 shows the arrival time of a particular surface wave phase as a function
of the source-receiver offset. The slope of the best fitting straight line gives an estimate
of the phase velocity. For propagation on the smooth face, or for propagation parallel to
the grooves, regression yields a phase velocity of 2870 ± 5 m/s, whereas for propagation
normal to the grooves the phase velocity is 2801 ± 14 m/s. Since the depth of the medium
is many wavelengths and the medium itself is homogeneous, except for the grooves (which
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Figure 3.8. Attenuation of the first pulse and the best fitting exponential (left). The 1/e
attenuation is achieved at 25 mm. A particular phase of the wave field as a function of
source-detector offset. The phase velocity normal to the grooves is 2801 ± 14 m/s. This is
2.5 percent less than the phase velocity on the smooth face of aluminum: 2870 ± 5 m/s.

are perturbations of the free surface), this reduction in the phase velocity is due to the
interference of the multiply scattered waves. In other words, for propagation normal to
the grooves we see a long-wavelength effective anisotropy caused by the multiple scattering.
This effect is well-known in seismology where geologic layering gives rise to long-wavelength
transverse isotropy (e.g., Backus, 1962).

3.6 Ensemble measurements

Even though this grooved face is not a truly random medium, we can exploit the spatial
disorder of the Fibonacci grooves (Carpena et al., 1995) to estimate the scattering mean
free path of the medium as well as study the transport of energy. Figure 3.10 shows the
wave field at a fixed offset of 5 cm, for 38 different positions in the medium, as sketched in
Figure 3.9. The location of the fixed source-detector pair is incremented between shots by
2 mm along the source-detector axis, perpendicular to the grooves. These traces have been
corrected for minor positioning errors by aligning the traces via cross-correlation. This was
done by cross-correlating each trace with the coherent (average) trace and then using the
time associated with the peak of this cross-correlation as a static time shift.

Let u(ri, t) denote the i-th of 38 realizations of the measured field u (particle velocity).
Appealing to ergodicity, we will treat the different traces as 38 realizations of a time-
varying random process u(r, t). Angle brackets 〈, 〉 denote expectation with respect to
this random process. The coherent field is then 〈u〉. The total field can be expressed
u = 〈u〉 + uf , where uf is the fluctuating part of the field. All intensities are ensemble
averaged intensities. The total intensity It is the intensity of the total field: It = 〈|u|2〉.
The coherent intensity is Ic = |〈u〉|2. For a plane wave normally incident in a semi-infinite
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Figure 3.9. Top-view of the experimental configuration to measure the wave field at 38
locations at a fixed source-detector offset of 5 cm on the block.

medium filled with random scatterers, the total and coherent intensities are expected to
decay exponentially as (see Ishimaru, 1997), section 14-3): It(x) = I0 exp(−x/`a) and
Ic(x) = I0 exp(−x/`a) exp(−x/`s), where `a and `s are the absorption and scattering mean
free paths, respectively. Therefore, the ratio of these two intensities decays exponentially,
depending only on the scattering mean free path (De Rosny & Roux, 2001):

Ic(x)

It(x)
= exp(−x/`s) = exp(−vt/`s) = exp(−t/τs), (3.2)

where v is the group velocity and τs is the scattering mean free time.

Numerically, the coherent intensity Ic is the intensity of the average trace, while the
total intensity It is the average of the intensities of the individual traces. The ratio of Ic
to It is shown in Figure 3.11. Fitting an exponential to the portion of the curve after the
coherent arrival (about 30 µs), the mean free time τs = 24 µs. Since this measurement
is for propagation at 90 degrees with respect to the grooves, the group velocity is around
2 mm/µs, which gives a mean free path of just under 5 cm. Thus we are in a regime in which
the wavelength is large compared to the size of an individual scatterer, but small compared
to the mean free path; while we have measurements with source-detector offsets as large as
2 mean free paths. In this sense one observes here the transition from ballistic to diffusive
propagation. With this estimate of the scattering mean free path, the coherent intensity
decays exponentially with an absorption length `a ≈ 50 mm. This absorption describes the
loss of energy from diffractions off the bottom of the grooves.
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Figure 3.10. 38 records of the wave field at a fixed offset of 5 cm on the block. The
source/receiver combination was moved by 2 mm between shots.
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Figure 3.11. Ratio of coherent to total intensities averaged over the ensemble of realizations.
The curve decays after the coherent arrival. This decay is fit with an exponential the decay
constant of which is the mean free time; in this case, 24 µs.

To get some idea of whether the total intensity behaves diffusively at 5 cm offset,
as is suggested by our estimate of the mean free path, we fit the ensemble-averaged total
intensities with an analytic model associated with propagation in a homogeneous diffusive,
absorbing medium. We included absorption to account for diffraction losses off the grooves.
The Green’s function for this model is given by

It(x, t) = (4πDt)−1/2 exp

(
− x2

4Dt
−Dκ2t

)
, (3.3)

where κ = 1/`a is the absorption coefficient, D is the diffusion constant and x is the
propagation distance. This solution is derived in Appendix B.6. A fit to the data is shown
in Figure 3.12.

3.6.1 Discussion

This fitting to the diffusion equation alone, cannot determine D, explicitly; the propa-
gation distance is not well-defined since in the real experiment the waves propagate ballisti-
cally for some distance, whereas the model is for a homogeneous diffusive medium. However,
we can get a rough estimate of the diffusion constant as follows. First D = v`tr/d where
v is the transport velocity, `tr is the transport mean free path and d the dimension of the
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Figure 3.12. Fit of intensity to a model involving propagation in a 1D diffusive, attenuative
medium. The attenuation is an approximation to diffraction losses off the bottom of the
grooves.

experiment. Our method of measuring the energy envelope yields the group velocity for
weak scattering, but for strong scattering the energy propagates according to the transport
velocity. So for 90◦ propagation v ≈ 2 mm/µs. If in the strong scattering regime where
the ensemble of wave forms was measured, the transport mean free path is equal to the
scattering mean free path, the diffusion constant is 2 ∗ 50 = 100 mm2/µs in 1D.

In the literature, energy propagation fits the macroscopic description of the diffusion
approximation after several scattering mean free paths. The reason we see a good fit to the
diffusion solution at one mean free path is aided by some smoothing of the total intensity.
However, The next Chapters extend the ensemble measurements to distance dependence
of the average intensity and treat the model in the mesoscopic regime, including an ana-
lytic derivation of the governing mathematics. It will show that the estimated scattering
mean free path is not an artifact of the source-receiver distance in this particular ensem-
ble measurement and that the exponential decay of the total and coherent intensities are
approximations only valid for late time.
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Chapter 4

Multiple scattering at the mesoscopic scale

4.1 Summary

Here we show detailed measurements of wave propagation in a 1D strongly scattering
medium that fit the theory of radiative transfer for both early times (ballistic propagation)
and late times (diffusive propagation). Using the radiative transfer model we are able to
estimate the energy velocity and both the scattering and absorption mean free paths.

4.2 Introduction

When waves propagate through a medium they encode information about the prop-
erties of that medium. The information from multiply scattered waves has a very different
character than that associated with directly propagating or singly-scattering waves. Con-
sider two examples. A normal mode or standing wave can be thought of as the superposition
of traveling waves that repeatedly sample a finite medium (by reflection from or propagation
around boundaries). Thus small changes in the size or properties of the medium are ampli-
fied by each pass of the traveling waves; this amplification leads to the exquisite precision of
spectroscopy, allowing one to infer properties that would be completely undetectable with
directly propagating waves (Zadler et al., 2003). On the other hand, suppose a wave passes
through a cloud of similar scatterers; if some property of the scatterers changes, then this
effect is repeatedly imparted on the multiply-scattered wave, making it potentially observ-
able even when the perturbation of a single scatterer is unresolvable (Snieder et al., 2002;
Lemieux et al., 1998; Cowan et al., 2002).

Propagation of strongly scattering surface waves is analyzed in this Chapter using
model of radiative transfer. Radiative transfer has its origins in the kinetic theory of gases
and is sometimes referred to as the Boltzmann transport equation in honor of its earliest
proponent. In the earth sciences, it first appeared within the context of light propagation
through the atmosphere (Schuster, 1905). Recently, geophysicists have begun to address the
applicability of radiative transfer to multiply-scattered seismic waves (e.g., Hennino et al.,
2001; Campillo & Paul, 2003; van Wijk et al., 2003b; Wegler & Lühr, 2001; Wu & Aki,
1988).

By squaring a wave field and averaging over many realizations of random disorder, the
phase information of the underlying wave field is lost. What remains is the average intensity.
Radiative transfer is a phenomenological theory for the spatial and temporal evolution of a
wave field’s average intensity. The theory’s strengths lie in the ability to provide statistical



26 Chapter 4. Multiple scattering at the mesoscopic scale

Figure 4.1. Side-view of paths for energy in grooved aluminum. Attenuation of the
transmitted surface wave is caused by diffraction of energy to body waves.

information about the structure of a medium at scales less than a wavelength and the
decoupling of scattering and absorption effects.

First, the Green’s function for an attenuating 1D radiative transfer model is derived.1

This solution to the radiative transfer equation describes the data with parameters such
as scattering strength, attenuation and energy velocity. Even though formally speaking,
energy is localized in 1D random media, our data and theory (Sheng, 1995, equation (P6.41))
suggest there is a window where energy behaves diffusively, and the radiative transfer model
is valid.

4.3 The radiative transfer equation

The radiative transfer equation can be derived from energy balance considerations
(Morse & Feshbach, 1953; Ishimaru, 1997; Turner, 1994). Instead, here I lay out the under-
lying physical picture of the surface wave scattering model. Consider the incident surface
wave encountering a groove. A detailed discussion of this can be found in Chapter 5 and
Viktorov (1967), but intuitively the case is made here that part of the energy is diffracted
to body waves, at the impedance contrast imposed by the groove. Conservation of energy
ensures that the transmitted surface wave is of less energy than the incident one. This
procedure is schematically depicted in Figure 4.1; the arrows represent directions of wave
propagation, not actual ray paths. With the dimensions of the aluminum block in casu,
the diffracted body-wave energy does not re-enter the surface wave model in the times that
we measure the wave field. Therefore, diffractions are a loss term that can be represented
by a characteristic loss parameter. This is the attenuation mean free path: the distance
`a in the scattering medium it takes for the incident field to decay by a factor 1/e. Of
course this factor depends on the impedance contrast that the groove represents (in this
case air/aluminum) and the density of scatterers (grooves per unit length).

Besides diffracted, the incident field is partially reflected scattered by the groove. This
is also – conserving energy – a source of decay of the transmitted surface wave, denoted by

1This was done in close collaboration with Matthew Haney (Haney et al., 2003; van Wijk et al., 2003b).
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Figure 4.2. Side-view of paths for energy in grooved aluminum. Scattering of the incident
surface wave causes loss of the transmitted field (left), but energy can be gained by being
re-reflected in the direction of propagation (right).

the characteristic 1/e decay distance, called the extinction mean free path `∗. The difference
from the loss to body wave diffraction is that the scattered energy stays in our 1D surface
model. In fact, when the reflected surface wave encounters another groove, it can reflect
once more, and travel – delayed and weakened by two reflection events, but still – in the
original direction of the incident field (Figure 4.2. This means that scattering is both a loss
and a gain term when we make up the energy balance. Note the analogy to body wave
propagation in thin layers, where O’Doherty & Anstey (1971) show that the transmitted
wave is shaped by peg-leg multiples; waves that scattered an even number of times in layers
thinner than the dominant wavelength (Banik et al., 1985; Shapiro & Zien, 1993). Finally,
note that scattering and absorption enter the energy balance in fundamentally different
ways. This leads to the ability to separate these effects in the laboratory, later in the
Chapter.

