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ABSTRACT

This thesis is a study of the elastic and visco-elastic properties of carbonate samples

at seismic and ultrasonic frequencies for varying fluid saturation and pressure. We explore

in detail some of the assumptions of Gassmann’s fluid substitution relation, especially rock

frame sensitivity (shear modulus change) to fluid type and bulk modulus frequency de-

pendence. We find that for our carbonate rock samples, at high differential pressures and

seismic frequencies, the saturated bulk modulus of rocks with high aspect ratio pores is

predicted by Gassmann’s relation. Ultrasonic velocities should be used with caution when

predicting seismic time-lapse data, because laboratory data show that velocities are disper-

sive from 10 to 106 Hz. Nevertheless, the measured dispersion seems proportional such that

there is good agreement between laboratory seismic and ultrasonic elastic properties, for

example, in the VP /VS ratio.

Sample heterogeneity is observed in carbonates, which could bias the measured velocity.

Therefore, we developed and tested a fiber-optic strainmeter to estimate bulk velocity and

attenuation at seismic frequencies with greater sensitive than the conventional strain gages.

However, measuring samples is challenging because the new strainmeter’s strength (high

sensitivity) makes it also vulnerable to ambient noise.

Intrinsic attenuation at low and high frequencies is also measured in our carbonate

suite. Contrary to most observations in sandstones, we observe that the bulk compressibility

losses dominate over the shear-wave losses for dry samples and samples fully-saturated with

liquid-butane or brine. Attenuation modeled from the measured modulus corroborates this

conclusion. On average, P-wave attenuation can increase by almost a factor of three when

brine substitutes for a light hydrocarbon in these carbonate rocks.

Finally, the scenario of brine substituting a light hydrocarbon in a reservoir is analyzed

with synthetic seismograms to study the feasibility of estimating time-lapse attenuation. For

when fluid substitution occurs, we propose that time-lapse apparent attenuation is domi-

nated by the change in intrinsic attenuation rather than scattering attenuation. Although

apparent attenuation at a specific time is sensitive to receiver separation and random noise,

we are still able to predict time-lapse intrinsic attenuation for these synthetic traces.

iii





TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 GASSMANN FLUID SUBSTITUTION AND SHEAR MODULUS VARI-
ABILITY IN CARBONATES AT LABORATORY SEISMIC AND
ULTRASONIC FREQUENCIES . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Gassmann’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Carbonate samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Data example: acquisition and processing . . . . . . . . . . . . . . . . . . . 8

2.4.1 Poisson’s ratio: a correction . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Variations in shear modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Data examples of shear modulus sensitivity to fluids and possible
explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Gassmann’s fluid substitution . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CHAPTER 3 SEISMIC WAVE ATTENUATION IN CARBONATES . . . . . . . 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Parameter uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Attenuation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Bulk modulus attenuation and fluids . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 4 COMPARISON OF SEISMIC AND ULTRASONIC FREQUENCIES 50

CHAPTER 5 FIBER-OPTIC STRAINMETER . . . . . . . . . . . . . . . . . . . 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Setup 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Velocity and attenuation on a Plexiglas sample . . . . . . . . . . . . 60

v



5.3 Setup 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 The road ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

CHAPTER 6 TIME-LAPSE Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Velocity, density and Q synthetic model . . . . . . . . . . . . . . . . . . . . 70
6.3 Elastic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Visco-elastic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.1 Receiver separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.2 Random noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Interpreting time-lapse apparent attenuation . . . . . . . . . . . . . . . . . 79
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER 7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

APPENDIX A DATA ESTIMATION AND UNCERTAINTY ANALYSIS . . . . . 93

A.1 Data uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.1.1 Uncertainty analysis on the modulus and velocity . . . . . . . . . . . 96
A.1.2 Stress-strain methodology . . . . . . . . . . . . . . . . . . . . . . . . 96
A.1.3 Ultrasonic pulse propagation . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Attenuation estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.2.1 Uncertainty on the line slope . . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX B FIBER-OPTIC COMPENSATOR . . . . . . . . . . . . . . . . . . 100

APPENDIX C Q ESTIMATION METHODS . . . . . . . . . . . . . . . . . . . . . 101

C.1 Estimating signal-to-noise level . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.2 Estimating intrinsic Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
C.3 Wedge model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

APPENDIX D TIME-LAPSE APPARENT ATTENUATION FROM SURFACE SEIS-
MIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



LIST OF FIGURES

1.1 Carbonate porosity classification by Choquette and Pray (1970) showing the
complexity of carbonate textures. Primary fabric is created from deposition,
while secondary fabric results from diagenetic processes. (Modified from
Moore (2001)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Thin sections for some of our carbonate samples. Pink represents calcite,
gray dolomite, white anhydrite and blue pore space. . . . . . . . . . . . . . 7

2.2 Seismic and ultrasonic frequency bulk modulus least-squares estimates (solid
lines) and measured data for sample H at 31 MPa. Observe the modulus
dispersion for different fluid. Error bars are two standard deviations of the
estimated bulk modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Modeled Poisson’s ratio from empirical relations from ultrasonic data for
carbonate rocks saturated with water/brine. Squares and circles are the
Poisson’s ratio obtained from our measurements at ultrasonic frequencies.
This plot shows that our values of Poisson’s ratio are in agreement with
the empirical equations. Therefore, we use the ultrasonic Poisson’s value
to correct the low frequency data for three of our samples (B, F and I)
represented by circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Sample C showing shear modulus weakening and strengthening at seismic and
ultrasonic frequencies respectively. Measurements are performed from high
to low differential pressures. Circles represent repeated differential pressures
going from low to high differential pressures after the initial unloading cycle
was finalized. Note that as we decrease the differential pressure more com-
pliant pores and cracks open. Error bars are one standard deviation (one σ
for seismic frequency data are contained in the size of the symbol). . . . . . 12

2.5 Shear modulus weakening in carbonates samples resulting from dry to brine
saturation at seismic frequency (100 Hz) for differential pressures of 3.5 and
31 MPa. Error bars, representing one standard deviation, are within the size
of the marker for most samples. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Carbonate samples showing that the shear modulus remains almost constant
from dry to brine saturation at ultrasonic frequency for differential pressures
of 3.5 and 31 MPa. Error bars, representing one standard deviation, are
within the size of the marker for most samples. . . . . . . . . . . . . . . . . 15

vii



2.7 Carbonate samples showing little shear modulus weakening and strengthen-
ing resulting from dry to butane saturation compared to the dry-brine satu-
ration case. Both plots are at a differential pressure of 3.5 MPa for seismic
and ultrasonic frequencies. Error bars, representing one standard deviation,
are within the marker size for most samples. . . . . . . . . . . . . . . . . . . 16

2.8 Butane saturated bulk modulus measured and estimated with Gassmann’s
theory for 100 Hz and 0.8 MHz at 31 MPa differential pressure. Solid line
represents equal measured and estimated bulk modulus. Error bars are one
standard deviation of the bulk modulus. . . . . . . . . . . . . . . . . . . . . 19

2.9 Brine saturated bulk modulus measured and estimated with Gassmann’s the-
ory for 100 Hz and 0.8 MHz at 3.5 MPa differential pressure. Solid line
represents equal measured and estimated bulk modulus. Error bars are one
standard deviation of the bulk modulus. . . . . . . . . . . . . . . . . . . . . 20

2.10 Brine saturated bulk modulus measured and estimated with Gassmann’s the-
ory for 100 Hz and 0.8 MHz at 31 MPa differential pressure. Solid line rep-
resents equal measured and estimated bulk modulus. Error bars are one
standard deviation of the bulk modulus. . . . . . . . . . . . . . . . . . . . . 21

2.11 Bulk modulus for carbonates with brine saturation as a function of differential
pressure (P 1/3) for 100 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Thin section of samples a) 100, b) 200, c) 300, d) B and e) C. Shown in plane
polarized light. Dyed epoxy is blue and represents pore space. . . . . . . . . 28

3.2 CT scans of samples: a) 200, b) 300 and c) B. Gray color variations represent
density contrasts. Observe how sample 300 is heterogeneous with bands of
different textures/porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Scanning electron microscope (SEM). Sample 100 shows dolomite crystals.
There are no SEM images for Samples B and C. . . . . . . . . . . . . . . . 29

3.4 Schematic drawing the sample setup for low frequency measurements with
strain gages and ultrasonic frequencies with transducers. Confining pressure
is applied to the whole system, and pore pressure is controlled through the
pore fluid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 P-wave velocity as a function of frequency for samples 100, 200 and 300,
measured dry and fully saturated with liquid-butane and brine. A linear
fit is applied to the low frequency data (3, 100 and 1000 Hz). The data at
104 Hz is obtained from the sonic logs. One σ for the ultrasonic data is the
size of the markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 P-wave, S-wave, extensional and bulk compressibility attenuation for sample
100 at 31 MPa differential pressure. The sample is measured a) dry (hu-
midified), b) 100% saturated with liquid butane and c) 100% saturated with
brine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii



3.7 P-wave, S-wave, extensional and bulk compressibility attenuation for sample
200 at 31 MPa differential pressure. The sample is measured a) dry (hu-
midified), b) 100% saturated with liquid butane and c) 100% saturated with
brine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 P-wave, S-wave, extensional and bulk compressibility attenuation for sample
300 at 24 MPa differential pressure. The sample is measured a) dry (hu-
midified), b) 100% saturated with liquid butane and c) 100% saturated with
brine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 P-wave, S-wave, extensional and bulk compressibility attenuation for sam-
ple B at 21 MPa differential pressure. The sample is measured a) dry (hu-
midified), b) 100% saturated with liquid butane and c) 100% saturated with
brine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 P-wave, S-wave, extensional and bulk compressibility attenuation for sam-
ple C at 21 MPa differential pressure. The sample is measured a) dry (hu-
midified), b) 100% saturated with liquid butane and c) 100% saturated with
brine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11 Bulk modulus as a function of brine saturation for sample 300 at seismic and
ultrasonic frequencies. At 100 Hz, the bulk modulus increases 25% from 97%
to 100% brine saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Bulk compressibility attenuation for all samples: a) 100, b) 200, c) 300, d) B
and e) C. Dry measurements were performed with the samples humidified,
not oven dry. Therefore, some water exists in the pore space. Butane and
brine are for full-saturation. The differential pressures are as reported in
Figures 3.6 to 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.13 Shear modulus weakening with brine saturation for sample 300 at 100 Hz
and 21 MPa differential pressure. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.14 Bulk modulus and attenuation for sample 100 fully-brine saturated. Dots
are the measured data and the lines are the modeled moduli and attenuation
using the Cole-Cole relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.15 Modeled bulk and shear-wave attenuation for fully-brine saturated samples:
a) 100, b) 200, c) 300 and d) C. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Carbonate samples bulk and shear moduli at 31 MPa differential pressure
and fully brine saturated. The plot compares measurements at 10 Hz and
0.8 MHz. The dashed line represents where the moduli at both frequencies
are equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Carbonate samples P- and S-wave velocities at 31 MPa differential pressure
and fully brine saturated. The plot compares measurements at 10 Hz and
0.8 MHz. The dashed line represents where the moduli at both frequencies
are equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



4.3 Vp/Vs ratio for the measured samples at 31 MPa differential pressure and
fully butane and brine saturated. The plot compares measurements at 10 Hz
(squares) and 0.8 MHz (circles). . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Zero offset P-wave reflection coefficient for a two layer reservoir, for which the
bottom layer is represented by the measured samples at 31 MPa differential
pressure and either fully saturated with butane (green) or brine (blue). The
plot compares measurements at 10 Hz (squares) and 0.8 MHz (circles). . . . 55

5.1 First setup of the fiber-optic strainmeter. The solid lines are the fiber cables
jacketed and unjacketed - at the sections glued to the sample and piezo.
The dashed line is the voltage input to the piezo crystal produced by the
compensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Fiber-optic cable cross-section. The glass cladding is coated with acrylate
and the light propagates through the core. The fiber can have several buffers
and jackets. (Source: www.wikipedia.org) . . . . . . . . . . . . . . . . . . . 59

5.3 Fringe sketch describing the constructive and destructive interference of light
resulting from varying the distance the light travels between two fiber arms
(path disturbance). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Compressional and shear wave velocity as a function of frequency for a Plex-
iglas. The sample is measured with semi-conductor strain gages and fiber-
optic cable following a stress-strain experimental procedure. The data at
0.8 MHz is obtained from an ultrasonic pulse propagation technique. The
three measurements are performed on the same Plexiglas sample. . . . . . . 62

5.5 Extensional mode attenuation as a function of frequency on two Plexiglas
samples. One was measured with semi-conductor strain gages, while the other
sample was measured with fiber-optic cable. Observe that the attenuation
peak is sensitive to temperature. The absolute values of attenuation can
dependent on the Plexiglas composition. . . . . . . . . . . . . . . . . . . . . 63

5.6 Modified setup for the FOS to a Mach-Zehnder geometry. . . . . . . . . . . 63

5.7 Input signal (stress) and recorded fringes in the vertical direction of a strained
Plexiglas sample. The driving frequency is 300 Hz. The two plots are
recorded at different times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.8 Third setup for the FOS to estimate the maximum light intensity by stretch-
ing the fiber cable with the sample to the same (interference) length as the
cable with the aluminum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.9 Fringe amplitude as a function of the voltage applied to the piezo. The ex-
periment consists of estimating the maximum fringe amplitude by expanding
the piezo no more than λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



6.1 P-wave and S-wave velocity, and density synthetic logs. The section between
500 and 1000 m is generated from pseudo-random numbers to create a blue
reflection coefficient series. The circles are the locations of the two VSP
receivers. The model has 106 layers. . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Spectra of the reflection coefficient series from the velocity and density logs
in Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Synthetic VSP traces for the deep receiver based on the elastic modeling in
Figure 6.1. The zero-offset VSP synthetic traces are plotted for: a) homoge-
neous log (6 layers) and b) a blue RCS log (106 layers). . . . . . . . . . . . 73

6.4 Complete VSP traces (black solid lines) and windowed traces (dashed red
lines) for R1 and R2 for the elastic model in Figure 6.1. . . . . . . . . . . . 74

6.5 a) Amplitude spectra of the windowed traces in Figure 6.4, and b) ampli-
tude ratio and linear fit. Scattering attenuation: 1/Qs=0.0153±0.0006 is
estimated from the slope of the line. . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Apparent attenuation and time-lapse apparent attenuation sensitivity to re-
ceiver separation. Receiver depth in meter: 500-1000 (C1), 600-900 (C2),
700-800 (C3) and 730-760 (C4). In Case 1 (1/Qa,1) Q is 100; in Case 2
(1/Qa,2) Q is 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.7 Original trace at R1 and time-1 and with added noise at three levels. . . . . 78

6.8 Estimated apparent attenuation as a function of random noise added to the
traces. At low noise levels (n<5%) the estimate of ∆1/Qa agrees with the
expected ∆1/Qa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.9 Estimated time-lapse changes in 1/Qi for all possible combinations of intrinsic
attenuation between 0.005 and 0.2. . . . . . . . . . . . . . . . . . . . . . . . 80

6.10 Amplitude spectra from the direct arrival of VSP receivers. The blue curves
represent a Gaussian function fit to the spectra. . . . . . . . . . . . . . . . . 81

A.1 Sample setup sketching the location of the strain gages and ultrasonic trans-
ducers. The low frequency waveforms are also sketched for the three different
strain gages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Error analysis on sample C at a differential pressure of 17.5 MPa and bu-
tane saturation. From the least-squares fit we estimate the variance in our
estimate of E and ν. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3 Second order polynomial fit to ultrasonic travel times as a function of differ-
ential pressure for sample D under butane saturation. . . . . . . . . . . . . 98

C.1 Zero offset surface seismic synthetic seismograms for a 4-layered model with
a high Q (a) and Q=50 between R2 and R3 (b). c) are the windowed events
from the trace in plot b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xi



C.2 a) Amplitude spectrum of the events windowed in Figure C.1c. b) Amplitude
in dB: each box represents the accepted noise level (amplitude data used
to estimate intrinsic Q) from the amplitude ratio between top and bottom
events. c) Estimate of Q for a -5 dB noise level. . . . . . . . . . . . . . . . . 103

C.3 P-wave, density and Qp logs for a homogeneous 10 layer model (left). Syn-
thetic CMP gather corrected for NMO (right). Traces with offsets up to
100 m are stacked and this trace is used to estimate Q between the A and
B events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.1 Velocity and density model used for generating synthetic surface seismic. Qi

is added between 500 and 1000 m (Qi=100, time-1 changes to Qi=50, time-2).109

D.2 Elastic response for the model in Figure D.1 for a surface seismic geometry
(shot gather). The first offset is 25 m from the source and the offset inter-
val is 5 m (maximum offset is 520 m). Interval 1/Qa is estimated between
reflections shown by the arrows (at 0.33 and 0.54 s). . . . . . . . . . . . . . 110

D.3 Elastic zero-offset trace (solid black line) with two windows of 64 ms each
(red dashed lines) to isolate the top (a) and bottom (b) reflections. . . . . . 111

D.4 Amplitude spectra of the windowed events in Figure D.3. . . . . . . . . . . 111

D.5 Interval apparent attenuation estimate for the elastic seismogram (triangles)
and for visco-elasticity (Q=100, squares or Q=50, circles) between 0.33 and
0.54 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D.6 Time-lapse apparent attenuation. The true ∆1/Qa= ∆1/Qi is represented
by the dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D.7 Elastic shot gather with offsets limited to 225 m. The gather is NMO cor-
rected with Vrms velocities estimated from the VP log in Figure D.1. . . . . 113

D.8 Zero-offset (solid black) and stacked (dashed pink) traces. The stacked traces
result from stacking the CMP gathers up to an offset of 225 m. Each plot is
for different Qi models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.9 Zero-offset noise-free trace (original) and with three levels of noise added. . 115

D.10 Apparent estimates of attenuation for individual times and time-lapse differ-
ence as a function of random noise from: a) zero-offset trace and b) NMO
corrected and stacked trace up to 225 m offset. . . . . . . . . . . . . . . . . 116

xii



LIST OF TABLES

2.1 Petrological data for the carbonate set. Mineralogy was obtained from XRD
analysis and are reported in percent per volume (samples E, G and H had
no XRD analysis). φ is porosity and κ permeability. Dg stands for grain
density and K is bulk modulus. Mineral bulk modulus is computed us-
ing Voigt-Reuss-Hill average. Texture follows modified Dunham’s carbonate
classification (Moore, 2001): mud = mudstone, wacke = wackestone, pack =
packstone, grain = grainstone and bound = boundstone. Phy is phyllosilicate. 8

2.2 Gassmann’s theory applicability correlated with shear modulus weakening
and bulk modulus dependence with pressure (slopes of Figure 2.11). Gassmann
and shear modulus analysis corresponds to 100 Hz at a differential pressure of
31 MPa. X means the statement is true. Dominant mineralogy: C= calcite,
D=dolomite. Note correspondence of good Gassmann’s theory fit with low
pressure dependence (m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Petrological data for the carbonate set. Mineralogy was obtained from XRD
analysis and are reported in percent per volume. TR means less than 0.3%.
Texture follows modified Dunham’s carbonate classification (Moore, 2001):
mud = mudstone, wacke = wackestone, pack = packstone and grain = grain-
stone. Porosity and permeability are measured at 18.3 MPa confining pres-
sure for samples 100, 200 and 300; and at reservoir pressures for samples B
and C. By heterogeneity we refer to visual or CT-scan heterogeous features. 27

6.1 Attenuation estimates for receivers at 500 and 1000 m. . . . . . . . . . . . . 76

6.2 Estimates of 1/Qa for receivers at 300 and 1100m. The Qi between the
receivers varies with depth from 104 to either 100 or 50. . . . . . . . . . . . 81

C.1 Interval Q estimates for layer 5 in Figure C.3 (between A and B events). We
compare SR and FS methodologies and different level of noise suppression.
A low negative dB means a high signal to noise ratio. Note how SR are
significantly affected by the (numerical) noise in the data when the whole
data (all) is analyzed compared to FS. The true ∆Q is 50. . . . . . . . . . . 104

C.2 Q estimates for a wedge model by using two methodologies and different
levels of noise suppression. The window is 100 ms. The true Q is 50. . . . . 106

xiii



ACKNOWLEDGMENT

There are few words to describe how grateful I am for all the help that Mike Batzle has

given me during my PhD journey. His help and advice on every aspect of my research (and

sometimes about home repair too) has taught me the wonderful area of rock physics and

field geophysics. Also his patience with all the leaking vessels and crushed rocks is simply

amazing. To you Mike a huge GRACIAS!

I huge thank you is for John Scales, who since my Masters thesis cannot stop impressing

me with his knowledge and willingness to share it at any time. His help with the fiber-optic

strainmeter was also key in getting the system at least to the few measurements we did.

John and Mike I am also very thankful for all your support in the good and not so good

days in my life.

I am very grateful to Tom Davis for his great advise during these years of long studies,

and because he was the first to believe in me since I was in Venezuela. I thank Dave Hale

and Luis Tenorio for their thorough feedback and involvement in my PhD research.

I thank my dear Kasper, because without his love I would not have finished this PhD.

We do not talk about geophysics over dinner ;-), but when I needed his professional advice

on my thesis he was always there for me. To Sasha for being such a good and happy girl

that made my days and helped me finish. To both of them I owe them this thesis and give

my love.

Great advice, discussions and of course lots of fun traveling was part of the years I

shared with Ronny, Danke vielmals. I am grateful to Manika Prasad and De-Hua Han for

sharing their knowledge of the rock physics world. I thank Jyoti, Arpita, Ritu and fellow

rock abusers for their help and good times at the garden level.

Each thesis chapter is the result of enlightening discussions with colleagues. I especially

thank Ivar Brevik and StatoilHydro for starting the project on carbonates that opened the

door to this thesis. I am very grateful to ExxonMobil URC, where the whole geophysics

team was incredible and my experience with them will be hard to forget. I particularly

thank Kyle Lewallen and Joe Reilly for all their support and feedback. I am grateful to

Micro-G Lacoste for the help provided to develop the fiber-optic strainmeter. I thank Dr.

Tim Niebauer, Bryon Masson, Brian Zadler for their help on this research; and to Dr.

Kowalski who lent us his fiber-optic fuser. I thank Dr. William Waite, Dr. Angus Best and

Dr. William Murphy for their thorough revision and feedback on chapter 3.

I thank the help and love given by Sara Summers, Barbara McLenon, Susan Venable

and Michelle Szobody during my years at Mines. I am also very thankful to all the good

care given by Lisa Batzle.

I greatly thank my family, because it is their love and support that kept the energy

xiv



up in the moments when the batteries where running low, and because our long-distance

conversations never felt that far. And to Golden and Charlie for all of their silent support.

I finally want to thank the Fluids and DHI Consortia members for their support and

feedback during my studies.

xv



1

CHAPTER 1

INTRODUCTION

Carbonates are important targets for rock property research, because they currently

present over half of the major oil and gas reservoirs in the world. However, rock physics

measurements and theories related to changing reservoir conditions, mostly relate to sand-

stones.

Generally, when the initial oil production of a reservoir starts to decline there is a pro-

gram in place to enhance the productivity by injecting a fluid in the reservoir (e.g. water,

CO2). This recovery process means the original fluid in the rock is replaced by another

with different physical properties. In exploration geophysics we study the seismic reservoir

response to infer these fluid or gas properties in the pore space. In rock physics, sev-

eral theories and mechanisms describe the rock-fluid interactions that influence the seismic

signature. However, compared to sandstones, carbonate rocks have few laboratory measure-

ments and valid models to describe them. The complexity and variety of carbonate rock

textures is the main reason that these rocks have not been intensely studied from the rock

physics perspective. Figure 1.1 shows the classification of carbonate porosity by Choquette

and Pray (1970). Primary fabric in the rock is created at different energy environments

in the sedimentary carbonate platform; while the secondary fabric results from following

dissolution and recrystallization processes (i.e. diagenesis) of the original rocks. Therefore,

measuring, interpreting and generalizing elastic carbonate rock properties is challenging and

not well understood in some areas of rock physics. To put this in perspective, for example,

in a reservoir we can have a carbonate rock with a frame composed of deposited particles

(interparticle porosity in Figure 1.1, pink is pore space) and the same rock but that has

been altered during burial for which the original particles have been dissolved: what used

to be the particle frame is now the pore space (moldic porosity in Figure 1.1, black is pore

space), while the original pores recrystallize into the rock frame. The elastic properties

of these two rocks, originally the same, can be very different and thus the need to study

carbonate geophysical properties in controlled laboratory settings.