Radiative transfer takes the energy balance described above for a medium with a
random distribution of scatterers, and states that the average intensity as a function of
time and place, takes the following form:

(∂t + v · ∇) intensity = source− loss + gain. (4.1)

The left-hand side of equation (4.1) is the total time derivative of the intensity. On the
right-hand side, loss and gain mechanisms in addition to sources determine the dynamic
behavior. In the absence of loss or gain, this equation becomes the advection, or one-way
wave, equation.. Using the same form as equation (4.1), the scalar (no mode conversions at
the scatterers) radiative transfer equation valid for any dimension is

∂I(r,Ω, t)

∂t
+ vn̂(Ω) · ∇I(r,Ω, t) = S(r,Ω, t)− 1

τs
I(r,Ω, t)− 1

τa
I(r,Ω, t) +

1

τs

∫
1

σs

∂σs
∂Ω′

I(r,Ω′, t) dΩ′, (4.2)

where I(r,Ω, t) is the intensity, or average squared wave field, at position r propagating
in direction Ω, v is the group velocity of the average (coherent) wave field, n̂ is the unit
vector in the direction of propagation, and S(r,Ω, t) is the angle-resolved source function.
The differential scattering cross section, ∂σs/∂Ω′, describes the exchange of energy traveling
from direction Ω into direction Ω′. The characteristic time between these exchanges is τs,
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the scattering mean free time. The total scattering cross section, σs, is the energy exchanged
into all directions:

σs =

∫
∂σs
∂Ω′

dΩ′. (4.3)

Attenuation is addressed by including the characteristic absorption time τa. Using termi-
nology originally coined by Clausius in 1858, it is common to define mean free paths for
scattering and absorption, `s and `a, according to the relations `s = vτs and `a = vτa.
The scattering mean free path, `s, can be thought of as the typical distance a wave travels
between scatterings. Under most circumstances, `s is inversely proportional to the number
density of scatterers, ρ, and their scattering cross section:

`s =
1

ρσs
. (4.4)

This equation is called the independent scattering approximation and it holds when the
scatterers are separated by more than a wavelength. It can be obtained from a stationary
phase argument applied to the average wave field in random media (Ishimaru, 1997). From
equation (4.4), `s contains information about the product of ρ and σs in a way analogous
to a wave reflected from an interface containing information about the acoustic impedance.

4.4 Radiative transfer in 1D

Because in 1D only two directions of propagation exist, a general expression for the
differential scattering cross section, appearing under the integral in equation (4.2), is

∂σs(Ω,Ω
′)

∂Ω′
= Efδ(Ω

′ − Ω) +Ebδ(Ω
′ − Ω− 180◦), (4.5)

where Eb and Ef represent amounts of energy back-scattered and forward-scattered divided
by the energy of the incident wave. Their sum is equal to the total scattering cross section:

σs = Eb +Ef . (4.6)

Hence, in equation (4.2), the differential scattering cross section divided by the total scat-
tering cross section becomes

1

σs

∂σs(Ω,Ω
′)

∂Ω′
=

Ef
Eb +Ef

δ(Ω′ − Ω) +
Eb

Eb +Ef
δ(Ω′ − Ω− 180◦). (4.7)

The ratios Ef/(Eb + Ef ) and Eb/(Eb + Ef ) are denoted by F and B respectively, where
B + F = 1. In the case of isotropic scattering, B = F = 0.5 (Paasschens, 1997).

For a general 1D scatterer, B and F can be related to the total transmission and
reflection coefficients of a thin bed, Tt and Rt (Sheng, 1995):

B =
|Rt|2

|Rt|2 + |Tt − 1|2 and F =
|Tt − 1|2

|Rt|2 + |Tt − 1|2 . (4.8)
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Note that a thin bed consists of two interfaces, and hence Rt and Tt are not simple reflection
and transmission coefficients. The quantities Rt and Tt can be related to a geometric
summation of the interface reflection and transmission coefficients via generalized rays (Aki
& Richards, 1980).

Inserting equation (4.7) into equation (4.2), we obtain that

∂I(x,Ω, t)

∂t
+ vn̂(Ω)

∂I(x,Ω, t)

∂x
= S(x,Ω, t)− 1

τs
I(x,Ω, t)− 1

τa
I(x,Ω, t) +

1

τs

∫ [
Fδ(Ω′ − Ω) +Bδ(Ω′ − Ω− 180◦)

]
I(r,Ω′, t) dΩ′ =

B

τs
I(x,Ω + 180◦, t)− B

τs
I(x,Ω, t) − 1

τa
I(x,Ω, t) + S(x,Ω, t), (4.9)

where we have used the fact that B + F = 1. Equation (4.9) can be evaluated for the two
possible directions in 1D, Ω = 0◦ or 180◦. Here, these directions are referred to as right
and left, respectively. For simplicity, the total intensity propagating in direction Ω = 0◦,
I(r, 0◦, t), is represented by Ir, I(r, 180◦, t) is Il, and the source function is split into Sr
and Sl. The coordinate system is defined such that n̂(0◦) = 1 and n̂(180◦) = −1. The two
equations that describe the propagation of right-going and left-going intensities are

∂Ir
∂t

+ v
∂Ir
∂x

=
B

τs
(Il − Ir)−

Ir
τa

+ Sr, (4.10)

∂Il
∂t
− v∂Il

∂x
=
B

τs
(Ir − Il)−

Il
τa

+ Sl. (4.11)

This system of partial differential equations comprises radiative transfer in 1D and has
been derived by other methods (Goedecke, 1977). In Appendix B.3, the system of partial
differential equations is solved for both Ir and Il. For now, we solve for the total intensity,
It = Ir + Il, since this is commonly measured in practice.

Two new quantities emerge from adding and subtracting equations (4.10) and (4.11).
In addition to the total intensity, It, the net right-going intensity, In = Ir − Il, appears.
Similarly, the source function can be expressed as its total and net right-going components:
St = Sr + Sl and Sn = Sr − Sl. The result of adding equations (4.10) and (4.11) is

∂It
∂t

+ v
∂In
∂x

= − It
τa

+ St, (4.12)

Subtracting equations (4.10) and (4.11) yields:

∂In
∂t

+ v
∂It
∂x

= −2B

τs
In −

In
τa

+ Sn. (4.13)

From these two equations, we derive a single partial differential equation in terms of what
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we measure, It, by taking the spatial derivative of equation (4.13):

∂

∂t

∂In
∂x

+ v
∂2It
∂x2

=

[
−2B

τs
− 1

τa

]
∂In
∂x

+
∂Sn
∂x

. (4.14)

But we know from equation (4.12) that

∂In
∂x

=
1

v

[
− It
τa
− ∂It

∂t
+ St

]
. (4.15)

Substituting equation (4.15) into equation (4.14) yields a single partial differential equation
in It. Omitting some algebraic manipulation, we find that

∂2It
∂x2

=
1

v2

∂2It
∂t2

+

[
2B

v`s
+

2

v`a

]
∂It
∂t

+
1

`a

[
2B

`s
+

1

`a

]
It −

[
2B

v`s
+

1

v`a

]
St −

1

v2

∂St
∂t

+
1

v

∂Sn
∂x

, (4.16)

Equation (4.16) encapsulates a wealth of information. First of all, in the absence of a source,
the scattering and attenuation show up in both the first and zeroth order time derivatives of
the total intensity. For a medium with no scattering or attenuation, `−1

s = `−1
a = 0, we are

left with the 1D wave equation. Also, in order to solve for the Green’s function of the total
intensity, we cannot simply insert a δ-source into the homogeneous form of equation (4.16).
Instead, a more complicated combination of the source and its time and spatial derivatives
must be inserted.

4.4.1 The Green’s function of the total intensity

To solve for the Green’s function of the total intensity in 1D, we find the Green’s func-
tion of the homogeneous form of equation (4.16) and construct the total intensity Green’s
function from it. First, take an impulsive total source function:

St = δ(x)δ(t), (4.17)

and a general form for its net right-going component:

Sn = cSt, (4.18)

where c ∈ [−1, 1]. The parameter c allows the radiation pattern of the impulsive source
function to directionally vary from left-going (c = −1), to isotropic (c = 0), to right-going
(c = 1), and to any combination in between. After inserting this source into equation (4.16),
we find that the effective source, denoted Se, is a combination of a δ-function in time, its
time derivative, and its x-derivative:

Se =

[
2B

v`s
+

1

v`a

]
δ(x)δ(t) +

1

v2
δ(x)δ′(t)− c

v
δ′(x)δ(t). (4.19)
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This effective source can be constructed from the knowledge of the Green’s function, P of
the homogeneous form of equation (4.16):

∂2P

∂x2
=

1

v2

∂2P

∂t2
+

[
2B

v`s
+

2

v`a

]
∂P

∂t
+

1

`a

[
2B

`s
+

1

`a

]
P − δ(x)δ(t). (4.20)

Note that P is not the Green’s function for the total intensity. This equation is a variation of
the telegraph equation, there being a zeroth order derivative appearing due to the presence of
attenuation. Morse & Feshbach (1953) solve the Green’s function of the telegraph equation
via a spatial Fourier transform and a Laplace transform over time. Applying the same
technique, the Green’s function of equation (4.20) can be readily obtained by generalizing
their solution:

P (x, t) =
v

2
exp (−Bvt/`s − vt/`a) J0

(
B

`s

√
x2 − v2t2

)
u(vt− |x|), (4.21)

where u(vt − |x|) is the unit step-function, guaranteeing causality. This Green’s function
only differs from the one for the telegraph equation by the exponential damping factor due
to attenuation. The Green’s function for the total intensity, denoted It, can be expressed
in terms of the above Green’s function through equation (4.19):

It =

[
2B

v`s
+

1

v`a

]
P +

1

v2

∂P

∂t
− c

v

∂P

∂x
. (4.22)

Taking the necessary derivatives of P , we obtain for B ∈ [0, 1] and c ∈ [−1, 1]:

It(x, t) =
1

2
exp(−Bvt/`s − vt/`a) [(1− c)δ(vt + x) + (1 + c)δ(vt − x) +

B

`s
u(vt− |x|)

[
I0

(
B

`s

√
v2t2 − x2

)
+

vt+ cx√
v2t2 − x2

I1

(
B

`s

√
v2t2 − x2

)]]
, (4.23)

where I0 and I1 are the modified Bessel functions of the zeroth and first orders. These
should not be confused with the symbols used for the various intensities (It, Ir, Il, and In).
A previous result by Hemmer (1961) is obtained from equation (4.23) for the case of an
isotropic source (c = 0) and isotropic scattering, B = 0.5.

The Green’s function for the total intensity can be broken up into two parts. The
term with the δ-function propagates like a wave and is called the coherent intensity. The
rest of the total intensity is referred to as the incoherent intensity. It does not propagate
ballistically, and Appendix B.4 shows that at late times it propagates diffusively. Also,
Appendix B.3 shows that each Bessel function represents a different direction of propagation
for the incoherent energy. The decay of coherent intensity due to scattering, described by
the first exponential term in equation (4.23), goes with distance by the factor `s/B and
not `s. This new length scale, determining the decay of the coherent energy, is called the
extinction mean free path, `∗. The fact that `∗ 6= `s is unique to 1D (Paasschens, 1997).
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Figure 4.3. Top-view of the procedure to obtain an ensemble average.

4.5 Radiative transfer on the grooved face

To obtain ensemble measurements over the disordered medium, particle velocity mea-
surements at fixed source-detector distances are collected for different positions in the groove
sequence (Figure 4.3). We used 3 sets of 22 realizations with the detector 25, 50 and 75
mm from the leading edge of the source. Figure 4.4 contains waveforms recorded at 50 mm
source-detector spacing. It shows particle velocity for the 22 source-detector locations in
the ensemble measurement. Around 0.025 ms all traces contain relatively large amplitudes
that are in phase. This is the coherent signal. This part of the signal is independent of local
variations in the scattering distribution, whereas the later arrivals (also known as coda) vary
in phase and amplitude for each source-detector location. This is the incoherent signal due
to scattering from the micro-structure in the medium. These features are even more clear in
the average trace in the left panel of Figure 4.5: while the incoherent signal tends to average
out, the coherent signal is enhanced in the averaging procedure. The right panel contains
the ensemble-averaged intensities. The total intensity is the average of each squared particle
velocity trace from the left panel, and the coherent intensity is the square of the mean of the
particle velocity traces. The coherent intensity is smoothed by a running window of width
25 samples to suppress large fluctuations caused by zero crossings intrinsic to the coherent
wave forms. By definition, the coherent intensity is less than the total intensity (Ishimaru,
1997).
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Figure 4.4. Particle velocity at 50 mm source-detector offset for 22 locations of the
source-detector pair within the groove sequence.
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Figure 4.5. Data at 50 mm source-detector offset. The left panel is the average particle
velocity for the 22 realizations, and the right panel the natural logarithm of the total and
coherent intensity.
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4.5.1 Fitting the data with radiative transfer

Recapping, the Green’s function for the 1D scalar radiative transfer equation with
attenuation and a directional source (c = 1 in equation (4.23)) is

G(x, t) ∝ exp (−vt(R/`s + 1/`a))×[
2δ

(
`s
R

(vt− x)

)
+ u(vt− x)

(
I0(η) +

√
vt+ x

vt− xI1(η)

)]
. (4.24)

The argument of the Modified Bessel functions of order zero (I0) and one (I1) is

η =
R

`s

√
(vt)2 − x2,

where v is the energy velocity and u the step function to assure causality in the system.
The energy losses to body wave diffractions at the grooves are modeled by the attenuation
term `a. R is the backscattering cross-section for a single groove and `s is the scattering
mean free path. Note that R and `s are coupled, so they cannot be resolved individually
from expression (4.24).

The term with the Dirac delta function represents the ballistic propagation of energy,
or the coherent signal, from here on denoted as C(x, t), while the Bessel functions describe
the incoherent signal I(x, t). Each Bessel function represents the incoherent energy propa-
gating in a specific direction (Appendix B.3). Both terms decay exponentially depending on
attenuation (in our case body-wave diffraction) and scattering; the latter being a redirection
of energy due to scattering. For late times (vt � x) the coherent energy is zero and the
incoherent signal simplifies to the diffusion equation used to model the data in Chapter 3.

We now determine the scattering and absorption mean free paths and the energy
velocity using the radiative transfer equation by fitting the laboratory data. Since we are
able to separate both the data and the radiative transfer equation into a coherent and an
incoherent part, we will treat the parameter fitting problem for each part separately. From
here on, we drop scaling terms in the solution to the radiative transfer equation for clarity,
since all data and simulations are normalized with respect to the first source-detector offset.

The Green’s function in expression (4.24) is convolved with the band-limited input
energy pulse. Actually determining the source signal is not trivial, because as the source
is moved across the grooves, the source wavelet is not that of the source mounted on the
smooth surface of aluminum. Not only is the coupling between the source wedge and the
model different, its characteristics are changed as scattering takes place at the grooves under
the source wedge, effectively low-pass filtering the source wavelet, shown in Appendix A.

Coherent intensity The coherent part C(x, t) of the Green’s function of the 1D
attenuative radiative transfer equation is

C(x, t) ∝ δ(x− vt) exp(−αvt). (4.25)
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The solid lines in Figure 4.6 are the modeled envelopes of the coherent intensity for α =
R/`s + 1/`a = 17.8 m−1 and velocity v = 1818± 123 m/s. In our case the coherent velocity
equals the transport velocity, even though especially for resonant scattering the velocity of
the coherent signal can be significantly higher than the group (transport) velocity (e.g., Page
et al., 1996; Kuga et al., 1993; van Albada et al., 1991). The energy of the coherent signal
travels dispersively. We therefore model the energy velocity to be a function of frequency:
as lower frequency surface waves penetrate the model deeper, they travel for a larger part
undisturbed by the scatterers, while higher frequencies are slowed by stronger scattering
due to the grooves (Appendix C). The smaller, secondary peak in the coherent intensity is
not modeled. This peak is most likely a part of the source wavelet, not accounted for in the
model.

Incoherent intensity The incoherent intensity is the coherent intensity subtracted
from the total intensity. The data are the solid lines in Figure 4.7. The dashed lines are
the result of modeling the incoherent part I(x, t) of equation (4.24):

I(x, t) ∝ exp(−αvt)
(
I0(η) +

√
vt+ x

vt− xI1(η)

)
. (4.26)

Using the energy velocity of 1818 m/s and α = 17.8 m−1, the resulting fits in Figure 4.7
are for R/`s = 11.1 m−1. We only fit the incoherent signal at intermediate times. At short
times the incoherent data are incomplete, and at late times energy comes back into the
system from reflections off the back of the model, but in the intermediate time window, the
fit describes the average measured incoherent intensity. Note that the incoherent intensity
for all three offsets is of equal amplitude in this intermediate window.

Fitting parameters With R/`s + 1/`a = 17.8 m−1 and R/`s = 11.1 m−1, the
absorption length is `a = 0.15 m. If R = 0.5, the mean of the range of possible values, the
scattering mean free path is `s = 0.05 m. Data at source-detector offsets around `s, put us
in the transitional regime from ballistic to diffusive energy propagation.

Formally, these parameters in the radiative transfer are functions of frequency, since
our scatterers have a finite depth, while surface wave frequencies sample different depths of
the model. However, the data fit is obtained with an average value of the scattering and
absorption parameters. To account for dispersion in the coherent signal, only the energy
velocity was treated as a function of frequency.

A direct application in geophysics of radiative transfer modeling is presented in Ap-
pendix D: independent estimates of scattering and intrinsic attenuation (Q), are known to
double as direct indicators of fluid content in the rock. Partial saturation of the rock has
little effect on the scattering properties, but the bulk motion of the fluid attenuates the
seismic energy.



36 Chapter 4. Multiple scattering at the mesoscopic scale

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

time (ms)

n
o

rm
al

iz
ed

 in
te

n
si

ty

model
data

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

time (ms)

n
o

rm
al

iz
ed

 in
te

n
si

ty

model
data

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

time (ms)

n
o

rm
al

iz
ed

 in
te

n
si

ty

model
data

Figure 4.6. Comparison between the measured and modeled coherent intensities for
source-detector offsets of 25 (top), 50 (middle) and 75 mm (bottom).
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Figure 4.7. Comparison between the measured and modeled incoherent intensities for
source-detector offsets of 25 (top), 50 (middle) and 75 mm (bottom).
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4.6 Conclusions

This strongly scattering surface wave model shows great flexibility in understanding
multiple scattering media. Not only can we measure phase and amplitude of the surface
waves (allowing us to separate the coherent from the incoherent signal), we also have the
advantage of probing the medium between scatterers. We found that in a region around
a mean free path, 1D radiative transfer can describe our scattering medium, so that fit-
ting both the coherent and incoherent energy allows us to estimate average values for the
scattering and absorption mean free paths.
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Chapter 5

Multiple scattering at the microscopic scale

5.1 Summary

Spectral-element simulations of surface wave propagation in our surface wave labora-
tory provide us with a powerful tool for understanding the complex dynamics of diffraction
and scattering. For example, we see in both the experiment and simulation diffracted body
waves which are weak precursors to the dominant surface waves; these events may be analo-
gous to diffractions from the Earth’s core-mantle boundary. In addition, the numerical code
confirms flexural modes of the thin areas of aluminum between grooves and the influence
of the source wedge itself on the wave field.

5.2 Introduction

Bulk properties of the propagation, including attenuation and dispersion, were studied
to describe the scattering model on the macroscopic scale in Chapter 3, while Chapter 4
shows results of modeling multiple scattered data in the mesoscopic regime, separating
scattering attenuation from absorption. This Chapter describes two-dimensional (2D) nu-
merical simulations of the physical system, using the spectral-element method (SEM) (e.g.,
Komatitsch & Tromp, 1999) to model the ultrasonic experiment with sharp topographic
features, and investigate subtle details in the laboratory data on the scale of the individual
scatterer (i.e. the microscopic scale).

A 2D version of the spectral-element method (SEM), mostly used and validated in
seismology (e.g., Priolo et al., 1994; Faccioli et al., 1997; Komatitsch & Vilotte, 1998; Ko-
matitsch & Tromp, 1999, 2002a; Komatitsch et al., 2002), is used to simulate wave propaga-
tion at ultrasonic frequencies in a model that contains a large number of sharp grooves. The
SEM is ideal for this purpose because of its flexibility to mesh the grooved structure based
on a geometrically non-conforming mesh and also because it has been shown to be accurate
to model surface waves (Komatitsch & Tromp, 1999). The simulations can be compared
to measurements at every surface location, because the optical detector can record at any
location on the surface of the block. The source in the simulations is the analytic solution to
a Rayleigh wave (e.g., Komatitsch et al., 1999) and detectors are located in a line directly
in front of the source. Attenuation is so weak in aluminum that elastic simulations are
meaningful.

Henceforth, I refer to the vertical component of the particle velocity measured in
laboratory experiments as data and to the numerical results as simulations.
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Figure 5.1. Scan at 2400 dots-per-inch of the side of the grooves. The top-left corner shows
part of a penny (a US$ one-cent coin) for scale: the total length of the block in 215 mm.
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Figure 5.2. Width of the grooves and non-grooves. The basic unit h for the Fibonacci
sequence is overall more than 1 mm.

5.3 Numerical modeling

Near the surface, the block is modeled by a mesh with cells whose size is on the order
of a scatterer, but the mesh size is doubled twice with depth to reduce the total number
of cells (i.e. spectral elements) to 11426. The wave field is interpolated on a polynomial of
degree N=4 in each quadrangular cell; the total number of grid points is 184141. The time
step used in the explicit integration scheme is ∆t = 10−5 ms and the signal is propagated
or 0.2 ms.

5.4 Scanning the grooves

Nominally, the grooves are 1-mm wide and 2.75-mm deep, while the dominant wave-
length of the surface waves is about 15 mm, so there are many scatterers per wavelength as
waves propagate perpendicular to the grooves. However, a scan of the grooves at 2400 dots-
per-inch shows detailed deviations from the Fibonacci pattern (Figure 5.1). Overall the
grooves are indeed 2.75-mm deep, but their width varies, as shown in Figure 5.2.
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5.5 Comparing data and simulations

Let us compare data and simulations at 20 detector locations at 5-mm increments on
the smooth side of the model, and on the first 42 non-grooves along a line perpendicular to
the grooves (strong scattering). In both experiments, the source-detector offset for the first
trace is 2 mm.

The data and simulations on the smooth aluminum surface are shown in Figure 5.3.
Both panels show a large direct surface-wave arrival, followed by a reflection from the far
end of the aluminum block. The wavelet in the data has some energy after the main pulse
caused by ringing in the transducer. This energy is not included in the source term of the
simulations. The data show little attenuation and no evidence of reflections from the sides
of the block, which means that the source energy emitted has little geometrical spreading,
justifying 2D elastic simulations.

Figure 5.4 shows the data (top) and simulations (bottom) for waveforms in the strong
scattering case. At each groove, energy is partially reflected, causing the direct arrival to
be attenuated, and the group velocity to be lowered compared to the un-scattered wave
propagation, which has been shown to lead to a diffusive character of energy propagation
(Scales & van Wijk, 2001). The strongest events are interfering surface waves, which look
qualitatively similar in the two panels. These strong events show coherence in the sense
that a single phase can be tracked from one detector location to the next, whereas for late
times, scattering causes arrivals to be incoherent from trace to trace. In general, detailed
differences between the numerical mesh and the grooved block are amplified at later times
as a result of multiple scattering, much as in coda wave interferometry (Snieder et al.,
2002): waves bouncing back-and-forth numerous times between scatterers highlight errors
in the numerical representation. The later events especially show greater discrepancy in
amplitude, because the path-lengths for the multiply scattered events are longer than the
early arrivals, so that neglecting attenuation in aluminum becomes a significant source for
the difference between data and simulations.

The amplitude of the maximum correlation between data and simulations directly
reflects the accuracy of the simulations: correlation of unity means that data and simulations
are identical. It is our experience that discrepancies between the physical and numerical
models on the order of a fraction of the size of a single scatterer have a noticeable influence
on the accuracy of the simulations.