The linear response of the strain (i.e. deformation) to an applied stress (i.e. pressure)

with no chronological memory is called linear elasticity. Rock properties are linearly elastic

when the strain response to an applied stress is small (< 10−6). A propagating seismic wave

produces a stress variation small enough that rocks behave linearly elastic. Nonetheless,

rocks can have a strain memory or time dependent relaxation. This irreversible behaviour,

known as linear visco-elasticity, means there is energy dissipation when the rock is deformed.

A rock behaves as a visco-elastic material if the modulus or velocity are complex. The real
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Figure 1.1. Carbonate porosity classification by Choquette and Pray (1970) showing the
complexity of carbonate textures. Primary fabric is created from deposition, while sec-
ondary fabric results from diagenetic processes. (Modified from Moore (2001))

part of this modulus describes the elastic behaviour, while the imaginary component controls

visco-elasticity. Rock physics models are used to predict changes in the moduli under varying

fluid and pressure conditions, among other reservoir parameters. The increase or decrease

of the elastic bulk modulus due to fluid change in the pore space is routinely studied

by applying Gassmann’s equation; while the commonly applied theories for saturated rocks

behaving as visco-elastic materials are Global or Squirt fluid flow mechanisms. Rock physics

models also exist to describe anisotropic velocity in rocks, but in this thesis we assume that

the studied rocks are isotropic.

Controlled laboratory experiments on rock samples are used to test rock-physics mech-

anisms and theories. Most rock properties measured in the laboratory are acquired at KHz

or MHz frequencies, significantly higher than seismic frequencies. The Rock Physics Lab

at Colorado School of Mines has a unique system capable of measuring elastic and visco-

elastic rock moduli in the seismic frequency range (3-1000 Hz), as well as the more common

ultrasonic frequency. A significant part of this thesis focuses on studying the carbonate

rock moduli at different frequencies, and the impact of this frequency dependence when

experimental data is included in the large picture of reservoir characterization. Gassmann’s

relation is customarily used in industry and academia to model the bulk modulus change

with fluid from seismic, log (KHz) or laboratory data (KHz and MHz). However, this

relation is derived for low frequency; zero frequency to be specific. chapter 2 analyzes

the applicability of Gassmann’s equation to this particular set of carbonate samples. This

research is performed with an emphasis in understanding the role of frequency, and the

validity of the assumptions in Gassmann in the context of fluid and pressure.
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Chapter 3 studies the experimental visco-elastic moduli for fully-saturated carbonates.

If the rock modulus is frequency dependent, then there are intrinsic amplitude losses (atten-

uation) for that particular modulus. This chapter analyzes the different types of intrinsic

losses in the rock which can be used to interpret the saturation state of a rock.

As previously mentioned, in the laboratory we could record a different frequency re-

sponse of the modulus (frequency scaling). However, there is also the issue of heterogeneity

and sample size scale. In chapter 4 we briefly analyze how these scaling factors influence the

experimentally estimated elastic parameters for this carbonate set. The measured seismic

rock moduli can be biased by sample heterogeneity, such as large vugs (> 5 mm) in carbon-

ate samples. In chapter 5 we develop and test a fiber-optic strainmeter system that would

potentially average such heterogeneity at the core scale. The strainmeter is more sensitive

that the current seismic frequency sensors when estimating the elastic and visco-elastic

properties of rocks.

Routinely, laboratory data is used to forward model logs or the seismic response to

study the feasibility of monitoring a dynamic reservoir with geophysical methods (e.g. pro-

duction, enhanced oil recovery, CO2 sequestration). Over a period of time (time-lapse)

fluids in the reservoir change, varying the elastic and visco-elastic moduli in the rock. An

unexplored topic in reservoir characterization is time-lapse attenuation. In seismic data or

full-waveform sonic logs the preferential loss of amplitude with frequencies is referred to

as apparent or effective attenuation. This attenuation is the combination of intrinsic and

scattering loss. In chapter 6 we explore the feasibility of obtaining information about the

fluid change in the reservoir by studying the time-lapse change in apparent attenuation

from synthetic zero-offset VSP and surface seismic. The main idea is to analyze ways to

cancel the contribution of scattering losses on the apparent attenuation by studying time-

lapse data. By doing so, time-lapse changes in apparent attenuation are only related to the

intrinsic losses of the rock: the fluid signature. Here the thesis comes full circle, because

the experimental elastic and visco-elastic moduli are used as the model parameters to gen-

erate synthetic seismic data. For that we assume that the core-scale properties measured

in the laboratory represent the elastic and visco-elastic modulus and velocity in the in-situ

reservoir rocks.

I refer to work presented in this thesis in first person plural (we) because each chapter is

the result of discussions and collaborations by several people involved in this research. The

outcome of the chapters are papers or abstracts with the following co-authors: chapter 2 is

published in Geophysics, co-authored by Michael Batzle (Colorado School of Mines) and Ivar

Brevik (StatoilHydro), chapter 3 is accepted for publication in the Journal of Geophysical

Research, Solid Earth, co-authored by Michael Batzle, Kyle Lewallen (ExxonMobil URC)

and Kasper van Wijk (Boise State University), chapter 4 is published in The Leading Edge,

co-authored by Michael Batzle (Colorado School of Mines), chapter 5 is published as an

SEG Expanded Abstract, co-authored by John Scales and Michael Batzle (Colorado School

of Mines), and Tim Niebauer (Micro-g LaCoste). And chapter 6 will be submitted to
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Geophysics, co-authored by Michael Batzle (Colorado School of Mines) and Kasper van

Wijk (Boise State University).
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CHAPTER 2

GASSMANN FLUID SUBSTITUTION AND SHEAR MODULUS

VARIABILITY IN CARBONATES AT LABORATORY SEISMIC AND

ULTRASONIC FREQUENCIES

2.1 Introduction

An important area of research for carbonate rocks is the fluid substitution effect on

elastic moduli and velocities. One of the widely used relations to estimate the effect of

fluids on bulk modulus is Gassmann’s fluid substitution theory (Gassmann, 1951), which we

will examine in the following section. Laboratory measurements on carbonates have been

performed at ultrasonic frequencies (∼0.8 MHz) to estimate the validity of Gassmann’s

equations for limestones and dolomites (Wang, 2000; Wang et al., 1991; Marion and Jizba,

1997; Baechle et al., 2005; Røgen et al., 2005; Capello and Batzle, 1997; Capello, 1995).

In most cases Gassmann’s predictions under-estimate the observed ultrasonic velocities for

either oil or brine saturated samples, although for some samples Gassmann theory over-

estimates the measured velocities (Wang, 2000; Baechle et al., 2005; Røgen et al., 2005).

Presently, the applicability of Gassmann’s equation to carbonate rocks is unresolved.

With our work we hope to make inferences about the uncertainties and interpretation on

the applicability of Gassmann’s equation. Our work focuses on understanding Gassmann’s

fluid substitution theory at seismic and ultrasonic frequencies. We also analyze the validity

of some of the assumptions for Gassmann’s theory, especially rock frame sensitivity to

fluids. Our carbonate samples consist of different fabrics, mineralogies, porosities, and

permeabilities, still we must be careful in generalizing our results to all carbonate reservoirs.

First, we present Gassmann’s theory and its assumptions. Second, we describe the

laboratory acquisition, processing, and data uncertainty analysis at seismic and ultrasonic

frequency. Then, we introduce shear modulus variability with fluid substitution and the

possible mechanisms that could explain these changes. And finally we compare our measured

bulk modulus to Gassmann’s predictions for these carbonate rocks.

2.2 Gassmann’s equation

Gassmann’s fluid substitution relation is commonly applied to predict the bulk mod-

ulus for the saturated rock with different fluids:
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Ksat = Kdry +

(

1 −
Kdry

Kmin

)2

φ
Kfl

+ 1−φ
Kmin

−
Kdry

K2

min

. (2.1)

Gassmann’s equation (2.1) estimates the saturated bulk modulus (Ksat) through the bulk

modulus of the forming minerals (Kmin), the bulk modulus of the frame or dry rock (Kdry),

the bulk modulus of the fluid (Kfl) and the rock porosity (φ) (Gassmann, 1951). Note that

in Gassmann’s relation the considered property of the fluid in the rock is only the fluid bulk

modulus.

Gassmann’s derivation is based on the following assumptions for a porous system: 1)

Pore pressure is in equilibrium between pores. This can be achieved at very low frequencies,

usually at seismic frequencies or lower, where the fluid has enough time to reach relaxation

or equilibrium. However, the relaxation time depends also on fluid viscosity and density, and

rock permeability. 2) The porous frame consists of a single solid material (monomineralic).

3) Pores are in flow communication and homogeneously fully-filled with a non-viscous fluid.

4) The system is closed (undrained). 5) The pore fluid does not chemically influence the

solid frame. Although implied, a constant rock shear modulus from dry to any fluid type

saturation is not an assumption but an outcome of Gassmann’s theory (Berryman, 1999).

The beauty of Equation (2.1) is its simplicity as well as the fact that variables have

physical significance and are usually well constrained or can be directly measured. Other

fluid substitution theories require the knowledge of such factors as symmetry of the rock,

the geometry of the inclusions and the crack density among others. For example, in the

low frequency limit, where no pore pressure gradients exist, Brown and Korringa (1975)

relate the anisotropic rock effective elastic compliance tensor to the same rock filled with

fluid, and for an isotropic and monomineralic rock their relations reduce to Gassmann’s

equation. For this fluid substitution theory knowledge of the anisotropic symmetry and

pore space compressibility are required. Other fluid substitution theories mostly assume

isolated inclusions and their geometries in the derivation of the equations. Isolated cavities

should then also be isolated with respect to fluid flow (presence of pore pressure gradients).

Therefore, theories that assume isolated inclusions (Kuster and Toksoz, 1974; O’Connell

and Budiansky, 1974; Hudson, 1981) may be more applicable to the high frequency range

and require knowledge of parameters related to pore space.

2.3 Carbonate samples

Our carbonates are from two wells in a single reservoir with depths between 2915 and

3180 m below sea level. The reservoir has lagoon, ramp and shoal depositional environments.

These different depositional systems create different textures, porosities and permeabilities

(Figure 2.1). Some reservoir regions have been dolomitized. Dolomitization is evident from

high porosity and high permeability, because dissolved grains or fossils become pore space,
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Figure 2.1. Thin sections for some of our carbonate samples. Pink represents calcite, gray
dolomite, white anhydrite and blue pore space.

increasing the connectivity between pores, thus increasing permeability. The reservoir is not

fractured and has little clay minerals, but does have minor anhydrite (Brevik, 2004). The

available samples are nine carbonates with varying porosity (5-35%), permeability (0.001-

800 mD), mineralogy (dolomite and limestone), and texture. The samples are either almost

pure calcite or dolomite (95% total volume) with less than 3% clays and 5% anhydrite

of total volume. Samples with large anisotropy or vuggy pores are avoided, because any

heterogeneity of the size of the strain-gage ( ∼ 0.5 cm) can bias the elastic modulus of

the rock. Table 2.1 summarizes the petrological data for our samples. Porosity and perme-

ability are measured using standard helium porosimetry and air permeability equipment at

atmospheric pressure. Permeability values are corrected for Klinkenberg gas slippage. The

samples are cylindrical, 3.75 cm in diameter and 3.75 to 5 cm in length.

Velocity and elastic modulus data are acquired at nine pressure points. Confining

pressure varies from 3.5 to 34.5 MPa while pore pressure is held constant at 3.5 MPa, thus

reaching a maximum differential pressure of 31 MPa. The low frequency system in the

laboratory is pressurized with nitrogen gas, but for safety reasons the system is not able

to reach the reservoir differential pressure (34.5 MPa). Samples are measured dry, under

butane (C4H10), and brine (200,000 ppm NaCl) saturations. Butane at 3.5 MPa is in liquid

state. Samples are measured with some amount of moisture because even less than 1%

of water can reduce the bulk and shear moduli significantly (Clark et al., 1980). Because

samples show sensitivity to water, several are kept in a high-humidity chamber to provide

an initial brine saturation (less than 1%). Samples A, C, E, F and G are humidified previous
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SAMPLES A B C D E F G H I

φ (%) 1.6 4.6 21.0 24.9 28.5 34 23.6 29.6 34.7

κ (mD) 0.03 0.03 5.50 1.20 0.43 0.31 25.00 103.00 432.00

Dg (gm/cm3) 2.73 2.84 2.70 2.71 2.70 2.69 2.84 2.80 2.86

Calcite(%) 83.0 0.7 76.0 99.6 - 97.0 - - 0.4

Dolomite(%) 11.0 97.0 21.0 0.0 - 0.0 - - 93.0

Anhydrite (%) 0.5 0.5 0.0 0.0 - 0.7 - - 4.9

Phy (%) 3.4 0.8 2.4 0.0 - 2.3 - - 1.1

Quartz(%) 0.6 0.6 1.2 0.4 - 0.2 - - 0.8

Feldspar (%) 2.0 0.0 0.0 0.0 - 0.0 - - 0.0

Kmin (GPa) 70.70 78.96 71.59 71.26 71.59 70.35 85.00 78.96 77.67

Texture wacke mud grain grain grain bound pack wacke mud

Table 2.1. Petrological data for the carbonate set. Mineralogy was obtained from XRD
analysis and are reported in percent per volume (samples E, G and H had no XRD analysis).
φ is porosity and κ permeability. Dg stands for grain density and K is bulk modulus.
Mineral bulk modulus is computed using Voigt-Reuss-Hill average. Texture follows modified
Dunham’s carbonate classification (Moore, 2001): mud = mudstone, wacke = wackestone,
pack = packstone, grain = grainstone and bound = boundstone. Phy is phyllosilicate.

to measurements, thus dry for these samples means humidified. Samples B, D, H and I are

measured at room conditions (30 % humidity). Samples are coated with a thin impermeable

polyimide film (kapton), over which strain gages are glued to measure rock deformations

at seismic frequencies. This film keeps the moisture inside the rock and prevents nitrogen

diffusion.

2.4 Data example: acquisition and processing

Samples are measured at low (seismic: 3-3000 Hz) and ultrasonic frequencies (∼0.8 MHz),

although sample G is measured at ultrasonic frequencies only. Seismic frequency moduli

and velocities are derived from the strain-stress method (Spencer, 1981; Batzle et al., 2001).

Appendix A describes the methodology to estimate modulus and velocity. As an example

of the estimated bulk modulus over the entire frequency range, we show results for sample

H in Figure 2.2. The computation of the error bars and the linear fit are also discussed in

Appendix A.

Observe that the rock bulk modulus increases with saturating fluid. However, the

change in rock bulk modulus from dry to butane saturated is small compared to when

the rock is saturated with brine. This is because butane has a lower fluid bulk modulus

than brine. Figure 2.2 also shows bulk modulus dispersion (higher frequencies have larger

modulus). Several theories exist to explain the nature of this dispersion. A primary cause for

dispersion can be pore pressure disequilibrium caused by non-zero pore pressure gradients.
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Figure 2.2. Seismic and ultrasonic frequency bulk modulus least-squares estimates (solid
lines) and measured data for sample H at 31 MPa. Observe the modulus dispersion for
different fluid. Error bars are two standard deviations of the estimated bulk modulus.

This unrelaxed pressure is described by several mechanisms: grain-fluid inertial and viscous

coupling (Biot, 1956a), patchy saturation (White, 1975; Dutta and Ode, 1979) and squirt

or local fluid flow (Mavko and Jizba, 1991), among others. Our goal here is not to decide

which of frequency dependent modulus or velocity theories are causing the dispersion. We

do want to point out differences in modulus estimates as a result of the dispersion from

seismic to ultrasonic frequencies. As previously mentioned, Gassmann’s theory is the low

frequency limit, meaning that this theory may not be suitable to predict ultrasonic data

because of possible dispersion in the elastic moduli and velocities. Wang (1997), Marion and

Jizba (1997), Baechle et al. (2005) and Røgen et al. (2005) have shown how in most cases

Gassmann’s theory under-predicts ultrasonic frequency measurements. Pore pressure can

equilibrate if there is enough time for the fluids to relax. This means there is a characteristic

frequency fc of the rock perturbation. For measurements acquired at a frequency less than

fc the pore pressure has reached equilibrium, while for higher frequencies than the fc, pore

fluids are not equilibrated, producing higher values for modulus and velocity.

Differential pressure also controls the modulus dispersion of a rock. At low differen-

tial pressures where compliant pores or cracks are open, pore pressure disequilibrium is

more likely to occur. Wang (2000) shows in a compilation of ultrasonic laboratory data of

carbonate samples, that Gassmann’s theory substantially (up to 30%) under-predicts the

measured velocities at low differential pressures. At high differential pressures, compliant

pores close, and Gassmann’s theory predicts the measured data within 10%.

Carbonates are heterogeneous and vugs or moldic structures can have comparable

length to the ultrasonic wavelength (0.5 cm for a wave at 0.8 MHz and with a velocity

of 4500 m/s). Some of our samples showed inclusions of different densities or voids with

dimensions on the order of ultrasonic wavelengths. Therefore scattering of ultrasonic waves
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is possible in carbonate samples, especially in dry rocks where the density contrast between

voids and matrix is large. When scattered, the wave loses energy to multiple reflections

from grains mostly resulting in lower moduli and velocities at higher frequencies. The larger

modulus contrast will be for air-grain and butane-grain interfaces.

2.4.1 Poisson’s ratio: a correction

Samples B, F and I show higher values of Poisson’s ratio at low frequency than expected

in carbonates. Rock heterogeneity is probably not the cause, since placing the strain gages

on large heterogeneities (visible to the eye) on measured core plugs are avoided. The

observed larger deformations of the sample in the horizontal direction probably result from

end effects in our stress-strain system. This large deformation or bulging can result from

the combination of intrinsically large Poisson’s ratios in carbonates (> 0.25) and short

samples (our sample length is close to its diameter). This bulging has been confirmed

with preliminary finite element modeling at our laboratory. Poisson’s ratio depends on the

VP /VS , but because the dispersion in VP and VS are similar for our samples the resulting

dispersion in Poisson’s ratio is negligible, making it possible to correct the low frequency

data with the estimates we obtain from ultrasonic data. Domenico (1984), Anselmetti

and Eberli (1993), Mavko et al. (1998), Assefa et al. (2003), and Han (2004, Fluids and

DHI Consortia Meeting Report) measured carbonate samples ultrasonically and derived

empirical relations for VP and VS . We use their relations to compute Poisson’s ratio for

water/brine saturated carbonates and compare their values to our samples Poisson’s ratio

measured at ultrasonic frequencies (Figure 2.3). Agreement between modeled Poisson’s

ratio and our measurements lets us use the ultrasonic values to correct the Poisson’s low

frequency data. The correction consists of multiplying the seismic frequency Poisson’s ratio

by a factor less than one. This factor is obtained from the ratio of the ultrasonic and the

biased seismic frequency Poisson’s ratios.

2.5 Variations in shear modulus

Fluids have a shear modulus of zero, so we expect that the dry or fluid saturated rock

shear modulus to be constant (true for many rocks that are isotropic and homogeneous).

Together with the assumption in Gassmann’s theory that pore fluids do not chemically alter

the mechanical properties of a rock, Gassmann’s theory predicts that the shear modulus

remains constant under different saturations. Thus, a measure of the shear modulus is one

way to validate Gassmann’s theory.

However, our carbonate samples show rock shear modulus changes from dry to brine

saturation of up to 20%. Several laboratory studies have also reported shear modulus

changes between 5 % and 20 % from dry to water or brine saturation in carbonates (Vo-

Thanh, 1995; Assefa et al., 2003; Baechle et al., 2005; Røgen et al., 2005; Sharma et al.,

2006). The shear modulus of the rock is also sensitive to small amounts of moisture (Clark
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Figure 2.3. Modeled Poisson’s ratio from empirical relations from ultrasonic data for carbon-
ate rocks saturated with water/brine. Squares and circles are the Poisson’s ratio obtained
from our measurements at ultrasonic frequencies. This plot shows that our values of Pois-
son’s ratio are in agreement with the empirical equations. Therefore, we use the ultrasonic
Poisson’s value to correct the low frequency data for three of our samples (B, F and I)
represented by circles.

et al., 1980). They show that this weakening of the matrix is related to the amount of

surface area in rocks.

Rock weakening resulting from fluids has also been observed in field data. Water

weakening the rock frame in carbonates is invoked as a primary factor controlling subsidence

of the Ekofisk field. Sylte et al. (1999) show that compaction of Ekofisk chalks occurs only in

chalks that are being water flooded. High porosity chalks that have original water content

(pre-water flooding) are not compacting and behave elastically throughout the lifetime of the

field. They conclude that the injected water weakens invaded chalks resulting in compaction

and porosity loss. In their study they compare observation to geo-mechanical models, but

do not give the physical-chemical mechanisms that could be producing this weakening.

Khazanehdari and Sothcott (2003) compile rock-fluid interactions that explain the rock

shear modulus (µ) variability with fluids. They define rock weakening when µsaturated <

µdry, and strengthening for µsaturated > µdry. Cardona et al. (2001); Cardona (2002),

based on work from Brown and Korringa (1975), show that for transversely isotropic with

a horizontal symmetry axis rocks, the vertically propagating shear waves are sensitive to

the compressibility of the saturating fluid. However, our rocks are largely isotropic at the

core scale, although they might be anisotropic at field scale. Therefore, in our work we will

focus on the rock-fluid interactions that are responsible for rock shear modulus changes.
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Figure 2.4. Sample C showing shear modulus weakening and strengthening at seismic
and ultrasonic frequencies respectively. Measurements are performed from high to low
differential pressures. Circles represent repeated differential pressures going from low to
high differential pressures after the initial unloading cycle was finalized. Note that as we
decrease the differential pressure more compliant pores and cracks open. Error bars are
one standard deviation (one σ for seismic frequency data are contained in the size of the
symbol).

2.5.1 Data examples of shear modulus sensitivity to fluids and possible

explanations

Figure 2.4 shows the rock shear modulus for sample C at seismic and ultrasonic fre-

quencies when dry and brine saturated. Error bars represent one standard deviation of the

shear modulus. Two main observations are to be drawn from Figure 2.4. First, the rock

shear modulus can either weaken or strengthen upon brine fluid saturation compared to

the dry rock. At 100 Hz we observe shear modulus weakening from dry to wet, while for

0.8 MHz data the shear modulus strengthens when brine fills the pore space. This implies

that more than one rock-fluid mechanism is active.

Second, for the 100 Hz frequency measurements, the shear modulus weakens more for

low than for high differential pressures. Our measurements are performed going from high

to low differential pressures (unloading cycle). After the experiment with brine saturation

reached 3.5 MPa, we increased differential pressure again for three pressure stages (circles

in Figure 2.4). Observe that the rock shear modulus sensitivity to brine saturation for both

100 Hz and 0.8 MHz is repeatable; thus, the shear modulus weakening is not affected by

hysteresis. This reversible weakening or strengthening of the frame is likely associated with

opening and closing of compliant pores or micro-cracks. Some of these cracks are intrinsic

to the rock, while others might have been induced while drilling or coring. Other samples

with significant shear modulus weakening show similar pressure dependence as sample C.

Figure 2.5 compares the dry and brine saturated rock shear modulus for all samples for
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100 Hz at 3.5 and 31 MPa differential pressure. The solid line indicates equal dry and brine

saturated shear modulus. Most samples have a rock shear modulus around 10 MPa. This

cluster of data correspond to samples with high porosity (24-35%), while the low porosity

samples have shear modulus larger than 15 MPa. The error bars of the shear modulus

(one standard deviation) are within the size of the marker. Observe that at low differential

pressures (3.5 MPa) all samples show shear modulus weakening, while at higher pressures

(31 MPa) shear weakening is still present but less significantly than for low pressure (see

also Figure 2.4).

Most samples at ultrasonic frequency and at both 3.5 and 31 MPa differential pressure

show neither weakening or strengthening of the rock shear modulus within the data uncer-

tainty (Figure 2.6). Weakening is observed in samples B and D, but less than for seismic

frequency (Figure 2.5).

When we compare Figures 2.5 and 2.6, the shear modulus for brine saturated rock at

ultrasonic frequency is greater than for seismic frequency. This strengthening can be due

to modulus dispersion as a result, for example, of global and squirt fluid flow in the pore

space. However, for samples B and D the chemical softening of the rock can be dominating

over modulus dispersion. Alternatively, our ultrasonic wave velocity represent the fastest

path (stiffest area in the rock). If the chemical weakening is occurring in an isolated area

of the sample, the stress-strain experiment measures the effective rock deformation (frame

softening), while the ultrasonic wave will avoid this area and propagate in the unperturbed

rock.

We also saturated the carbonate rocks with butane, a highly compressible light hydro-

carbon (in liquid phase at our elevated pore pressures). The sensitivity of the rock shear

modulus to this fluid is much less than for brine (Figure 2.7).

We can now examine what are the possible weakening and strengthening mechanisms

acting on our carbonate rocks based on work of Khazanehdari and Sothcott (2003). They

compile several mechanisms that can cause the shear modulus to either weaken or strengthen

when a fluid contacts the solid matrix.

Pores and micro-fractures create surface area in a rock. Surface energy reduction

(Murphy et al., 1986; Tutuncu and Sharma, 1992) and sub-critical crack growth (Atkinson,

1984) mechanisms relate to the amount of surface area in a porous rock. Compliant pores

and micro-fractures are observed in our samples from thin sections. We also know from

modulus as a function of differential pressure that compliant pores and micro-fractures

open, increasing the surface area, as the differential pressure decreases (Figure 2.4). For

our samples open low aspect ratio pores might exhibit growth as well as breakage of solid

bounds due to interaction with brine. These two mechanisms acting on our carbonate

samples are consistent with the fact that a non-polar fluid, such as butane, saturating

the rock does not show significant shear modulus variation (Figure 2.7). Another rock-fluid

mechanism such as viscous-coupling (Bourbié et al., 1987) is probably not the cause of shear

modulus variability in carbonates because the sensitivity to brine is large while it is not
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Figure 2.5. Shear modulus weakening in carbonates samples resulting from dry to brine
saturation at seismic frequency (100 Hz) for differential pressures of 3.5 and 31 MPa. Error
bars, representing one standard deviation, are within the size of the marker for most samples.
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Figure 2.6. Carbonate samples showing that the shear modulus remains almost constant
from dry to brine saturation at ultrasonic frequency for differential pressures of 3.5 and
31 MPa. Error bars, representing one standard deviation, are within the size of the marker
for most samples.
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Figure 2.7. Carbonate samples showing little shear modulus weakening and strengthening
resulting from dry to butane saturation compared to the dry-brine saturation case. Both
plots are at a differential pressure of 3.5 MPa for seismic and ultrasonic frequencies. Error
bars, representing one standard deviation, are within the marker size for most samples.
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significant for liquid butane, with both fluids having similar and low viscosities (0.2 cP for

liquid butane and 1 cP for brine). Dissolution of carbonate minerals could also be occurring.

Dissolution of calcite and dolomite minerals depend on the pH of the fluid, temperature,

and the reaction order of the cations (Ca, Mg, Ba) which control the dissolution rate of

carbonate minerals (Chou et al., 1989).

By acquiring data at seismic and ultrasonic frequencies we observe evidence of at least

three mechanisms for which the shear modulus weakens (surface energy reduction and crack

growth) or strengthens (modulus dispersion). Changes in shear modulus could be observed

from seismic time-lapse data, especially in the presence of compliant pores and polar fluids

such as water. When injecting water into an oil reservoir, the nature of this polar fluid,

its viscosity, pressure, temperature, etc. will likely interact with the rock solid phases

creating weakening or strengthening on the shear modulus (and maybe in some cases the

bulk modulus) compared to the original fluid saturation.

Also, when logging data are available in a field, the analysis has to consider that

modulus dispersion can be significant and should be taken with care if compared to seismic

data. Log data will fall in between our measured frequency ranges (∼ 10 KHz). Having

knowledge of the characteristic frequency (fc) might help the interpretation of log data. The

fc separates the behavior for relaxed and unrelaxed fluids. If flog < fc and we have compliant

pores, we could observe weakening of the shear modulus upon water saturation. On the

other hand, if the flog > fc, strengthening of the shear modulus might be observed. Sharma

et al. (2006) compile results for the shear modulus change from dry to water saturation

from several authors. In this study, the shear modulus strengthens at ultrasonic frequencies

and weakens for sonic frequencies(∼ 10 KHz) for data by Lucet (1989). This observation

is in agreement with our observations on shear modulus change from seismic to ultrasonic

frequencies.

2.6 Gassmann’s fluid substitution

We introduced Gassmann’s theory with its assumptions, and in this section we com-

pare and analyze the computed saturated bulk modulus using Gassmann’s theory to the

measured rock bulk modulus. Our experimental setting for seismic frequency data acquisi-

tion let us acquire data when the fluid is at equilibrium. The pore pressure is held constant

thus the fluid modulus is 0.5 GPa for butane, and 3.4 GPa for brine.

Figure 2.8 compares bulk modulus calculated using Gassmann theory to the measured

modulus for butane saturated carbonates at frequencies: 100 Hz and 0.8 MHz, and at differ-

ential pressure of 31 MPa. The solid line represents the case where the butane-substituted

modulus predicted by Gassmann’s theory and measured bulk modulus are equal. Error bars

represent one standard deviation for the bulk modulus. Gassmann’s theory is correctly pre-

dicting the observed butane saturated modulus for our carbonate samples, partly because

the influence of butane on the rock bulk modulus is not large. Butane is a highly compress-
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ible fluid, thus, the fluid influence on rock compressibility is not significantly different from

the dry rock (see Figure 2.2).

For brine saturation, Gassmann-calculated and measured bulk modulus at 100 Hz and

0.8 MHz, and at differential pressures of 3.5 and 35 MPa are compared in Figures 2.9

and 2.10 respectively. The solid line represents the case where the fluid-substituted and

measured moduli are equal. Error bars represent one standard deviation for the bulk mod-

ulus. Observe that some samples match the predictions well, while others do not.

In Figure 2.9 at a frequency of 100 Hz, none of the predictions fit the observed bulk

modulus within the associate uncertainty, while at 0.8 MHz, for the same differential pres-

sure of 3.5 MPa, the fit to the predicted bulk modulus is better. At low differential pressure

and at 100 Hz, the bulk modulus for all of the samples but F is over-predicted by Gassmann’s

theory. We observe shear modulus weakening for all samples (and the least for sample F,

Figure 2.5), therefore if the rock frame has weakened in the presence of brine so could the

bulk modulus, a factor not accounted for Gassmann’s theory. Therefore the over-prediction

of the bulk modulus by Gassmann’s theory at low differential pressure is probably because

the rock frame has been altered (softened).

The bulk modulus is under-predicted for 100 Hz, yet it is well predicted at 0.8 MHz

(Figure 2.9). This is largely a result of modulus dispersion. Gassmann’s theory estimates

the saturated modulus for low frequencies. Gassmann’s theory uses the bulk modulus of

the dry rock, which is not dispersive, to predict the saturated rock modulus. However,

modulus dispersion exists in most of our brine saturated carbonates (see Figure 2.2). This

bulk modulus dispersion is evidenced in the shifting of data points in Figure 2.9 as the

frequency increases from 100 Hz to 0.8 MHz. The bulk modulus shift occurs parallel to

the x-axis (measured saturated bulk modulus). This bulk modulus dispersion at ultrasonic

frequency can lead to errors when comparing ultrasonic to seismic data. Thus, a better fit

at ultrasonic frequency might be somewhat of a paradox on Gassmann’s theory applicability

on carbonates.

At a differential pressure of 31 MPa (Figure 2.10), the 100 Hz data show that the bulk

modulus of four brine saturated carbonates (B, E, I and H) is predicted well by Gassmann’s

theory. The bulk modulus for samples A and C are largely over-predicted by Gassmann’s

theory. Samples A and C have the highest content of non-calcareous minerals, especially

clay. We ignore that softening of clays is a possible mechanism for elastic moduli weakening

for most of our samples. However, that KMeasured is significantly less than KGassmann for

samples A and C. These two samples have some clay content in the pore space, and thus

the decrease in bulk modulus can result from water softening the pore space and clays of

these carbonates.

We focus now on data at 100 Hz, where frequencies are low enough that we expect

the fluid pressures gradients are zero as Gassmann’s theory requires. Still, at high differen-

tial pressure, we observe that some samples are well predicted by Gassmann’s theory while

others not. So where can this difference come from? On one hand, we have observed rock
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Figure 2.8. Butane saturated bulk modulus measured and estimated with Gassmann’s
theory for 100 Hz and 0.8 MHz at 31 MPa differential pressure. Solid line represents equal
measured and estimated bulk modulus. Error bars are one standard deviation of the bulk
modulus.
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Figure 2.9. Brine saturated bulk modulus measured and estimated with Gassmann’s the-
ory for 100 Hz and 0.8 MHz at 3.5 MPa differential pressure. Solid line represents equal
measured and estimated bulk modulus. Error bars are one standard deviation of the bulk
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21

10 20 30 40 50 60 70
10

20

30

40

50

60

70

K measured (GPa)

K
 c

al
cu

la
te

d 
− 

G
as

sm
an

n 
(G

P
a)

Brine: 100 Hz 

A
B
C
D
E
F
H
I

10 20 30 40 50 60 70
10

20

30

40

50

60

70

K measured (GPa)

K
 c

al
cu

la
te

d 
− 

G
as

sm
an

n 
(G

P
a)

Brine: 0.8 MHz 

A
B
C
D
E
F
H
I
G

Figure 2.10. Brine saturated bulk modulus measured and estimated with Gassmann’s theory
for 100 Hz and 0.8 MHz at 31 MPa differential pressure. Solid line represents equal measured
and estimated bulk modulus. Error bars are one standard deviation of the bulk modulus.
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Figure 2.11. Bulk modulus for carbonates with brine saturation as a function of differential
pressure (P 1/3) for 100 Hz.

shear modulus sensitivity to brine saturation. On the other hand, for low differential pres-

sures we expect to have open compliant pores or cracks. Gassmann’s equations are derived

without assuming any specific pore geometry, and can be applied to any pore type as long

as the assumptions for Gassmann’s theory are satisfied, i.e. pore pressure is in equilib-

rium. The mismatch between observed and Gassmann predicted bulk modulus could relate

to differences in pore type creating pressure gradients or chemical reactions which violate

Gassmann’s assumptions. Therefore, samples yielding better predictions by Gassmann’s

theory might be explained through the dependence of bulk modulus with differential pres-

sure. Figure 2.11 plots the bulk modulus of brine saturated carbonates as a function of

differential pressure. The anomalous behavior of sample D at 20.7 MPa is due to a small

gas leak into the rock when the sample was saturated with brine. This dramatically lowered

the bulk modulus of samples D at low frequencies for pressures lower than 20.7 MPa. In

Figure 2.11 we observe a consistent linear behavior of bulk modulus with differential pres-

sure from Hertz-Mindlin model: K = mP 1/3 (Mavko et al., 1998), still the slopes (m) of

the linear trends are different for different rocks. Higher slopes mean larger dependence on

differential pressure, indicating the existence of compliant pores or micro-cracks. Table 2.2

compares Gassmann’s predictability, shear modulus weakening, mineralogy, and pressure

effect on all samples at 100Hz. Gassmann’s predictability and shear modulus weakening

are reported for the highest differential pressure reached at 31 MPa. The pressure effect is

measured by the slope of the linear dependence (m) of the bulk modulus (Figure 2.11).
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SAMPLES A B C D E F H I

GASSMANN’S THEORY FITS X X X X

SHEAR MODULUS WEAKENING X X X

BULK MODULUS VS. PRESSURE (m) 11.8 5.6 7.9 11.2 5.2 5.4 4.5 3.2

MINERALOGY C D C C C C D D

Table 2.2. Gassmann’s theory applicability correlated with shear modulus weakening and
bulk modulus dependence with pressure (slopes of Figure 2.11). Gassmann and shear mod-
ulus analysis corresponds to 100 Hz at a differential pressure of 31 MPa. X means the
statement is true. Dominant mineralogy: C= calcite, D=dolomite. Note correspondence of
good Gassmann’s theory fit with low pressure dependence (m).

There seems to be no correlation between the shear modulus weakening and the ob-

served match between measured and computed bulk modulus for brine saturated carbonates

at high differential pressure (Table 2.2). For example, both B and D samples show signif-

icant shear modulus weakening at 31 MPa differential pressure, still sample B is well pre-

dicted by Gassmann’s theory while sample D is not. It might seem confusing that although

Gassmann’s assumption that the rock frame stays unaltered by the fluid is violated for

some samples, the measured brine saturated bulk modulus is well predicted by Gassmann’s

theory for these samples. A likely reason for this is because the increase in bulk modulus

in absolute percent from dry to brine saturation (35% in average) is more significant than

the shear modulus weakening in absolute percent (6% in average).

Examining the pressure dependence, the saturated bulk modulus for samples with

lower slopes (B, E, H and I) is well predicted by Gassmann’s theory. Low slopes mean

the sample has less compliant pores or cracks. Samples A, C and D have high slopes, and

Gassmann’s theory is not predicting the observed saturated bulk modulus. Sample F has

an intermediate slope, but the saturated bulk modulus is not well predicted by Gassmann’s

theory. For sample F the bulk modulus as a function of pressure is less smooth than

for other samples, leading to a higher variance in the slope calculation. As previously

mentioned, our experimental setup could not quite reach the differential pressure of the

reservoir at 34.5 MPa. This could result in some compliant pores still being open at these

pressures. From this we conclude that open compliant pores are a possible factor affecting

the mismatch between observed and predicted bulk modulus. Samples B, H and I are

dolomites, but we do not have enough statistical data to make correlations with rock grain

density. Nevertheless, these dolomite samples have high porosity and permeability probably

satisfying Gassmann’s assumption on pore connectivity and fluid distribution in the porous

space.

From our observations, carbonates with round pores, small vugs or micritic textures

are well predicted by Gassmann’s theory for low frequencies. Even at reservoir pressures,

open compliant pores or cracks might be present at reservoir in-situ conditions. In this
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case an anisotropic fluid substitution theory, such as that of Brown and Korringa (1975)

is perhaps more appropriate. However, knowledge of the anisotropic symmetry with all

of the stiffness coefficients of the rock and the pore space compressibility are required for

this theory. Using additional parameters might allow one to fit the data better, but the

estimated parameter could not be realistic or representative of the rock.

2.7 Conclusions

We present data over a large range of frequency and under varying saturation and

pressure conditions to investigate the applicability of Gassmann’s theory for our carbonate

data set. We observe that the rock shear modulus is sensitive to brine saturation, especially

at seismic frequencies. Weakening of the solid matrix occurs possibly due to surface energy

loss and/or sub-critical crack growth in compliant pores, mostly at low differential pressures.

These mechanisms violate an assumption of Gassmann’s theory that the fluid does not

influence the the solid matrix of the rock. However, we find no positive correlation between

the rock shear modulus weakening and the failure of Gassmann’s theory to predict the

saturated bulk modulus at seismic frequencies. We do find that the brine saturated bulk

modulus for carbonates with small differential pressure dependence (round pores or vugs) is

well predicted by Gassmann at seismic frequencies, while for carbonates strongly influenced

by pressure (compliant pores or micro-cracks), Gassmann’s theory does not match the

observations. Therefore, knowledge of the reservoir pore space geometry can aid in the

understanding and applicability of Gassmann’s theory.

Predicting the saturated bulk modulus at ultrasonic frequencies violates Gassmann’s

low-frequency assumption. Nevertheless, we test our carbonate samples at ultrasonic fre-

quencies to show the role of modulus dispersion. For some of our samples, the measured

and Gassmann-calculated bulk modulus at ultrasonic frequencies show better agreement

compared to seismic frequency. This match is apparent, resulting from bulk modulus dis-

persion which we observe in our carbonates when saturated with brine. We also observe

shear modulus dispersion. Little change from dry to brine saturation is present in the rock

shear modulus at ultrasonic frequencies, but this modulus is always higher than the shear

modulus obtained at seismic frequency. This increase could be a result of dispersion or pref-

erential propagation path, which avoids altered (weakened) sections in the saturated rocks.

Although our conclusions are based on samples with different texture and mineralogy we

must be careful to generalize these results to all carbonate rocks.

Our observations are applicable particularly to the analysis of time-lapse data. Ultra-

sonic laboratory data are used in some cases to calibrate time-lapse seismic reflection data.

We should be aware that bulk modulus in carbonate rocks can have significant dispersion

affecting the applicability of Gassmann’s fluid substitution theory at ultrasonic frequencies

(and maybe at log frequencies). Also, when water or brine replaces a non-polar fluid such

as oil, shear modulus weakening could be observed in the field.
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CHAPTER 3

SEISMIC WAVE ATTENUATION IN CARBONATES

3.1 Introduction

Velocity and amplitude analysis of elastic waves is common practice in reservoir rock

physics. Variations in reservoir seismic properties can be related to fluid changes within

them. Intrinsic wave attenuation, or the conversion of mechanical energy into heat, has been

a topic of research for many years. Although numerous studies examine mostly clastic rocks

(Winkler and Nur, 1982; Best et al., 1994; Murphy, 1982; Wyllie et al., 1962; Spencer, 1979;

Best et al., 2007), there are few laboratory measurements of attenuation in carbonates

rocks, and even fewer experimental data at exploration seismic frequencies and reservoir

pressures (Lienert and Manghnani, 1990; Paffenholz and Burkhardt, 1989; Spencer, 1981;

Batzle et al., 2005; Gautam, 2003). Because more than half of the current major oil and

gas reservoirs in the world are in carbonates, these rocks have become important topics of

rock property research. Our study analyzes wave attenuation in five carbonate samples at

seismic frequencies (101 − 103 Hz), and at an ultrasonic frequency (106 Hz) for three of the

samples. The rocks are measured dry and fully-saturated with a light hydrocarbon and

with a brine, at reservoir pressures.

There are several ways to describe intrinsic seismic losses, and in this paper we use the

definition of attenuation as the inverse of the quality factor (Q). Intrinsic attenuation can be

defined as Q−1 = Im[M∗]
Re[M∗] , where M∗ is the complex modulus or velocity; and the imaginary

part (Im) of the complex modulus is small. Different waves and flexural modes allow

us to study the shear-wave (Q−1
S ), compressional-wave (Q−1

P ), extensional (Q−1
E ) and bulk

compressibility (Q−1
K ) attenuation. Winkler and Nur (1979) and Winkler (1979) analytically

show that one of the following relations between the attenuation modes will always be true:

Q−1
S > Q−1

E > Q−1
P > Q−1

K , (3.1)

Q−1
K > Q−1

P > Q−1
E > Q−1

S , (3.2)

Q−1
K = Q−1

P = Q−1
E = Q−1

S . (3.3)

For a porous medium, and based on the conceptual model of two identical cracks per-

pendicular to each other and touching at their tips, Winkler (1979) interprets relation 3.1

as the expected behavior when the rock is fully-saturated, while equation 3.2 is for partially

saturated rocks. This is generally true in sandstones for either logging or ultrasonic frequen-

cies: the shear losses at full-saturation are mostly observed to be greater than the bulk or
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compressional-wave losses (Winkler and Nur, 1982; Best et al., 1994; Murphy, 1982; Wyllie

et al., 1962; Spencer, 1979; Toksoz et al., 1979). Pore shape and distribution in sandstone

could dictate that either P-wave or S-wave attenuation can dominate at logging frequencies

(Assefa et al., 1999; Prasad and Meissner, 1992).

However, published data on carbonates are mixed regarding which attenuation mode

dominates. Lucet (1989) and Lucet et al. (1991) measured Q−1
E and Q−1

S on 15 saturated

limestones at sonic and ultrasonic frequencies. Q−1
E >Q−1

S for virtually all the fully-water

saturated samples. Paffenholz and Burkhardt (1989) and Cadoret et al. (1998) observe

that Q−1
E >Q−1

S at seismic and sonic frequencies respectively for water-saturated samples.

Recently, Best et al. (2007) and Agersborg et al. (2008) measured carbonate samples at

ultrasonic frequencies and high differential pressures. Differential pressure is the difference

between hydrostatic confining pressure and pore pressure. The three carbonate samples

from Best et al. (2007) show mixed relations between Q−1
P and Q−1

S , because the samples

have velocity and attenuation anisotropy resulting from the complex pore structure. Four

out of the six samples from Agersborg et al. (2008) have estimates of Q−1
P greater than Q−1

S

under dry and fully-brine saturated conditions at 30 MPa differential pressure. Most of

the previous work, except for Lucet (1989) and Assefa et al. (1999), has been performed at

room conditions and with the samples either dry or saturated with water and measured at

high frequencies. Here we study our samples near the reservoir differential pressures over a

broad frequency range, dry and saturated with brine, as well as with a light hydrocarbon

for the purpose of reservoir characterization. For our fully-saturated carbonate samples,

the correlation among the different attenuation modes is described by relation 3.2.

For our carbonate sample set, we address five important relationships. Specifically,

we examine the relation between the modes of attenuation, compare Q at seismic and ul-

trasonic frequencies, measure the sensitivity of Q to fluids (either a light hydrocarbon or

a brine), investigate the frequency dependence of Q in the exploration seismic bandwidth

(10-100 Hz), and determine if there is a correlation between attenuation and permeabil-

ity. Both the sensitivity of attenuation to fluids and its correlation to permeability are

important for studying the evolution of reservoir systems, because one possible application

for utilizing attenuation as a monitoring tool is during enhanced oil recovery where water,

steam or CO2 is injected into the reservoir to stimulate oil production. Although quanti-

tative intrinsic attenuation data from surface seismic have been an interpretive challenge

historically, characterizing attenuation becomes more robust as acquisition and processing

technologies continue to improve.

3.2 Samples

The core samples in this study come from two Middle Eastern carbonate reservoirs

undergoing enhanced oil recovery. The core plugs from the first reservoir are samples 100,

200 and 300. For this field, light hydrocarbon production is stimulated by injecting brine



27

SAMPLES 100 200 300 B C

Porosity(%) 32.79 30.46 20.39 4.60 21.00

Permeability(mD) 6.75 5.19 58.10 0.03 5.50

Grain density (gm/cm3) 2.71 2.71 2.71 2.84 2.70

Calcite(%) 90.6 89.4 98.6 0.7 75.8

Dolomite(%) 8.5 9.6 TR 97.0 20.6

Quartz (%) 0.6 0.7 1.2 0.6 1.2

Phyllosilicates (%) 0.0 TR TR 0.8 2.4

Texture wacke wacke pack mud grain

Depth (m) 2479 2452 2456 3181 3138

Reservoir Pd (MPa) 34.5 34.5 34.5 35.8 35.8

Heterogeneity none none vertical bands horizontal bands none

Table 3.1. Petrological data for the carbonate set. Mineralogy was obtained from XRD
analysis and are reported in percent per volume. TR means less than 0.3%. Texture
follows modified Dunham’s carbonate classification (Moore, 2001): mud = mudstone, wacke
= wackestone, pack = packstone and grain = grainstone. Porosity and permeability are
measured at 18.3 MPa confining pressure for samples 100, 200 and 300; and at reservoir
pressures for samples B and C. By heterogeneity we refer to visual or CT-scan heterogeous
features.

into the reservoir (Soroka et al., 2005). Samples from the second reservoir are named B and

C; corresponding to the same samples as in chapter 2. The samples are either almost pure

calcite or dolomite (>95% total volume), with less than 3% clays. Table 3.1 summarizes

the petrographical analysis. Porosity and permeability are measured using standard helium

porosimetry and air permeability equipment. Permeability values are corrected for Klinken-

berg gas slippage. The samples are cylindrical, and either 2.5 or 3.75 cm in diameter, with

lengths varying from 4.3 to 5.5 cm. We now describe the petrographical characteristics of

the samples, and thin sections for the samples are shown in Figure 3.1.

Sample 100: Mud-supported wackestone texture. Blue haze in the thin sections implies

abundant micro-porosity (Figure 3.1). The presence of micro-porosity suggests the sample

has a large content of irreducible water in-situ. Micro-pores are 1-5 microns. The main

fossil observed is Orbitolina. The sample is mostly calcite with calcite cement. Dolomite is

deposited in small vugs after the dissolution of calcite (burial dolomite). There is autogenic

quartz and linear clam fragments (Scholle and Ulmer-Scholle, 2003).