The maximum cross-correlation for the case of strong scattering is overall lower than
for the experiment on the smooth side (Figure 5.5). Especially for source-detector distances
greater than 90 mm from the source, small discrepancies between the physical model and
numerical representation get amplified. However, the simulations are of such precision that
data and simulations on a non-groove with the size on the order of 1 mm show considerably
more energy at later times than traces on the thicker non-grooves. An example of this is
detector 12, compared to detector 4 (Figures 5.6 and 5.7, respectively): the relatively thin
ridge of aluminum under detector 12 is excited in a 300-kHz resonance (Figure 5.8). While
this mode is too low in frequency to represent a trapping of energy in the non-groove, it is
possible that this resonance is a flexural mode of the thin non-groove (Rossing & Fletcher,
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Figure 5.3. Data (top) and simulations (bottom) for wave fields on the smooth side of the
model.
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Figure 5.4. Data (top) and simulations (bottom) for wave fields on the grooved side of
the model. The main energy consists of surface waves bouncing between grooves, but the
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Figure 5.5. Maximum correlation between data and simulations, both on the smooth side
and the grooved side of the model. Identical traces have correlation 1.

1995).

The source wedge acts as an additional scatterer in the model, causing the maximum
correlation on the smooth side of the aluminum to be smallest for detector 1 (Figure 5.5).
Note the differences in amplitude and phase in the direct arrival and more clearly in the
reflected event (Figure 5.9), when compared to the other traces in Figure 5.3. This is due
to the influence of the source wedge, which is located only 2 mm from detector 1. The
second reflection from the side near the source is almost undetected in the data, because
it requires the Rayleigh wave to travel along the surface between the bottom of the source
wedge and the aluminum block. This is not an obstacle in the simulations, because the
source is modeled by an analytically incident Rayleigh wave. A completely non-contacting
experimental setup with a laser source in addition to the optical detector (Scales & Malcolm,
2003) would be ideal, but for this application the laser source is too high in frequency for
energy to penetrate the groove sequence significantly.

5.6 Precursors

In the strong-scattering case, relatively lower-amplitude and faster events arrive before
the main surface-wave energy (Figure 5.4). The data panel shows two coherent events with
the P-wave velocity of aluminum. The first, starting at t=0, is caused by the angle-beam
transducer producing some P-waves in addition to surface-wave energy. This event is not
present in the simulations, because the source is a pure Rayleigh wave. The second event
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Figure 5.6. Comparison between data and simulations for detector 4 on the grooved side
of the model. This detector is located on a thick non-groove.
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Figure 5.7. Comparison between data and simulations for detector 12 on the grooved side
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Figure 5.10. Left: experimental configuration, where the source is perpendicular to a single
groove on the top of the block, while the detector scans the side. Right: snap-shot of
particle motion in the scanned region after the incident field scattered off a single groove.

with a P-wave velocity cannot be seen until the 6th or 7th trace at t= 0.01 ms, but is
confirmed by the simulations. These events are spherical body-wave fronts diffracted at
the individual grooves, which arrive before the Rayleigh waves, and may be analogous
to precursors to the seismic phase PKKP in global seismology, believed to be caused by
scattering at the rough boundary between the Earth’s outer-core and mantle (Earle &
Shearer, 1997).

To support the existence of body-wave precursors to the surface-wave energy, a second
experiment was conducted, where the source is mounted on the side of the aluminum model
with a single groove, while the detector scans the side of the model (see the left panel of
Figure 5.10). The right panel of Figure 5.10 shows a snap-shot of particle motion, measured
shortly after the incident wave interacted with the single groove. The side of the aluminum
block breaks the symmetry of the Rayleigh-wave motion purely in the x- and z-direction,
creating particle motion in the y−direction. In the top-left corner, one can see energy due
to ringing of the source, and the incident field is the (close to) linear event. The circular
events are body-waves scattered off the single groove. Scattering to body waves is stronger
in the backward direction, but significant P-wave energy travels ahead of the surface wave,
causing the precursors observed in Figure 5.4.

5.7 Conclusions

Relatively small-amplitude features from individual scatterers are confirmed by spectral-
element simulations. For example, body-wave precursors to the main surface-wave energy
are caused by diffraction from the scatterers, which may be analogous to PKKP precursors,
believed to be caused by scattering at the core-mantle boundary. Also, flexural resonance
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modes were detected for the thinner spaces between grooves.
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Chapter 6

Measuring, imaging and suppressing scattered

surface waves

6.1 Summary

Near-surface scattering can contaminate the arrival of energy from target reflectors. We
developed a 3D wave-theoretical method to reduce the presence of near-surface scattering
on the records, as a multi-channel alternative for short-wavelength static corrections. The
method was successfully tested on laboratory data, excited and monitored with a computer
controlled, non-contacting system.

6.2 Introduction

When a wave front travels through a complex overburden, it is disturbed by scattering
from heterogeneities. For a detailed structural image of the deeper subsurface it is impor-
tant to minimize these disturbances in arrival time and amplitude of upcoming reflections.
Currently, residual static correction methods correct for rapid variations in arrival times of
a reflector, but these techniques are based on a model that assigns the same uniform time
shift to each trace from a distinct surface location (e.g., Wiggins et al., 1976), assuming
vertical ray paths through the overburden. Such corrections are usually referred to as time-
and surface-consistent corrections (Taner et al., 1974). Although statics techniques are
based on this simple (transmission) model of the subsurface, they can be effective in many
cases. However, in a strongly heterogeneous shallow subsurface, this statics model breaks
down (e.g., Combee, 1994). Neglecting (multiply) scattered waves, as in the static assump-
tion, can degrade the high-frequency content of the data, due to destructive interference of
rapidly varying traces during stacking.

We estimate a surface impedance distribution of the region directly under the receivers
from one particular event and subsequently predict and subtract the scattered energy for
the entire record, improving resolution of the target reflectors. This method is based on an
integral-equation formulation of the scattering process near the surface, developed by Delft
University of Technology (Blonk & Herman, 1994; Ernst et al., 2002; Campman et al., 2003).
We present examples based on laboratory models, where we excite and measure wave fields
that are scattered at the near surface. With our non-contacting data acquisition, receiver
intervals are less than the dominant wavelength, allowing us to filter in the wavenumber
domain, as with the dense receiver arrays that are currently being tested in exploration
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geophysics (Baeten et al., 2000).

6.3 Scattered noise model

Our objective is to obtain an estimate of the complete wave field without scattered
energy from near-surface heterogeneities. On account of linearity of the elastic wave field,
the vertical velocity component v(x, t), measured at position x = (x, y, z) and due to a fixed
vertical point source of force type can be written as

v(x, t) = v0(x, t) + v1(x, t). (6.1)

Here, v is the measured field, v0 is the field that would have been measured if the overburden
were homogeneous and v1 is the part of the wave field that accounts for scattering from
heterogeneities close to the acquisition surface. Thus, we want an estimate of v0. Our
approach is to find the scattered noise, v1, and then subtract it from the data (as expressed
in equation 6.1). From the elastic wave-equation for particle displacement, we can derive an
approximate integral representation for the scattered noise in terms of the vertical particle
velocity, measured at the surface z0:

v1(xl, z0, ω) =

∫

x′l∈Σ
uGz (xl − x′l,∆z, ω)σ(x′l, z1, ω)v(x′l, z1, ω)dx′l, (6.2)

where uGz is the vertical component of the Green’s displacement tensor, due to a vertical
point force (Campman et al., 2003). Horizontal position is denoted by xl = (x, y), z1 is the
scattering depth and ∆z = z0 − z1. The impedance distribution is denoted by σ and ω is
angular frequency. The surface Σ is the area occupied by the receivers (i.e. the acquisition
surface). If the scattering takes place close to the surface (z1 ≈ z0), we can approximate the
field at z1 by the field recorded field at depth z0 and we can calculate the scattered field v1,
once we know σ. Note that the integral is over a surface and we thus expresses scattering
by a scattering volume in terms of a surface impedance distribution. The validity of this
assumption for scattering of surface waves close to the surface is investigated in exploration
geophysics by Blonk & Herman (1994) and in global seismology by Snieder (1986). To ac-
count for variations in the actual depth of the scatterers we allow the impedance distribution
to depend on frequency.

6.4 Inverse scattering

Suppose the data contain many reflections from deeper layers. All these events excite
surface waves at the same heterogeneities close to the acquisition surface. This implies that
we can use the scattered energy from a single event to estimate the impedance distribution
and use it to predict the scattered energy on every reflection using equation (6.2). In fact,
this is comparable to residual statics methods, where one selects a strong reflection event
from the data, to derive the time-shifts for each trace separately. Instead of this single-
channel operation, we now select one event to derive an impedance distribution to estimate
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the scattered energy (i.e. a multi-channel operation).

First, we select an event:

v(x, t) = d(x, t) + r(x, t), (6.3)

where v are the data, d is the selected event and r denotes the rest of the data. Selecting d
can be done by time windowing. The window should be long enough to include scattering
tails but it should not include other events. Next, we decompose the strong event d(x, t),
in a similar way as in equation (6.1):

d(x, t) = d0(x, t) + d1(x, t). (6.4)

Here, d0 is the field in the near surface that would exists without scattering and d1 is the
scattered field, excited by the incident field being scattered from heterogeneities in the near-
surface. The impedance model is obtained from back-propagating the near-surface scattered
energy with the Green’s function derived in Campman et al. (2003). The impedance distri-
bution is determined by minimizing an L2-norm, using conjugate gradient. To set up the
minimization scheme, we write equation (6.2) for a single event, in the form

d1 = Kσ, (6.5)

where σ is the surface impedance distribution and the operator K is defined as

{Kσ}(xl, z0, ω) =

∫

x′l∈Σ
uGz (xl − x′l,∆z, ω)σ(x′l, z1, ω)d(x′l, z1, ω)dx′l. (6.6)

We then minimize the squared difference between the observed scattered field and the
reconstructed scattered field, regularized by the norm of the distribution of scatterers:

F =
||d1 −Kσ||2
||d1||2 + λ||σ||2, (6.7)

where the size of λ determines the penalty on the norm of the distribution of scatterers.
By assumption, the scatterers are close to the surface so that in equation (6.6), we can
substitute the field at depth z1 with the field at z0, leaving σ the only unknown. In contrast
to Born-type imaging methods, this method accounts for multiply scattered waves.

6.5 Experiment 1: a surface wave test

We measure the wave field on the surface of an aluminum block, excited by a pulsed
infrared laser (e.g., Scruby & Drain, 1990). We focused the laser beam on a line to create a
line surface wave source. This wave front is scattered by a cylindrical cavity with a diameter
of 2 mm and a depth of 3 mm, which is roughly the size of the dominant wavelength.
The wave field is detected using a scanning laser interferometer that measures the vertical
component of the particle velocity on the surface of the model via the Doppler shift (Scales
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Figure 6.1. Left: top view of the aluminum block with cavity. The light shaded area is
the area covered by the receivers. The source-width (dark shade) is 0.5 mm. Right: in-line
panel (see left panel for location) of the data, where strong reflectors have been identified.

& van Wijk, 1999). Traces are recorded at 0.25 mm intervals, which implies about 10
samples per wavelength. The left panel of Figure 6.1 is the top view of the experimental
configuration, while the right panel is an in-line panel of the 3D data set, with several
surface-wave events and a body wave (P-wave) identified. The quality of these data is such,
that no pre-processing is required.

6.5.1 Results

We use data from Experiment 1 to validate the algorithm. First, we select an event
by time windowing; in this case the direct Rayleigh wave with the energy scattered by the
cavity, plotted in the left panel of Figure 6.2. We separate the incoming (d0) from the
energy scattered by the cavity (d1). To do so, we exploit the near-planar character of the
incoming wave. Since a two-dimensional spatial Fourier transformation maps a plane wave
to a point in the wavenumber-frequency domain, we can use this to separate the incoming
plane wave from its local perturbations. These perturbations are attributed to the presence
of the cavity. The separated scattered field d1 is shown in the middle panel of Figure 6.2.
Next, we estimate the impedance distribution using equation (6.7) and an independent
estimate of the background velocity of the surface waves in aluminum. From the data, we
estimate that cR ≈ 3000 m/s.