Sample 200: Mud-supported wackestone texture. This sample is similar to sample 100,

except that micro-pores are larger (20-50 microns). The sample is partially burrowed and

dolomite crystals are less coarse. This sample has larger amounts of fossils fragments than

sample 100 (e.g. rudist fragments (Scholle and Ulmer-Scholle, 2003)).

Sample 300: Packstone borderline grainstone texture. Abundant skeletal debris with

inter-particle porosity. This type of porosity results in better permeability. Echinoderm

fossils are surrounded by a synaxial overgrowth of calcite cement. Different textures between
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Figure 3.1. Thin section of samples a) 100, b) 200, c) 300, d) B and e) C. Shown in plane
polarized light. Dyed epoxy is blue and represents pore space.

stylolytes are probably the result of high and low energy environments.

Sample B: Mudstone texture. Composed of relatively pure dolomite with a non-planar

fabric and a unimodal, aphanocrystalline to very-finely crystalline texture. The sample has

horizontal solution seams (or microstylolites) and small vugs (<1mm), possibly infilled by

an iron oxide.

Sample C: Skeletal grainstone texture with finely-crystalline spar matrix. Skeletal

grains have been largely dissolved, but those remaining are foraminifera (mostly miliolids

and other rotalids), ranging from 0.25 to 1.5 mm in diameter, moderately sorted. Contains

moldic porosity, partially filled with euhedral dolomite rhombs (30-60 microns in diameter),

and interparticle porosity, partially filled with subhedral finely-crystalline calcite.

Based on the fossil types, samples 100, 200 and 300 were deposited in the photolytic

zone. In all three samples the cement is calcite and there are no clays.

Samples 100 and 200 are similar in most petrographic aspects, with the main difference

being the pore size estimated from the digital thin section images. Sample 100 has 1-5

micron pores, compared to 20-50 microns for sample 200. Small radius pores (∼10 microns)

generally have small pore throats, while larger radius pores (>10 microns) could either

have large or small pore throats (Lindquist et al., 2000). Thus, sample 200 may have

larger pore throats than sample 100. Pore throats are important, as they control the time

fluid pressure takes to reach equilibrium after being disturbed by a passing wave. This

fluid pressure disequilibrium controls attenuation. Figure 3.2 shows the CT scans of the

samples. Gray scales represent densities contrasts. Sample 300 is the most heterogeneous,
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a)
b)

c)

Figure 3.2. CT scans of samples: a) 200, b) 300 and c) B. Gray color variations repre-
sent density contrasts. Observe how sample 300 is heterogeneous with bands of different
textures/porosity.

Figure 3.3. Scanning electron microscope (SEM). Sample 100 shows dolomite crystals.
There are no SEM images for Samples B and C.
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with vertical textural bands. Although we do not have the CT scan for sample 100, the

scanning electron microscope (SEM), thin section and visual inspection show similarities

to sample 200. Sample C, in spite of abundant fossils, is overall homogeneous. Finally,

Figure 3.3 contains the SEM images of samples 100, 200 and 300. Crystals of dolomite are

observed for samples 100 and 200, but are mostly absent for sample 300, verifying the XRD

data (Table 3.1).

Velocity and attenuation anisotropy is not expected to be significant on these samples

based on CT scans and visual inspection. Still, we do not quantitatively show the presence

or absence of anisotropy.

3.3 Experimental Procedure

The core samples are measured dry (humidified, as described below), 100% saturated

with liquid-butane (C4H10, a light hydrocarbon) or with high salinity brine (180,000 ppm NaCl).

Samples are first measured dry, then butane is injected into the sample until there is no

more flow from the fluid pump to the sample, indicating we have reached a full saturation

state. Butane at room conditions is a gas, but becomes liquid at pressures greater than

0.3 MPa. To remove the liquid butane from the sample pore space, we slowly decrease the

pore pressure until we reach the room pressure condition. We then open the fluid lines to let

the butane gas escape. Brine is injected into the sample the same way as for butane. Sam-

ples are coated with an impermeable polyimide film (kapton), over which semi-conductor

strain gages are glued to measure rock deformations at seismic frequencies. This film keeps

moisture inside the rock, prevents nitrogen diffusion and eliminates the Biot-Gardner effect

observed in unjacketed rocks (Gardner, 1962; White, 1986; Mörig and Burkhardt, 1989).

All dry samples, except sample B, are initially humidified by storing the samples in a

humidifying chamber at 98% humidity for 2 weeks, to create matrix softening that results

from moisture in the pore space. Clark et al. (1980) showed that introducing water vapor

(∼1% water saturation in pores) to oven dry samples can significantly reduce the rock bulk

and shear moduli, and increase attenuation. The water content is not expected to be less

than 1% in reservoirs, as even gas filled reservoirs have irreducible water in the pore space.

The rock sensitivity to water vapor is directly related to the pores surface area. Nonetheless,

we will show here that as the brine saturation of the rock increases, the rock frame softens.

Such weakening could well be observed in reservoirs where brine displaces the original gas

or fluid.

Figure A.1 is a drawing of the sample setup and a sketch of the recorded low frequency

strains for the different gages. At seismic frequencies, moduli and attenuation are measured

by applying a sinusoidal stress to the rock and measuring the resulting strain in different

directions on the rock sample and on the reference material (aluminum). The measured

strain amplitudes are low (∼ 10−7), the same amplitude as the deformation imposed on

the reservoirs in the field by seismic waves. The samples and reference are cylindrical and
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Figure 3.4. Schematic drawing the sample setup for low frequency measurements with
strain gages and ultrasonic frequencies with transducers. Confining pressure is applied to
the whole system, and pore pressure is controlled through the pore fluid lines.
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are attached in series with the cylinder axis coinciding with the axis of applied stress. The

moduli are estimated from the amplitude of the strain signatures (for details see Batzle et al.,

2006). To measure ultrasonic frequencies we use transducers embedded in the aluminum

reference (Figure A.1). We record the waveform transmitted through the rock core (Birch,

1960). From the measured time of flight and sample length, we estimate the P- and S-wave

velocities and from these, the rock moduli. Samples with visible heterogeneity or large

vugs the size of the strain gages (∼ 0.5 cm) are avoided because the gages will measure

the properties of the heterogeneity, biasing the estimate of attenuation. For the ultrasonic

pulse, these heterogeneities can create scattering losses.

The whole system as shown in Figure A.1 is lowered into a high pressure vessel. Con-

fining (hydrostatic) pressure (Pc) is applied with nitrogen gas; while the pore pressure (Pp)

is controlled through the pore fluid lines with different types of fluids. In this paper we

present attenuation data recorded under differential pressure (Pd): Pd = Pc − Pp. Velocity

and attenuation data are measured at 31 MPa differential pressure for samples 100 and 200,

Pd=24 MPa for sample 300, and for samples B and C, Pd=21 MPa. For all rocks, Pp was

held constant at 3.5 MPa. Because the sample setup is pressurized with nitrogen gas, for

safety reasons the system is not able to quite reach the reservoir’s confining pressure. How-

ever, the pressures in the experimental setup are close to the reservoirs differential pressure

(see Table 2.1).

In our experiments, we estimate Q−1
E and Q−1

S at seismic frequencies, and Q−1
P and

Q−1
S at ultrasonic frequencies. In a visco-elastic material, the strain lags in phase with

respect to the stress. This phase lag (θ) can be described in terms of the complex modulus:

Q−1 = Im[M∗]
Re[M∗] = tan θ ≈ θ. Because the phase lag is small, we can approximate the

tangent by the angle itself. In our low frequency experiments, attenuation is estimated

from the phase lags between the different strains. The phase is obtained by using a lock-in

amplifier. We assume that the phase of the strain on the aluminum represents the phase of

the applied stress. This is a reasonable assumption because the attenuation for aluminum is

low (Q−1 ∼ 10−5). Thus, extensional attenuation (Q−1
E ) is estimated from the phase lag of

the vertical strain on the rock and the reference aluminum. The vertical strain on the rock

has the largest strain waveform amplitudes, yielding robustness in the estimate of Q−1
E . To

obtain the shear-wave attenuation we use the following relation (White, 1965):

1

QS
≃

1

QE
−

νtanθν

1 + ν
(3.4)

where ν is Poisson’s ration and θν is the phase lag between the vertical and horizontal strain

on the rock sample. Poisson’s ratio at seismic frequencies is obtained from the ratio of the

horizontal and vertical strain amplitude on the rock. The estimate of Q−1
S is not overly

sensitive to an error in ν. A ±10% bias in ν translates into a ±2% error Q−1
S . Winkler and

Nur (1982) derive equations that enable the estimation of a specific mode of attenuation for

isotropic materials from two other attenuation modes and the Poisson’s ratio. We estimate
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the P-wave and the bulk compressibility attenuation from (Winkler and Nur, 1982):

(1 − ν)(1 − 2ν)

QP
=

1 + ν

QE
−

2ν(2 − ν)

QS
(3.5)

1 − 2ν

QK
=

3

QE
−

2(ν + 1)

QS
(3.6)

For the ultrasonic data, attenuation is estimated by the spectral ratio method (Toksoz

et al., 1979; Hauge, 1981). An aluminum sample of the same shape and dimensions as the

rock sample is used as a reference material to establish the base spectra. Aluminum has

a high bulk modulus (K=76 GPa) and a high Q. The waveforms on the aluminum sample

were measured at room conditions and under 31 MPa confining pressure, but there is no

significant difference in the ultrasonic waveform or on the amplitude spectrum at these

conditions. The direct arrivals for the sample and aluminum are windowed by a Hanning-

type function, and the amplitude spectra is obtained from a discrete Fourier transform to

these isolated events. Q is estimated from the logarithm of the ratio of amplitude spectra as a

function of frequency. P- and S-wave attenuation are directly estimated from the waveforms,

and we use the relations in equation 3.6 to estimate the remaining two attenuation modes.

3.4 Parameter uncertainty

Estimates of the error in our data are represented in terms of the standard deviation

(σ) between our noisy observations and data predicted by an assumed true model (for

details see appendix A). For the low frequency data, this is the standard deviation of our

phase measurements and the Poisson’s ratio. The repeatability or standard deviation of the

phase measurements with our lock-in amplifier is on average 0.03 degrees (Gautam, 2003).

One standard deviation of the Poisson’s ratio (ν) is on average 0.002. These phase and ν

standard deviations are propagated to estimate the error in Q−1 at seismic frequencies. On

average at low frequencies, one standard deviation in 1/QK , 1/QP , 1/QE , 1/QS are 0.0042,

0.0090, 0.0023 and 0.0031, respectively. The average σ in P-wave and S-wave velocity are

121 m/s and 42 m/s, respectively.

Attenuation at ultrasonic frequencies is estimated by the spectral ratio method on the

recorded waveforms.On average, the estimated standard deviation for 1/QK , 1/QP , 1/QE ,

1/QS at ultrasonic frequencies are 0.0019, 0.0007, 0.0019 and 0.0012, respectively. The

average σ for P-wave and S-wave ultrasonic velocities are 22.4 m/s and 7.8 m/s, respectively.

We cannot quantify the bias on our Q estimate because we do not know the true model,

but we can estimate part of a bias on Q based on the difference in attenuation estimates

between two methodologies. The frequency shift (Quan and Harris, 1997) and the spectral

ratio methods assume Q to be frequency independent, but Q is estimated differently by

integrating or taking the ratio of amplitude spectra, respectively. On average, the ultrasonic
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attenuation estimates between these two methods differ by 18%. Other sources of bias on

Q are possible if we have errors in two parameters. 1) If there is a ±10% variation in this

window size, the error in Q is ±20% because we either include late arrivals or the window

is not long enough to contain the whole amplitude information of the direct arrival. 2) If

there is a ±5% error in the picked first arrival time, Q has an error of ±6%.

3.5 Dispersion

Figure 3.5 shows the P-wave velocity as a function of frequency for samples 100, 200 and

300, estimated at seismic frequencies between 10 and 1000 Hz, and accompanied by a single

ultrasonic data point at 0.8 MHz. We plot the low frequency velocity at three representative

points (10, 100 and 1000 Hz) obtained from the previously described parameter estimation

and error analysis. The data points near 104 Hz are obtained from sonic log data in the

wells from which the rock samples were cored. This velocity is an average over a 0.6 meter

depth range centered at the sample depth. From the resistivity and bulk density logs, we

conclude that the samples were extracted from brine-saturated reservoir intervals. Overall,

the P-wave velocity for the three samples consistently increases with frequency. At low

frequencies, sample 300 has large error bars in the velocity, so the velocity in this sample

could also be interpreted as non-dispersive in the seismic frequency range.

There are two reasons why the ultrasonic velocity is higher than seismic and log ve-

locities. High velocities at ultrasonic frequencies can result from the bulk stiffening due to

pore fluid pressures being unable to reach equilibrium within one wave period (Biot, 1956b).

At low frequencies there is enough time for the pore fluid pressure to relax, the system is

therefore more compliant, which results in lower velocities. Our observed velocity disper-

sion is in agreement with those from the broad frequency range experiment on sandstones

by Sams et al. (1997) and Best and Sams (1997). This velocity dispersion could be mod-

eled by existing dispersive media theories (Biot, 1956a,b; O’Connell and Budiansky, 1977;

Dvorkin et al., 1995; Müller and Gurevich, 2005). However, choosing the wave dispersion

mechanisms that best describe our data is beyond the scope of this paper.

An alternative explanation why the ultrasonic velocity is higher than for seismic and

log frequencies is that the ultrasonic wave propagation is path dependent. This phenomenon

is particularly relevant given our transducer size. Each ultrasonic crystal (P- and S-wave)

in our transducer package has a diameter of 0.75 cm compared to the aluminum casing

diameter of 3.75 cm. Small transducers are used because the aluminum casing is also our

reference material for the strain measurements, and a large crystal embedded into the casing

would change the elastic properties of the aluminum. Because the transducer face is small

with respect to the sample diameter, the generated high-frequency wave can propagate

through the fastest path in the sample. For a heterogeneous sample with high and low

compressibility regions, a portion of the ultrasonic pulse preferentially propagates along

incompressible, high-speed wave regions according to Fermat’s principle.
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For sample 300, the log data agree better with the low frequency data than with the

ultrasonic data (Figure 3.5). From the CT-scan for sample 300 (Figure 3.2), zones of high

and low compressibility are aligned with the pulse propagation direction, accentuating the

fast path phenomenon. The ultrasonic energy then can traverse this heterogeneous sample

more quickly, leading to an overestimate of the average wave speed of sample 300. This

analysis is qualitative at this point, but it shows how a relatively high ultrasonic velocity

can be due to dispersion as well as path dependence.

3.6 Attenuation Modes

Figures 3.6 to 3.10 show the different attenuation modes for all the samples as a func-

tion of frequency for three pore-filling fluids. For low frequency data we first estimate

extensional and shear-wave attenuation, and from these and the Poisson’s ratio we obtain

bulk and P-wave attenuation. For ultrasonic data, we use the P- and S-wave attenuation

estimates to calculate the extensional and bulk attenuation. For most samples and frequen-

cies, bulk compressibility losses dominate the shear-wave attenuation for dry (humidified)

and 100% saturated samples. These carbonate samples show that relation 3.2, previously

interpreted as a condition of partial saturation (Winkler, 1979), governs our fully-saturated

carbonate samples. For sample 300, the P-wave transducer failed, therefore there is no

ultrasonic frequency P-wave attenuation data. We also did not acquire the ultrasonic at-

tenuation for samples B and C because we did not have the ultrasonic aluminum standard

measurements to go with it. Sample 300 has low Q, and overall the attenuations are equal

for all modes. High attenuation is probably responsible for the inability to distinguish

between attenuation modes.

There are two ways we try to ensure full-saturation of the connected pore space. First,

we calculate the connected pore volume from the porosity and dimensions of the sample.

We then monitor the fluid flow into the sample until there is no more flow from the pump

to the sample. The volume of injected fluid is within 2% of the computed pore volume.

Second, we observe the bulk modulus as a function of brine saturation. Figure 3.11 shows

the bulk modulus as a function of saturation for sample 300. The addition of pore fluid

stiffens the sample, which we observe as an increase in bulk modulus. The significant

increase of the bulk modulus at 100% saturation supports the assumption that sample 300

is fully-saturated. Observe that a small amount of gas (∼ 8%) drops the bulk modulus close

to its dry-sample value for seismic frequencies. For ultrasonic frequencies, the bulk modulus

starts increasing at a saturation lower (∼ 23%) than for the seismic frequencies (∼ 62%).

As mentioned previously, the velocity or modulus increase with frequency can result from

rock-fluid dispersion mechanisms or path effects. Samples partially saturated by imbibition

can have regions that are saturated while others remain dry. These saturated regions can

form preferential high speed paths with high bulk moduli.

The dominance of the bulk over shear attenuation for our saturated samples can be
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Figure 3.5. P-wave velocity as a function of frequency for samples 100, 200 and 300,
measured dry and fully saturated with liquid-butane and brine. A linear fit is applied
to the low frequency data (3, 100 and 1000 Hz). The data at 104 Hz is obtained from the
sonic logs. One σ for the ultrasonic data is the size of the markers.
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Figure 3.6. P-wave, S-wave, extensional and bulk compressibility attenuation for sample
100 at 31 MPa differential pressure. The sample is measured a) dry (humidified), b) 100%
saturated with liquid butane and c) 100% saturated with brine.
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Figure 3.7. P-wave, S-wave, extensional and bulk compressibility attenuation for sample
200 at 31 MPa differential pressure. The sample is measured a) dry (humidified), b) 100%
saturated with liquid butane and c) 100% saturated with brine.
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Figure 3.8. P-wave, S-wave, extensional and bulk compressibility attenuation for sample
300 at 24 MPa differential pressure. The sample is measured a) dry (humidified), b) 100%
saturated with liquid butane and c) 100% saturated with brine.
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Figure 3.9. P-wave, S-wave, extensional and bulk compressibility attenuation for sample B
at 21 MPa differential pressure. The sample is measured a) dry (humidified), b) 100%
saturated with liquid butane and c) 100% saturated with brine.
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Figure 3.10. P-wave, S-wave, extensional and bulk compressibility attenuation for sample C
at 21 MPa differential pressure. The sample is measured a) dry (humidified), b) 100%
saturated with liquid butane and c) 100% saturated with brine.
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Figure 3.11. Bulk modulus as a function of brine saturation for sample 300 at seismic and
ultrasonic frequencies. At 100 Hz, the bulk modulus increases 25% from 97% to 100% brine
saturation.

explained two ways. The first is related to the fact that relations 3.1 and 3.2 are associated

with full or partial saturation respectively. This interpretation is based on a conceptual

model of two identical low aspect ratio pores perpendicular to each other at their tips (see

Figure 15 in Winkler and Nur (1982)). Because we are dealing with carbonate rocks of

complex texture, the variety of pore shapes may not be well described by this two crack

model. Thus, the saturation state of carbonate rocks might not be possible to determine

from the relation among the different attenuation modes. Second, Dvorkin et al. (1995)

shows that squirt flow from softer pores or cracks to stiffer pores in fully-saturated rocks can

predict that the compressional-wave attenuation is greater than the shear-wave losses. This

model is hard to implement with our data, because attenuation for low pressure is calculated

from data at high pressure, where cracks or compliant pores are assumed to be closed.

Also, pore scale squirt models are probably not dominant at seismic frequencies (Pride

et al., 2004), but the same idea regarding losses has been extended to seismic frequencies

by substituting the notion of pores by mesoscopic regions (Pride et al., 2004; Masson and

Pride, 2007).

In our carbonate samples, no micro-cracks are observed from the thin sections, but

the existence of compliant pores is interpreted from the pressure dependence of the shear

modulus in Figure 2.4. At lower pressures, compliant pores open, softening the rock frame

and lowering the modulus and velocity. All the samples show similar pressure dependence

for the modulus and velocity as for Figure 2.4. Due to the textural complexity of carbonate

rocks and because hydrostatic stress is applied, compliant pores can remain open even

at high differential pressure, creating soft rock regions. Therefore, losses resulting from

fluid movement from softer to stiffer regions is possible for our carbonate samples at high

differential pressures, and can result in compressional losses dominating over shear losses.

There are several experimental challenges when measuring attenuation that must be
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accounted for when interpreting the results plotted in Figures 3.6- 3.10. First, the fluid lines

in Figure A.1 have a manual valve which we close when acquiring low frequency data. The

fluid lines are designed to allow high fluid flow into and out of the sample. Unless the valve

is completelly closed, the applied stress at low frequencies (< 50 Hz) creates significant fluid

movement from the sample and into the fluid lines. This fluid flow effect is illustrated in

Figure 3.6c for frequencies less than 50 Hz, for which high attenuation is not related to the

visco-elastic properties of the rock, but to a valve malfunction.

A second challenge is that the low frequency apparatus has system resonances at fre-

quencies that depend on the vessel as well as the geometry and properties of the rock and

aluminum samples. Resonance peaks at 150 and 257 Hz affect the attenuation measure-

ments in Figure 3.8c. This resonance is evidenced by the attenuation peaks at those two

frequencies, biasing the attenuation estimates in the 150 to 1000 Hz range. Therefore, to

avoid the attenuation instability generated by the system resonances for sample 300, we

only analyze frequencies between 10 and 100 Hz.

A third challenge is to interpret how the heterogeneous rock texture observed on sam-

ple 300 can affect the low frequency attenuation and modulus estimates. Twelve strain

gages are glued on the sample and reference in groups of three every 90 degrees. One of the

four sample sides is sketched in Figure A.1. Gages on the 0◦ and 180◦, and 90◦ and 270◦

faces are averaged into one strain during the acquisition recording. We later average the

resulting 0◦-180◦ and 90◦-270◦ strains into one final strain estimate. Therefore, significant

heterogeneity on one or more of the sample faces can affect the estimate of modulus and

attenuation through this averaging process. It is possible that for sample 300, the tex-

tural heterogeneity evidenced in Figure 3.2 causes the high attenuation values plotted in

Figure 3.8. Another possibility, however, is that because this sample has the largest perme-

ability of the five measured samples, the high fluid mobility is responsible for the increased

attenuation. The attenuation for sample 300 between 10-100 Hz is frequency dependent,

increasing with increasing frequency.

In general, directly correlating attenuation between seismic and ultrasonic frequencies

is not straightforward. At exploration seismic frequencies (10 to 100 Hz), all samples but

sample 300 show that attenuation is frequency independent (Figures 3.6 to 3.10). However,

for frequencies between 10 and 1000 Hz, attenuation estimates increase with increasing

frequency for samples 100, 200 and 300. For a single relaxation mechanism, attenuation

as a function of frequency is described by a bell-shaped curve with a peak which can

depend on the rock permeability and fluid viscosity (Biot, 1956a,b; Mavko and Nur, 1979).

Multiple attenuation mechanisms can result in multiple maxima. Our data (with a gap in

observations between 103 and 106 Hz) does not require a more complex model than the

most conservative model of a single relaxation mechanism. For the measured samples, the

attenuation maximum may be located in the data gap between 103 and 106 in Figures 3.7c

and 3.8, or at a frequency greater than 106 Hz in Figures 3.6, 3.7b and 3.7c.
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3.7 Bulk modulus attenuation and fluids

Figure 3.12 shows the estimated bulk modulus attenuation as a function of frequency

for all measured fluids and samples, for different fluids. Attenuation is non-zero when sam-

ples are dry (humidified) because a fluid layer on carbonate grains can increase attenuation

compared to an oven-dry sample when the stress generated by the passing wave creates

movement of the small amount of water (Clark et al., 1980; Murphy et al., 1986; Winkler

and Nur, 1982). Winkler et al. (1979) analyze the effect of frictional loss with strain for

sandstone samples, and show that strain becomes a loss mechanism for strain amplitudes

greater than 10−6. In their study, for dry or slightly saturated samples measured at strains

between 10−7 and 10−6 , Young’s attenuation is non-zero (QE ≈100), but the loss mecha-

nism is not attributed to friction. We do not attribute our observed attenuation to friction

between grains because our measurements are at a single strain amplitude of 10−7.

Attenuation estimates when the rock is dry or fully-saturated with butane are compa-

rable for all samples, but we observe an increase in attenuation when brine replaces liquid

butane. The changes from butane to brine resemble a reservoir fluid substitution process.

We observe that the P-wave attenuation can increase by 150% to 400%, depending on the

sample, when a brine replaces a light hydrocarbon in the pore space. By comparison, the

P-wave velocity changes only 4% to 10% when brine substitutes liquid-butane in these sam-

ples. For a producing field and if time-lapse data is available, this attenuation sensitivity

to fluids may be useful as an additional seismic attribute for dynamic reservoir monitoring.

Samples 100 and 200 have significantly different attenuation when saturated with brine,

although petrographically they are similar. Sample 200 could have larger pore throats than

sample 100, so that the induced pore pressure gradients responsible for attenuation will

reach equilibrium differently for these two samples. It is important to keep in mind that

our samples remain undisturbed in the apparatus during the exchange of fluids. There is no

handling of the sample between attenuation measurements at varying saturating conditions.

Therefore, even if the absolute values of the attenuation might have some bias, especially

for sample 300, we expect this bias to be consistent between fluids.

We now describe possible reasons for the attenuation to increase when brine substi-

tutes liquid butane. Fluid viscosity controls the frequency at which the maximum peak

of attenuation occurs. At 3.5 MPa and 25◦C, the viscosity of liquid butane and brine are

similar, 0.2 cP and 1 cP, respectively. Nonetheless, the small viscosity difference between

water and butane could still control the attenuation of the rock (Gautam, 2003; Best et al.,

1994). Another possible reason for high attenuation in brine-saturated carbonates is related

to the weakening of the rock frame upon water saturation.

Figure 2.4 shows the shear modulus as a function of differential pressure for sample C

at 100 Hz and ultrasonic frequencies (0.8 MHz). We observe that as differential pressure

decreases and compliant pores open, the rock shear modulus decreases (weakens) from dry

(humidified) to fully-brine saturated. Therefore, there is a correlation between increasing



45

10
2

10
3

10
4

10
5

10
60

20

40

60

80

100

frequency (Hz)

10
00

/Q
K

 

 
dry
butane
brine

a)

10
2

10
3

10
4

10
5

10
60

20

40

60

80

100

frequency (Hz)

10
00

/Q
K

 

 
dry
butane
brine

b)

10
2

10
3

10
4

10
5

10
60

100

200

300

400

500

frequency (Hz)

10
00

/Q
K

 

 
dry
butane
brine

c)

10
2

10
3

10
4

10
5

10
60

20

40

60

80

100

frequency (Hz)

10
00

/Q
K

 

 
dry
butane
brine

d)

10
2

10
3

10
4

10
5

10
60

20

40

60

80

100

frequency (Hz)

10
00

/Q
K

 

 
dry
butane
brine

e)

Figure 3.12. Bulk compressibility attenuation for all samples: a) 100, b) 200, c) 300, d) B
and e) C. Dry measurements were performed with the samples humidified, not oven dry.
Therefore, some water exists in the pore space. Butane and brine are for full-saturation.
The differential pressures are as reported in Figures 3.6 to 3.10.
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Figure 3.13. Shear modulus weakening with brine saturation for sample 300 at 100 Hz and
21 MPa differential pressure.

numbers of compliant pores and an increase in the shear modulus weakening. If the solid

frame of the rock does not change, the rock shear modulus is not sensitive to the saturating

fluid, because the shear modulus of fluids is zero. However, the modulus decrease due to

brine can be explained by the weakening of the rock frame resulting from the interaction of a

polar fluid such as water with the solid frame of the rock (Khazanehdari and Sothcott, 2003;

Adam et al., 2006; Risnes et al., 2005). Rock surface energies or solid bounds between grains

can break in the presence of water, weakening the rock. This process increases the pore space

and can increase attenuation. Spencer (1981) measured Young’s modulus attenuation in a

fully-water saturated limestone at low frequencies (10-100 Hz), and showed that attenuation

is caused by the reduction in surface energy in the grains (matrix softening). Vo-Thanh

(1995) shows that the shear-wave attenuation depends on the amount of water saturation

in limestone and sandstone. We observe that frame weakening is also dependent on the

amount of water in the pore space. This rock frame softening is shown in Figure 3.13,

where the shear modulus weakens by increasing brine saturation for sample 300.

An alternative attenuation mechanism can result from local fluid flow between the gap

in the grain contact and the adjacent pores (Murphy et al., 1986). This wave attenuation

is dependent on the saturation state of the rock, and the frequency at which the peak of

maximum attenuation occurs. The latter is largely a function of the fluid and the size of

the grain contact gap. As the aspect ratio of this gap decreases, the attenuation maximum

moves towards lower frequencies. After brine saturation, grain contacts could have lower

aspect ratios (solid bounds break), which under the grain contact loss mechanism means that

the maximum attenuation peak shifts to lower frequencies. For our limited low frequency

interval, a peak is hard to define. Nonetheless, the attenuation maximum shift to lower

frequencies can be observed as an increase in attenuation (see for example Figure 3.12 b).
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Finally, for our samples, brine is not believed to be dissolving the carbonate grains, because

Figure 2.4 shows that the frame weakening process is reversible (black circles). In conclusion,

the increase of soft regions in the rock due to brine (newly opened grain contacts compared

to dry or butane-saturated carbonates), can increase the differential fluid-rock movements,

and therefore attenuation.

3.8 Numerical modeling

In previous sections we have suggested reasons why Q−1
K >Q−1

S in our carbonate sam-

ples. Here we support these interpretations of measured attenuation with numerical mod-

eling constrained by our estimated values of elastic modulus and velocities. The amplitude

and phase of our measured waveforms provide estimates of the elastic moduli and attenua-

tion, respectively. These two attributes can be assumed independent. For an elastic sample,

the strain amplitude yields moduli and the strain phase shifts are zero. That same sam-

ple under different saturation conditions can behave visco-elastically, with the same strain

amplitude as for the elastic sample, but with a non-zero phase shift. Based on that strain

amplitude is independent of phase, we model attenuation from the measured modulus and

show that Q−1
K >Q−1

S .

The modulus’ frequency dependence in a material is directly related to the attenuation.

In the extreme case of no modulus dispersion, there is no attenuation; which is a fundamental

relation described by the Kramers-Kronig equations. In practice, Cole and Cole (1941)

obtain an equation that describes the complex modulus (M∗) dispersion as a function of

frequency (w):

M∗(w) =
(M0 − M∞)

1 + (iwτ0)1−α
+ M∞, (3.7)

where M0 and M∞ are the moduli at zero and infinite frequency, respectively. τ0 is the

relaxation time and α is a parameter that controls the curvature of the S-shaped modulus

dispersion. α is bounded between 0 and 1, and if α = 0, equation 3.7 reduces to the modulus

dispersion relation for a standard linear solid or Debye model. The α value controls the

amplitude of the attenuation peak.

We use the Cole and Cole (1941) equations to model attenuation under the assumption

that there is only one relaxation mechanism (i.e one attenuation peak) between 10 and

106 Hz. We model the imaginary part of the complex modulus by applying a least-squares

fit to the real part of the measured modulus. We use the 3 Hz data as M0, the ultrasonic

data point as M∞, and τ0 and α follow from the best fit to the modulus vs. frequency data.

We model attenuation by taking the ratio of the imaginary and real parts of the modeled

complex modulus. The solid lines in Figures 3.14a and Figures 3.14b show the best fit to

the real bulk modulus and the modelled attenuation for sample 100 saturated with brine.

Our measurements cover a large range of frequencies, but within three orders of mag-
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Figure 3.14. Bulk modulus and attenuation for sample 100 fully-brine saturated. Dots
are the measured data and the lines are the modeled moduli and attenuation using the
Cole-Cole relation.

nitude (103−106) we only have one datum. Modeling attenuation as a function of frequency

is highly sensitive to this ultrasonic datum. To show this sensitivity we vary the ultrasonic

data point. 20 ultrasonic bulk moduli are generated from a Gaussian distribution of the

ultrasonic errors. The dashed lines in Figure 3.14a are the best fits for each of the 20

ultrasonic points. The corresponding modeled attenuation are plotted as dashed lines in

Figure 3.14b. For the large range of possible ultrasonic bulk modulus, the modeled attenu-

ation peak (1000/Q) can vary from 25 to 75. Therefore, quantitatively estimating Q from

measured bulk modulus is sensitive to the uncertainty in the ultrasonic data.

Figure 3.15 shows that the modeled bulk attenuation is greater than the shear-wave

attenuation for the modeled brine-saturated samples. Sample B is not modeled because the

ultrasonic bulk modulus is slightly lower than the low frequency data; probably because the

ultrasonic pulse is slowed down due to scattering in the horizontal layers in this sample. The

same observation holds for when the samples are dry or fully-saturated with liquid-butane.

The fact that bulk losses dominate over shear losses is in agreement with the experimental

attenuation data shown in Figures 3.6 to 3.10.
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Figure 3.15. Modeled bulk and shear-wave attenuation for fully-brine saturated samples:
a) 100, b) 200, c) 300 and d) C.

3.9 Conclusions

In contrast to clastics, our measurements in five carbonate rocks show that bulk modu-

lus attenuation and compressional-wave attenuation are greater than the shear-wave atten-

uation when samples are fully-saturated with either liquid butane or brine at reservoir con-

ditions. This observation is consistent over a large range in frequencies (10 Hz-1000 Hz, and

0.8 MHz) and is repeatable using two different experimental methodologies. Attenuation is

observed to be frequency independent for the exploration seismic frequencies (10-100 Hz)

for four of five samples. From published laboratory data, the saturation state of sandstones

could be interpreted based on whether the bulk or shear losses dominate; however, from

our observations, this correlation will probably not be straight-forward for carbonates. The

sensitivity of attenuation, particularly the bulk modulus losses, to the type of fluid in the

pore space is much greater than for velocities. Bulk modulus attenuation could change

from 150% to 400% (depending on the sample) when brine replaces a light hydrocarbon.

By comparison, the average compressional-wave velocity changes by 7% for our samples.

The laboratory measurements described here could aid in the interpretation of surface

seismic data. Even thought estimating intrinsic attenuation from surface seismic still faces

some challenges, the recent improvements in data quality should make this estimation more

reliable.
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CHAPTER 4

COMPARISON OF SEISMIC AND ULTRASONIC FREQUENCIES

Rocks saturated with a fluid can be described as visco-elastic materials. The velocity

and elastic moduli of visco-elastic materials increase with frequency. Therefore, the elastic

rock properties that we measure at high frequency might not resemble the observations

at lower frequencies. Laboratory measurements of velocity and elastic moduli are mostly

performed at frequencies higher than the exploration surface seismic data, but with the

stress-strain experimental procedure the moduli and velocity of laboratory samples can be

measured at seismic frequencies. In this study we compare measurements at 10 Hz and

0.8 MHz on eleven carbonate samples from the Middle East at reservoir differential pres-

sures. We compare how the measurements at these two frequencies probe the sample. We

make observations on the dispersion of the different rock properties and its effect when per-

forming fluid substitution with Gassmann’s relation. And finally, we will show that for these

samples the variation of elastic properties from low to high frequencies is significant; but

if the ratio or difference between dispersive parameters is analyzed this difference between

measurements at different frequencies can be reduced.

The carbonate samples are measured dry and fully-saturated with either a light hy-

drocarbon (liquid butane) or brine (180,000 ppm NaCl) at reservoir differential pressures.

Differential pressure is the difference between confining and pore pressure. The samples

have a range of porosity, permeability and textures (Table 2.1 and 3.1). The moduli and

velocities at seismic frequencies (10 Hz) are measured by applying a sinusoidal stress to the

rock and measuring the resulting strain in different directions on the rock sample and on

the reference material (aluminum). The measured strain amplitudes are at the same scale

as for seismic waves (∼ 10−7). At ultrasonic frequencies (0.8 MHz), we measure the time

of flight of a wave transmitted through the rock sample. From this time we estimate the P-

and S-wave velocities and from these the rock moduli.

The core samples belong to two different reservoirs with a differential pressure of about

35 MPa. Velocity and elastic modulus are measured at a differential pressure (Pd) of 31 MPa

for all samples except for sample L, which is measured at a Pd of 24 MPa. For all rocks

the pore pressure was constant at 3.5 MPa. The stress-strain system in the laboratory is

pressurized with nitrogen gas, but for safety reasons the system is not able to reach the

reservoirs confining pressure. However, the pressures in the experimental setup are close

to the reservoirs differential pressure. Most samples are initially humidified to avoid the

softening matrix effect of initial introduction of moisture in the pore space. Small amounts

of water (less than 1% of the pore volume) can reduce the bulk and shear moduli of the
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rock significantly. The data in this paper is the estimated mean (markers in the plots)

and one standard deviation of the random error (error bars on the markers). These values

are obtained from a statistical analysis between the measured experimental data and an

assumed true model. Throughout the paper, the comparison in modulus and velocity are

between the mean values.

Figure 3.5 shows the P-wave velocity for two of the samples over a broad frequency

band. Three representative points are presented for the low frequency data (3, 100 and

1000 Hz). The ultrasonic data is collected simultaneously with the low frequency data at

800 KHz. The data at 104 Hz is obtained from the P-wave sonic log at the same wells and

depths from where the rock samples were cored. This velocity is an average of the velocities

from the sonic log over a 0.6 meter window centered at the sample depth. Observe in

Figure 3.5 that the velocity estimated at different frequencies is dispersive: the P-wave

velocity consistently increases with frequency.

The observation that the velocity at ultrasonic frequency is higher than at seismic

frequency can be explained by visco-elasticity of the material. Alternatively, the ultrasonic

wave could be path dependent propagating through the fastest path. This preferential

higher velocity path would be a lower compressibility region of the rock. For example, for

partial saturation, the fluid-saturated region is less compressible than the dry region in the

rock. However, the ultrasonic data could also be influenced by the combination of both

visco-elasticity and path dependence.

There are several rock-fluid mechanisms that describe the visco-elasticity of porous

media. Two of the most common visco-elastic theories are the Biot and squirt flow mech-

anisms. For both models the modulus increases with frequency. Briefly, the passage of a

wave stresses the rock creating a fluid movement relative to the rock frame. The fluid is

then in an unrelaxed state and would need time to return to its original condition (pre-stress

condition). Probing a rock at different frequencies translates into different times that the

fluid has to relax. Therefore, the rock properties vary with respect to whether the fluid has

had enough time to relax (low frequencies), is completely unrelaxed (high frequencies) or

somewhere in between. The specific values of low and high frequencies are dependent on

the fluid and rock properties such as viscosity and permeability among others.

One of the goals in reservoir characterization is to quantify the fluid content of the

rock. The bulk modulus is an intuitive choice to predict fluid content as it describes how

resistant a rock is to being compressed, which depends on the amount of fluid in the pore

space. Figure 3.11 shows a partial saturation experiment on sample L and compares the

bulk modulus estimate at low and high frequency. The bulk modulus increases with the

amount of fluid in the pore space. First, observe how the ultrasonic data becomes sensitive

to the brine in the pore space after 20% saturation, while the 10 Hz data does not show

stiffening of the rock until 80% saturation. The fluid sensitivity at low saturation can

be explained by the ultrasonic wave following a preferential path through the saturated

regions in the rock. At 10 Hz, the bulk modulus remains equal to the dry bulk modulus
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until most of the pore space is filled with fluid. The stress-strain experiment measures the

deformation of the rock sample as a whole. Stress is evenly applied on the rock and the

measured strain is the average of the different locations of the strain sensors. Usually, this

type of setup averages the dry and saturated regions in the rock. Therefore, measurements

at seismic frequencies are not significantly affected by patchy saturation. The observations

at 10 Hz are in agreement with producing reservoirs where a small amount of gas coming

out of solution (∼5%) drops the bulk modulus of the rock close to the dry condition. Dry

samples do not exhibit significant dispersion because there is practically no fluid to produce

modulus dispersion. The pink arrow at zero saturation (dry) shows the difference between

10 Hz and ultrasonic bulk moduli. The higher bulk modulus at ultrasonic frequency is

probably caused by a preferential path in the sample rather than modulus dispersion. This

sample is significantly heterogeneous with vertical bands of different textures and pore

space observed in the x-ray tomographic scan (CT-scan). Most of the measured samples

were overall homogeneous. The same size arrow is overlaid at 100% brine saturation and

observe that in this case the difference between 10 Hz and ultrasonic is greater. The

remaining difference (green arrow) is possibly caused by rock-fluid mechanisms that cause

bulk modulus dispersion.

Figure 4.1 shows the bulk and shear modulus for all the samples 100% brine saturated.

The dashed line represents that seismic (10 Hz) and ultrasonic moduli are equal. Observe

that for most samples the ultrasonic moduli are greater than the seismic moduli. On

average, the moduli increase from 10 Hz to ultrasonic by 23% and 12% for bulk and shear

moduli respectively. The isotropic P-wave velocity is the combination of the bulk and shear

moduli and the rock density. When performing fluid substitution, there will be a trade-off

among these parameters affecting the velocity. Figure 5.4 is the P- and S- wave velocity

for all samples fully-saturated with brine at high differential pressure. As expected, the

velocity at ultrasonic frequency is greater than the seismic frequency. However, the velocity

increase from low to high frequency data is on average 9.5% and 5.8% for the P- and S-

wave, respectively. These lower dispersion values with respect to the moduli results from the

trade-offs among rock properties (i.e. weakening and strengthening of the shear modulus,

see chapter 2) and the definition of the isotropic P-wave velocity (mostly because of the

square root in its equation). Nevertheless, the observations that the moduli as well as

the velocities are dispersive for all samples fully-saturated with brine hold for the case of

full-saturation with liquid butane.

If both the P- and S-wave velocities are dispersive, what about the Vp/Vs ratio?

Figure 4.3 shows the Vp/Vs ratio for all samples 100% saturated with butane and brine.

For brine, the average increase in the Vp/Vs ratio from 10 Hz to ultrasonic is 2.6%; and for

butane is 1.9%. Therefore, the velocity dependence on frequency is significantly reduced by

taking the ratio of two dispersive parameters.

Laboratory data can be used to perform time-lapse feasibility studies. For example,

from the measured velocities we can compute the impedance and the reflection coefficient to
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analyze the possible changes in amplitudes resulting from enhanced oil recovery processes

in the reservoir. We compute how much would the zero-offset P-wave reflection coefficient

(RC) change from 10 Hz to 0.8 MHz data based on the laboratory measurements. We

assume that the whole reservoir is represented by the rock properties of one sample and is

overlaid by a sandstone layer with a P-wave velocity of 4 km/s and bulk density equal to

2.4 g/cm3 (Figure 4.4). For a specific fluid, the absolute change in the reflection coefficient

amplitude (e.g. |RCbrine,10Hz − RCbrine,0.8MHz|) from seismic to ultrasonic frequency is

significant and is in average 0.05 for brine and 0.04 for butane (see for example the arrows

in Figure 4.4, where the arrow size represents this difference for sample L). Let us call

the variation in the reflection coefficient from butane to brine ∆RC - think of a time-lapse

experiment (e.g. ∆RC10Hz = RCbrine,10Hz −RCbutane,10Hz). If we now look at the absolute

values of ∆RC at 10 Hz and at 0.8 MHz we observe that the difference between seismic and

ultrasonic frequencies is smaller than when studying the RC for one fluid (see for example

the brackets in Figure 4.4, where the bracket size represents this difference for sample L).

The difference in ∆RC between 10 Hz and 0.8 MHz is on average 0.01. We have to take the

absolute value of ∆RC as the RC sign is controlled by the choice of the properties of the top

layer. What we can say so far is that for these samples the ultrasonic data agrees with the

seismic frequency data if the geophysical property is an outcome of the ratio (Vp/Vs) or

the difference (∆RC) of dispersive rock properties. However, when performing quantitative

analysis in time-lapse reservoir characterization, our interest focuses on the fluids and its

contribution into the rock modulus or velocity. The most well known equation to study the

sensitivity of the rock to fluids is Gassmann’s equation (Equation 2.1)

One of the applications for rock physics laboratory data is to verify the validity of

Gassmann’s relation under different conditions. In the laboratory we usually measure the

modulus for the sample dry (Kdry), and saturated with a fluid (Ksat). In chapter 2 we

discuss how especially at low differential pressures the ultrasonic bulk modulus seems better

predicted by Gassmann’s relation than 100 Hz data. However, Gassmann’s theory was

derived for zero frequency. Therefore, interpreting whether Gassmann is appropriate for

carbonates rocks at ultrasonic frequencies could be biased if the measured data in the MHz

range is dispersive with respect to the low frequencies or even more appropriate, to zero

frequency.

The trade-off between bulk and shear moduli and density in the isotropic P-wave

velocity equation is also important to consider when studying Gassmann’s relation. For

example, at reservoir differential pressures and 10 Hz, the bulk modulus deviates in average

by 14.1% from perfect prediction of Gassmann to the measured data. The absolute minimum

and maximum deviations for all samples are 0.7% and 35.7%, respectively. If we now analyze

the measured and Gassmann estimated P-wave velocity, the average deviation from perfect

prediction is 4.5%, while the absolute minimum and maximum deviations are 0.02% and

10.3%, respectively. Typically, a 5% deviation in velocity may be considered low, and

therefore most interpretations would be that Gassmann’s theory is valid for these velocity
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0.8 MHz (circles).

density=2.4 g/cc

Vp=4 Km/s

sandstone

carbonate

velocities

laboratory measured

A B C D E F H I J K L
−0.4

−0.2

0

0.2

0.4

samples

P−
wa

ve
 re

fle
ct

io
n 

co
ef

fic
ie

nt

 

 

Figure 4.4. Zero offset P-wave reflection coefficient for a two layer reservoir, for which the
bottom layer is represented by the measured samples at 31 MPa differential pressure and
either fully saturated with butane (green) or brine (blue). The plot compares measurements
at 10 Hz (squares) and 0.8 MHz (circles).
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measurements. However, Gassmann’s theory was developed for the bulk modulus and zero

frequency, and in this domain the deviation is close to 15% for our measured carbonates.

Therefore, the variation in the modulus from low to high frequencies is more significant

than when studying velocities alone. Although in geophysics our main data are velocity

and amplitude changes, Gassmann’s applicability should probably be analyzed through the

bulk modulus rather than the velocity.

In reality our prime goal in interpreting seismic velocity changes is to identify pore fluid

type so that Gassmann’s equation (2.1) can be used to invert for the fluid bulk modulus

Kfl. A 5% systematic error in velocity or 15% in rock bulk modulus would correspond to a

50% and 200% over-prediction in Kfl for brine and a light hydrocarbon respectively. Thus

if we are seeking information on fluid types, dispersion is a serious issue to consider.
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CHAPTER 5

FIBER-OPTIC STRAINMETER

5.1 Introduction

Laboratory calibration of the effects of fluid saturation on the seismic signature should

be done at seismic frequencies and amplitudes. Stress-strain techniques can be used to

measure moduli at low frequencies and amplitudes. The experimental data can also be

used to estimate seismic wave intrinsic attenuation (inverse of the quality factor - Q). The

preferential loss of wave amplitude with frequency can be an indicator of fluids in the pore

space and, rock permeability and saturation. One of the major challenges when measuring

core samples is rock heterogeneity.

Our experimental approach measures strains in the sample and a calibrating material

(aluminum) while applying a sinusoidal stress for a range of frequencies - from less than

1Hz to a few KHz - as described by Batzle et al. (2001, 2006). Deformation (strain) is used

to estimate moduli and, combined with the density yields velocity. The rock is assumed

isotropic and linearly elastic meaning that the applied stress on the sample and aluminum

standard must be equal. Because the intrinsic attenuation of aluminum is low, the phase

of the strain on the aluminum represents the phase of the applied stress. The phase lag

between the strain on the aluminum and the measured strain on the rock is directly related

to seismic attenuation. Avoiding heterogeneities (grains, vugs, mineralizations, etc.) is a

challenge when using semi-conductor strain gages (dimension ∼ 1x5 mm) to estimate rock

properties in a stress-strain experiment. This research is based on using fiber-optic cable

as a strain sensor rather than the small strain gages.

A joint research program was begun with the Colorado School of Mines and Micro-

G Solutions (now Micro-g LaCoste) to develop a fiber-optic strainmeter (FOS) to provide

spatially averaged properties as well as higher accuracy. Using the FOS as the acquisition

system for the stress-strain experiment setup would sample bulk rather than point proper-

ties as the fiber can be wrapped around the sample to average heterogeneities. Increased

accuracy and sensitivity when measuring rock deformations undergoing an applied sinu-

soidal stress will permit better phase discrimination between stress and strain providing

better measures of attenuation.