The impedance distribution for this in-line data set is shown in the right panel of
Figure 6.2. It coincides with the actual location and in-line width of the cavity. Applying
this sequence of steps for the entire 3D data volume, leads to the image of Figure 6.3. The
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Figure 6.2. Top: part of the direct Rayleigh wave (event d in the text). This event is used
to derive the scattered energy d1. Middle: separated scattered energy, using a wavenumber
frequency domain filter. Bottom: image of the cavity along the same line.
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Figure 6.3. The image for Experiment 1, showing the right position and size of the cavity.
The gray scale is proportional to the density of the medium. The right half of the image
contains two anomalies that are due to two air bubbles between the reflective tape and the
aluminum.

circular shape of the impedance distribution, slightly to the left and down from center,
represents the actual shape and location of the cavity. Anomalies in the right corners of
the figure are due to local data quality issues; air made its way under the reflective tape
used to enhance performance of the laser vibrometer. The ability of the algorithm to image
these air bubbles adds to the strength of the method.

Having obtained an estimate of the spatial impedance distribution from the direct
Rayleigh wave, we calculate the scattered wave field v1 for a different event. This event has
not been used for determining the impedance distribution, and therefore prediction of the
scattered field is a good test of the method. We select the Rayleigh wave that is reflected
by the end of the aluminum block behind the source. We call this event the ghost, shown in
the left panel of Figure 6.4. The predicted scattered field is shown is in the middle panel.
Finally, we obtain the wave field minus the scattered energy from equation (6.1), shown in
the right panel of Figure 6.4. We observe that the scattering has been effectively removed
and continuity of the reflector has increased.
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6.6 Experiment 2: a transmission model

In order to simulate an upcoming reflection, Experiment 2 involves a transmission
model. Body waves are excited at the bottom of a two-layered model, where an aluminum
layer is topped by a Lucite layer, in which we drilled a 2-mm wide and 3-mm deep cavity.
When the body waves reach the surface, energy is scattered at the cavity. We record the
wave field in a 4 cm2 region, at 0.1 mm intervals. Compared to Experiment 1, these data
are further complicated by the fact that they contain multiples from the layer boundary and
reflections from the sides of the aluminum block as depicted in the side-view in the left panel
of Figure 6.5. Data through the cavity show the multiples between the layers, reflections
from the sides, all scattered by the cavity (right panel of Figure 6.5). Pre-processing of the
data consisted of tapering-off low frequencies (including a dc-component) and then stacking
each trace with four adjacent traces to boost signal-to-noise.

6.6.1 Results

The data in Experiment 2 present a more challenging test for the method, because of
the multiples and the interfering reflections from the sides of the aluminum. Apart from
the pre-processing of these data, the algorithm is applied in the same way as in Experiment
1. Again, we start by selecting a clear event. In this case we select the first upcoming
reflection, shown in the left panel of Figure 6.6. We separate the incoming (d0) from the
energy scattered by the cavity (d1), using a narrow wavenumber-frequency domain filter.
The separated scattered field is shown in the middle panel. Using the surface wave velocity
in Lucite (cR ≈ 1000 m/s), we estimate the impedance distribution, shown in the right
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Figure 6.6. Top: the first upcoming event from the data. (event d in the text). This event is
used to derive the scattered energy. Middle: separated scattered energy, d1, using a narrow
wavenumber frequency domain filter. Bottom: image of the cavity along the same receiver
line.
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Figure 6.7. Top view of the image for Experiment 2, showing the right position and
dimensions of the actual cavity. The gray scale is proportional to the density of the

medium.

panel. Figure 6.7 is a top-view of the image at the surface for the entire 3D data volume.
The dimensions and location of the image are in agreement with the actual cavity in the
Lucite.

Finally, we predict the near-surface scattered field in the rest of the data. In the left
panel of Figure 6.8 we show part of the data line crossing through the cavity, minus the
first event used to construct the image. Thus, the data shown in the left panel of Figure 6.8
were not used to derive the impedance distribution. Because the surface wave velocity may
not be accurately known, the desired result may still contain residual tails from surface
waves, but these can be removed by dip filtering. In order to make a comparison between
the data before and after applying the algorithm, we have used a dip filter on the input
data v as well as in the output data v0. The filtered input data are shown in the middle
panel of Figure 6.8. Obviously, the dip filter only removed the flanks of the surface waves,
but not the apices, which have higher apparent velocities and were therefore unaffected by
the filter. Especially this part of the surface waves is important to remove, because it is
the interference between surface wave scattering and the incident field that diminishes the
quality of the target reflector. The output v0 after applying the same dip-filter is shown in
the right panel of Figure 6.8. We conclude that the algorithm has improved the continuity
of the reflectors.
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Figure 6.8. Left: part of the rest of the record. Middle: same as in the left panel but
after dip-filtering to attenuate surface waves. Right: rest of the record after subtracting
near-surface scattered energy and after dip-filtering.

6.7 Conclusions

We present a robust prediction-and-removal algorithm to attenuate strong near-surface
scattering from seismic data. Using data from a laboratory-scale scattering experiments,
we are able to estimate the surface impedance distribution using a single event. This
impedance distribution is then used to predict and remove the scattered field from other
events, restoring the continuity of target reflectors. A similar test on a more challenging
multiple scattering experiment also gives promising results. The success of the algorithm is
aided by dense 3D data acquisition, allowing filtering in the wavenumber domain.
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Chapter 7

Concluding remarks

The study of our surface wave laboratory proved ideal to understand, and then exploit,
wave propagation in disordered media. Tunability of the scattering strength, easy access,
fast and dense acquisition in the lab and the longevity of surface waves provide a unique
view inside the scattering medium.

Scattering induced attenuation and the decay of seismic velocities are caused by energy
being transferred into the coda. These multiply scattered waves extract energy from the
coherent pulse. This is why the coherent field decays exponentially due to absorption and
scattering. It is the coherent wave that historically has been the only energy of interest
in global and exploration geophysics. In medical imaging, scattering of light in biological
tissue is so strong that the only recorded signal is incoherent. Their main imaging tool is a
diffusion model. Being in the intermediate regime, where we have coherent and incoherent
signal, allows a more robust medium parameter estimation. The tool of choice is radia-
tive transfer, which describes both the coherent and the incoherent energy propagation in
scattering media. Treating the scattering medium as a whole (macroscopically), medium
parameters like the diffusion constant and energy velocity were revealed in scattered energy.
However, in the intermediate regime, the mesoscopic scale, the treatment of the observa-
tions in terms of averaged intensity led to separate estimation of scattering attenuation and
intrinsic absorption.

In higher dimensions, the radiative transfer equation becomes considerably more dif-
ficult since there are an infinite number of directions to scatter into, as compared to two
directions in 1D (Paasschens, 1997). However, even in 1D, the rich character of radiative
transfer is evident. Exponential decay is experienced by the direct wave due to scattering
and absorption. Aspects of both wave and diffusive behavior emerge in the average total
intensity, and, in the presence of both, a mesoscopic picture of the scattering medium can
be formed.

The theory of radiative transfer has its limitations. The most severe is that it does
not include wave interference. As a result of this, there exists a distance between source
and receiver, known as the localization length, past which radiative transfer is incorrect.
Sheng (1995) estimates that in 1D the localization length is approximately four mean free
paths. This offers the possibility of an intermediate range (one to four mean free paths)
where radiative transfer holds. Future work should attempt to find good bounds on this
range in practice.

A direct application in geophysics of radiative transfer modeling is presented in Ap-
pendix D. Under many assumptions that need to be tested in future research, we obtain
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independent estimates of scattering and intrinsic attenuation (Q). A firm handle on the
explicit intrinsic attenuation is generally regarded a direct indicator of fluid content in the
rock: partial saturation of the rock has little effect on the scattering properties, but the
bulk motion of the fluid attenuates the seismic energy.

High precision measurements, backed by spectral-element numerical simulations, show
(microscopic) details of the scattering behavior, like flexural resonance and surface wave
precursors in the form of body wave diffractions. At this microscopic scale, the aluminum
surface wave laboratory also provides a test-case for wave-equation based statics correc-
tions. In this problem, near-surface scattered energy blurs reflections from seismic targets
of interest at greater depth. The success of this application was aided by large degrees of
freedom in non-contacting and dense data acquisition.
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Appendix A

The angle-beam transducer source

To analyze the observations of multiply scattered waves, it is of vital importance to
know the characteristics of the source. In this case, a piezo-electric crystal converts a voltage
to mechanical energy, causing a compressional wave (P-wave) in a Lucite wedge, to which
it is attached (see the left panel of Figure A.1). The transducer wedge has a footprint of
7 cm (in the forward direction) by 4.2 cm and is cut at an angle of 68 degrees, so that
the horizontal component of the P-wave in Lucite matches the surface wave velocity in
aluminum, causing the source wavelet to be predominantly a surface wave. This surface
wave is otherwise known as the Rayleigh wave, named after Lord Rayleigh (J. Strutt) who
showed theoretically in Strutt (1885) that waves can propagate over the plane boundary of
an elastic half-space over vacuum or a gas like air. These waves have elliptical polarization,
comparable to surf in the ocean. Also, their amplitude decays exponentially with depth,
where the exponent is inversely proportional to its wavelength. This property of the surface
wave is often exploited in near-surface characterization and global Earth seismology (Aki
& Richards, 1980), where a spectral analysis assigns material properties according to the
depths of penetration of the Rayleigh waves.

A.1 The source on homogeneous aluminum

The right panel of Figure A.1 shows the areas of the three areas of data acquisition.
A scan of the surface of the block, where the source is located (so-called top), measures
the vertical particle velocity of the source wavelet. The scan-area labeled side, provides the
out-of-plane horizontal component of the source wavelet. Finally, the experiment scanning
the front of the block, measures the out-of-plane component of the source wavelet. The
source wedge is drawn on the edge of the aluminum for all three experiments, for visual
purposes. This was only the location of the source, when scanning the side of the block for
reasons that will become apparent in the following text. In the other two experiments, the
source is away from all sides to exclude side-reflections.

Even though we have the capability to excite energy in the model in a non-contacting
matter with a pulsed Nd:YAG laser (Scruby & Drain, 1990), most data are recorded with
this 500-kHz Panametrics angle-beam transducer. We chose this source, because the laser
source excites predominantly such short wavelengths, that the groove sequence obstructs
transmission of significant energy, past a few grooves.
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Figure A.1. Dimensions of the source components (left) and the surface areas of the three
scans, with respect to the source position on the aluminum model (right).

A.1.1 The vertical component of the source

Figure A.2 is a single trace of the vertical particle velocity of the source, recorded
directly in front of the center of the source wedge. It shows that the source wavelet has a
Ricker-like character, followed by lower-amplitude, lower-frequency pulses that are caused
by ringing of the mechanical source transducer. The right panel of Figure A.2 is its power
spectrum, showing that the source spectrum is centered around 400 kHz.

The right panel of Figure A.3 is a snapshot of the entire 2000-mm2 area with 3721
receivers on the top of the block. Light colors are high particle velocity of the source wavelet.
It shows that across the width of the source wedge, the source wavelet is planar.

A.1.2 The out-of-plane component of the source

Theoretically, Rayleigh waves only have particle motion in the direction of propagation
and in the vertical plane. However, placing the source on the edge of the aluminum block,
brakes the symmetry and excites an out-of-plane component. The wave field in the right
panel of Figure A.4 shows that the source decays rapidly at the surface, and that the
wavefront curves at greater depth. From movies made with this data set, it is clear that the
curved deeper wavefront is faster than the wavefront at the surface. It is therefore likely
that the surface wave source is accompanied by a curved shear wave that is slightly faster,
at greater depth.
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Figure A.2. Vertical component of the source wavelet, measured on the top of the block.
The left panel is a single trace in front of the center of the wedge and its power spectrum
is plotted on the right.
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Figure A.3. Left: Experimental configuration to measure the vertical component of the
source wavelet across the width of the source wedge. The right panel is a snap-shot of
the experiment. Black represents large positive amplitude and white is strong, negative
amplitude. The energy between the source and the main energy is ringing of the source.
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Figure A.4. Left: experimental configuration to measure the source wavelet characteristics
as a function of depth. The right panel is a snap-shot of the out-of-plane component
measured on the side of the block. Black represents large positive amplitude and white is
strong, negative amplitude.The energy between the source and the main energy is ringing
of the source.