A few previous studies describe systems to measure strain in geo-mechanical applica-

tions for rock or structure failure. Butter and Hocker (1978) estimate strains on a cantilever

bar by counting diffraction fringes, while Schmidt-Hattenberger et al. (2003) approach geo-

mechanical problems by measuring strains via a Bragg grating fiber. These two systems
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have been successful for their applications. However, the experimental strain has to be in

the order of 10−7 to be able to compare laboratory data to field seismic observations. The

strain magnitudes of the two systems previously described are large and their sensitivity

are not as high as the FOS be used for exploration rock physics.

The research on the fiber-optic strainmeter has gone through several stages of experi-

mental setup as well as trial-and-error. Attenuation has been measured with limited success

on a Plexiglas sample. Further tests where focused on improving the system. The largest

challenge in measuring moduli and attenuation using fiber-optic is at the same time its

largest advantage: high sensitivity to deformations. In the next sections we summarize the

different setups and a preliminary test on a Plexiglas sample. The last section focuses on

ideas in the road ahead for the development of this technology.

5.2 Setup 1

Figure 5.1 shows the initial setup for the fiber-optic strainmeter in a Michelson in-

terferometer geometry. The light of an HeNe laser (red light, λ=633ηm) is split into two

fiber-optical cables. The unjacketed sections of the fibers (cladding) are wrapped and glued

around a sample and a piezo electric device, both of cylindrical shape. The end of each fiber

is terminated with a high reflectivity mirror so that, ideally, all of the light is reflected back

to the fiber splitter. From there, half of the light intensity is sent back towards the laser

source but is blocked by an optical isolator (not shown). The other half of the recombined

light is directed to a detector inside the compensator (See Appendix B for a description of

the compensator). In theory, when both fiber arms are the same length and unstrained,

the light detector will record the maximum intensity Imax. In practice the fiber arms will

not be identical, producing a lower combined light intensity Io (Figure 5.3). By changing

the fiber length in one arm, the light intensity resulting from combining the light from

the two fiber arms interferes constructively and destructively. In Figure 5.3, the horizontal

axis is the light path disturbance, meaning how much differential distance the light travels

through the strained fiber. The vertical axis is the light interference from the combined

arms. When stress is applied to the sample the shape changes, straining (extending) the

fiber. For identical length arms and when the path increases by nλ/2 n is an integer) the

light from the two arms interferes destructively giving a minimum intensity. But when the

path increases by nλ the interference is fully constructive producing a maximum intensity

(Imax). This light intensity pattern are the fringes sketched in Figure 5.3. For this setup

with mirrors, if the fiber length changes by nλ/4 means a path disturbance of nλ/2 because

the mirrors reflect the light, thus traveling twice through the stretched fiber. For a different

setup not involving mirrors (discussed latter), the path disturbance and fiber length change

are the same.

Lets assume our non-identical and undisturbed fiber arms interfere to create Io. For

example, consider the case where one fiber is wrapped around a cylindrical test sample
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Figure 5.1. First setup of the fiber-optic strainmeter. The solid lines are the fiber cables
jacketed and unjacketed - at the sections glued to the sample and piezo. The dashed line is
the voltage input to the piezo crystal produced by the compensator.

Figure 5.2. Fiber-optic cable cross-section. The glass cladding is coated with acrylate
and the light propagates through the core. The fiber can have several buffers and jackets.
(Source: www.wikipedia.org)

(e.g. Plexiglas sample). Applying a stress to the sample creates a small strain and the fiber

stretches decreasing the light intensity. When the driving force (stress) is sinusoidal, the

intensity will decrease and increase from Io (represented by the arrow in Figure 5.3).

If we drive the sample such that the response is less than one fringe, the expected signal

is phase locked to the driving signal and can therefore be extracted with a phase sensitive

detector (e.g. lock-in amplifier). We can lock the interferometer by providing a compen-

sating strain on one of the arms while applying stress to the other fiber arm. In this case,

the bandwidth of this compensation servo (the compensator) can be large and encompass

the signal frequency so that there is no change observable on the interferometer output.

The signal is then given by the deformation required to lock the interferometer at a certain

light intensity. In our experiments the compensating deformation is given by applying a

voltage to a piezo electric crystal, expanding this device to match the sample strain. The

applied voltage can be either multiplied by different factors to provide deformation units

or measured on a reference material (aluminum) in mechanical series with the sample and

estimate strain ratios. The second approach is how moduli and attenuation are estimated
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Figure 5.3. Fringe sketch describing the constructive and destructive interference of light
resulting from varying the distance the light travels between two fiber arms (path distur-
bance).

using strain gages. Modulus and velocity (strain amplitude) depends on the amount of

fiber glued to the sample (i.e. light intensity). While, attenuation is not dependent on the

amount of fiber in contact with the sample or light intensity, but is related to the phase

shift. This means there is a greater advantage of measuring seismic wave attenuation over

velocity.

5.2.1 Velocity and attenuation on a Plexiglas sample

As a preliminary test to the system, three fibers are glued to a Plexiglas sample and

an aluminum standard. Two fibers are wrapped around the Plexiglas and the aluminum

standard, and one is set vertically on the Plexiglas. Only one of the fibers in the sample or

the aluminum can be measured at a time, as there is only one free arm to be compensated

by the piezo (Figure 5.1). The Plexiglas sample is 2.5 cm in diameter and 8 cm in length.

The Plexiglas (sample) was set up in the same shaker (apparatus that applies axial

sinusoidal stress) used for low frequency strain gage measurements Batzle et al. (2001).

The sample was measured for a range of seismic frequencies on a laboratory bench at room

pressure and temperature. Both, strain gage and fiber deformation where recorded for

this setup. The measured deformations are used to calculate the moduli of the material.

In turn velocities are calculated from the density and moduli. The comparison of P- and

S- wave velocities using strain gages, fiber-optic, and a propagating ultrasonic wave are

shown in Figure 5.4. The velocity dependence on frequency is opposite when comparing

measurements from strain gages and fiber-optic, but for this first test the overall bulk values

are encouraging.
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Extensional attenuation (Young, E) is computed from the phase difference between

the sinusoidal vertical strain on the Plexiglas and the aluminum. The strain phase angle

is estimated with a lock-in amplifier. Figure 5.5 shows the extensional mode attenuation

estimated from fiber-optic and semi-conductor stain gages. The fiber-optic measurements

are performed at room temperature (∼ 30◦C). Different Plexiglas samples can have differ-

ences in their composition and curing history giving different attenuation values. For the

attenuation data, the strain gage measurements correspond to a different Plexiglas sample

and were measured at 25◦C and 40◦C. A better correlation between attenuation estimated

with fiber-optic and strain gages is observed than that for velocity. This is probably because

the phase estimation is not dependent on the fiber length in contact with the sample. Also

the quality of the light intensity affects the magnitude of the strain amplitude and thus the

velocity.

We list a couple of possible sources of error in the strain measurements: 1) Not enough

light was received at the detector (mirrors did not reflect 100%). 2) The fiber length glued

to the sample is used to normalize deformations, and the estimated modulus is sensitive to

this contact length. 3) These measurements were performed on a regular bench that is not

isolated from vibrations that can be generated by walking, wind, etc, as an optics bench

would be.

A dry Berea sandstone sample was prepared with fiber and strain gages to perform

measurements similar to the Plexiglas, but the efforts to estimate strain and attenuation

where unsuccessful. The fringes were unstable and the compensator would not lock to an

intensity, probably because there was not enough light. We did record the phase shift for the

few times the compensator did lock, estimating a phase shift at about 6 degrees (QE=10),

compared to 0.4 degrees (QE ∼120) as predicted by strain gages (on the same sample) and

the literature Toksoz et al. (1979). Varying the input voltage to generate the stress from

0.05 V, 0.1 V and 0.2 V did not change the phase estimate significantly, always obtaining

the phase shift in the order of several degrees.

5.3 Setup 2

Our first experiment shows that attenuation estimates broadly correspond to those

obtained with strain-gages, and that velocities are probably affected by light intensity or

fiber contact length. To increase the light intensity we modified the interferometer setup to

a Mach-Zehnder geometry. Figure 5.6 shows the first of three approaches for this type of

interferometer. The light intensity increased, however the fiber splitters are very sensitive

to motion. We then isolate the system on an optical bench and, greatly reduced the noise

generated by the splitter. Because of logistics from this point on we use a small shaker

compared to the one in the previous section. We first try the setup as in Figure 5.6 with

a Plexiglas sample. Since the compensator was not functioning, therefore we switch to a

light detector that converts the combined light intensity into voltage.
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Figure 5.4. Compressional and shear wave velocity as a function of frequency for a Plexiglas.
The sample is measured with semi-conductor strain gages and fiber-optic cable following a
stress-strain experimental procedure. The data at 0.8 MHz is obtained from an ultrasonic
pulse propagation technique. The three measurements are performed on the same Plexiglas
sample.
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Figure 5.6. Modified setup for the FOS to a Mach-Zehnder geometry.
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Figure 5.7. Input signal (stress) and recorded fringes in the vertical direction of a strained
Plexiglas sample. The driving frequency is 300 Hz. The two plots are recorded at different
times.

The main challenge in measuring strain with this system is fringe instability. Over a

short time (few periods of the imposed strain) the fringes are sinusoidal with low distortion

at the frequency of the applied stress (Figure 5.7 left). However, for the same acquisition

just a short period later (Figure 5.7 right), the overall fringe intensity decreases and the

phase flip 180◦. To estimate amplitude and phase we need to average many cycles. This light

instability over short period of time is the major challenge for the interferometer. The light

intensity coming out of the (warmed) laser is stable. Ambient factors (e.g. temperature,

wind) are probably responsible for these fringe instability. The fiber is isolated on an optical

table, but the sensitivity to external factors is still significant. As we will see later, we can

isolate the fiber into an aluminum chamber to decrease these effects.

The unjacketed fiber-optic cables are delicate and break easily. We begin repairing

using the fiber-optic fusion splicer provided by Dr. Kowalski (Department of Physics,

Colorado School of Mines). However, controlling the fiber length after repair is hard, and

therefore the arms of the interferometer are not the same length. When the interferometer

is undisturbed (unstressed) the light intensity could be at its minimum (Figure 5.3) if
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Figure 5.8. Third setup for the FOS to estimate the maximum light intensity by stretching
the fiber cable with the sample to the same (interference) length as the cable with the
aluminum.

the length of the fiber is so that the merging light from both arms interfere destructively.

Before any stress-strain measurements we first would like to increase the light intensity

of the undisturbed fiber. We modify the interferometer as shown in Figure 5.8 to try to

estimate the maximum light intensity. Here we use the piezo not as a compensator but as a

fiber stretcher. By applying a voltage to the piezo, we expand its diameter so that both arms

interfere to a maximum intensity. When we expand the fiber by more than one wavelength

we jump from one fringe to the next. Therefore to find the light intensity maximum for a

single fringe we have to expand the fiber by a maximum of 633 ηm (one wavelength). For

a cylindrical piezo crystal the relation between the change in the diameter (δd) and the

applied voltage (V) is:

δd = D31
d

T
V (5.1)

where d is the piezo diameter, D31 is the piezo coefficient and T is the piezo thickness. The

fiber is wrapped N times around the piezo crystal so we convert δd into δl (fiber length

change) by: δl = πδdN - assuming that the fiber expands exactly as the diameter of the

piezo. The factors for this particular piezo crystal and fiber are: D31 = −26410−12m/V ,

d = 0.0192m, T = 0.0037m, N = 17. To stay within one fringe, the maximum expansion for

δl should be less than 633 ηm, which translated into a maximum applied voltage of 8.65 V.

To estimate the maximum fringe intensity and for the setup as shown in Figure 5.8,

a sinusoidal voltage from 1 V to 17 V (peak-to-peak voltage, the amplitude of the sine

function is half this voltage) is applied to the piezo crystal alone while maintaining the

sample and aluminum undisturbed. The recorded maximum fringe amplitude as a function

of voltage applied to the piezo crystal is plotted in Figure 5.9. Two measurements are taken

at each input voltage with a time difference of about 3 minutes. First note that there is no

systematic increase in the amplitude of the fringe as we sweep through piezo voltage. Second,
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Figure 5.9. Fringe amplitude as a function of the voltage applied to the piezo. The experi-
ment consists of estimating the maximum fringe amplitude by expanding the piezo no more
than λ.

for the same piezo voltage but different recording times, the fringe amplitude is largely

variable. This probably results again from the instability of the amplitude of fringes over

several cycles. To try to reduce the fringe amplitude variations the entire interferometer is

setup inside a large aluminum chamber with a lid. The experiment to obtain the maximum

fringe amplitude was repeated without significant improvement from the observations in

Figure 5.9.

Thermocouples are used to measure temperature over time inside the aluminum cham-

ber with the laser on and off, but no temperatures fluctuations were found that could account

for the fringe instability.

5.4 The road ahead

Though out the process of building and testing the fiber-optic strainmeter we were

successful in observing fringes at the same frequency as the input signal (stress). Velocity

and attenuation was overall in agreement with data from strain gages from a preliminary test

on a Plexiglas sample. We focused our efforts to compute attenuation rather than moduli

because phase angle estimation is not dependent on the amount of fiber in contact with the

fiber. Fringe instability is probably not resulting from air movement or ground vibrations,

but probably due to temperature gradients and variable light polarization. Fusing fiber-

optic cable is necessary not only for fixing broken fiber, but also in the future to implement

the system in a pressure vessel. Having a compensator (feed-back loop) to record the strain

data has its advantages (directly record deformation) and complications (does not lock if

fringes are unstable).

The biggest challenge is to stabilize the fringes or to find a correction. Thermally

isolating the system and using polarized fiber can be tested. When measuring strain on the
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aluminum and sample we have three fiber cables. If three systems of laser/detector combos

are available it is possible that the ambient effects will be reduced because the measurements

are performed simultaneously. The fist test on the Plexiglas sample was performed on the

large shaker used to measure strain gages, later we switched to a smaller shaker. Evaluating

the accuracy and efficiency of the small shaker is important to address.

Young’s attenuation could be measured directly with a setup as in Figure 5.8 but

without the piezo. The two arms of the fiber are glued vertically on the aluminum and

sample. From the interference fringes we would like to directly estimate the phase shift (φ)

between the strain on the aluminum and the strain on the Plexiglas sample (Q−1
E ≈ φ). The

combined light intensity from the two interferometer arms is: I = E2
1 + E2

2 + 2E1E2cosα,

where E1 and E2 are the field of the electromagnetic waves from each interferometer arm.

For the fiber-optic interferometer the phase α is the combination of different phase shifts:

α = ∆θ + δ + φ. If the light coming out of each arm are not identically polarized we have

the contribution of ∆θ: the angle between the light polarization of each arm. The single

mode fiber used does not guarantee that the light from each arm has the same polarization.

δ is the shift due to the electronic components in the setup and finally φ is the phase shift

due to intrinsic attenuation. Although some preliminary tests were performed, additional

equipment is required to estimate attenuation with this method.





71

CHAPTER 6

TIME-LAPSE Q

6.1 Introduction

Production and enhanced oil recovery (EOR) over time create changes in the reservoir,

which are monitored mostly by studying amplitude (reflection coefficient, AVO), velocity or

travel time differences. However, changes in seismic wave attenuation can be significantly

greater than for these rock properties as a result of fluid substitution in the reservoir. To

monitor variations in reservoir rock properties due to fluid production or injection, seismic

surveys are acquired separately over time. These data sets are called time-lapse or 4D

seismic surveys. In this chapter we study changes in seismic wave attenuation for a reservoir

undergoing EOR.

Intrinsic attenuation is the loss of amplitude due to elastic energy conversion into heat

as a wave passes through a medium. Fluid in, saturation and permeability of a rock is related

to intrinsic attenuation. Scattering attenuation is the loss of seismic energy when waves

deflect out of the direction of propagation. In this chapter we create synthetic seismograms

to study contributions of scattering and intrinsic attenuation for time-lapse attenuation

studies. We base our modeling of synthetic seismograms on measured laboratory data

on carbonate rocks (chapter 3). Our experimentally measured data show that intrinsic

attenuation can increase on average by 275% when brine replaces a light hydrocarbon in

these rocks. By comparison, the average compressional-wave velocity changes by 7% for

measured carbonate samples. At seismic frequencies, in the laboratory we measure only the

intrinsic attenuation, but for field measurements the amplitude of a propagating seismic

wave is attenuated by both intrinsic and scattering mechanisms.

Estimating attenuation from seismic data, whether it is from a vertical seismic profile

(VSP) or surface seismic survey, gives an apparent attenuation. This type of attenuation

is the combination of scattering and intrinsic losses. In this chapter attenuation is defined

as the inverse of the quality factor Q, and we use the subscripts s for scattering, i for

intrinsic and a for apparent. Estimating Q from seismic data has gained popularity in recent

years. Dasgupta and Clark (1998) and Clark et al. (2001) present an innovative approach

to estimating Qa at zero-offset from surface seismic data by analyzing Qa versus offsets.

They find qualitative correlations between gas coming out of solution and Qa changes for

a North Sea reservoir. Zhang and Ulrych (2002) describe a methodology to estimate Qa

from CMP gathers and frequency shift. Azimuthally anisotropic Qa from CMP gathers

is studied by Vasconcelos and Jenner (2005). Changes in apparent attenuation can also
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be estimated from a zero-offset VSP geometry. For this acquisition geometry, Michaud

(2001) correlates changes in P- and two S-wave apparent attenuations to fluid mobility

and closure of cracks. Several studies describe ways to separate intrinsic from scattering

attenuation (Parra et al., 2007; Mateeva, 2003; van Wijk, 2003; van Wijk et al., 2004; Fogg,

1995). However, intrinsic attenuation is estimated by modeling the scattering loss and

subtracting this loss from the apparent attenuation. In other cases, specific data is acquired

to separate both attenuations (e.g., full waveform sonic log or seismograms including the

coda). Because attenuation can be described as a preferential loss of frequencies with

distance for a propagating wave, other techniques (e.g. wavelet transforms) are available

to extract frequency information and relate the frequency losses to attenuation. However,

these methods often rely on dictionaries of wavelet types, so quantitative Q extraction is not

straight-forward. And finally, full-waveform procedures also exist to estimate Qa (Hicks and

Pratt, 2001). As we can see, few studies have focused on estimating intrinsic attenuation

from seismic data. The goal of this chapter is to study the feasibility of extracting intrinsic

attenuation information from synthetic seismic data.

Seismic wave attenuation is commonly estimated from the amplitude spectrum of

recorded waves. Intrinsic attenuation can be described by an exponential decay, where

the exponent can be written in terms of Qi or an absorption mean free path ℓi (van Wijk

et al., 2004). Scattering attenuation can also be described by an exponential decay, but the

makeup of the exponent is more complicated: O’Doherty and Anstey (1971) show that the

exponent is made of the average power spectrum of a reflectivity series, while for ensembles

of realizations (again, some averaging procedure!), the decay of the coherent intensity is

described by the scattering mean free path in the exponent. In either case, averaging is

important, and it is not obvious that for a single realization of the subsurface there is an

equivalent exponential decay described by scattering Q: Qs. It does seem intuitive that

scattering and intrinsic attenuation are additive processes, together producing apparent

attenuation:
1

Qa
= f

(

1

Qs

)

+
1

Qi
. (6.1)

Schoenberger and Levin (1974); Spencer et al. (1982) and Richards and Menke (1983)

confirm this additive relationship of scattering and intrinsic attenuation to apparent atten-

uation, in a qualitative manner, and observe for their synthetic seismograms that

f

(

1

Qs

)

= 1/Qs

.

The focus here is to analyze time-lapse changes in attenuation instead of absolute

attenuation. We define a time-lapse change in attenuation between two acquisition times

as ∆ 1
Q = 1

Q(t2) −
1

Q(t1) . We propose the idea that if we have two 4D seismic surveys taken

at two different times, between which fluid substitution occurs in the pore space, taking
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the difference in apparent attenuation results in the difference of intrinsic attenuation. This

idea works if the change in scattering attenuation at two acquisition times is negligible

compared to changes in intrinsic attenuation.

We create synthetic traces in VSP and surface seismic (shot gather) geometries for

an earth model with intrinsic attenuation. In this chapter we discuss the VSP synthetic

seismograms and leave the analysis and discussion of shot gathers for appendix D. We

estimate interval apparent attenuation from direct arrivals (in a VSP) or reflectors of in-

terest in synthetic seismograms. To model changes in intrinsic attenuation we assume an

EOR process, where brine substitutes for a light oil in a carbonate reservoir and we use our

laboratory measured Qi in carbonate samples as the Q parameter guideline when modeling

seismograms. To estimate interval Qa we apply the most common Q estimation method;

namely, analyzing spectral ratios (Hauge, 1981; Toksoz et al., 1979). Another popular Q

estimation technique involves estimating frequency shifts (Quan and Harris, 1997). In Ap-

pendix C we compare the spectral ratio and frequency shift methods and give a summary on

their derivation and estimation approach. Both methods estimate Q from the primary (e.g

direct arrival, reflection). Although their basic assumptions are the same, the computation

of Q is different.

In the following sections we will model synthetic VSP seismograms and estimate at-

tenuation under two circumstances: 1) that attenuation is only due to scattering (elastic

modeling), and 2) that attenuation results from scattering and intrinsic attenuation (visco-

elastic modeling). For the latter scenario we will test receiver separation, noise level in the

traces, and how changes in velocity, density and Q influence ∆1/Q estimates. At the end

of the chapter we will give some insight on the challenges in estimating and interpreting

apparent time-lapse attenuation.

6.2 Velocity, density and Q synthetic model

We began by modeling a zero-offset VSP, because the direct arrival in the downhole

receivers usually has a good signal-to-noise ratio. Also, Mateeva (2003) showed that Q at the

near surface principally affects late arrival times in a VSP. However, for reflection seismology,

near surface Q could have a large contribution on all arrivals in the seismogram. In a time-

lapse monitoring reservoir program, the near-surface rock properties can change (e.g., wet

vs. dry near surface). Therefore, analyzing time-lapse 1/Qa changes due to variations in

intrinsic Q in the reservoir layer from direct arrivals in a VSP has an advantage over the

same estimates from surface seismic data.

To model scattering losses, the earth model should have contrasting elastic rock prop-

erties. A blue reflection coefficient series (RCS) is one in which reflection coefficients have

alternating sign, typically due to cyclic changes in lithology. This type of RCS model is ob-

served in well logs. In addition, alternating of absolute reflection coefficients between large

and small values, creates scattering attenuation (O’Doherty and Anstey, 1971). The FFT
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Figure 6.1. P-wave and S-wave velocity, and density synthetic logs. The section between
500 and 1000 m is generated from pseudo-random numbers to create a blue reflection co-
efficient series. The circles are the locations of the two VSP receivers. The model has
106 layers.

of a blue RCS shows that amplitude increases with frequency (Figure 6.2). For a transmis-

sion experiment and a blue RCS, scattering Qs is positive, so that 1/Qa > 1/Qi, because

high frequencies are redirected in space. However, Mateeva (2003) shows that for reflection

seismic data from a blue RCS, scattering attenuation could either contribute to the loss of

high frequencies (1/Qa > 1/Qi) or actually boost them (1/Qa < 1/Qi). Because we will

model a VSP geometry we will be dealing with an over-estimation of intrinsic attenuation

by measuring apparent attenuation.

We created two velocity-density-Q models (logs): 1) with thick layers (greater than λ,

the dominant wavelength), and 2) the same model, with thin layers between 500 and 1000 m

with realistically high contrasting reflection coefficients (Figure 6.1). Velocity and density

profiles were created by using average values for sedimentary water saturated rocks as

compiled by Mavko et al. (1998). We generated a pseudo-random log at a 5 m interval from

uniform distributions of P- and S-wave velocity as well as bulk density (ρ). Between 500 m

and 1000 m, the average P- and S-wave velocity and density are 4500 m/s, 2400 m/s and

2.4 g/cm3, respectively. The model has 106 layers in total. P-wave intrinsic Q is included

for the interval between 500 and 1000 m. The P-wave Q for the rest of the section and

S-wave attenuation for all depths is high (Q=104). Therefore, in this analysis all references

to Q are for P-wave losses. The zero-offset VSP was modeled with a free surface. We used a

compressional point source at 25 m from the well head with a dominant frequency of 60 Hz.
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Figure 6.2. Spectra of the reflection coefficient series from the velocity and density logs in
Figure 6.1.

Frequencies were modeled from 0 to 150 Hz, and the time sampling interval is 2 ms.

We model synthetic VSP traces by using the OASES code (Schmidt and Tango, 1986)

developed for a horizontally stratified Earth. The code models seismograms for elastic and

visco-elastic media. The output seismograms are modeled vertical particle velocities (in

m/s), for simplicity referred to here as amplitude.

6.3 Elastic modeling

Based on the log with random RCS (Figure 6.1), we modeled synthetic seismograms

for a zero-offset VSP with two receiver depths, R1=500 m and R2=1000 m. To compare

the effect of layering, we also compute VSP seismograms for a six-layer model. This model

is the same as in Figure 6.1 but with a homogeneous layer between 500 and 1000 m with

the following constant velocities and density: VP =4500 m/s, VS=2400 m/s, ρ=2.4 g/cm3.

We plot the seismic signature at one receiver depth to compare the seismic trace with

and without layering. Figure 6.3 shows the seismogram for the deeper receiver. Observe

how the number of arrivals increases after the direct arrival when we include a RCS with

high contrast. Most of these arrivals are waves that have bounced multiple times between

the layers; i.e., the coda. The direct arrival for this receiver is attenuated by scattering.

These observations are at the moment qualitative, so let’s compute the interval apparent

attenuation between the receivers.

From the recorded direct arrivals in the VSP receivers we estimated interval apparent

attenuation. We applied a 100 ms Hanning-type window centered at the direct arrival

for the top and bottom receivers (Figure 6.4) and computed a discrete Fourier transform.

Figure 6.5a is the amplitude spectrum of the windowed direct arrival modeled with a random
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Figure 6.5. a) Amplitude spectra of the windowed traces in Figure 6.4, and b) amplitude
ratio and linear fit. Scattering attenuation: 1/Qs=0.0153±0.0006 is estimated from the
slope of the line.



78

RCS. The base 10 logarithm of the ratio of the two spectra as a function of frequency is

shown in Figure 6.5b, and we apply spectral ratios to estimate Qa (Appendix C). We

use Equation C.1 to relate the line slope to Q. From the linear fit we also estimate the

variance in the random error for Q and 1/Q as described in Appendix A. In this chapter

we will plot and refer uncertainty as one standard deviation from the mean. We estimate

Qa=65.5±2.5 (1/Qa=0.0153±0.0006) for this elastic model and receiver positions. Because

we are modeling elastic seismograms, Qi ≫ Qs, the measured Qa results only from scattering

attenuation. Hereafter, we will limit estimates of 1/Q and the associated standard deviation

to three decimal places. Thus, if there is no reference to the uncertainty in 1/Q, it is because

one standard deviation is less than 0.0005.

The frequency range used to estimate Q is important to understand. Consistently

using the same frequency interval for computing Q is critical, because estimates of scattering

attenuation depend on the frequency window (Mateeva, 2003). For our synthetic data, the

amplitude ratios for frequencies greater than 150 Hz are noisy. We choose an optimal S/N

level from 0 to - 15 dB, corresponding to a frequency range between 12 and 134 Hz. We

consistently used this frequency interval to compute the spectral ratios in this chapter.

6.4 Visco-elastic modeling

In this section we will first test quantitatively whether Equation 6.1 is valid for syn-

thetic VSP traces. Next, we will model synthetic seismograms at two acquisition times,

simulating an EOR process, for which intrinsic attenuation has changed. If Equation 6.1

holds true, and scattering attenuation does not change because the elastic rock properties

remain constant at the two times, taking the difference of apparent attenuation should yield

the change in intrinsic attenuation. And finally, we will study the influence of receiver sep-

aration and random noise on time-lapse 1/Q estimates. For better understanding of the

nomenclature and attenuation values, we summarize the equations involved.

If apparent attenuation is the sum of intrinsic and scattering attenuation, and Qs is

constant over two acquisition time intervals:

∆
1

Qa
=

1

Qa,2
−

1

Qa,1
=

(

1

Qs,2
+

1

Qi,2

)

−

(

1

Qs,1
+

1

Qi,1

)

=
1

Qi,2
−

1

Qi,1
= ∆

1

Qi
(6.2)

where 1 and 2 refer to the data acquisition at two time intervals.

Intrinsic attenuation changes used to model synthetic seismograms are obtained from

laboratory data in carbonate rocks. At seismic frequencies and reservoir conditions we mea-

sured intrinsic attenuation in three carbonate samples (chapter 3). These data shows that

for our carbonate samples compressional-wave intrinsic attenuation is greater than shear-

wave attenuation. For one of the samples Qi for P-waves decreases from 100 (hydrocarbon

saturated carbonate) to 50 (brine saturated carbonate). These intrinsic P-wave Q values
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1/Qa,1 1/Qa,2 ∆1/Qa ∆1/Qi,true

0.024±0.001 0.034±0.001 0.010±0.001 0.010

Table 6.1. Attenuation estimates for receivers at 500 and 1000 m.

are used to modeled synthetic seismograms for time-1 (Qi=100) and time-2 (Qi=50). We

will refer to 1/Q for most of the results and discussion, because it is 1/Qi and 1/Qs that

are additive. If 1/Qs cancels in a time-lapse experiment, the true (predicted) change in

apparent attenuation is:

∆
1

Qa,true
= ∆

1

Qi,true
=

1

Qi,2,true
−

1

Qi,1,true
= 1/50 − 1/100 = 0.010.

The predicted apparent attenuation based on the estimated Qs (section 6.3) and mod-

eled Qi under the assumption that f
(

1
Qs

)

= 1/Qs:

1/Qa,1,true = 1/Qs,est + 1/Qi,1,true = 1/65.5 + 1/100 = 0.025

1/Qa,2,true = 1/Qs,est + 1/Qi,2,true = 1/65.5 + 1/50 = 0.035.

The estimated 1/Qa values from direct arrivals between the two receivers are shown in

Table 6.1. Within one standard deviation, the predicted and estimated apparent attenuation

at time-1 and time-2 match with the predicted 1/Qa. This quantitative result agrees with

our hypothesis that apparent attenuation equals the sum of scattering and intrinsic 1/Q,

and that f
(

1
Qs

)

= 1/Qs describes the scattering loss contribution to the overall 1/Qa.

Moreover, the difference in apparent attenuation between two surveys acquired at different

times is the time-lapse change of the intrinsic attenuation: 0.010. This result confirms

that, although 1/Qa,1 and 1/Qa,2 cannot independently give quantitative information about

the intrinsic attenuation, their difference does describe the visco-elasticity created by fluid

exchange.

Fluid substitution in a reservoir not only changes the visco-elastic properties of the

reservoir, but the elastic rock properties as well. However, our laboratory measurements

from chapter 3 indicate that for our carbonates fluid substitution has a much larger effect on

intrinsic attenuation than on density and velocity. These parameters change on average 7%,

while attenuation changes 275%. Thus, the difference is at least an order of magnitude. It is

velocity and density that define the acoustic impedance, and therefore scattering strength.

Because changes in scattering strength are small compared to those in attenuation, we can

safely assume that our reservoir changes in apparent attenuation are dominated by changes

in intrinsic Q.
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Figure 6.6. Apparent attenuation and time-lapse apparent attenuation sensitivity to receiver
separation. Receiver depth in meter: 500-1000 (C1), 600-900 (C2), 700-800 (C3) and 730-
760 (C4). In Case 1 (1/Qa,1) Q is 100; in Case 2 (1/Qa,2) Q is 50.

6.4.1 Receiver separation

Scattering attenuation will also depend on the location of the receivers, because waves

interfere differently as a function of receiver depth, and in this section we will test 4D

apparent attenuation sensitivity to receiver separation. Synthetic seismograms are modeled

by varying the receiver separation in meters as: 500-1000, 600-900, 700-800 and 730-760.

The remaining modeling parameters were the same as for the previous section. Figure 6.6

shows the estimates for apparent attenuation for time-1 and time-2, and their difference.

Note that although the apparent attenuation at time-1 and time-2 varies with receiver

separation, the 4D apparent attenuation is constant (∼0.01). The variation in the estimate

of 1/Qa,1 and 1/Qa,2 probably results from 1/Qs: at different receiver depths the layers

contribute to scattering loss differently.

As the receiver separation decreases, the apparent attenuation increases linearly. This

observation agrees with a synthetic VSP modeled by Mateeva (2003) in the case when a

strong RCS overlays a weak RCS between receivers. This RCS geometry is similar to our

earth model where the strong RCS is above the deep receiver. As the receiver separation

decreases, the error increases, because the direct wave amplitude interferes with reflections

from the local stratigraphy and from the stratigraphy between receivers (Mateeva, 2003;

Spencer et al., 1982; Shapiro and Zien, 1993).

6.4.2 Random noise

Another parameter that can affect the estimate of apparent attenuation is noise. Next,

we will study the effect of random noise on the estimate of time-lapse apparent attenuation.
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Figure 6.7. Original trace at R1 and time-1 and with added noise at three levels.

Based on work from Soroka et al. (2007) on a time-lapse VSP with fixed geophones, the

trace repeatability (background noise) is 1% of the original trace amplitudes. This VSP is

from the same field from where samples 100, 200 and 300 were measured, and as mentioned

before, the attenuation change from light hydrocarbon to brine is estimated from laboratory

measurements on these samples (Chapter 3). Landrø (1999) shows that for a 3D VSP, the

repeatability error (root-mean-square error) in a North Sea VSP is 8% of the original trace

amplitude.

To reproduce noise in the field, we added pseudo-random Gaussian noise to both

receivers and times, and model the visco-elastic parameters from section 6.4. The applied

noise was from a pseudo-random Gaussian distribution with zero mean and for which one

standard deviation is 1, 3, 5, 10 and 15% of the maximum amplitude of the direct arrival.

Figure 6.7 shows the VSP trace for R1 with different levels of added noise. Figure 6.8 is the

estimated apparent attenuation for the time-lapse experiment and noisy traces. For a low

noise level (n<5%), random noise does not significantly affect the estimate of ∆1/Qi. On

average, ∆1/Qa=0.009, and the true value is 0.010. However, larger levels of noise (n≥5%)

affect the shape of the direct arrival (Figure 6.7), and in turn the shape of the amplitude

spectra, biasing ∆1/Qa estimates.

Coherent noise interfering with the direct arrival, such as tube waves in a VSP, can also

bias apparent attenuation. Coherent noise can change the shape of the amplitude spectra

of the events of interests, changing amplitude spectra ratios. Therefore, contributions of
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Figure 6.8. Estimated apparent attenuation as a function of random noise added to the
traces. At low noise levels (n<5%) the estimate of ∆1/Qa agrees with the expected ∆1/Qa.

coherent noise on VSP direct arrivals can modify the slope of the logarithm of the amplitude

spectra ratio as a function of frequency, affecting the apparent attenuation estimates.

We have performed a similar analysis on time-lapse attenuation for a surface seismic

geometry described in Appendix D. For a simple forward model of a shot gather seismo-

gram, the window size applied to the event of interest significantly controls the apparent

attenuation estimate. Nonetheless, with a window size that cleanly isolated the event of

interest, we are able to recover the reservoir time-lapse intrinsic attenuation from the time-

lapse apparent attenuation estimates.

6.5 Interpreting time-lapse apparent attenuation

In this section we will explore possible pitfalls when estimating time-lapse intrinsic

attenuation. We will first describe the non-uniqueness of the ∆1/Qi estimate. Second, if

Qi varies significantly with depth between the VSP receivers, then the estimate of ∆1/Qa

will not be a good estimate of ∆1/Qi. By a significant Qi variation with depth, we mean

that between the VSP receivers there are several layers with distinctive Qi, but only one of

them experiences fluid substitution and thus a change in Qi, while the others remain the

same. Finally, we will describe the difference in wavelet spectra that might help us decide

whether to estimate Q from spectral ratios or frequency shift.

Figure 6.9 shows all possible combinations for time-lapse 1/Qi based on intrinsic Q

varying from 5 to 200. Observe that there will be several combinations of 1/Qi,1 and 1/Qi,2

that produce, for example, ∆1/Qi=0.010. However, from laboratory data the range of

possible 1/Qi can be narrowed. Also, when a fluid is substituted for, replaces another fluid,

1/Qi,2 may be either smaller or larger than 1/Qi,1; yielding a negative or positive ∆1/Qa

respectively, based on our definition of ∆1/Qa (Equation 6.2). And as we discussed in
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Figure 6.9. Estimated time-lapse changes in 1/Qi for all possible combinations of intrinsic
attenuation between 0.005 and 0.2.

previous sections, ∆1/Qa has only contributions from intrinsic rock losses, thus, the rock

fluid dynamics.

To analyze the contributions of layers with different Qi, we positioned the receivers at

300 and 1100 m for a VSP geometry. We modeled synthetic traces with Qi=100 and 50

only for the layers in the random sequence (500-1000 m), while the rest of the depth section

has a Qi=104. Thus, the recorded wave in the deep receiver propagates through a low

(0-500 m and 1000-1100 m) and high (500-1000 m) attenuating section. Table 6.2 shows

the estimated apparent 1/Q between 300 and 1100 m. The ∆1/Qa does not agree with the

true ∆1/Qi, because we have contributions of low and high attenuating layers. Therefore,

∆1/Qi cannot be correctly estimated from ∆1/Qa if the layers between the receivers have

significantly different 1/Qi and only a sublayer experiences changes in Qi over time. In this

example, the ratio of low attenuation to high attenuation rocks,3:5, is significant.

Interestingly, the estimate of interval apparent attenuation at a particular time follows

the rule of a weighted average of intrinsic attenuation. The weights (w) are governed by

the layer thickness or travel times in the contrasting Qi regions between the receivers. For

n parallel layers with different Qi we propose that interval 1/Qa can be estimated from:

1

Qa
=

1

Qs
+

n
∑

j=1

1

Qi,j
wj (6.3)

with j representing each of the layers with different Qi between the VSP receivers.

The previous relation was also found valid for a six-layer model (Figure 6.1 with no
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1/Qa,1 1/Qa,2 ∆1/Qa ∆1/Qi,true

0.015 0.021 0.005±0.001 0.010

Table 6.2. Estimates of 1/Qa for receivers at 300 and 1100m. The Qi between the receivers
varies with depth from 104 to either 100 or 50.
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Figure 6.10. Amplitude spectra from the direct arrival of VSP receivers. The blue curves
represent a Gaussian function fit to the spectra.

random layers) with three different Q: 120, 50 and 100 in layers 2, 3 and 4. Applying

Equation 6.3 gives 1/Qa,true=0.016, while the estimated 1/Qa from spectral ratios is 0.014.

A similar approach to estimate effective 1/Q is was proposed by Spencer et al. (1982).

Finally, we show why we choose spectral ratios (SR) over frequency shift (FS) to

estimate Qa in this chapter. Both methods have the same assumptions, but the methodology

for estimating Q is different (Appendix C). Figure 6.10 shows the amplitude spectra of the

traces modeled with a log and a Qi=50. Interference from near stratigraphy affects the

direct arrival. Therefore, even a small window (80 ms) has interfering events, creating

amplitude spectrum asymmetry (Figure 6.10). When we apply the FS method, we assume

that the spectrum can be modelled by a Gaussian function, but Figure 6.10 clearly shows

that the spectrum is not Gaussian-like. The Gaussian fit to the spectra of the top and

bottom receivers is shown in blue. Qi from FS is estimated at 74.9±8.3; that from SR is

54.2±3.1 (Qi,true=50). In Appendix C the FS approach showed to be more stable under

noise when the spectra are Gaussian shaped, that is not the case for an asymmetric spectra

as in Figure 6.10. Deciding which methodology to follow could be assessed by studying the

shape of the amplitude spectrum of the trace. Nonetheless, if the spectrum is Gaussian

shaped, SR would probably be stable as a Q estimator method, because the amplitude

ratios with frequency will behave linearly.
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6.6 Conclusions

Although estimating attenuation from seismic data is still a challenging procedure,

with increasing seismic data quality, estimation of attenuation could be common practice in

the near future. From this study we conclude that time-lapse apparent attenuation has the

potential to be used as an attribute in reservoir fluid monitoring. We have quantitatively

shown that apparent attenuation is the exact sum of scattering and intrinsic attenuation (in

1/Q terms). Therefore, scattering attenuation cancels when taking the difference in appar-

ent attenuation between two acquisition times, so that we are left with changes in intrinsic

attenuation alone, which are directly related to the type of fluid in the rock. Even though

individually estimated 1/Qa for each acquisition time may vary with receiver separation

or random noise (< 5% for VSP), this variability cancels or becomes less significant when

we take the difference in apparent attenuation, and yields the predicted 4D difference in

intrinsic attenuation.





87

CHAPTER 7

CONCLUSIONS

The elastic properties of the measured carbonate samples in the laboratory under

varying fluids and pressure conditions show that:

• The carbonate rock frame weakens when the pore space is saturated with brine -

a polar fluid - compared to the same samples dry (humidified) and fully-saturated

with liquid-butane (light hydrocarbon). This frame weakening is observed by the

decrease in the rock shear modulus at seismic frequencies due to fluids. At ultrasonic

frequencies, rock-fluid mechanisms at these high frequencies actually increase the shear

moduli of brine saturated carbonates compared to dry. For our measured samples this

frequency dispersion dominates over the weakening of the rock frame.

• Shear modulus weakening is greater at low differential pressures when compliant pores

are open and steadily decreases as we reach the reservoir differential pressure. This

pressure dependence of the frame weakening implies that matrix softening is related

to the amount of open soft pores.

• The rock shear modulus weakening is reversible in our controlled experimental envi-

ronment. Therefore possible mechanisms that explain the weakening due to a polar

fluid are the bound breakage of grain or cement contact areas or sub-critical crack

growth. Mineral dissolution due to brine is not a reversible process.

• Gassmann’s theory is used to model the saturated bulk modulus of rocks and is de-

rived for low frequencies (zero frequency). At seismic frequencies the butane-saturated

rock bulk modulus of all our measured samples is predicted by Gassmann’s. How-

ever, for a lower compressibility fluid such as brine the correlation between measured

brine-saturated carbonates and Gassmann’s prediction is not straightforward. For our

sample set we find a match between the measured and Gassmann’s predicted brine-

saturated rock bulk modulus for samples with high aspect ratio pores: round or more

sandstone-like grains.

• At ultrasonic frequencies the saturated bulk modulus of some carbonates is predicted

by Gassmann’s relation. This is an apparent correlation because the bulk and shear

modulus are dispersive with frequency from a few Hz to MHz. And while the same

sample at low frequency is not predicted by Gassmann, the use of this zero-frequency

theory at high frequencies can be misleading.
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• The modulus and velocity frequency dispersion from seismically to ultrasonically mea-

sured samples can be reduced if the ultrasonic VP /VS ratio or time-lapse absolute

reflection coefficients are analyzed for seismic reservoir characterization.

• Sample heterogeneity can affect modulus and velocity estimates especially at ultra-

sonic frequencies. Heterogeneity can result from rock frame variability (e.g. mineral-

ization, texture or porosity contrast) or patchy saturated regions in the core sample.

• The low frequency measured rock properties could also be sensitive to rock hetero-

geneity. Therefore we develop and test a fiber-optic strainmeter. Instead of the

commonly used strain gages to measure deformations we used fiber-optic cable with

an interferometry setup to estimate visco-elastic properties of samples. With limited

success we measured a Plexiglas sample at room conditions. However, the system’s

strength is also it weakness: large sensitivity. Measurements on a rock sample have

not been accomplished because of the instability of the interference fringes from which

the visco-elasticity of the material is estimated. However we document of trials and

steps to improve the system.

By studying the visco-elasticity from the laboratory samples we conclude that:

• Contrary to popular belief, for fully- and partially saturated carbonate samples with

either a light hydrocarbon or brine show that the bulk modulus intrinsic attenuation

(1/Q) dominates over the shear wave attenuation. This observation holds for seismic

and ultrasonic frequencies for our carbonate sample set.

• A change from brine to liquid-butane in the pore space increases the bulk attenuation

by a factor of 1.5 to 4, compared to an increase of P-wave velocity in average by a

factor of 1.07 for these samples.

• The bulk attenuation is more sensitive to fluids than the other modes of attenuation.

This information can help on the decision on which seismic data volume (P-wave or

S-wave) is more sensitive to extracting fluid information from intrinsic attenuation.

• Modeled bulk and shear attenuation from the laboratory measured elastic moduli by

using the Cole-Cole relation verifies the above three conclusions: bulk losses are greater

than shear losses, bulk attenuation is more sensitive to brine than shear attenuation,

and the change in bulk attenuation due to fluid substitution in at least a factor of 2.

• Within the exploration seismic frequency band, the measured samples show that at-

tenuation can be assumed frequency independent. However, over the whole range of

measurement 3-1000 Hz and the ultrasonic data, 1/Q is frequency dependent for some

of the measured samples.

We model synthetic seismic seismograms to study the feasibility of estimating time-

lapse intrinsic attenuation and conclude that:
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• The estimated apparent attenuation from synthetic seismograms is quantitatively the

addition of intrinsic and scattering attenuation.

• For our model and assumptions, because the contribution of scattering attenuation

over-time is repeatable, the time-lapse difference in apparent attenuation results only

from changes in the intrinsic attenuation.

• For a VSP geometry, apparent attenuation is sensitive to receiver separation, velocity

and density changes or random noise; at a particular acquisition time. However,

the 4D apparent attenuation is equal to the time-lapse intrinsic attenuation because

scattering attenuation is repeatable and cancels over time.

• For a non-stacked zero-offset synthetic surface seismic trace, the time-lapse appar-

ent attenuation is also equal to the 4D intrinsic attenuation. However, the window

size applied to isolated the reflection of interest influences the estimate of apparent

attenuation, especially small windows. Random noise significantly affects the esti-

mate of apparent attenuation from a zero-offset trace for noise level greater than 10%.

But when correcting by NMO and stacking the near offsets traces, the random noise

cancels and the estimate of apparent attenuation is accurate.

• The synthetic seismogram modeling and analysis concludes that time-lapse apparent

attenuation has the potentially to be a powerful attribute to analyze the fluid changes

in dynamic reservoirs.
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APPENDIX A

DATA ESTIMATION AND UNCERTAINTY ANALYSIS

At seismic frequency moduli and velocities are measured with the strain-stress method.

Vertical strain is defined as: ǫ = ∆L/L, where L is the sample length and ∆L is the

deformation. We measure strain in the vertical (vert) and horizontal (hrz) directions on our

samples. The samples are cylindrical and we mount them in series with cylindrical aluminum

standards, which in turn house ultrasonic transducers. Aluminum serves as our calibrating

material with vertical strain gages, while our rock has vertical and horizontal mounted gages

(Figure A.1). We apply a sinusoidal vertical stress (σ) for a range of frequencies (3-3000).

The vertical stress on the aluminum is the same as on the rock under the assumption of

linear elasticity. σvert = Eǫvert and E is the Young’s modulus. By equating the vertical

stress on the rock (no subscript) and the aluminum (al) we obtain the Young’s modulus of

the rock:

E = Eal
ǫvert,al

ǫvert
; (A.1)

Eal is 70 GPa and ǫvert,al, ǫvert are measured strains. The rock Young’s modulus is

our first data. Our second data set is Poisson’s ratio relating the horizontal and vertical

strains on the rock:

ν = −
ǫhrz

ǫvert
. (A.2)

Both the rock Young’s modulus and Poisson’s ratio are thus measured as a function

of frequency. Assuming isotropy, the bulk (K) and shear (µ) moduli of the rock are:

K =
E

3(1 − 2ν)
; µ =

E

2(1 + ν)
. (A.3)

From these moduli and the rock density (ρ) velocity follows:

VP =

√

K + 4
3µ

ρ
; VS =

√

µ

ρ
. (A.4)

In the stres-strain experiment we first estimate the bulk and shear moduli and later

include the rock density to estimate velocity. Thus, our moduli estimates are independent

of the rock density. As we will see next, for ultrasonic data the rock density is needed to
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Figure A.1. Sample setup sketching the location of the strain gages and ultrasonic trans-
ducers. The low frequency waveforms are also sketched for the three different strain gages.

estimate the bulk and shear moduli.

For ultrasonic data we measure the time a wave takes to propagate from the top of

the sample to the bottom. The velocity, either P- or S-wave, is estimated by:

V =
L − δL

Tm − T0
, (A.5)

where L is the sample length measured at atmospheric pressure, δL is the change in sample

length due to pressurization, Tm is the measured travel time, and T0 is a time correction.