A.1.3 The in-plane horizontal component of the source

Figure A.5 contains the wave field on the end of the block, from the surface to 65 mm
depth, while the source is located 89 mm from the edge. It shows two coherent events:
the curved event is the direct surface wave, whereas the linear event is the surface wave,
diffracted at the edge of the aluminum block, traveling down the side of the block. The
amplitude of the direct wave decays until approximately 15 mm, but is fairly constant deeper
in the model. The explanation that the surface wavefront is accompanied by a deeper shear
wave (S-wave), is confirmed by the earlier arrival of the deeper part of the source wavelet;
at this distance from the source (89 mm), the S-wave component is ahead of the surface
wave. Experimentally, this S-wave attached to the Rayleigh-wave front, was observed in
photo-elastic measurements by Dally (1978).

A.2 The source on the grooves

For the ensemble measurements in Chapters 3 and 4, the source is positioned on the
grooves. This leads to scattering of the source energy under its footprint and a change
in coupling between the aluminum and the Lucite wedge. The resulting source wavelet is
therefore not the same as on the smooth side of the aluminum. I recorded the wavelet on
the smooth side of the aluminum, as well as on the grooved side. On the grooved side of the
block, the source is placed on the final 70 mm of grooves, and recorded directly after the
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Figure A.5. Left: experimental configuration of the measurement of the in-line horizontal
component of the source wavelet, measured on the end of the block, on a line of receivers
down the center of the source-wedge. Right: The curved front is the direct arrival of the
source wavelet, whereas the linear events are diffractions from the edge, traveling down the
block.

last groove, 40 mm from the edge (Figure A.6). This last measurement can only provide
a short time-window of the source wavelet on the grooves, because reflected energy off the
end of the block re-enters the system. However, when we compare the source wavelet on
the grooved side to a 300 kHz low-pass version of the wavelet on the smooth side of the
aluminum, we see similarity that is mostly disturbed by the reflection off the back of the
block later in the trace (Figure A.7). Therefore, we use the low-pass filtered source wavelet
from the smooth side of the aluminum to model the ensemble measurements.
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Figure A.6. Top-view of the experimental configuration to record the source wavelet as
the source is mounted on the grooves.
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Figure A.7. Left: source wavelets as recorded on the smooth surface and on the grooves,
respectively. Right: comparison between the low-pass filtered source wavelet from the
smooth surface and the source wavelet recorded on the grooves. The source wavelet on the
grooved side has reflections from the end of the block coming in 80/3 µs after the initial
energy.
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Appendix B

Insights in the radiative transfer equation

In the geophysical community, the theory of radiative transfer is relatively novel. This
Appendix is an attempt to relate our results in this analysis of energy propagation to more
familiar results used in exploration and global seismology.

B.1 The coherent intensity and the O’Doherty-Anstey formula

We derive results from radiative transfer that agree with results from mean field the-
ory, namely the O’Doherty-Anstey formula. Such an equivalence suggests that radiative
transfer is a proper extension of mean field theory (a “variance field” theory) for the fluctu-
ating, multiply-scattered waves. In the field of exploration geophysics, a well known result
for waves multiply scattered by a 1D layering is that obtained by O’Doherty & Anstey
(1971). The O’Doherty-Anstey formula has subsequently been derived from mean field
theory (Banik et al., 1985). One outcome of O’Doherty-Anstey is that the amplitude of a
wave transmitted through a stack of layers decays exponentially with distance as (Shapiro
& Zien, 1993):

|T | ∼ exp(−R̃(k)x), (B.1)

where R̃(k) represents the power spectrum of the average reflection coefficient series nor-
malized by two-way travel distance (Banik et al., 1985). From the solution for the total
intensity obtained in the last section, equation (4.23), radiative transfer also predicts an
exponential decay for the transmitted, or coherent, wave with distance:

|T | ∼ exp(−Bx/2`s), (B.2)

where the distance x has replaced vt in equation (4.23) since the δ-function is only non-zero
at x = vt. The factor of 1/2 in the exponent of this equation shows up since radiative
transfer predicts decay of the transmitted intensity - the square of the true transmission
coefficient. We investigate the equivalence of these two theories for the transmission of
normally incident waves through assemblages of weak 1D point scatterers (thin beds). The
two theories are equivalent if:

R̃(k) = B/2`s. (B.3)

Depicted in Figure B.1 is the random medium we will consider: a series of thin layers of
varying strength are embedded in a constant velocity background medium. In the parlance
of O’Doherty-Anstey, this would be called a “cyclic” sequence. It happens to be the type
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Figure B.1. A wave transmitted through a random sequence of thin beds of varying
strength. The thin beds are embedded in a constant background medium.

of medium that radiative transfer, and scattering theory, are geared for. The reflection
coefficient series, RC(x), for such a medium would be a series of delta functions of oscillating
plus and minus sign:

RC(x) =

N∑

j=1

Rj [δ(x − dj)− δ(x− h− dj)] , (B.4)

where h is the thickness of the beds, Rj and dj represent the reflection coefficient and
location of the j-th bed, respectively, and N is the number of beds.

To calculate R̃(k), we take the Fourier transform of equation (B.3), square its magni-
tude to get the power spectrum, and divide by the two-way travel distance:

R̃(k) = 1/2L

∣∣∣∣∣∣

∞∫

−∞

RC(x) exp (−i2kx)dx

∣∣∣∣∣∣

2

. (B.5)

Note that the Fourier transform is with respect to 2k and not k, similar to a Born inversion
formula in 1D (Bleistein et al., 2001). This is evident from standard references in the
literature (Banik et al., 1985; Shapiro & Zien, 1993).

Inserting equation (B.4) into equation (B.5) results in

R̃(k) = 1/2L

∣∣∣∣∣∣

N∑

j=1

Rj exp (2ikdj)(1− exp (2ikh))

∣∣∣∣∣∣

2

. (B.6)
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For thin layers, kh� 1 and a first order Taylor series expansion in h leads to 1−exp(2ikh) ≈
−2ikh. Pulling it out of the summation yields

R̃(k) =
4k2h2

2L

∣∣∣∣∣∣

N∑

j=1

Rj exp (2ikdj)

∣∣∣∣∣∣

2

. (B.7)

We now use a standard argument from the theory of multiple scattering: if dj , the spacing
of the thin beds, is a random variable, the cross terms in the square of the summation in
equation (B.7) cancel in the average and the squaring can be brought inside the summation:

R̃(k) =
2k2h2

L

N∑

j=1

|Rj exp (2ikdj)|2 . (B.8)

Now, inside the summation, the exponential does not contribute to the magnitude and we
are left with

R̃(k) =
1

2L
4k2h2

N∑

j=1

|Rj |2 =
1

L
2k2h2N〈|Rj |2〉, (B.9)

where 〈|Rj |2〉 is the mean-square of the interface reflection coefficients.

Returning to equation (B.3), to prove that radiative transfer and the O’Doherty-Anstey
formula predict the same exponential decay for the transmitted wave, we set equation (B.9)
to:

B

2`s
=

1

L
2k2h2N〈|Rj |2〉. (B.10)

For (Rayleigh) point scatterers in 1D, the radiation is isotropic. Hence, B = 0.5. Rearrang-
ing equation (B.10):

`s =
1

8k2h2〈|Rj |2〉NL
. (B.11)

The quantity N/L is simply the number density of the thin beds, ρ. In the limit of weak
scatterers (such that Rj � 1) 8k2h2〈|Rj |2〉 = σs, the scattering cross section (see Sec-
tion B.2). The presence of weak reflection coefficients is an underlying assumption in the
O’Doherty-Anstey result (Banik et al., 1985), so that equation (B.11) can now be rewritten
in a familiar form:

`s =
1

ρσs
. (B.12)

This is recognized as equation (4.4), the independent scattering approximation. Equa-
tion (B.12) demonstrates that, for this model, the exponential decay of the transmitted
wave from O’Doherty-Anstey, or mean-field theory, is equivalent to that predicted by ra-
diative transfer. A conceptual diagram of this equivalence is shown in Figure B.2. From
mean field theory, both the phase and the amplitude of the transmitted wave can be ob-
tained; however, the incoherent energy, for which the mean is zero, falls out. Similarly, 1D
radiative transfer can address the amplitude of the transmitted wave and the behavior of
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Radiative Transfer

wavetransmitted

wave

phase of

incoherent
energy

transmitted

amplitude ofTheory
Mean Field

Figure B.2. A diagram representing the overlap of mean field theory and radiative transfer
for the amplitude of the transmitted wave through a medium like that depicted in Fig-
ure B.1.

the incoherent intensity, but phase information is lost. Both theories agree in their region
of overlap, as demonstrated by the case of random layering we considered here.

Previously, we stated that for expression 4.4 to hold, the scatterers (thin beds) had to
be separated by at least a wavelength. Hence, in this model, no reflections from below the
recording depth interfere with the transmitted wave. All the interference resulting in the
exponential decay of the direct wave originates from peg-leg multiples within the thin beds,
not between them (Figure B.1).

B.2 The scattering cross-section in the limit of weak scattering

The scattering cross section for a thin bed is (Sheng, 1995, equation (P3.54)):

σs(k) =
1

2
k2h2

[
1−

(
c

c0

)2
]2

, (B.13)

where k is the wavenumber, h is the thickness of the thin bed, c is the velocity of the thin bed,
and c0 is the velocity of the background medium. The k2 dependence of σs is the hallmark
of Rayleigh scattering in 1D. Equation (B.13) is the first term of a power series in kh and
can be derived from the 1D scalar wave equation by requiring that the displacement and its
spatial derivative be continuous at both boundaries of a 1D scatterer, or thin bed. These
same boundary conditions at an interface yield the reflection and transmission coefficients:

R =
c− c0
c+ c0

and T =
2c

c+ c0
. (B.14)

Assume that the velocity of the thin bed can be expressed as c = c0(1 + α) with α
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a small parameter. This is the case of a small reflection coefficient. For an assemblage of
thin beds with varying velocities, α represents the RMS perturbation from the background
velocity. Substituting this relation for c into equation (B.13):

σs(k) =
1

2
k2h2(1− (1 + α)2)2. (B.15)

Keeping the lowest order term in α:

σs(k) ≈ 2k2h2α2. (B.16)

To satisfy equation (B.3), we need to show that the scattering cross section in the weak
scattering limit, equation (B.16), is equal to 8k2h2R2. From equation (B.14), we know that

8k2h2R2 = 8k2h2

(
c− c0
c+ c0

)2

. (B.17)

Substituting c = c0(1 + α) into equation (B.17) gives

8k2h2R2 = 8k2h2

(
α

2 + α

)2

. (B.18)

Again, keeping the lowest order term in α, we obtain that the right-hand side of equa-
tion (B.18) equals 2k2h2α2, identical to equation (B.16). Hence, in the weak scattering
limit for thin beds, 8k2h2R2 = σs.

B.3 The Green’s function for the directional intensity

Expressions (4.10) and (4.11) show that the 1D radiative transfer equation can be
split into a system of PDEs in terms of the left and right-going intensities. So far, only the
reduced PDE governing the total intensity has been studied. This is due to the fact that
measuring either the left or right-going intensity entails splitting the wave field into left
and right-going waves. Such a decomposition requires dense spatial sampling to perform
the type of filtering routinely done in Vertical Seismic Profiling: separating up from down-
going waves. Here, we show that knowledge of the individual left and right-going energies
can give us more detailed insight into the incoherent energy.