δL is ignored because the change in length, which we can estimate from the low frequency

experiment, is very small. T0, the travel time through the aluminum material between

the ultrasonic transducer and the sample, is known and constant for all measured samples.

Therefore we can rewrite Equation A.5 as simply:

V =
L

T
, (A.6)

where T is the corrected travel time. Using the S-wave velocity and rock density, we

calculate the ultrasonic shear modulus by Equation A.4, and we compute the bulk modulus

from the P-wave velocity, estimated shear modulus and density.
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A.1 Data uncertainty

To estimate the uncertainty in our data we will assume that the true model for the

low frequency data is a line and a 2nd order polinomial for the ultrasonic data. Both data

errors are assumed random, Gaussianly distributed and with zero mean.

The equation of a line with random noise ǫ is:

yi = β0 + β1xi + ǫi, (A.7)

where yi is the i-th measured data (e.g., Young’s modulus) and xi is i-th the predictor (e.g.,

frequency). β0 and β1 are the model parameters (Draper and Smith, 1981). When fitting

the data by least-squares for example, estimators (labeled with ˆ ) of the data and model

parameters are:

ŷi = β̂0 + β̂1xi, (A.8)

An estimator of the variance of the random error is:

σ̂ǫ
2 =

n
∑

i=1

(yi − ŷi)
2

n − p
, (A.9)

where n is the number of data points and p is the number of model parameters we are

estimating in the regression, which for a straight line is equal to 2.

We are interested in obtaining an estimator of error of the fitted values (ŷi). We can

rewrite Equation A.7 in matrix from, where y, β and ǫ are vectors and A is a matrix

(operator):

y = Aβ + ǫ; A =













1 x1

1 x2

: :

1 xn













β =

(

β0

β1

)

. (A.10)

The variance of the fitted values (ŷ) depends on both the variance of the random error

of the data and on the assumed model (structure of A). We obtain the variance estimate

for each fitted value as Draper and Smith (1981):

σ̂2
ŷi

= σ̂2
ǫ [A(AT A)−1AT ]ii. (A.11)

Applying a least squares methodology means minimizing the residual between data

and fitted values about the data mean. The vector [A(AT A)−1AT ]ii weights the errors for

the fitted values so that the σ2
ŷi

is larger as we get away from the predictors associated with

the data mean.
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Errors can also be systematic (bias) instead of random, but at this point we assume we

have no bias in the data or have corrected for it (e.g., our corrections for Poisson’s ratio).

We propagate the variance of the fitted values into other variables (e.g., bulk and shear

moduli). For a general variable U = f(X,Y, ...Z), where X,Y, ...Z are independent random

variables with small variances, an estimate of the variance of U is approximated by:

σ̂2
U ≈

(

δf

δX

)2

µ̂X

σ̂2
X +

(

δf

δY

)2

µ̂Y

σ̂2
Y + ... +

(

δf

δZ

)2

µ̂Z

σ̂2
Z , (A.12)

where µ̂(X,Y,Z) is an estimate of the mean of the random variables.

This relation is applied to each experimental method to obtain errors on the estimated

values: modulus and velocity.

A.1.1 Uncertainty analysis on the modulus and velocity

Our data sets consist of Poisson’s ratio and Young’s modulus as a function of frequency

and differential pressure (seismic frequency), and travel time as a function of differential

pressure (ultrasonic frequency). We assume that the Poisson’s ratio and Young’s modulus

relation to the logarithm base 10 of frequency is linear, while the travel time with differential

pressure follows a second order polynomial. These are our true models. We also assume that

the error on our data is random, Gaussianly distributed and with zero mean. In Chapter 2

our core analysis is performed under the assumption that all requirements for Gassmann’s

theory applicability are satisfied. If our samples and experimental setup violate one (or

more) of the assumptions of Gassmann’s theory we introduce a bias (systematic error) in

our estimates, and we give an interpretation to why some results on the samples do not

obey Gassmann’s assumptions.

A.1.2 Stress-strain methodology

In Figure A.2 we plot data for the stress-strain experiment (E and ν) showing a linear

trend with log10 of frequency. We fit a straight line to our data and estimate the variance

of our random error. We use the variance of the random error to compute the error of

estimates of Young’s modulus and Poisson’s ratio (Equation A.11), and later propagate this

error into the estimates of bulk and shear modulus (Equation A.12). The Young’s modulus

of aluminum equals 70 GPa, and we assume this value is error free for the uncertainty

analysis. On average, our estimates of the standard deviation of the estimated bulk modulus

is 1.2 GPa, and that of the shear modulus is 0.3 GPa for seismic frequencies.

We acquire data for 100 frequency points, but sometimes we limit our study to 10, 100,

1000 Hz which are representative seismic frequency points. These data are obtained from

the fitted ŷi and are used to simplify the analysis between ultrasonic and low frequency

data.
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Figure A.2. Error analysis on sample C at a differential pressure of 17.5 MPa and butane
saturation. From the least-squares fit we estimate the variance in our estimate of E and ν.

A.1.3 Ultrasonic pulse propagation

In addition to low frequency measurements, we measure wave propagation travel times

at 0.8 MHz as a function of differential pressure. Travel time decreases with increasing

differential pressure (higher velocity). Figure A.3 shows this dependence, resulting from

open cracks and compliant pores at low differential pressures. A second order polynomial

is fit to the ultrasonic travel time data as a function of pressure (dashed and solid lines in

Figure A.3), from this data estimate we obtain the variance of the random error. We then

compute the error of our estimated travel times.

The ends of our samples are machine flattened and when the length is measured re-

peatedly no significant variability is observed. Also the change inlength due to differential

pressure is minimal. Therefore, we consider the sample length error free. We also assume

there is no error in the differential pressure measurements (no errors in xi). The estimated

error in P- and S-wave velocities is obtained by propagating the estimate of the travel time

error. To estimate the bulk and shear modulus we need the rock density which depends

on porosity, grain density, and fluid density. We will assume that the variance of the rock

density is 0.5% (which is in the lower end of errors reported in core measurements). The

next steps are to propagate the error in S-wave velocity and rock density into the shear

modulus; and then propagate the P-wave velocity, rock density and shear modulus variance

estimators into the bulk modulus. On average, one standard deviation of the estimated P-

and S-wave travel times is small (σ̂t = 0.06 ηs). Still, a small error in the rock density (0.5%)

significantly affects the error of the bulk and shear modulus estimates (σ̂K = 2.4 GPa and

σ̂µ = 0.8 GPa) compared to the errors for data from the stress-strain experiment.
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Figure A.3. Second order polynomial fit to ultrasonic travel times as a function of differential
pressure for sample D under butane saturation.

A.2 Attenuation estimates

For an ideal elastic material, the stress and strain are related to each other by the

modulus of elasticity, which is a real quantity. For a visco-elastic material, the strain

response to an applied stress is delayed in time compared to the stress, which makes the

modulus complex. Because the modulus is complex, the resulting strain signature will be

phase shifted when compared to the applied sinusoidal stress. O’Connell and Budiansky

(1977) defined the quality factor as:

1

Q
=

MI

MR
= tanφ ≈ φ, (A.13)

here MI and MR are the imaginary and real parts of the complex modulus, and φ is the

phase angle shift between stress and strain (usually very small).

Aluminum has a high Q (105), thus we can assume that the phase of the strain repre-

sents the phase of the stress. We therefore estimate Young’s modulus attenuation (1/QE)

from the phase shift between the vertical gages on the aluminum and on the rock.

To obtain the shear-wave attenuation we use the following relation (White, 1965):

1

QS
≃

(1 + ν) 1
QE

− νtanθν

1 + ν
(A.14)

where ν is Poisson’s ration and θν is the phase lag between the vertical and horizontal strain

on the rock sample.

The bulk and P-wave attenuation are estimated from (Winkler and Nur, 1979; Winkler,

1979):
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(1 − 2ν)

QK
=

3

QE
−

2(1 + ν)

QS
(A.15)

(1 − ν)(1 − 2ν)

QP
=

1 + ν

QE
−

2ν(2 − ν)

QS
(A.16)

Gautam (2003) obtained the standard deviation for phase measurements with our

lock-in amplifier (repeatability of the phase), which we then propagate to estimate the

errors in Q−1 at seismic frequencies. The estimated Poisson’s ratio standard deviation also

contributes to the errors in Q−1
S , Q−1

K and Q−1
P .

A.2.1 Uncertainty on the line slope

In Chapter 6 we estimate attenuation from the logarithm of the amplitude ratio of

two events vs. frequency. By fitting a line we estimate the slope and attenuation (1/Q) is

proportional to the slope. The error bars in the plots in Chapter 6 are the estimate of the

uncertainty in the model parameter (slope). In this analysis the data (yi) is log10
Atop

Abottom
(f)

and with an associate random error. From Equation A.9 we estimate σ̂ǫ and the estimate

of the variance of the random error in the slope of a line is obtained from Draper and Smith

(1981):

σ̂2
slope =

σ̂ǫ
2

∑n
i=1(xi − µ̂x)

(A.17)

x is frequency for this case and this estimate of error in the slope is propagated into 1/Q

by applying Equation A.12.
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APPENDIX B

FIBER-OPTIC COMPENSATOR

The compensator is a Proportional-Integral-Derivative (PID) controller, which is a

system with a feedback loop that keeps a process running around a set-point (e.g. am-

plitude of a fringe) by taking a corrective action whenever there is a deviation from the

desired set-point. The PID receives a signal from sensors (light detector) and corrects by:

error computation (proportional), sum of previous errors (integral) and rate of error change

(derivative).

The system detects the light from the combined two fiber arms of the interferometer.

When the sample is strained, the detected light represents the interference fringes. The

system is set to compensate by applying a sinusoidal voltage to a piezo crystal so that instead

of recording fringes we detect a constant light intensity. The piezo voltage is proportional

to the sample deformation - similar to a film negative. We do not need to convert the piezo

voltage into deformation if we take the voltage ratio: vertical on sample and calibrating

aluminum and, vertical and horizontal on the sample. However there will always be some

uncompensated signal which is not possible to get lower than 40 mV. The compensator has

a low-pass filter with a cut-off frequency of 200 Hz Mason (2005).
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APPENDIX C

Q ESTIMATION METHODS

In this appendix two methodologies are compared to estimate Q: spectral ratios (SR)

and frequency shift (FS). The amplitude of a plane wave can be written as: A(f) =

AoG(x)e−α(f)xei(2πft−kx). Ao is the initial amplitude and G(x) is the geometric factor

that includes amplitude changes due to wavefront spreading, transmission/reflection and

source and receiver signature and is assumed frequency independent (Toksoz et al., 1979).

x, t and f are distance, time and frequency, respectively. α is the attenuation coefficient,

which can be assumed linearly dependent on frequency Toksoz et al. (1979), and we can

write α(f) = γf , where γ is the attenuation constant. The quality factor is related to γ as:

Q = π
γv , and v is velocity. Q is assumed frequency independent which based on a narrow

seismic band of the laboratory data is a reasonable statement. The attenuation for an in-

terval from spectral ratios is estimated from the following equation (Hauge, 1981; Toksoz

et al., 1979):

ln

[

At(f)

Ab(f)

]

= (γb − γt)xf + ln

[

Gt(x)

Gb(x)

]

(C.1)

where A(f) is the amplitude spectrum for the event: top (t) or bottom (b) of a layer or

group of layers. Equation C.1 is the equation of a line for data in the form of the logarithm

of amplitude ratio vs. frequency, and the line slope is (γb − γt)x. Interval Q (Qint) is

proportional to the line slope: Qint = π(timeb − timet)/slope.

The frequency shift method assumes the amplitude spectrum can be described by a

Gaussian function with central frequency fc and variance σ2. Q and G(x) are assumed

frequency independent as for SR. Interval Q is estimated by Quan and Harris (1997):

1

Qint
=

vint

π

1

σ2
t

fc,t − fc,b

xb − xt
(C.2)

In this section we study three aspects of estimating intrinsic Q: 1) analyze the signal-

to-noise level of the amplitude spectrum. 2) compare SR to FS and, 3) study the resolution

in estimating Q for a wedge model. In these three subsections, scattering Q does not

contribute to the estimated Q because the modeled layers are thick with respect to the

wavelength (λ ≈ 50 m). Therefore when estimating Q we estimate intrinsic Q rather than

apparent Q. Scattering attenuation is included in section Section X.
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Figure C.1. Zero offset surface seismic synthetic seismograms for a 4-layered model with a
high Q (a) and Q=50 between R2 and R3 (b). c) are the windowed events from the trace
in plot b).

C.1 Estimating signal-to-noise level

We first create a synthetic zero offset surface seismic trace for a homogeneously hor-

izontal 4-layered model. Figure C.1a shows the traces with a high Q (109) and with an

intrinsic Q=50 between reflectors R2 and R3 (b). Figure C.1c are the traces after applying

a Hanning-type window of 100 ms . Figure C.2 a shows the amplitude spectrum of the

two events. However, even for synthetic and clean traces, especially when using SR we

have to decide on a signal-to-noise level (S/N). For that purpose, we convert the amplitude

spectrum into decibels where 0 means the best S/N, and away from zero (more negative)

the S/N decreases (Figure C.2 b). For the modeled traces, the noise probably results from

small numerical artifacts and ratios of small numbers. Figure C.2 c shows the optimum dB

level applied on the amplitude ratios as a function of frequency (circles). The red line is

the linear fit to the amplitude ratios as described by Equation C.1, and from the slope we

obtain Q. When selecting a larger dB level (larger S/N) the estimate Q is 69, 90 and 117

for a -10, -20 and -30 dB level respectively.
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noise level.
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Qtrue QdB −5 QdB −10 Qall

Spectral ratio

50 53 55 193

100 107 106 153

∆Q 54 51 -40

Frequency shift

50 53 54 62

100 107 107 110

∆Q 54 53 48

Table C.1. Interval Q estimates for layer 5 in Figure C.3 (between A and B events). We
compare SR and FS methodologies and different level of noise suppression. A low negative
dB means a high signal to noise ratio. Note how SR are significantly affected by the
(numerical) noise in the data when the whole data (all) is analyzed compared to FS. The
true ∆Q is 50.

C.2 Estimating intrinsic Q

To compare the spectral ratio and frequency shift methods we model a 10 layer reservoir

and create a synthetic common mid-point (CMP) seismogram. We generate two seismo-

grams by changing the P-wave Q-log in which the quality factor for one layer changes from

Q=100 (rock fully-saturated with a light hydrocarbon) to Q=50 (rock fully-saturated with

brine). These traces resemble a time-lapse surface seismic acquisition at time 1 and time 2.

The S-wave quality factor is set high (106) to only model P-wave attenuation. Figure C.3

shows the velocity, density and Q model and the generated synthetic seismogram with a

60 Hz Ricker wavelet. The synthetic seismogram includes: spherical divergence, trans-

mission losses, higher order multiples and conversions. We model a CMP gather with a

maximum offset of 200 m at 10 m receiver separation. The gathers are corrected by NMO

(no stretching) with the true velocities. The stacked trace is analyzed for offsets less than

100 m. After selecting two events (top and bottom of the reservoir) and applying a 100 ms

Hanning-type window, the discrete fast Fourier transform (DFFT) is computed to obtain

the frequency spectrum. At the end both methodologies SR and FS are used to estimate Q.

We use Hampson-Russell (Geoview version 4.3 CE7/R4) to model CMP anelastic gathers.

We generate two stacked traces for the two Q values in layer 5 (between A and B

events Figure C.3), and obtain the time-lapse Q (∆Q) by subtracting the two estimates

for Q. The computed values for a Q of 100 and 50 are shown in Table C.1. Observe how

the estimates even for this synthetic data are within 10% of the true value for high S/N.

Our goal is to estimate time-lapse changes in Q rather than absolute Q. The true ∆Q is 50

and the data up to -5 dB estimates a ∆Q=54 for both methods. In this first test we can

estimate the correct time-lapse Q within 10%.
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Figure C.3. P-wave, density and Qp logs for a homogeneous 10 layer model (left). Synthetic
CMP gather corrected for NMO (right). Traces with offsets up to 100 m are stacked and
this trace is used to estimate Q between the A and B events.
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∆x (m) QSR,−5dB QSR,all QFS,−5dB QFS,all

646 65 300 61 71

574 50 229 50 62

502 55 2692 55 67

431 54 138 55 65

359 57 -106 58 63

287 54 82 54 58

215 53 48 54 56

144 50 73 52 54

72 30 -207 39 55

Table C.2. Q estimates for a wedge model by using two methodologies and different levels
of noise suppression. The window is 100 ms. The true Q is 50.

Also note that when using all the data from the amplitude spectrum the spectral ratio

estimate is largely affected, while for the frequency shift the estimate is more robust. The

increase instability from SR comes from the nature of the methodology. SR is a point to

point method: the amplitude ratio of two events are estimated for each frequency; and

the data at each frequency contributes to the minimization of the difference between data

and fit (least-squares fit to Equation C.1). By comparison, the FS methodology fits a

Gaussian function to the amplitude spectrum of each event, estimate the central frequency

and variance, and then take the ratio of these quantities to obtain Q. Actually, the FS

methodology computes the central frequency and variance by integrating the amplitude

spectrum rather than by least-square fitting a Gaussian function to the amplitude versus

frequency data.

C.3 Wedge model

We generate a zero-offset synthetic seismogram of a wedge model to study the sensitiv-

ity of estimating Q to the layer thickness. Layer 5 in Figure C.3 decreases in thickness from

646 m to 72 m. λ is 50 m, thus the smallest modeled thickness is above tuning, but still

has the interference between top and bottom reflectors. Modeling parameters and window

is the same as in Section XX.

Table C.2 shows the estimates of Q with thickness for Qtrue=50 (Q=100 shows similar

results). We compare the frequency shift and the spectral ratio for a noise level up to -5 dB,

and when including the whole data (all).

For all thicknesses, the estimate of Q is mostly within 10%. As before, when we do not

limit the noise level in our data, the SR Q estimate is significantly distorted. However, for

all thicknesses the FS estimate using the whole data is within 25% of the true value. The

differences at 646 m and 72 m are mainly due to the choice of window. For the 646 m case,
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the estimates are affected because the window includes a strong multiple or conversion.

When choosing a smaller window (40 ms), the Q estimate is 54 for both methods. For a

thickness of 72 m, the top and bottom of the layer are resolved but both contained in the

100 ms window. Again, limiting the window (20 ms) gives a Q=58 for SR at -5 dB S/N.
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APPENDIX D

TIME-LAPSE APPARENT ATTENUATION FROM SURFACE SEISMIC

In this section our surface seismic analysis focuses on three aspects: 1) window size

effect on estimated time-lapse apparent attenuation, 2) ∆1/Qa estimates from zero-offset

vs. stacked traces, and 3) random noise influence on attenuation estimates. We start by

briefly describing the modeling approach. A synthetic shot gather is modeled with the same

elastic and visco-elastic code as for the VSP from the previous section. The velocity, density

and Q log model are shown in Figure D.1. The seismogram was modeled with frequencies

between 0 and 150 Hz, with a dominant frequency of 40 Hz. The time sampling interval is

2 ms. The source and receivers are at the free surface. The minimum and maximum offsets

are 25 m and 520 m respectively, at a 5 m interval. Between 500 and 1000 m, depth the

layers have a strong contrast in velocity and density. It is in this depth interval that we

varied the P-wave intrinsic Q from 100 to 50 as in the VSP study.

Figure D.2 is the surface seismic elastic response (shot gather) for the model in Fig-

ure D.1. The interval apparent attenuation is estimated between the events at 0.33 and

0.54 s, reflections corresponding to geological interfaces at 500 and 1000 m. Let’s first

analyze the zero-offset trace. Figure D.3 plots the elastic zero-offset trace with windowed

top (a) and bottom (b) events for a 64 ms window. The computed spectra of the events is

shown in Figure D.4. The estimated 1/Qa (i.e. 1/Qs) by spectral ratios is 0.014. However,

for surface seismic data, the window size can significantly affect the estimate of apparent

attenuation. The contribution of P-to-S wave conversions and multiples can be part of the

windowed trace when targeting a main reflection event.

Figure D.5 is the estimated apparent attenuation as a function of window size from

the elastic zero-offset trace (triangles), and when including visco-elasticity with Qi=100

(time-1, squares) and Qi=50 (time-2, circles). The error bars are one standard deviation

of the estimate of the random error in 1/Q (see Appendix A). The smallest window is

28 ms long which corresponds to about one dominant wave period (25 ms) and the largest

window is 180 ms. Observe in Figure D.5 that for a window from 28 to 64 ms the estimate

of apparent attenuation is sensitive to the window size. This sensitivity occurs because

the event of interest is not recovered completely, as a result of applying a short Hanning-

type window. However, our main interest is in the apparent time-lapse attenuation that,

under the assumption that scattering attenuation is repeatable and cancels, is equal to the

intrinsic ∆1/Q.

Figure D.6 shows the estimate of ∆1/Qa between the events at 0.33 and 0.54 ms.

The true time-lapse intrinsic attenuation is plotted as a dashed line at 0.01. The ∆1/Qa
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Figure D.1. Velocity and density model used for generating synthetic surface seismic. Qi is
added between 500 and 1000 m (Qi=100, time-1 changes to Qi=50, time-2).

estimate significantly increases with window size, and gets more stable after 0.64 ms. For

small window sizes (< 64 ms), the main reflection event windowed with a Hanning-type

function has an incomplete spectrum producing low values of attenuation. Nonetheless we

are still able to estimate the time-lapse intrinsic attenuation from 4D apparent attenuation

if the selected window is appropriate.

Next we will compare the zero-offset and stacked traces. The elastic gather in Fig-

ure D.2 and the gathers with intrinsic Q were corrected for normal move-out (NMO) with

the known (modeled) Vrms (Figure D.7) and stacked up to an offset of 225 m. The zero-

offset and stacked traces are compared in Figure D.8. Because the modeled synthetic traces

have no noise, and the offsets are short enough to not include amplitude vs. offset (AVO)

effects, there is no difference between zero-offset and stacked traces at the 0.33 and 0.54 ms

events. Therefore, the estimate of ∆1/Qa from these noise-free zero-offset or stacked traces

are the same. If traces are noisy, stacking may improve estimates of time-lapse apparent

attenuation.

As a last test, we add pseudo-random noise to the traces in the elastic and visco-elastic

seismograms as described in the VSP noise section. The noise level was estimated with re-

spect to the shallow reflector (at 0.33 ms). Figure D.9 shows part of the original elastic

zero-offset trace along with traces obtained when three levels of noise are added. The esti-

mated time-lapse apparent attenuation for the zero-offset trace is plotted in Figure D.10a.

The estimate of apparent attenuation is consistent up to 5% noise, but having 10% noise

on the trace can significantly affect the estimated attenuation. If we now stack the noisy
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Figure D.2. Elastic response for the model in Figure D.1 for a surface seismic geometry (shot
gather). The first offset is 25 m from the source and the offset interval is 5 m (maximum
offset is 520 m). Interval 1/Qa is estimated between reflections shown by the arrows (at
0.33 and 0.54 s).
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Figure D.4. Amplitude spectra of the windowed events in Figure D.3.
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Figure D.7. Elastic shot gather with offsets limited to 225 m. The gather is NMO corrected
with Vrms velocities estimated from the VP log in Figure D.1.
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Figure D.9. Zero-offset noise-free trace (original) and with three levels of noise added.

traces up to 225 m offset, the time-lapse apparent attenuation is stable for all noise levels

(Figure D.10b). This stability is no surprise, as random noise is expected to cancel when

traces are stacked. As long as the AVO influence is limited (short offsets), and noise can be

assumed random, working with stacked traces over zero-offset traces from randomly noisy

gathers is advantageous.

Although there is a long list of possible studies and tests to be done on surface seismic

data for time-lapse attenuation, here we only wanted to answer the two main questions posed

at the beginning of this chapter: 1) Is 1/Qa=1/Qs+1/Qi? and 2) if 1/Qs is repeatable,

is ∆1/Qa=∆1/Qi? For modeled zero-offset and surface seismic traces, these two questions

are answered in the affirmative, and the next steps in future research would be to perform

similar analysis on real seismic data. However, there are challenges in time-lapse intrinsic

attenuation studies which we will examine next.
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