Assuming that the wave field has been decomposed into left and right-going waves,
we now solve the system of 2 partial differential equations that comprise the full radiative
transfer equation. To begin, we write equations (4.10) and (4.11) in matrix form:

∂I

∂t
+M

∂I

∂x
= NI + S, (B.19)
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where I, M , N , and S are:

I =

[
Ir
Il

]
,M =

[
v 0
0 −v

]
,

N =

[ −B
τs
− 1

τa
B
τs

B
τs

−B
τs
− 1

τa

]
,

S =

[
Sr
Sl

]
. (B.20)

There exists no general theory for solving systems of PDEs as there is for systems of ODEs.
Hence, we proceed by Fourier transforming equation (B.19) over space, solving the system
of ODEs, and inverse Fourier transforming back to spatial coordinates. With the Fourier
conventions:

I(x) =

∞∫

−∞

Ĩ(k) exp(−ikx)dkĨ(k) =
1

2π

∞∫

−∞

I(x) exp(ikx)dx, (B.21)

equation (B.19) becomes a system of 2 ODEs:

∂Ĩ

∂t
= (N + ikM)Ĩ + S̃. (B.22)

For the source function, we again take a general directional point source with right
and left-going components Sr and Sl. Allowing the parameter c to govern the directivity of
the source as we did previously, the source vector is:

S =

[
1 + c
1− c

]
δ(x)δ(t)

2
. (B.23)

The solution of the system of ODEs follows that given in standard texts on differential
equations (Boyce & DiPrima, 1997). Here we give the solution in the k-domain:

Ir(k, t) =
1

4π
exp (−Bvt/`s) exp (−vt/`a)

(
(1− c)B

τs
+ i(1 + c)kv

)
×

sinh

(
t

√
B2

τ2
s

− k2v2

)(
B2

τ2
s

− k2v2

)−1/2

+ (1 + c) cosh

(
t

√
B2

τ2
s

− k2v2

)
. (B.24)

Il(k, t) =
1

4π
exp (−Bvt/`s) exp (−vt/`a) l

(
(1 + c)

B

τs
− i(1− c)kv

)
×

sinh

(
t

√
B2

τ2
s

− k2v2

)(
B2

τ2
s

− k2v2

)−1/2

+ (1− c) cosh

(
t

√
B2

τ2
s

− k2v2

)
. (B.25)
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To get the directional intensities in the spatial domain, we must inverse Fourier transform
equations (B.24) and (B.25). Two identities are needed for this inversion:

ix

∞∫

−∞

Ĩ(k) exp(−ikx)dk =

∞∫

−∞

∂Ĩ(k)

∂k
exp(−ikx)dk, (B.26)

and from the theory of Bessel functions (Hemmer, 1961):

∞∫

−∞

cos(kx)
sin
(
t
√
k2v2 − B2

τ2
s

)

√
k2v2 − B2

τ2
s

dk =
π

v
I0

[
B

`s

√
v2t2 − x2

]
u(vt− |x|). (B.27)

After inverting the Fourier transform, we obtain for the right-going intensity:

Ir(x, t) =
1

4
exp (−Bvt/`s) exp (−vt/`a)

[
2(1 + c)δ(vt − x) +

B

`s
u(vt− |x|)×

[
(1− c)I0

(
B

`s

√
v2t2 − x2

)
+

(1 + c)

√
vt+ x

vt− xI1

(
B

`s

√
v2t2 − x2

)]]
, (B.28)

and for the left-going intensity:

Ir(x, t) =
1

4
exp (−Bvt/`s) exp (−vt/`a)

[
2(1− c)δ(vt + x) +

B

`s
u(vt− |x|) ×

[
(1 + c)I0

(
B

`s

√
v2t2 − x2

)
+

(1− c)
√
vt− x
vt+ x

I1

(
B

`s

√
v2t2 − x2

)]]
, (B.29)

These equations for the two intensities show that the two Bessel functions that make up
the incoherent intensity are sensitive to different aspects of the source radiation pattern.
For instance, if the source were unidirectional, c = −1 or c = 1 and the zero order Bessel
function would come from one direction and the first order Bessel from the other. It can also
be verified that adding equations (B.28) and (B.29) gives the total intensity, equation (4.23).
In the absence of phase information, perhaps the directional intensities can yield important
information about spatial variations in the material properties.

B.4 The diffusion approximation in infinite 1D media

At late times, we demonstrate that radiative transfer can be simplified even further by
approximating its behavior as the solution to a diffusion equation. Results of finite-difference
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simulations of the 1D wave equation with random scatterers (Haney et al., 2003) support the
accuracy of this approximation. Using correct values for the parameters needed to describe
the scattering, the average intensity of the numerical simulations is seen to approach the
diffusive limit with time.

In addition to the coherent intensity, physical insight can be gained on the incoherent
part of the total intensity. The general expression for the Green’s function for radiative
transfer in 1D, equation (4.23), shows that for late times the coherent term is zero and the
incoherent field, defined by a combination of Bessel functions, approximates the solution to
the diffusion equation (Ishimaru, 1997). Especially in optics, where it is hard to obtain phase
information, inferences on the statistical properties of the medium are often based on this
late-time diffusive behavior (Boas et al., 1995). In elastic wave-scattering, the incoherent
field is used to decipher the different mechanisms of attenuation (Margerin et al., 1999).

To derive the diffusion approximation from equation (4.23), all we need is that vt� x.
Noting that the zeroth and first modified Bessel functions have the asymptotic forms:

I0(z) ≈ I1(z) ≈ (2πz)−
1
2 exp(z) for z � 1, (B.30)

we can write equation (4.23) in the late-time limit as:

It(x, t) =
B

`s
exp (−Bvt/`s − vt/`a) exp

(
B

`s

√
v2t2 − x2

)(
2π
B

`s

√
v2t2 − x2

)−1/2

. (B.31)

In this expression, the delta functions from equation (4.23) have fallen out. Organizing
terms in equation (B.31), expanding the square root in the exponential as a Taylor series
in the small parameter x/vt, and keeping the lowest order in x/vt, we get:

It(x, t) = exp(−Bvt/`s − vt/`a) exp

(
Bvt

`s
(1− 1

2
(x/vt)2)

)(
2π
`s
B
vt

)−1/2

. (B.32)

Two of the exponentials cancel in equation (B.32) and, after isolating the term `s/2B, the
late-time limit of the radiative transfer equation can finally be written as

It(x, t) = exp

(
− x2

4
(
`s
2B

)
vt
− vt

`a

)(
4π

(
`s
2B

)
vt

)−1/2

. (B.33)

In the case of no attenuation (`a → ∞), equation (B.33) can be identified as the Green’s
function for the 1D diffusion equation with the diffusion constant D = (`s/2B)v (see equa-
tion (B.52)). This implies that the movement of energy at late times has an effective mean
free path different from `s or `∗. This effective mean free path is called the transport mean
free path, `tr = `s/2B. In 1D, `tr = 1

2`
∗, since `∗ = `s/B. Note that the transport mean

free path can be determined from the extinction mean free path without knowledge of the
underlying details of the scattering.
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It is common to relate `tr to `s via:

`tr =
`s

1− 〈cosθ〉 , (B.34)

where 〈cosθ〉 represents the average scattered energy in all directions weighted by the cosine
of that direction. For isotropic scattering, 〈cosθ〉 = 0 and the two mean free paths are
identical. However, using the general relation 〈cosθ〉 = F − B (Hendrich et al., 1994) and
the fact that F +B = 1, equation (B.34) can be rewritten as

`tr =
`s

1− F +B
=

`s
2B

, (B.35)

which is exactly the relationship we have derived from the diffusion approximation.

B.5 The diffusion approximation in finite 1D media

The above derivation of the diffusion approximation showed how the solution of the
radiative transfer equation approaches that of the diffusion equation at late times. In this
section, we prove that the underlying governing equation for the total intensity at late
times also becomes the diffusion equation. While the radiative transfer equation cannot be
analytically solved for in a finite geometry, its late time equivalent – the diffusion equation
– can be solved with boundary conditions.

Neglecting absorption (`a →∞), we can rearrange equation (4.13) as

∂In
∂t

+
2B

τs
In = −v∂It

∂x
. (B.36)

In the diffusive regime, we assume that (Morse & Feshbach, 1953):

2B

τs
In �

∂In
∂t

, (B.37)

meaning that the time rate of change of the right and left-going intensities is relatively
small. Under this condition, equation (B.36) becomes

2B

τs
In = −v∂It

∂x
. (B.38)

Substituting equation (B.38) into equation (4.12) for In yields

∂It
∂t

+ v
∂

∂x

[
−τsv

2B

∂It
∂x

]
= 0. (B.39)

Under the assumption that v and τs do not depend on position, equation (B.39) takes the
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form:
∂It
∂t

= v

(
`s
2B

)
∂2It
∂x2

, (B.40)

which we recognize as the 1D diffusion equation with the same diffusion constant D =
v(`s/2B) = v`tr we obtained in the previous section.

Now assume there is a boundary at x = 0 where scattering occurs to the right (positive
values of x), but not to the left (negative values of x). Then, at x = 0, there is no intensity
coming into the scattering region, i.e. the right-going intensity is zero. We can express
the right-going intensity as the sum of the total intensity and the net right-going intensity
(flux) and set it to zero at x = 0:

Ir =
1

2
It +

1

2
In = 0 at x = 0. (B.41)

Using the approximation we derived in equation (B.38), the In-term can be replaced by a
spatial derivative of It:

1

2
It +

1

2

(
− `s

2B

∂It
∂x

)
= 0. (B.42)

From this equation, we learn that

It =
`s
2B

∂It
∂x

= `tr
∂It
∂x

. (B.43)

The solution to equation (B.43) states that, near x = 0, It has the form:

It ∼ x+ `tr. (B.44)

Extrapolating away from the boundary according to equation (B.44), It = 0 at x = −`tr.
Hence, the presence of a boundary that radiates energy out of a finite scattering region can
be approximated by a Dirichlet boundary condition a distance `tr outside the scattering
region. Suppose there is a region of length L extending from x = 0 to x = L. Then, at late
times, the Green’s function for the total intensity should obey the boundary value problem:

∂It
∂t

= D
∂2It
∂x2

+ δ(x− x′)δ(t)
It = 0 at x = −`tr and x = `tr + L. (B.45)

where D = v`tr. In 1D, this PDE can be solved by expanding over the modes of the
Laplacian:

It(x, x
′, t) =

∞∑

m=1

exp

(
− m2π2Dt

(L+ 2`tr)2

)
sin

(
mπ(x+ `tr)

L+ 2`tr

)
sin

(
mπ(x′ + `tr)

L+ 2`tr

)
. (B.46)

The PDE could have equivalently been solved by the method of images.
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SL

R

Figure B.3. The geometry of the 1D numerical scattering experiments. The source was
at the center of a region with thin random layers and a receiver was positioned above the
layers for each experiment. The size L of the scattering region varied between experiments
with the values 80 m, 120 m, 160 m, 200 m, and 240 m.

B.6 Green’s function for diffusion in an infinite 1D medium

To find the Green’s function, I solve the 1D diffusion equation with attenuation using
a delta function source:

∂I

∂t
−D∂2I

∂x2
+Dκ2I = δ(x)δ(t), (B.47)

where D is the diffusion constant, δ(x)δ(t) the source term, and κ an absorption coefficient,
caused by diffraction from the bottom of the grooves. In the (ω, k) domain, it follows that:

I(ω, k) =
1

D(k2 + κ2)− iω , (B.48)

so the intensity as a function of space and time is

I(t, x) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

exp(−ikx) exp(−iωt)dkdω
D(k2 + κ2)− iω

= exp

(
− x2

4Dt
−Dκ2t

)
(4πDt)−1/2 . (B.49)

We first integrate over frequency:

∫ ∞

−∞

exp(−iωt)
α− iω dω = 2π exp(−αt), (B.50)
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after integration in the complex plane. Note that α = D(k2 + κ2). So now we are left with

∫ ∞

−∞
exp(−ikx−Dk2t) =

√
π

Dt
exp

(
− x2

4Dt

)
. (B.51)

Factoring in all the constants, gives us the Green’s function for 1D diffusion with absorption:

I(x, t) = exp

(
− x2

4Dt
−Dκ2t

)
(4πDt)−1/2 . (B.52)

This is the same result as obtained by making the late-time assumption in the radiative
transfer equation in equation (B.33).
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Appendix C

Wave speeds in scattering media

When considering wave propagation in a scattering medium, we can define the phase,
group and energy (or transport) velocity, but how do these relate to the speeds of the
coherent and incoherent signal from ensemble measurements? Factors are the size (van
Albada et al., 1991) and density (Cowan et al., 1998) of the scatterers, compared to the
wavelength of the signal, for instance. Here we try to unravel the different speeds, to avoid
mistakes in modeling observations in the lab.

In the radiative transfer equation, there is a single velocity parameter. This is generally
called the energy or transport velocity. Is it:

1. the group velocity,

2. the move-out of the envelope of the wave field with increasing source-detector offset,
or

3. the move-out of the coherent signal with increasing source-detector offset?

Note that the last two are only different in the sense that the coherent signal is the ensemble
average of 2.

C.1 Group velocity

By definition, the group velocity is

vg =
dω(k)

dk
. (C.1)

There is an obvious relation between the group and the phase velocity c:

vg = k
dc

dk
+ c(k), (C.2)

from which it can be determined what we already knew: in the absence of dispersion (c
is frequency independent), the group velocity is the phase velocity. Note also, that for
negative dispersion, the group velocity can be greater than the phase velocity.

The velocity of the energy package can be described by following the envelope of the
trace as it moves out with increasing source-detector offset. In seismology, it is common
practice to determine the group velocity in this manner. More detailed information about
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the seismic velocities can be obtained by band-pass filtering the seismic trace. This gives
direct information on c(k) and thus indirectly on vg(k). This envelope velocity has also
been called the incoherent or the diffusive velocity, but it has been shown that for resonant
scatterers the observed envelope velocity is significantly lower than the incoherent velocity
(Kuga et al., 1993).

C.2 Coherent velocity

To estimate the coherent signal in a scattering media, we need to acquire an ensemble
measurement. For instance, we ping a fish bowl with sound-scattering fish swimming around
(De Rosny & Roux, 2001) or measure the wave field for different locations of a fixed source-
receiver distance (Scales & van Wijk, 2001). The coherent signal is the square of the
mean trace in the ensemble. With ensemble measurements at different source-detector
separations, a regression on the coherent signal determines the coherent velocity vc.

There is a obvious link between the coherent and the group or envelope velocity. The
coherent velocity is speed of the envelope of an ensemble averaged intensity. Scattered
energy later in the traces is averaged out. This means that the peak of the envelope of the
coherent signal cannot arrive later than the peak of the envelopes of the individual traces,
as we used to determine the group velocity. Conversely, if the scattered energy is strong,
the peak of the envelope of a single measurement can be shifted in time, slowing the group
velocity. A prime example of this effect is in the case of resonant scattering; energy is being
slowed by resonance of the scatterers (van Albada et al., 1991).

C.3 Observations

Figure C.1 contains the picks of an individual phase and that of peaks of the envelope
of the surface-wave field in Figure 3.7. The straight lines are the regressions with slopes
c = 2800±14 m/s and vg = 1488±54 m/s. The phase velocity c in the scattering medium is
less than the velocity on the smooth side of the aluminum model: cal = 2870± 5 m/s. This
is caused by scatterings between the grooves, destructively interfering with the coherent
wave, like in the case of thin-bed multiples (O’Doherty & Anstey, 1971). Note that editing
the picks of the envelopes for late times, increases the group velocity to vg = 1855±35 m/s.
Throwing away the outliers for large times is validated by the much lower signal-to-noise
ratio, and by the possible loss of coherency for such large source-detector offsets.

The velocity of the coherent signal was calculated from ensemble measurements at
6 source-detector offsets (Figure C.2): vc = 1818 ± 123 m/s. This is in agreement with the
group velocity within one standard deviation for the picks up to 0.085 ms. Theory supports
that in the Rayleigh scattering regime, the group velocity (incoherent velocity) is equal to
the coherent velocity (Figures 2 and 3 in Kuga et al., 1993). Physically, this means that the
coherent signal is strong enough, for the source-detector offsets measured, that scattering
does not change the location of the coherent peak.
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Figure C.1. Picks for a single phase and for the peak of the envelope of each surface-wave
field. The straight lines are their respective regressions.

0 0.01 0.02 0.03 0.04 0.05
time (ms)

0

20

40

60

80

so
u

rc
e−

d
et

ec
to

r 
o

ff
se

t 
(m

m
)

Figure C.2. Regression on the move-out of the peak of the coherent energy. The regression
estimates ve = 1818 ± 123 m/s.
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C.4 Phase velocity of the ensemble-averaged trace

Regression on the 6 ensemble-averaged traces, leads to an average phase velocity of
2766±60 m/s. This is in agreement with the phase velocity recorded for a single realization
(Figure C.1).

C.5 Conclusions

The energy velocity is either the velocity of the coherent signal (for non-resonant
scattering) or the velocity of the envelope of the trace, i.e. the group velocity (for resonant
scattering). In the case on non-resonant (Rayleigh) scattering, the group velocity is the
same as the coherent velocity. Since we have many grooves per wavelength, we are in the
Rayleigh scattering regime and the energy velocity is the group velocity is the coherent
velocity: v ≈ 1825 m/s. It should be noted that in the Mie scattering regime, the radiative
transfer equation with a single energy velocity is not a good candidate to describe energy
propagation, because when scattering is resonant, the coherent signal travels faster than
the incoherent energy.
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Appendix D

scattering attenuation and absorption in sonic

logging

Intrinsic absorption in geophysical data is of great interest to the geophysical com-
munity, because it is generally considered a direct fluid indicator. However, geophysical
data is attenuated by absorption and scattering (Scales & van Wijk, 1999). Unraveling this
combination of parameters is not easy, but radiative transfer models suggest opportunities
to accomplish just that. In a full-waveform sonic log, the radiative transfer model (van
Wijk et al., 2003b) leads to estimates of scattering attenuation and absorption, separately.
This study is done on a data set of unknown location, just to show the feasibility of the
method. Tying the results to geology is left to future studies.

D.1 Observations

The sonic tool has a pressure source and 8 hydrophones at 8-inch spacing (Smith et al.,
1991). There are 100 shot locations, 3 inches apart. Figure D.2 shows one common-shot
(left) and one common-receiver record (right). On the common-shot record one can identify,
from early times to late:

1. the trigger (no move-out),

2. the P-wave propagating at 4373 m/s,

3. the S-wave propagating at 2133 m/s, shortly followed by

4. the Stoneley wave, and

5. multiples between these coherent events and after the Stoneley wave.

The (multiples of) Stoneley waves can also be viewed as some normal modes of the bore-
hole, or they can be treated as waves bouncing around in the vertical direction. Either way,
they sample a mix of the content of the bore-hole and surrounding medium (Figure D.1).

D.2 Radiative transfer

The ensemble average of the intensities satisfies the model of radiative transfer. With
only one realization of the medium at hands (Earth), we assume ergodicity in the geology
and treat the stack of common-receiver sections as our ensemble average: the total intensity
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source

receiver

well

Figure D.1. Possible origin of the coda. The rays are drawn at non-zero incidence, for visual
purposes: we assume that multiples are in the vertical plane only, bouncing between layers
near the borehole wall.
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Figure D.2. Slices of the data volume. The left plot is a common-shot record and the right
is a common-receiver record. Note that the recorded energy at 0.006 s is still significantly
above the background noise level.
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Figure D.3. Total intensities for 4 detectors. The maximum energy on each of the curves
is the coherent surface wave. Lighter shaded curves are the intensities for larger source-
detector offsets.

is the average of each squared trace, and the coherent intensity is the square of the mean
of the traces (Scales & van Wijk, 1999). The incoherent intensity is the difference between
total and coherent intensity. For illustration, I have plotted the intensities for four receivers
in Figure D.3. It is assumed that waves travel only in the vertical direction, making the
problem 1D. One can observe a decay of the coherent arrivals for P-, S- and surface waves,
followed by a more-or-less exponential decay of the coda.

D.3 Fitting the data

The radiative transfer model in 1D lets us fit the coherent and the incoherent intensity.
This is the key to the separation of scattering from absorption. Since we do not have the
source signature, we can only determine the total mean free path from the decay of the
coherent maximum. I only use the Stoneley coherent energy and all arrivals after that,
assuming that they are multiples of the Stoneley wave. This gives us

1/la +R/ls = 2.5 m−1,
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Figure D.4. The dashed line is the incoherent intensity for receiver 4. The solid line is
the estimate of the incoherent intensity obtained with radiative transfer, for scattering
attenuation Qs = 250 and intrinsic absorption Qa = 10.

with a 5 percent variance in the estimate. From fitting the incoherent intensity, we find
that

ls/R = 10 m and la = 0.4 m,

where the variance in the estimate of the scattering mean free path is 2 percent. Especially
the estimate of the absorption is very sensitive to small changes, suggesting it is well resolved.
Estimates with the other 7 receivers give the same numbers, but are left out to not clutter
this study.

D.3.1 Relating to Q

Relating the mean free paths to the quality factor Q, which is defined as a decay-rate
per cycle, we find that

Q =
2πfl

v
. (D.1)

This means that Qa = 10 and Qs = 250, which are not un-physical values, but need further
studies to determine the validity. However, the variance in these estimates is less than 5
percent, suggesting the estimate is stable. The bias in these estimates are left for future
studies: How bad is the 1D assumption? What part of the energy travels only through the
borehole, instead of the formation?

Note that the incoherent P-wave energy displays a similar decay, so maybe the same
analysis as presented here for the S-waves can be performed on it.
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D.4 Discussion

The right panel of Figure D.2 suggests that the statistical properties of the geology
vary with depth. Clearly, one can see that especially the deep part of the borehole shows
coherent reflectors, even at late times. Therefore, a more precise treatment of this data set
should separate the data in regions of similar data characteristics. In this case, we merely
want to point out the possibility of an analysis with radiative transfer theory.

A possible problem with an interpretation of the multiply scattered sonic waves, is that
we are sampling a mix of the mud in the bore-hole and the formation, but the advantage
of sonic logging is that source-receiver pairs moving down the hole form an ensemble mea-
surement. A Vertical Seismic Profile (VSP) might give us the best of both worlds, since it
samples the formation only. There, we would have to separate up- from down-going energy
in the FK-domain to use the down-going energy as the source, but poses no large problems,
as this is already done routinely.

D.5 Conclusions

The characteristics of the sonic data suggests that waves are multiply scattered in
and around the borehole. These late arrivals are necessary to estimate intrinsic absorption,
a strong fluid indicator. Under some strong assumptions, radiative transfer estimates of
scattering and absorption Q, separately. The challenges ahead are to separate the influence
from the mud and the formation and to test if attenuating parameters can be linked to
geology and the fluid content of the rock.
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Appendix E

The angle-beam transducer source

Recent research has shown that the view of ray paths propagating through anomalies
in the Earth are the ones most influenced by this anomaly, is not correct. In fact, these rays
return to their unperturbed stage after several wavelengths, while the rays off to the side
of the anomaly are perturbed most. This has potentially large implications in ray-based
imaging. Laboratory data supports this view and provides a tool to further analyze this
behavior called wave-front healing (Nolet & Dahlen, 2000).

A plane surface wave hits a scatterer roughly the size of the dominant wavelength
(Figure E.1). We have 81-by-81 receivers in the 20-by-20 mm2 shaded region, but shown
in Figure E.2 are two cross-lines of data. Line 1 is close to the scatterer, while line 2 is
roughly three wavelengths past the scatterer. Disturbances on the plane wave are visible on
line 2, but the wavefront has healed directly behind the scatterer. We have 40 lines of data
between lines 1 and 2, so we can track the healing process, to see if the wavefront behaves
as predicted in the theory of Nolet & Dahlen (2000).
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Figure E.1. Plan-view of the experiment. Note the locations of data lines 1 and 2.
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Figure E.2. Data at the receivers on line 1 and 2. While the influence of the scatterer in
line 1 is clear in the traces nearest the cavity, line 2 shows that the wavefront healed in the
shadow zone behind the scatterer.
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